JP7101905B1 - 電磁波検出器、及び電磁波検出器アレイ - Google Patents

電磁波検出器、及び電磁波検出器アレイ Download PDF

Info

Publication number
JP7101905B1
JP7101905B1 JP2021560891A JP2021560891A JP7101905B1 JP 7101905 B1 JP7101905 B1 JP 7101905B1 JP 2021560891 A JP2021560891 A JP 2021560891A JP 2021560891 A JP2021560891 A JP 2021560891A JP 7101905 B1 JP7101905 B1 JP 7101905B1
Authority
JP
Japan
Prior art keywords
layer
electromagnetic wave
dimensional material
wave detector
semiconductor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021560891A
Other languages
English (en)
Other versions
JPWO2022208690A1 (ja
Inventor
聡志 奥田
新平 小川
昌一郎 福島
政彰 嶋谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Application granted granted Critical
Publication of JP7101905B1 publication Critical patent/JP7101905B1/ja
Publication of JPWO2022208690A1 publication Critical patent/JPWO2022208690A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/103Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN homojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02002Arrangements for conducting electric current to or from the device in operations
    • H01L31/02005Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022416Electrodes for devices characterised by at least one potential jump barrier or surface barrier comprising ring electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Light Receiving Elements (AREA)

Abstract

電磁波検出器(100)は、半導体層(1)と、半導体層上に配置されており、開口部(6)が形成されている絶縁層(5)と、開口部上から絶縁層上にまで延在しており、開口部に面する絶縁層の周縁部(5A)と接している接続部を含み、かつ半導体層と電気的に接続されている二次元材料層(2)と、絶縁層上に配置されており、かつ二次元材料層と電気的に接続されている第1電極部(3)と、半導体層と電気的に接続されている第2電極部(4)と、半導体層と二次元材料層の接続部との間に配置されており、半導体層および二次元材料層の各々と電気的に接続されているユニポーラ障壁層(7)とを備える。

Description

本開示は、電磁波検出器、電磁波検出器アレイ、および電磁波検出器の製造方法に関する。
従来、次世代の電磁波検出器に用いられる電磁波検出層の材料として、二次元材料層の一例である移動度が極めて高いグラフェンが知られている。さらに、次世代の電磁波検出器として、単層または複数層のグラフェンを電界効果トランジスタのチャネルに適用したグラフェン電界効果トランジスタを用いた電磁波検出器が知られている。
米国特許出願公開第2015/0243826号明細書(特許文献1)に記載された検出器では、グラフェン電界効果トランジスタの暗電流を低減するために、シリコン基板の表面を覆う絶縁膜に形成された開口部内において、開口部を覆うように形成されたグラフェンがシリコン基板と直に接している。この検出器では、n型またはp型の不純物が十分に注入されたグラフェンとp型またはn型の不純物が注入されたシリコン基板との界面にショットキー障壁が形成されることで、電流の整流作用が生じる。
国際公開第2021/002070号(特許文献2)に記載された検出器では、二次元材料層が半導体層の表面を覆う絶縁膜に形成された開口部上から絶縁膜上にまで延在しており、さらに開口部内に位置する二次元材料層の直下の半導体層にpn接合が形成されている。半導体層は第1導電型の第1半導体部分と第2導電型の第2半導体部分とを有し、両部分がpn接合している。特許文献2の検出器では、pn接合が形成されていることにより、電流の整流作用が生じる。さらに、特許文献2の検出器では、pn接合がフォトダイオードとして機能することで、電磁波が該pn接合界面に照射された時に絶縁膜を介してグラフェンに擬似的にゲート電圧が印加された状態となり、二次元材料層の導電率が変調され、結果的に二次元材料層において光電流が増幅する。
米国特許出願公開第2015/0243826号 国際公開第2021/002070号
グラフェンなどの二次元材料の状態密度は、周囲の電荷に応じて敏感に変化する。例えば、二次元材料層に吸着した水分、または二次元材料層上に形成された保護膜が有する固定電荷などの影響によって、二次元材料層とシリコン基板との電気的接合状態は変化しやすい。そのため、特許文献1に記載の検出器では、ショットキー障壁高さが十分に確保できない場合があり、その結果、グラフェンで熱励起された電子が放出(熱電子放出)されてショットキー障壁を超えてシリコン基板に注入される場合がある。
また、特許文献2に記載の検出器では、例えば第1半導体部分の導電型がp型でありかつ二次元材料層および第2半導体部分の各導電型がn型である場合、図21に示されるようなnpn型のダイオード構造が形成される。この場合、光などの電磁波が半導体層に照射されると、pn接合の空乏層にて生じた正孔は二次元材料層を経て第1電極部から光電流として取り出されるが、n型の二次元材料層とp型の第1半導体部分との接合界面に形成される障壁によって正孔の取り出しが妨げられる。一方で、正孔の取り出し効率を高めるために、n型の二次元材料層とp型の第1半導体部分とのpn接合に印加される負の電圧を増加させると、n型の二次元材料層にて熱励起された電子がp型の半導体層に流入しやすくなり、暗電流が増加する。
本開示の主たる目的は、光キャリアの取り出しを妨げることなく、従来の検出器と比べて暗電流を低減できる電磁波検出器、電磁波検出器アレイ、および電磁波検出器の製造方法を提供することにある。
本開示に係る電磁波検出器は、半導体層と、半導体層上に配置されており、開口部が形成されている絶縁層と、開口部上から絶縁層上にまで延在しており、開口部に面する絶縁層の周縁部と接している接続部を含み、かつ半導体層と電気的に接続されている二次元材料層と、絶縁層上に配置されており、かつ二次元材料層と電気的に接続されている第1電極部と、半導体層と電気的に接続されている第2電極部と、半導体層と二次元材料層の接続部との間に配置されており、半導体層および二次元材料層の各々と電気的に接続されているユニポーラ障壁層とを備える。
本開示に係る電磁波検出器の製造方法は、半導体層を準備する工程と、半導体層上にユニポーラ障壁層を形成する工程と、半導体層およびユニポーラ障壁層上に絶縁層を成膜する工程と、半導体層に接する第2電極部を形成する工程と、絶縁層上に第1電極部を形成する工程と、ユニポーラ障壁層上に配置されている絶縁層の一部を除去することにより、絶縁層にユニポーラ障壁層を露出させる開口部を形成する工程と、ユニポーラ障壁層上から、絶縁層上を経て、第1電極部にまで延在する二次元材料層を形成する工程とを備える。
本開示によれば、光キャリアの取り出しを妨げることなく、従来の検出器と比べて暗電流を低減できる電磁波検出器、電磁波検出器アレイ、および電磁波検出器の製造方法を提供できる。
実施の形態1に係る電磁波検出器を示す平面図である。 図1中の線分II-IIから視た断面図である。 図2中の線分A-Bにおけるバンド構造を模式的に示すエネルギーバンド図である。 実施の形態1に係る電磁波検出器の変形例のバンド構造を模式的に示すエネルギーバンド図である。 実施の形態1に係る電磁波検出器の製造方法の一例を説明するためのフローチャートである。 実施の形態1に係る電磁波検出器の変形例のバンド構造を模式的に示すエネルギーバンド図である。 実施の形態1に係る電磁波検出器の変形例のバンド構造を模式的に示すエネルギーバンド図である。 実施の形態2に係る電磁波検出器を示す断面図である。 図8中の線分A-Bにおけるバンド構造を模式的に示すエネルギーバンド図である。 実施の形態2に係る電磁波検出器の変形例のバンド構造を模式的に示すエネルギーバンド図である。 実施の形態3に係る電磁波検出器を示す平面図である。 図11中の線分XII-XIIから視た断面図である。 実施の形態4に係る電磁波検出器の変形例を示す断面図である。 実施の形態5に係る電磁波検出器を示す断面図である。 実施の形態5に係る電磁波検出器の変形例を示す断面図である。 実施の形態6に係る電磁波検出器を示す断面図である。 実施の形態6に係る電磁波検出器の変形例を示す断面図である。 実施の形態7に係る電磁波検出器を示す断面図である。 実施の形態8に係る電磁波検出器アレイを示す平面図である。 実施の形態8に係る電磁波検出器アレイの変形例を示す平面図である。 半導体層がp型の第1半導体部分とn型の第2半導体部分とを有し、n型の二次元材料層が第1半導体部分に接していることにより、npn型のダイオード構造を有する検出器のバンド構造を模式的に示すエネルギーバンド図である。
以下、図面を参照して、本開示の実施の形態について説明する。図面は、模式的なものであり、機能又は構造を概念的に説明するものである。また、以下に説明する実施の形態により本開示が限定されるものではない。特記する場合を除いて、電磁波検出器の基本構成は全ての実施の形態において共通である。また、同一の符号を付したものは、上述のように同一又はこれに相当するものである。これは明細書の全文において共通する。
本実施の形態に係る電磁波検出器が検出対象とする波長帯域は、特に制限されない。本実施の形態に係る電磁波検出器は、例えば、可視光、赤外光、近赤外光、紫外光、X線、テラヘルツ(THz)波、又はマイクロ波などの電磁波を検出する検出器である。なお、本発明の実施の形態において、これらの光及び電波を総称して電磁波と記載する。また、本実施の形態に係る電磁波検出器が検出対象とする波長帯域内の任意の波長を、検出波長とよぶ。
また、本実施の形態では、二次元材料層の一例であるグラフェンとしてp型グラフェン又はn型グラフェンの用語が用いられているが、真性状態のグラフェンよりも正孔が多いものをp型、電子が多いものをn型と呼ぶ。
また、本実施の形態では、二次元材料層の一例であるグラフェンに接する部材の材料について、n型又はp型の用語が用いられているが、これらの用語は、例えば、n型であれば電子供与性を有する材料、p型であれば電子求引性を有する材料を示す。また、分子全体において電荷に偏りが見られ、電子が支配的となるものをn型、正孔が支配的となるものをp型と呼ぶ。これらの接触層の材料は、有機物及び無機物のいずれか一方又はそれらの混合物を用いることができる。
また、本実施の形態において、二次元材料層を構成する材料は、原子が二次元面内に単層で配列され得る任意の材料であればよいが、例えばグラフェン、遷移金属ダイカルコゲナイド(TMD:Transition Metal Dichalcogenide)、黒リン(Black Phosphorus)、シリセン(シリコン原子による二次元ハニカム構造)、およびゲルマネン(ゲルマニウム原子による二次元ハニカム構造)からなる群から選択される少なくとも1つを含んでいればよい。遷移金属ダイカルコゲナイドとしては、例えば二硫化モリブデン(MoS)、二硫化タングステン(WS)、二セレン化タングステン(WSe)等が挙げられる。上記材料の少なくともいずれかにより構成されている二次元材料層は、後述するグラフェンにより構成されている二次元材料層と基本的に同様の効果を奏する。
また、本実施の形態に係る電磁波検出器の動作時において、トンネル電流が生じない層を絶縁層とよび、トンネル電流が生じ得る層をトンネル層とよぶ。
実施の形態1.
<電磁波検出器100の構成>
図1および図2に示されるように、実施の形態1に係る電磁波検出器100は、半導体層1、二次元材料層2、第1電極部3、第2電極部4、絶縁層5、およびユニポーラ障壁層7を主に備える。
半導体層1は、第1面1Aおよび第2面1Bを有する。第2面1Bは、第1面1Aとは反対側に位置している。第1面1Aおよび第2面1Bは、例えば平面である。二次元材料層2、第1電極部3、絶縁層5、およびユニポーラ障壁層7は、半導体層1の第1面1A上に配置されている。第2電極部4は、半導体層1の第2面1B上に配置されている。以下では、第1面1Aおよび第2面1Bと直交する方向を上下方向とし、上下方向において第2面1Bから第1面1Aに向かう方向を上方とし、その反対側を下方とする。電磁波検出器100は、例えば半導体層1に対して上方から入射する電磁波を検出する。
半導体層1は、上述した電磁波の中から予め定められた検出波長に感度を有する。半導体層1は、n型またはp型の導電型を有しており、半導体層1に予め定められた検出波長の電磁波が入射したときに半導体層1内に光キャリアが生じるように設けられている。半導体層1を構成する半導体材料は、感度を有すべき検出波長に応じて任意に選択され得る。
半導体層1を構成する半導体材料は、例えばシリコン(Si)、ゲルマニウム(Ge)、III-V族半導体またはII-V族半導体などの化合物半導体、水銀カドミウムテルル(HgCdTe)、アンチモン化インジウム(InSb)、鉛セレン(PbSe)、鉛硫黄(PbS)、カドミウム硫黄(CdS)、窒化ガリウム(GaN)、シリコンカーバイド(SiC)、リン化ガリウム(GaP)、ヒ化インジウムガリウム(InGaAs)、およびヒ化インジウム(InAs)からなる群から選択される少なくとも1つを含む。半導体層1は、例えば上記群から選択された2以上の半導体材料からなる量子井戸又は量子ドットを含む基板であってもよいし、TypeII超格子を含む基板であってもよいし、又はそれらを組み合わせた基板であってもよい。
ユニポーラ障壁層7は、半導体層1の第1面1A上に配置されている。ユニポーラ障壁層7は、第1面1Aと接しており、半導体層1と電気的に接続されている。ユニポーラ障壁層7は、例えば第1面1Aの全体を覆うように配置されている。ユニポーラ障壁層7は、後述する絶縁層5から露出している部分71と、絶縁層5に覆われている部分72とを有する。
ユニポーラ障壁層7は、検出波長の電磁波が半導体層1に入射したときに半導体層1にて生じた光キャリア(電子正孔対)のうち半導体層1の少数キャリアであるキャリア(例えば半導体層1の導電型がn型の場合には正孔)が半導体層1から二次元材料層2に流入することを妨げず、二次元材料層2において熱励起により生じたキャリアであって半導体層1の多数キャリアであるキャリア(例えば半導体層1の導電型がn型の場合には電子)が二次元材料層2から半導体層1に流入することを妨げる物性を有する。
ユニポーラ障壁層7を構成する材料およびユニポーラ障壁層7の厚みは、ユニポーラ障壁層7が上記物性を有するように選択される。
ユニポーラ障壁層7が接している半導体層1の導電型がn型である場合、ユニポーラ障壁層7を構成する材料は、半導体層1を構成する材料と比べて、電子親和力およびイオン化ポテンシャルが小さく、かつバンドギャップが大きい材料である。ユニポーラ障壁層7を構成する材料は、例えば酸化ニッケル(NiO)および酸化マンガン(MnO)の少なくともいずれかを含む。
ユニポーラ障壁層7が接している半導体層1の導電型がp型である場合、ユニポーラ障壁層7を構成する材料は、半導体層1を構成する材料と比べて、電子親和力およびイオン化ポテンシャルが大きく、かつバンドギャップが大きい材料である。ユニポーラ障壁層7を構成する材料は、例えば酸化スズ(SnO2)、酸化亜鉛(ZnO)、および酸化チタン(TiO2)の少なくともいずれかを含む。
ユニポーラ障壁層7は、絶縁層5よりも薄いことが好ましい。ユニポーラ障壁層7の厚みは、例えば1nm以上100nm以下である。
絶縁層5は、ユニポーラ障壁層7上に配置されている。絶縁層5には、ユニポーラ障壁層7の部分71を露出する開口部6が形成されている。平面視における開口部6の形状は、任意の形状であればよいが、例えば矩形状または円形状である。開口部6の内部には、例えば、ユニポーラ障壁層7の部分71のみが露出している。半導体層1は絶縁層5の開口部6から露出していない。絶縁層5は、ユニポーラ障壁層7の部分72を覆っている。
絶縁層5は、開口部6に面している周縁部5Aを有する。周縁部5Aは、例えば開口部6に面している絶縁層5の側面の下方端部である。ユニポーラ障壁層7は、絶縁層5の周縁部5Aと接している接続部2Aを含む。言い換えると、ユニポーラ障壁層7は、半導体層1と絶縁層5の周縁部5Aとの間を隔てるように配置されている。絶縁層5の側面は、ユニポーラ障壁層7と接している絶縁層5の下面に対して鋭角をなすように傾斜している。
絶縁層5を構成する材料および絶縁層5の厚みは、トンネル電流が半導体層1と第1電極部3との間に生じることを防止するように選択される。
絶縁層5を構成する材料は、例えば酸化シリコン(SiO2)、窒化シリコン(Si34)、酸化ハフニウム(HfO2)、酸化アルミニウム(Al23)、酸化ニッケル(NiO)、およびボロンナイトライド(BN)からなる群から選択される少なくとも1つを含む。
第1電極部3は、絶縁層5上において、開口部6から離れた位置に配置されている。第1電極部3は、二次元材料層2と電気的に接続されている。第2電極部4は、半導体層1に接している。第2電極部4は、例えば半導体層1の第2面1Bに接している。好ましくは、第2電極部4は、半導体層1とオーミック接合している。
図2に示されるように、第1電極部3および第2電極部4は、電源回路に電気的に接続されている。電源回路は、第1電極部3および第2電極部4の間に電圧を印加する電源20と、第1電極部3および第2電極部4の間に流れる電流を測定する電流計21とを含む。
第1電極部3を構成する材料は任意の導電体であればよいが、好ましくは二次元材料層2とオーミック接合する材料である。第2電極部4を構成する材料は任意の導電体であればよいが、好ましくは半導体層1とオーミック接合する材料である。第1電極部3および第2電極部4を構成する材料は、例えば金(Au)、銀(Ag)、銅(Cu)、アルミニウム(Al)、ニッケル(Ni)、クロム(Cr)、およびパラジウム(Pd)からなる群から選択される少なくとも1つを含む。第1電極部3と絶縁層5との間には、第1電極部3と絶縁層5との密着性を高める図示しない密着層が形成されていてもよい。第2電極部4と半導体層1との間には、第2電極部4と半導体層1との密着性を高める図示しない密着層が形成されていてもよい。密着層を構成する材料は、例えばクロム(Cr)またはチタン(Ti)等の金属材料を含む。
二次元材料層2は、開口部6上から絶縁層5上にまで延在している。二次元材料層2は、開口部6においてユニポーラ障壁層7の部分71と接している。二次元材料層2は、絶縁層5上において第1電極部3と接している。二次元材料層2は、ユニポーラ障壁層7および第1電極部3の各々と電気的に接続されている。好ましくは、二次元材料層2は、ユニポーラ障壁層7とオーミック接合している。二次元材料層2は、半導体層1と接していない。二次元材料層2は、ユニポーラ障壁層7を介して、半導体層1と電気的に接続されている。
二次元材料層2は、例えば、ユニポーラ障壁層7のみを介して半導体層1と電気的に接続されている領域と、ユニポーラ障壁層7および絶縁層5を介して半導体層1と電気的に接続されている領域とを有している。前者の領域は、絶縁層5の周縁部5Aよりも開口部6の内側に形成されている。後者の領域は、絶縁層5の上記側面の一部上に形成されている。二次元材料層2の後者の領域は、絶縁層5の下面と側面との間を流れるトンネル電流によって、ユニポーラ障壁層7と電気的に接続されている。
二次元材料層2は、例えば単層グラフェンまたは多層グラフェンである。二次元材料層2は、例えばグラフェンナノリボンを含んでもよい。二次元材料層2は、複数の単層グラフェンからなる乱層積層グラフェンを含んでもよい。上述のように、二次元材料層2を構成する材料は、グラフェン、遷移金属ダイカルコゲナイド、黒リン、シリセン、およびゲルマネンからなる群から選択される少なくとも1つを含んでいてもよい。また、二次元材料層2は、上記群から選択される2以上の材料が組み合わされたヘテロ積層構造を有していてもよい。
二次元材料層2は、例えばp型またはn型の導電型を有する。半導体層1の導電型がn型である場合、二次元材料層2の導電型は例えばp型である。半導体層1の導電型がp型である場合、二次元材料層2の導電型は例えばn型である。なお、半導体層1の導電型がn型である場合、二次元材料層2の導電型はn型であってもよい。半導体層1の導電型がp型である場合、二次元材料層2の導電型はp型であってもよい。
二次元材料層2上には、図示しない保護膜が形成されていてもよい。このような保護膜を構成する材料は、例えば、SiO2、Si34、HfO2、Al23、NiO、およびBNからなる群から選択される少なくとも1つを含む。
電磁波検出器100では、第2電極部4、半導体層1、ユニポーラ障壁層7、および二次元材料層2が順に積層している第1領域と、第2電極部4、半導体層1、ユニポーラ障壁層7、絶縁層5、および二次元材料層2が順に積層している第2領域と、第2電極部4、半導体層1、ユニポーラ障壁層7、絶縁層5、第1電極部3、および二次元材料層2が順に積層している第3領域とを含む。平面視において、第2領域は、例えば第1領域を挟むように配置されている。平面視において、第3領域は、例えば第1領域および第2領域を挟むように配置されている。
<電磁波検出器100の製造方法>
図5は実施の形態1に係る電磁波検出器100の製造方法の一例を説明するためのフローチャートである。図5を参照しながら、図1および図2に示される電磁波検出器100の製造方法の一例を説明する。電磁波検出器100の製造方法は、半導体層1を準備する工程(S1)、ユニポーラ障壁層7を形成する工程(S2)、絶縁層5を成膜する工程(S3)、第2電極部4を形成する工程(S4)、第1電極部3を形成する工程(S5)、絶縁層5に開口部6を形成する工程(S6)、および二次元材料層2を形成する工程(S7)を主に備える。
まず、工程(S1)では、第1面1Aおよび第2面1Bを有する半導体層1が準備される。半導体層1は、例えば半導体基板として準備される。上述のように、半導体層1を構成する材料は、予め定められた検出波長に感度を有する半導体材料である。
次に、工程(S2)が実施される。工程(S2)では、ユニポーラ障壁層7が半導体層1の第1面1A上に形成される。ユニポーラ障壁層7を形成する方法は、特に制限されるものではないが、例えば蒸着法またはスパッタリング法による成膜処理、写真製版処理、およびエッチング処理を含む。
次に、工程(S3)が実施される。工程(S3)では、絶縁層5がユニポーラ障壁層7上に成膜される。後の工程(S6)において、絶縁層5の一部が除去されることにより、開口部6が形成される。絶縁層5を成膜する方法は、特に制限されないが、例えばプラズマCVD(Chemical Vapor Deposition)法または原子層体積法((Atomic Layer Deposition:ALD)である。
なお、絶縁層5の一部が除去される工程(S6)におけるユニポーラ障壁層7の損傷および汚染を抑制するために、本工程(S3)の直前にユニポーラ障壁層7と絶縁層5との間にバリア膜を形成してもよい。バリア膜を構成する材料は、工程(S6)で用いられるエッチャントに対し、絶縁層5を構成する材料よりも高い耐性を持つ材料(エッチング速度が遅い材料)であればよく、例えば窒化シリコン(SiN)、酸化アルミニウム(Al)、またはグラフェンである。
次に、工程(S4)が実施される。工程(S4)では、第2電極部4が半導体層1の第2面1B上に形成される。第2電極部4を形成する方法は、特に制限されるものではないが、例えば蒸着法またはスパッタリング法による成膜処理、写真製版処理、およびエッチング処理を含む。なお、上述した第2電極部4と半導体層1との密着性を向上させるための密着層が形成される場合、該密着層は、第2電極部4を形成する前に、半導体層1において第2電極部4と接続される領域に形成されればよい。
次に、工程(S5)が実施される。工程(S5)では、第1電極部3が絶縁層5上に形成される。第1電極部3を形成する方法は、特に制限されるものではないが、例えば蒸着法またはスパッタリング法による成膜処理、写真製版処理、およびエッチング処理を含む。なお、上述した第1電極部3と絶縁層5との密着性を向上させるための密着層が形成される場合、該密着層は、第1電極部3を形成する前に、上記絶縁層5上において第1電極部3と接続される領域に形成されればよい。
次に、工程(S6)が実施される。工程(S6)では、絶縁層5の一部が除去されることにより、開口部6が形成される。開口部6を形成する方法は、特に制限されるものではないが、例えば写真製版処理、およびエッチング処理を含む。まず、絶縁層5上に写真製版または電子線(EB)描画によりレジストマスクを形成する。レジストマスクは、絶縁層5が形成されるべき領域を覆うとともに、開口部6が形成されるべき領域を露出するように形成されている。その後、レジストマスクをエッチングマスクとして絶縁層5をエッチングする。エッチングの手法は、フッ酸などを用いたウェットエッチングおよび反応性イオンエッチング法などを用いたドライエッチングのいずれかから任意に選択され得る。エッチング後に、レジストマスクが除去される。このようにして、絶縁層5に開口部6が形成される。開口部6内には、ユニポーラ障壁層7の部分71が露出する。
次に、工程(S7)が実施される。工程(S7)では、絶縁層5およびユニポーラ障壁層7の部分71の各々の少なくとも一部上に、二次元材料層2が形成される。二次元材料層2を形成する方法は、特に制限されないが、エピタキシャル成長法による成膜処理、写真製版処理、およびエッチング処理を含む。
以上の工程(S1)~(S7)により、図1および図2に示される電磁波検出器100が製造される。なお、開口部6を形成する工程(S6)は、第1電極部3を形成する工程(S5)よりも前に行われてもよい。つまり、電磁波検出器100の製造方法では、上記工程(S1)、上記工程(S2)、上記工程(S3)、上記工程(S4)、上記工程(S6)、上記工程(S5)、および上記工程(S7)が、この記載順に実施されてもよい。
また、電磁波検出器100の製造方法では、写真製版処理に代えて、電子線(EB)描画処理が行われてもよい。
<電磁波検出器100の動作>
次に、図2~図4を参照して、実施の形態1に係る電磁波検出器100の動作について説明する。図3は、図2に示される半導体層1の導電型がn型でありかつ二次元材料層2の導電型がp型であるときの、線分A-Bにおけるバンド構造を模式的に示すエネルギーバンド図である。図4は、図2に示される半導体層1の導電型がp型でありかつ二次元材料層2の導電型がn型であるときの、線分A-Bにおけるバンド構造を模式的に示すエネルギーバンド図である。
第1電極部3および第2電極部4の間に電源回路(図示せず)が電気的に接続される。電源回路は、第1電極部3および第2電極部4の間に電圧Vを印加する電源20と、電源回路を流れる電流Iを測定する電流計21とを含む。
電圧Vの正負は、ユニポーラ障壁層7と半導体層1の接合に逆バイアスが印加されるように、半導体層1の導電型(ドーピング型)に応じて選択される。第1電極部3の電位が第2電極部4の電位よりも高くなるように、電源20によって両者に印加される電圧を正の電圧とする。第1電極部3の電位が第2電極部4の電位よりも低くなるように、電源20によって両者に印加される電圧を負の電圧とする。
半導体層1の導電型がn型であれば、図2および図3に示されるように、第1電極部3と第2電極部4との間に負の電圧が印加される。これにより、電磁波検出器100は、検出波長の電磁波を検出可能な状態とされる。この場合、ユニポーラ障壁層7は、n型の半導体層1(1n)とp型の二次元材料層2(2p)との間の正孔の流れを妨げないが、半導体層1nと二次元材料層2pとの間の電子の流れを妨げる電子障壁層7aとなる。
具体的には、図3に示されるように、ユニポーラ障壁層7は、検出波長の電磁波が照射されていない状態(暗状態)では、二次元材料層2において熱励起された電子が熱電子放出によって半導体層1に流入することを妨げる。図3に示されるように、ユニポーラ障壁層7は、検出波長の電磁波が照射されている状態では、半導体層1nにおいて生成された電子正孔対(光キャリア)の正孔が二次元材料層2pに流入することを妨げない。検出波長の電磁波が照射されている状態では、半導体層1nにおいて生成された電子正孔対のうちの正孔が二次元材料層2p側に引き寄せされる。ユニポーラ障壁層7の価電子帯の頂上のエネルギーEvは、半導体層1nの価電子帯の頂上のエネルギーEvよりも高い。そのため、半導体層1nにおいて生じた正孔は、ユニポーラ障壁層7に妨げられることなく、二次元材料層2pに注入され、光電流として取り出される。光電流は、電流Iの変化として検出される。
半導体層1の導電型がp型であれば、図4に示されるように、第1電極部3と第2電極部4との間に正の電圧が印加される。これにより、電磁波検出器100は、検出波長の電磁波を検出可能な状態とされる。この場合、ユニポーラ障壁層7は、p型の半導体層1(1p)とn型の二次元材料層2(2n)との間の電子の流れを妨げないが、半導体層1pと二次元材料層2nとの間の正孔の流れを妨げる正孔障壁層7bとなる。
具体的には、図4に示されるように、ユニポーラ障壁層7は、上記暗状態では、二次元材料層2nにおいて電子が熱励起されることにより生じた正孔が半導体層1pに流入することを妨げる。ユニポーラ障壁層7は、検出波長の電磁波が照射されている状態では、半導体層1pにおいて生成された電子正孔対(光キャリア)の電子が二次元材料層2nに流入することを妨げない。検出波長の電磁波が照射されている状態では、半導体層1pにおいて生成された電子正孔対のうちの電子が二次元材料層2n側に引き寄せされる。ユニポーラ障壁層7の伝導帯の底のエネルギーEcは、半導体層1pの伝導帯の底のエネルギーEcよりも低い。そのため、半導体層1pにおいて生じた電子は、ユニポーラ障壁層7に妨げられることなく、二次元材料層2nに注入され、光電流として取り出される。光電流は、電流Iの変化として検出される。
<電磁波検出器100の効果>
電磁波検出器100では、二次元材料層2がユニポーラ障壁層7を介して半導体層1と電気的に接続されている。そのため、上述のように、ユニポーラ障壁層7は、半導体層1の導電型によらず、検出波長の電磁波が照射されている状態では、光キャリアが半導体層1から二次元材料層2に流入することを妨げないが、暗状態では、電子または正孔が二次元材料層2から半導体層1に流入することを抑制する。その結果、電磁波検出器100では、光キャリアの取り出しが妨げられることなく、暗電流が抑制される。
特に、電磁波検出器100および特許文献1および特許文献2に記載の検出器の各々に同じ電圧を印加したときに、電磁波検出器100に生じる暗電流量は、特許文献1および特許文献2に記載の検出器に生じる暗電流量と比べて、少なくなる。その結果、電磁波検出器100では、特許文献1および特許文献2に記載の検出器と比べて、動作温度を高めることができる。また、電磁波検出器100では、特許文献1および特許文献2に記載の検出器と比べて、第1電極部3と第2電極部4との間に大きな電圧Vを印加できる。この場合、電磁波検出器100および特許文献1および特許文献2に記載の検出器の各々に波長および強度が同等である電磁波を照射したときに、電磁波検出器100に生じる光電流量は、特許文献1および特許文献2に記載の検出器に生じる光電流量と比べて、多くなる。
なお、第1電極部3と第2電極部4との間に電圧Vが印加されて、電磁波検出器100が検出波長の電磁波を検出可能な状態にあるとき、開口部6のエッジ部(絶縁層5の周縁部5A)に電界が集中する。これは、二次元材料層2においてユニポーラ障壁層7と接している領域(半導体層1と電気的に接続されている領域)のうち第1電極部3に最も近い部分が開口部6のエッジ部に配置されているためである。電界が集中する開口部6のエッジ部では、熱励起により生じたキャリアが半導体層1に流入しやくなる。電磁波検出器100では、ユニポーラ障壁層7がエッジ部を含む開口部6の全体に配置されているため、電磁波検出器100に生じる暗電流量は、ユニポーラ障壁層7が開口部6においてエッジ部よりも内側にのみ配置された検出器に生じる暗電流量と比べて、少なくなる。
また、特許文献1および特許文献2に記載の検出器では、二次元材料層と半導体層とが直に接している。このような構造では、二次元材料層と半導体層との界面に自然酸化膜が形成される場合があった。自然酸化膜は時間経過や外部環境によって膜厚が増加することがある。そのため、電磁波検出器の特性が不安定となったり、二次元材料層が半導体層と電気的に絶縁してしまい電磁波検出器が動作しなくなったりすることがあった。これに対し、電磁波検出器100では、二次元材料層2と半導体層1とが直に接しておらず、両者の間にユニポーラ障壁層7が配置されている。上述のように、ユニポーラ障壁層7は、比較的安定性が高い酸化物半導体材料により構成され得る。例えば、ユニポーラ障壁層7は、電子障壁層として構成される場合、安定性が高いNiOにより構成され得る。この場合、二次元材料層2とユニポーラ障壁層7との界面およびユニポーラ障壁層7と半導体層1との界面には、自然酸化膜は形成されにくいため、電磁波検出器100の信頼性は、特許文献1および特許文献2に記載の検出器と比べて、高められる。
<変形例>
電磁波検出器100の半導体層1および二次元材料層2の各導電型の組み合わせは、図3または図4に示される組み合わせに限られない。図3および図4では二次元材料層2の導電型は半導体層1の導電型と異なるが、電磁波検出器100の二次元材料層2の導電型は半導体層1の導電型と同じであってもよい。
図6は、図2に示される半導体層1および二次元材料層2の各々の導電型がp型であるときの、線分A-Bにおけるバンド構造を模式的に示すエネルギーバンド図である。図7は、図2に示される半導体層1および二次元材料層2の各々の導電型がn型であるときの、線分A-Bにおけるバンド構造を模式的に示すエネルギーバンド図である。
図6に示されるように、半導体層1および二次元材料層2の各々の導電型がp型である場合、半導体層1p、ユニポーラ障壁層7、および二次元材料層2pのバンド構造は、pnp型のダイオード構造となる。
特許文献2に記載の検出器においてもpnp型のダイオード構造が形成され得るが、この場合にはp型の二次元材料層とn型の第1半導体部分との接合界面には、比較的大きな障壁が形成される。具体的には、当該接合界面近傍のn型の第1半導体部分の伝導帯の底のエネルギーは、p型の第2半導体部分の伝導帯の底のエネルギーと同程度に高くなる。そのため、上記障壁により、第1半導体部分と第2半導体部分とのpn接合界面で生じた電子の取り出しが妨げられる。一方で、電子の取り出し効率を高めるために、p型の二次元材料層とn型の第1半導体部分とのpn接合に印加される負の電圧を増加させると、熱励起により生じた正孔がp型の二次元材料層からn型の半導体層に流入しやすくなり、暗電流が増加する。
これに対し、電磁波検出器100では、図6に示されるpnp型のダイオード構造が実現されても、二次元材料層2pとユニポーラ障壁層7との界面近傍のユニポーラ障壁層7の伝導帯の底のエネルギーEcは、半導体層1pの伝導帯の底のエネルギーEcよりも十分に低い。そのため、ユニポーラ障壁層7は、半導体層1pに生じた電子が二次元材料層2pに流入することを妨げない。一方で、ユニポーラ障壁層7は、二次元材料層2pにて熱励起により生じた正孔が半導体層1pに流入することを妨げる。つまり、ユニポーラ障壁層7は、正孔障壁層として作用し得る。
図7に示されるように、半導体層1および二次元材料層2の各々の導電型がn型である場合、半導体層1n、ユニポーラ障壁層7、および二次元材料層2nのバンド構造は、npn型のダイオード構造となる。
上述のように、特許文献2に記載の検出器においても図21に示されるようなnpn型のダイオード構造が形成され得るが、この場合、n型の二次元材料層とp型の第1半導体部分との接合界面には、比較的大きな障壁が形成される。具体的には、当該接合界面近傍のp型の第1半導体部分の価電子帯の頂上のエネルギーは、n型の第2半導体部分の価電子帯の頂上のエネルギーと同程度に低くなる。そのため、上記障壁により、第1半導体部分と第2半導体部分とのpn接合界面で生じた正孔の取り出しが妨げられる。一方で、正孔の取り出し効率を高めるために、n型の二次元材料層とp型の第1半導体部分とのpn接合に印加される負の電圧を増加させると、n型の二次元材料層にて熱励起された電子がp型の半導体層に流入しやすくなり、暗電流が増加する。
これに対し、電磁波検出器100では、図7に示されるnpn型のダイオード構造が実現されても、二次元材料層2nとユニポーラ障壁層7との界面近傍のユニポーラ障壁層7の価電子帯の頂上のエネルギーEvは、半導体層1nの価電子帯の頂上のエネルギーEvよりも十分に高い。そのため、ユニポーラ障壁層7は、半導体層1nに生じた正孔が二次元材料層2nに流入することを妨げない。一方で、ユニポーラ障壁層7は、二次元材料層2nにて熱励起された電子が半導体層1nに流入することを妨げる。つまり、ユニポーラ障壁層7は、電子障壁層として作用し得る。
このように、電磁波検出器100では、半導体層1および二次元材料層2の各導電型の組み合わせによらず、ユニポーラ障壁層7が電子障壁層または正孔障壁層として作用するため、暗電流を抑制しながらも、光キャリアを効率的に取り出すことができる。
実施の形態2.
図8は、実施の形態2に係る電磁波検出器101を示す断面図である。図8に示されるように、電磁波検出器101は、実施の形態1に係る電磁波検出器100と基本的に同様の構成を備え同様の効果を奏するが、トンネル層8をさらに備える点で、電磁波検出器100とは異なる。以下では、電磁波検出器100とは異なる点を主に説明する。
<電磁波検出器101の構成>
トンネル層8は、開口部6の内部に配置されている。トンネル層8は、上下方向において二次元材料層2とユニポーラ障壁層7との間に配置されている。トンネル層8は、二次元材料層2およびユニポーラ障壁層7の各々と接している。トンネル層8は、半導体層1とは接していない。
トンネル層8は、電磁波検出器101の動作時において、トンネル電流が生じ得るように設けられている。トンネル層8を構成する材料は、電気的絶縁性を有する任意の材料であればよいが、例えばHfO2、Al23等の金属酸化物、SiO2、Si34等の半導体の酸化物または窒化物、およびBNから成る群から選択される少なくとも1つを含む。トンネル層8の厚みは、例えば1nm以上10nm以下である。
電磁波検出器101において、絶縁層5の周縁部5Aは、例えば開口部6に面する絶縁層5の側面においてトンネル層8と接している部分である。二次元材料層2の接続部2Aは、絶縁層5の周縁部5Aに接している。トンネル層8は、二次元材料層2の接続部2Aとユニポーラ障壁層7との間に配置されている。
二次元材料層2は、トンネル層8を流れるトンネル電流によって、ユニポーラ障壁層7と電気的に接続されている。
電磁波検出器101の製造方法は、開口部6を形成する工程(S6)の後、二次元材料層2を形成する工程(S7)の前に、トンネル層8を形成する工程をさらに備える点で、電磁波検出器100の製造方法とは異なる。トンネル層8を形成する工程において、トンネル層8を形成する方法は、特に制限されるものではないが、例えばALD法、真空蒸着法、またはスパッタリング法による成膜処理、写真製版処理、およびエッチング処理を含む。
<電磁波検出器101の効果>
図9は、図8に示される半導体層1の導電型がn型でありかつ二次元材料層2の導電型がp型であるときの、線分A-Bにおけるバンド構造を模式的に示すエネルギーバンド図である。図10は、図8に示される半導体層1の導電型がn型でありかつ二次元材料層2の導電型がn型であるときの、線分A-Bにおけるバンド構造を模式的に示すエネルギーバンド図である。
いずれの場合も、仮に二次元材料層2において熱励起された電子がトンネル層8を通過したとしても、ユニポーラ障壁層7は、当該熱電子が半導体層1nに流入することを妨げる。一方、ユニポーラ障壁層7は、検出波長の電磁波が半導体層1nに入射したときに半導体層1nにて生じた正孔が半導体層1nからトンネル層8に流入することを妨げない。これにより、半導体層1nにて生じた正孔は、トンネル層8を通過して二次元材料層2に流入する。
電磁波検出器101では、電磁波検出器100と同様に、半導体層1の導電型がp型でありかつ二次元材料層2の導電型がn型またはp型であってもよい。仮に二次元材料層2において熱励起により生じた正孔がトンネル層8を通過したとしても、ユニポーラ障壁層7は、当該正孔が半導体層1pに流入することを妨げる。一方、ユニポーラ障壁層7は、検出波長の電磁波が半導体層1pに入射したときに半導体層1pにて生じた電子が半導体層1pからトンネル層8に流入することを妨げない。これにより、半導体層1pにて生じた電子は、トンネル層8を通過して二次元材料層2に流入する。
つまり、電磁波検出器101のユニポーラ障壁層7は、電磁波検出器100のユニポーラ障壁層7と同様に作用し得る。
また、二次元材料層2とユニポーラ障壁層7との間にトンネル層8が配置されていない電磁波検出器100では、検出波長の電磁波が半導体層1に入射したときに半導体層1nから二次元材料層2に流入する光キャリアは、二次元材料層2とユニポーラ障壁層7との界面を通過するため、当該界面に存在する欠陥または異物などにより、散乱または電子もしくは正孔と再結合するおそれがある。この場合、光キャリアのライフタイムおよび移動度の少なくともいずれかが低下し、光キャリアの取り出し効率が低下するおそれがある。
これに対し、電磁波検出器101では、光キャリアが二次元材料層2とユニポーラ障壁層7との間をトンネル電流として流れるため、光キャリアは二次元材料層2とユニポーラ障壁層7との界面での散乱または再結合の影響を受けない。具体的には、二次元材料層2とトンネル層8との界面、トンネル層8の内部、およびユニポーラ障壁層7とトンネル層8との界面に存在する欠陥または異物の密度は、二次元材料層2とユニポーラ障壁層7との界面に存在する欠陥または異物の密度よりも、低く抑えられ得る。そのため、電磁波検出器101では、電磁波検出器100と比べて、光キャリアのライフタイムおよび移動度が低下しにくく、光キャリアの取り出し効率が低下しにくい。その結果、電磁波検出器101に生じる光電流量は、電磁波検出器100に生じる光電流量と比べて、多くなる。
より具体的には、一般的に、ユニポーラ障壁層7の膜質は、トンネル層8(絶縁膜)の膜質ほど高くない。そのため、二次元材料層2とユニポーラ障壁層7とが直接接触している場合、両者の界面には比較的多くの欠陥準位(界面準位)が形成される。この場合、欠陥準位を介して二次元材料層2からユニポーラ障壁層7へ注入される電子の量(暗電流)が比較的多くなる。この電子が光キャリア(正孔)と再結合すると、光の取り出し効率が低下する。一方、二次元材料層2とトンネル層8との界面に形成される欠陥準位の数は、二次元材料層2とユニポーラ障壁層7との界面に形成される欠陥準位の数よりも少なくされ得る。そため、二次元材料層2とトンネル層8とが直接接触している電磁波検出器101では、二次元材料層2とユニポーラ障壁層7とが直接接触している電磁波検出器100と比べて、暗電流が低減し、光キャリアの取り出し効率の低下が抑制されている。
実施の形態3.
図11は、実施の形態3に係る電磁波検出器102を示す平面図である。図12は、実施の形態3に係る電磁波検出器102を示す断面図である。図11および図12に示されるように、電磁波検出器102は、実施の形態1に係る電磁波検出器100と基本的に同様の構成を備え同様の効果を奏するが、ユニポーラ障壁層7が平面視において開口部6の内部に環状に配置されている環状部分73を有し、かつ二次元材料層2が平面視において環状部分73よりも内側に位置する半導体層の一部と接している点で、電磁波検出器100とは異なる。異なる観点から言えば、電磁波検出器102では、ユニポーラ障壁層7が開口部6のエッジ部にのみ配置されている点で、電磁波検出器100とは異なる。以下では、電磁波検出器100とは異なる点を主に説明する。
<電磁波検出器102の構成>
電磁波検出器102において、絶縁層5の周縁部5Aは、例えば開口部6に面している絶縁層5の側面の上方端部である。二次元材料層2の接続部2Aは、絶縁層5の周縁部5Aと接している。絶縁層5の側面は、例えば第1面1Aに対して直交している。
ユニポーラ障壁層7の環状部分73は、第1面1A上に配置されている。環状部分73は、絶縁層5の周縁部5Aに沿って配置されている。環状部分73は、半導体層1および二次元材料層2の各々に接している。
環状部分73の外周面7Aは、絶縁層5の側面と接している。環状部分73の外周面7Aの上方端部は、絶縁層5の周縁部5Aおよび二次元材料層2の各々と接している。環状部分73の外周面7Aの下方端部は、絶縁層5の側面の下方端部および半導体層1の各々と接している。環状部分73の内周面7Bは、二次元材料層2と接している。環状部分73の外周面7Aおよび内周面7Bの各下方端部を含む下面は、半導体層1と接している。環状部分73の外周面7Aおよび内周面7Bの各上方端部を含む上面は、二次元材料層2と接している。
環状部分73の外周面7Aは、例えば第1面1Aに対して直交している面により構成されている。内周面7Bは、例えば環状部分73の下面に対して鋭角をなすように傾斜している傾斜面により構成されている。
二次元材料層2において、環状部分73の内周面7Bよりも内側に配置されている部分は、半導体層1と接している。
電磁波検出器102の製造方法は、ユニポーラ障壁層7を形成する工程(S2)においてユニポーラ障壁層7が環状部分73を有するように形成される点で、電磁波検出器100の製造方法とは異なる。
<電磁波検出器102の効果>
上述した電磁波検出器100と同様に、電磁波検出器102が検出波長の電磁波を検出可能な状態にあるとき、開口部6のエッジ部(絶縁層5の周縁部5A)に電界が集中する。電磁波検出器102においても、電磁波検出器100と同様に、開口部6のエッジ部において二次元材料層2と半導体層1との間にユニポーラ障壁層7が配置されているため、電磁波検出器102に生じる暗電流量は、ユニポーラ障壁層7が開口部6においてエッジ部よりも内側にのみ配置された検出器に生じる暗電流量と比べて、少なくなる。
また、半導体層1の導電型がn型の場合、検出波長の電磁波が照射されることにより絶縁層5の直下で生成された正孔(光キャリア)は、電界が集中している開口部6のエッジ部に流れ込む。ユニポーラ障壁層7が開口部6のエッジ部を流れる暗電流を抑制しているため、開口部6のエッジ部を流れる正孔は電子と再結合しにくい。そのため、電磁波検出器102の光キャリアの取り出し効率は、ユニポーラ障壁層7が開口部6においてエッジ部よりも内側にのみ配置された検出器の光キャリアの取り出し効率と比べて、高められている。
また、電磁波検出器102では、ユニポーラ障壁層7が開口部6のエッジ部にのみ配置されており、開口部6のエッジ部以外の部分では二次元材料層2がユニポーラ障壁層7を介さずに半導体層1と直に接している。そのため、電磁波検出器102では、ユニポーラ障壁層7が上記電源回路に直列に接続された抵抗成分となって光電流量が低下するおそれがない。
実施の形態4.
図13は、実施の形態4に係る電磁波検出器103を示す断面図である。図13に示されるように、電磁波検出器103は、実施の形態3に係る電磁波検出器102と基本的に同様の構成を備え同様の効果を奏するが、ユニポーラ障壁層7が半導体層1に埋め込まれている点で、電磁波検出器102とは異なる。以下では、電磁波検出器102とは異なる点を主に説明する。
<電磁波検出器103の構成>
半導体層1には、第1面1Aに対して凹んでいる凹部1Cが形成されている。凹部1Cは、平面視において絶縁層5の周縁部5Aと重なるように環状に形成されている。
ユニポーラ障壁層7の環状部分73は、凹部1Cの内部に配置されている。環状部分73は、平面視において絶縁層5の周縁部5Aと重なるように環状に配置されている。環状部分73の上面は、絶縁層5の周縁部5Aと接している。環状部分73の上面は、半導体層1の第1面1Aと同一の平面を為すように形成されている。
電磁波検出器103において、絶縁層5の周縁部5Aは、例えば開口部6に面する絶縁層5の側面の下方端部である。二次元材料層2の接続部2Aは、絶縁層5の周縁部5Aに接している。
二次元材料層2において、ユニポーラ障壁層7の環状部分73と接している部分と、半導体層1と接している部分とが、第1面1Aに沿った方向に並んで配置されている。言い換えると、二次元材料層2は、ユニポーラ障壁層7の環状部分73と接している部分と半導体層1と接している部分との間に、段差部分を有していない。
電磁波検出器103の製造方法は、半導体層1を準備する工程(S1)において凹部1Cが形成されている半導体層1が準備され、ユニポーラ障壁層7を形成する工程(S2)においてユニポーラ障壁層7が凹部1C内に形成される点で、電磁波検出器100の製造方法とは異なる。工程(S1)において、凹部1Cを形成する方法は、特に制限されるものではないが、例えば写真製版処理、およびエッチング処理を含む。工程(S2)では、例えばユニポーラ障壁層7の厚みが凹部1Cの深さと等しくなるように、ユニポーラ障壁層7が成膜される。なお、工程(S2)では、ユニポーラ障壁層7の厚みが凹部1Cの深さよりも厚くなるようにユニポーラ障壁層7が成膜された後、例えば化学機械研磨(CMP)などによって第1面1A上に形成されたユニポーラ障壁層7を除去してもよい。
<電磁波検出器103の効果>
電磁波検出器102では、二次元材料層2において、ユニポーラ障壁層7の環状部分73と接している部分と半導体層1と接している部分とがステップ状に配置されている。言い換えると、電磁波検出器102の二次元材料層2は、ユニポーラ障壁層7の環状部分73と接している部分と半導体層1と接している部分との間に、段差部分を有する。そのため、電磁波検出器102では、段差部分に起因して二次元材料層2での光キャリアの移動度が低下するおそれがある。これに対し、電磁波検出器103の二次元材料層2は、ユニポーラ障壁層7の環状部分73と接している部分と半導体層1と接している部分との間に段差部分を有していない。そのため、電磁波検出器103では、上記段差部分に起因した光キャリアの移動度の低下は生じない。
実施の形態5.
図14は、実施の形態5に係る電磁波検出器104を示す断面図である。図14に示されるように、電磁波検出器104は、実施の形態3に係る電磁波検出器102と基本的に同様の構成を備え同様の効果を奏するが、半導体層1が第1導電型を有する第1半導体領域1Dと第2導電型を有する第2半導体領域1Eとを含む点で、電磁波検出器102とは異なる。以下では、電磁波検出器102とは異なる点を主に説明する。
<電磁波検出器104の構成>
第1半導体領域1Dの導電型はn型である場合、第2半導体領域1Eの導電型はp型である。第1半導体領域1Dの導電型はp型である場合、第2半導体領域1Eの導電型はn型である。第1半導体領域1Dは、第2半導体領域1Eとpn接合している。第1半導体領域1Dと第2半導体領域1Eとのpn接合界面は、二次元材料層2の直下に形成されている。第1半導体領域1Dと第2半導体領域1Eとのpn接合界面は、例えば二次元材料層2と接している。
第1半導体領域1Dおよび第2半導体領域1Eの各々は、第1面1Aに表出している。第1半導体領域1Dは、第2電極部4、絶縁層5、およびユニポーラ障壁層7の各々と接している。第2半導体領域1Eは、二次元材料層2と接している。第2半導体領域1Eは、例えばユニポーラ障壁層7と接していない。
平面視において、第2半導体領域1Eは、絶縁層5の周縁部5Aよりも開口部6の内側に形成されている。平面視において、第2半導体領域1Eは、ユニポーラ障壁層7の環状部分73の内周面7Bよりも内側に形成されている。
好ましくは、第1半導体領域1Dおよび第2半導体領域1Eの各々の不純物濃度は、pn接合の空乏層幅が比較的広くなるように、設定される。
電磁波検出器103の製造方法は、例えば半導体層1を準備する工程(S1)において第1半導体領域1Dおよび第2半導体領域1Eが形成されている半導体層1が準備される点で、電磁波検出器100の製造方法とは異なる。なお、電磁波検出器103の製造方法では、ユニポーラ障壁層7および絶縁層5を形成した後に、第1半導体領域1Dおよび第2半導体領域1Eが形成されてもよい。第1半導体領域1Dおよび第2半導体領域1Eが形成を形成する方法は、特に制限されるものではないが、例えば第2半導体領域1Eが形成されているべき領域が開口した不純物注入用のマスクを形成する工程、該マスクを用いた不純物注入工程、および該マスクを除去する工程とを含む。不純物注入用のマスクを形成する方法は、特に制限されるものではないが、例えばマスク材の成膜処理、写真製版処理、およびエッチング処理を含む。
電磁波検出器103においても、電圧Vの正負は、ユニポーラ障壁層7と半導体層1との接合に逆バイアスが印加されるように、ユニポーラ障壁層7と接している第1半導体領域1Dの導電型に応じて選択される。
第1半導体領域1Dの導電型がn型であれば、図14に示されるように、第1電極部3と第2電極部4との間に負の電圧が印加される。第1半導体領域1Dの導電型がp型であれば、第1電極部3と第2電極部4との間に正の電圧が印加される。
<電磁波検出器104の効果>
電磁波検出器104では、二次元材料層2と第1半導体領域1Dとの間に第1半導体領域1Dと第2半導体領域1Eとのpn接合が形成されているため、電磁波検出器102と比べて、暗電流が抑制される。
また、電磁波検出器104では、第1半導体領域1Dと第2半導体領域1Eとのpn接合の内蔵電位差が生じるため、当該内蔵電位差が生じない電磁波検出器102と比べて光キャリアをより効率的に取り出すことができる。
<変形例>
図15は、電磁波検出器104の変形例である電磁波検出器105を示す断面図である。図15に示されるように、電磁波検出器105は、半導体層1が第1導電型を有する第1半導体領域1Dと第2導電型を有する第2半導体領域1Eとを含む点を除き、実施の形態4に係る電磁波検出器103と同様の構成を備えている。このような電磁波検出器105では、電磁波検出器103および電磁波検出器104と同様の効果が奏される。
実施の形態6.
図16は、実施の形態6に係る電磁波検出器106を示す断面図である。図16に示されるように、電磁波検出器106は、実施の形態3に係る電磁波検出器102と基本的に同様の構成を備え同様の効果を奏するが、トンネル層9を備える点で、電磁波検出器102とは異なる。以下では、電磁波検出器102とは異なる点を主に説明する。
<電磁波検出器106の構成>
トンネル層9は、上下方向において半導体層1と二次元材料層2との間に配置されている第1部分9Aと、上下方向においてユニポーラ障壁層7と二次元材料層2との間に配置されている第2部分9Bとを有する。第1部分9Aは、半導体層1および二次元材料層2の各々と接している。第2部分9Bは、二次元材料層2およびユニポーラ障壁層7の各々と接している。
トンネル層9は、電磁波検出器106の動作時において、トンネル電流が生じ得るように設けられている。トンネル層9を構成する材料は、電気的絶縁性を有する任意の材料であればよいが、例えば電気的絶縁性を有する任意の材料であればよいが、例えばHfO2、Al23等の金属酸化物、SiO2、Si34等の半導体の酸化物または窒化物、およびBNから成る群から選択される少なくとも1つを含む。トンネル層9の厚みは、例えば1nm以上10nm以下である。
二次元材料層2は、トンネル層9を流れるトンネル電流によって、半導体層1およびユニポーラ障壁層7の各々と電気的に接続されている。
電磁波検出器106の製造方法は、開口部6を形成する工程(S6)の後、二次元材料層2を形成する工程(S7)の前に、トンネル層9を形成する工程をさらに備える点で、電磁波検出器102の製造方法とは異なる。トンネル層9を形成する工程において、トンネル層9を形成する方法は、特に制限されるものではないが、例えばALD法、真空蒸着法、またはスパッタリング法による成膜処理、写真製版処理、およびエッチング処理を含む。
<電磁波検出器106の効果>
二次元材料層2と半導体層1との間にトンネル層8が配置されていない電磁波検出器102では、検出波長の電磁波が半導体層1に入射したときに半導体層1から二次元材料層2に流入する光キャリアは、二次元材料層2と半導体層1との界面に存在する欠陥または異物などにより、散乱または電子もしくは正孔と再結合するおそれがある。この場合、光キャリアのライフタイムおよび移動度の少なくともいずれかが低下し、光キャリアの取り出し効率が低下するおそれがある。
これに対し、電磁波検出器106では、光キャリアが二次元材料層2と半導体層1との間、または二次元材料層2とユニポーラ障壁層7との間をトンネル電流として流れるため、光キャリアは二次元材料層2と半導体層1との界面および二次元材料層2とユニポーラ障壁層7との界面での散乱または再結合の影響を受けない。そのため、電磁波検出器106では、電磁波検出器102と比べて、光キャリアのライフタイムおよび移動度が低下しにくく、光キャリアの取り出し効率が低下しにくい。その結果、電磁波検出器106に生じる光電流量は、電磁波検出器102に生じる光電流量と比べて、多くなる。
<変形例>
図17は、電磁波検出器106の変形例である電磁波検出器107を示す断面図である。図17に示されるように、電磁波検出器107は、トンネル層9を備える点を除き、実施の形態4に係る電磁波検出器103と同様の構成を備えている。このような電磁波検出器107では、電磁波検出器103および電磁波検出器106と同様の効果が奏される。
また、実施の形態6に係る電磁波検出器は、トンネル層9を備える点を除き、実施の形態5に係る電磁波検出器104,105と同様の構成を備えていてもよい。この場合、トンネル層9の第1部分9Aは、上下方向において半導体層1の第2半導体領域1Eと二次元材料層2との間に配置されている。第1部分9Aは、第2半導体領域1Eおよび二次元材料層2の各々と接している。このような電磁波検出器では、電磁波検出器104,105および電磁波検出器106と同様の効果が奏される。
実施の形態7.
図18は、実施の形態7に係る電磁波検出器108を示す断面図である。図18に示されるように、電磁波検出器108は、実施の形態6に係る電磁波検出器106と基本的に同様の構成を備え同様の効果を奏するが、トンネル層9がユニポーラ障壁層7上に配置されておらず、かつバッファ層10をさらに備える点で、電磁波検出器106とは異なる。以下では、電磁波検出器106とは異なる点を主に説明する。
トンネル層9は、ユニポーラ障壁層7の環状部分73上に配置されておらず、環状部分73の内側にのみ配置されている。トンネル層9の厚みは、ユニポーラ障壁層7の厚みと同等またはそれよりも薄い。
バッファ層10は、上下方向において二次元材料層2とユニポーラ障壁層7の環状部分73との間に配置されている。バッファ層10は、例えば平面視において環状部分73と重なるように環状に配置されている。ユニポーラ障壁層7とバッファ層10との積層体の全体の厚みは、トンネル層9の厚みよりも厚い。バッファ層10を構成する材料は、電気的絶縁性を有する任意の材料であればよく、例えばHfO2、Al23等の金属酸化物、SiO2、Si34等の半導体の酸化物または窒化物、およびBNから成る群から選択される少なくとも1つを含む。バッファ層10を構成する材料は、トンネル層9を構成する材料と同じであってもよいし、異なっていてもよい。
これにより、開口部6の内部には、トンネル層9と、ユニポーラ障壁層7の環状部分73およびバッファ層10の積層体とによって、段差部が形成される。ユニポーラ障壁層7の環状部分73は、当該段差部において表出している。
二次元材料層2は、トンネル層9とユニポーラ障壁層7およびバッファ層10の積層体により構成される段差部の壁面に沿わずに、該壁面から間隔を空けて配置されている。
環状部分73の上面は、バッファ層10の下面と接している。環状部分73の内周面は、トンネル層8の外周面と接している下方領域と、第1面1Aに沿って方向において二次元材料層2と間隔を空けて配置されている上方領域とを有する。
トンネル層9の上面は、二次元材料層2と接している内周領域と、上下方向において二次元材料層2と間隔を空けて配置されている外周領域とを有する。トンネル層9の外周面は、環状部分73の内周面7Bに接している。
バッファ層10は、二次元材料層2に接している上面と、環状部分73と接している下面と、絶縁層5の側面に接している外周面と、第1面1Aに沿った方向において二次元材料層2と間隔を空けて配置されている内周面とを有する。
これにより、電磁波検出器108では、トンネル層9の上面の外周領域、ユニポーラ障壁層7の内周面の上方領域、バッファ層10の内周面、および二次元材料層2の下面に囲まれた空隙11が形成される。空隙11の内部は、例えば空気または窒素(N2)ガスで満たされている。空隙11の内部は、真空であってもよい。
ユニポーラ障壁層7の環状部分73は、二次元材料層2と直に接していない。二次元材料層2は、空隙11を介して、ユニポーラ障壁層7の環状部分73と電気的に接続されている。ユニポーラ障壁層7のうち、環状部分73の側面の上方端部が、二次元材料層2に最も近い。二次元材料層2とユニポーラ障壁層7との間の最短距離は、環状部分73の上記上方端部と二次元材料層2との間の距離である。
二次元材料層2と環状部分73との間の最短距離は、光キャリアの平均自由工程よりも短く、光キャリアが空隙11を挟んで対向する二次元材料層2と環状部分73との間を伝導(バリスティック伝導)するように、設定される。二次元材料層2と環状部分73との間の最短距離は、例えば10nm以下である。
電磁波検出器108の製造方法は、ユニポーラ障壁層7を形成する工程(S2)において、ユニポーラ障壁層7およびバッファ層10を形成する点で、電磁波検出器102の製造方法とは異なる。
工程(S2)では、例えば、ユニポーラ障壁層7およびバッファ層10が成膜された後、ユニポーラ障壁層7およびバッファ層10が同一のマスクを用いてエッチングされることにより、ユニポーラ障壁層7およびバッファ層10が同時に形成される。工程(S2)において、ユニポーラ障壁層7およびバッファ層10を成膜する方法は、特に制限されるものではないが、例えばALD法、真空蒸着法、またはスパッタリング法による成膜処理、写真製版処理、およびエッチング処理を含む。
<電磁波検出器108の効果>
電磁波検出器108では、二次元材料層2がユニポーラ障壁層7および空隙11を介して半導体層1と電気的に接続されている。ユニポーラ障壁層7の上記上方端部と二次元材料層2との間を隔てる空隙11には、電界が集中する。この電界集中により、ユニポーラ障壁層7の上記上方端部と二次元材料層2との間でバリスティック伝導が生じる。検出波長の電磁波が照射されている状態では、半導体層1で生じた光キャリアは、ユニポーラ障壁層7に蓄積され、さらにユニポーラ障壁層7から二次元材料層2にバリスティック伝導する。一方で、暗状態では、熱励起により生じたキャリアが空隙11をバリスティック伝導してユニポーラ障壁層7に達しても、ユニポーラ障壁層7は、当該キャリアが二次元材料層2から半導体層1に流入することを抑制する。
例えば、検出波長の電磁波がp型の半導体層1に照射されると、絶縁層5の直下に生じた電子は正孔障壁層として構成されたユニポーラ障壁層7に蓄積され、さらにユニポーラ障壁層7から二次元材料層2にバリスティック伝導する。一方で、暗状態では、熱励起により生じた正孔が空隙11をバリスティック伝導してユニポーラ障壁層7に達しても、ユニポーラ障壁層7は、当該正孔が二次元材料層2から半導体層1に流入することを抑制する。
つまり、電磁波検出器108のユニポーラ障壁層7は、電磁波検出器100のユニポーラ障壁層7と同様に作用する。
さらに、電磁波検出器108では、ユニポーラ障壁層7と二次元材料層2とが接していないため、光キャリアは両者の界面で散乱されることなく、二次元材料層2に流入し得る。そのため、電磁波検出器108の光キャリアの取り出し効率は、電磁波検出器100の光キャリアの取り出し効率と比べて、高くなる。
実施の形態8.
図19は実施の形態8に係る電磁波検出器アレイ200を示す図である。図19に示されるように、電磁波検出器アレイ200は複数の検出素子を備える。各検出素子は互いに同じ構成を備えており、実施の形態1~7に係る電磁波検出器のいずれかにより構成されている。例えば、電磁波検出器アレイ200は実施の形態1に係る複数の電磁波検出器100Aを備えている。
電磁波検出器アレイ200では、複数の電磁波検出器100Aの各々の検出波長は等しい。図19に示されるように、電磁波検出器アレイ200では、複数の電磁波検出器100Aが二次元方向にアレイ状に配置されている。言い換えると、複数の電磁波検出器100Aは、第1方向および第1方向と交差する第2方向に並んで配置されている。図19に示される電磁波検出器アレイ200では、4つの電磁波検出器100Aが、2×2のアレイ状に配置されている。ただし、配置される電磁波検出器100Aの数はこれに限定されない。たとえば、複数の電磁波検出器100Aを3以上×3以上のアレイ状に配置してもよい。
なお、図19に示される電磁波検出器アレイ200では、複数の電磁波検出器100Aが二次元に周期的に配列されているが、複数の電磁波検出器100Aは1つの方向に沿って周期的に配列されていてもよい。また、複数の電磁波検出器100Aの各々の間隔は等間隔であってもよいし、異なる間隔であってもよい。
また、複数の電磁波検出器100Aをアレイ状に配置する際は、それぞれの電磁波検出器100Aが分離出来てさえいれば、第2電極部4は共通電極としてもよい。第2電極部4を共通電極とすることで、各電磁波検出器100Aにおいて第2電極部4が独立している構成よりも、画素の配線を少なくすることが出来る。この結果、電磁波検出器アレイを高解像度化することが可能となる。
このように複数の電磁波検出器100Aを備える電磁波検出器アレイ200は、アレイ状に複数の電磁波検出器100Aを配列することで画像センサ、ライセンサ、または物体の位置を判別する位置センサとしても使用できる。
<変形例>
電磁波検出器アレイ200は、実施の形態1~7のうちのいずれか一つの実施形態に係る電磁波検出器を複数備えていてもよいし、実施の形態1~7のうちの2以上の実施形態に係る電磁波検出器を複数備えていてもよい。
図20に示される電磁波検出器アレイ201は、図19に示される電磁波検出器アレイ200と基本的に同様の構成を備え、同様の効果を得ることができるが、複数の電磁波検出器として種類の異なる電磁波検出器を備えている点で、図19に示される電磁波検出器アレイと異なる。すなわち、図20に示される電磁波検出器アレイ201では、互いに異なる種類の電磁波検出器がアレイ状(マトリックス状)に配置されている。
図20に示される電磁波検出器アレイ201では、実施の形態1~7のいずれかに係る、種類の異なる電磁波検出器を、一次元又は二次元のアレイ状に配置することで、画像センサ、ライセンサ、または物体の位置を判別する位置センサとしても使用できる。
また、電磁波検出器アレイ201に含まれる各電磁波検出器は、例えば互いに検出波長が異なる電磁波検出器であってもよい。具体的には、各電磁波検出器は実施の形態1~7のいずれかに係る電磁波検出器であって、互いに異なる検出波長選択性を有する電磁波検出器として準備されていてもよい。この場合、電磁波検出器アレイは、少なくとも2つ以上の異なる波長の電磁波を検出することができる。
このように異なる検出波長を有する複数の電磁波検出器をアレイ状に配置することにより、可視光域で用いるイメージセンサと同様に、たとえば紫外光、赤外光、テラヘルツ波、電波の波長域などの任意の波長域において、電磁波の波長を識別できる。この結果、たとえば波長の相違を色の相違として示した、カラー化した画像を得ることができる。
また、電磁波検出器アレイ200は、電磁波検出器100Aからの信号を読み出すように構成された図示しない読み出し回路を含んでいてもよい。電磁波検出器100Aは、読み出し回路の上に配置されてもよい。読み出し回路の読み出し形式は、可視イメージセンサの一般的な読み出し回路を使用可能であり、例えば、CTIA(capacitive transimpedance amplifier)型である。読み出し回路は、他の読み出し形式であってもよい。
また、電磁波検出器アレイ200は、電磁波検出器100Aと読み出し回路とを電気的に接続するバンプを含んでいてもよい。電磁波検出器100Aと読み出し回路がバンプによって接続される構造は、ハイブリッド接合と呼ばれる。ハイブリッド接合は、量子型赤外線センサにおいては一般的な構造である。バンプの材料は例えば、In、SnAg、SnAgCuなどの低融点金属が用いられる。
上述した各実施の形態を適宜、変形、省略したりすることが可能である。さらに、上記実施の形態は実施段階ではその要旨を逸脱しない範囲で種々に変形することが可能である。また、上記実施の形態には種々の段階の発明が含まれており、開示される複数の構成要件における適宜な組み合わせにより種々の発明が抽出されうる。
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。矛盾のない限り、今回開示された実施の形態の少なくとも2つを組み合わせてもよい。本発明の範囲は、上記した説明ではなく請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることを意図される。
1,1n,1p 半導体層、1A 第1面、1B 第2面、1C 凹部、1D 第1半導体領域、1E 第2半導体領域、2,2n,2p 二次元材料層、2A 接続部、3 第1電極部、4 第2電極部、5 絶縁層、5A 周縁部、6 開口部、7 ユニポーラ障壁層、7A 外周面、7B 内周面、7a 電子障壁層、7b 正孔障壁層、8,9 トンネル層、9A 第1部分、9B 第2部分、10 バッファ層、11 空隙、20 電源、21 電流計、71,72 部分、73 環状部分、100,100A,101,102,103,104,105,106,107,108 電磁波検出器、200,201 電磁波検出器アレイ。

Claims (14)

  1. 半導体層と、
    前記半導体層上に配置されており、開口部が形成されている絶縁層と、
    前記開口部上から前記絶縁層上にまで延在しており、前記開口部に面する前記絶縁層の周縁部と接している接続部を含み、かつ前記半導体層と電気的に接続されている二次元材料層と、
    前記絶縁層上に配置されており、かつ前記二次元材料層と電気的に接続されている第1電極部と、
    前記半導体層と電気的に接続されている第2電極部と、
    前記半導体層と前記二次元材料層の前記接続部との間に配置されており、前記半導体層および前記二次元材料層の各々と電気的に接続されているユニポーラ障壁層とを備え、
    前記ユニポーラ障壁層は、平面視において前記開口部の内部に環状に配置されている環状部分を有し、
    前記二次元材料層は、平面視において前記環状部分よりも内側に位置する前記半導体層の一部と接している、電磁波検出器。
  2. 前記ユニポーラ障壁層は、前記半導体層上に配置されており、
    前記ユニポーラ障壁層は、前記絶縁層の前記周縁部から離れるにつれて厚さが徐々に薄くなるテーパ部を有する、請求項1に記載の電磁波検出器。
  3. 前記ユニポーラ障壁層は、前記半導体層の内部に埋め込まれており、
    前記絶縁層の前記周縁部は、前記ユニポーラ障壁層上に配置されている、請求項1に記載の電磁波検出器。
  4. 半導体層と、
    前記半導体層上に配置されており、開口部が形成されている絶縁層と、
    前記開口部上から前記絶縁層上にまで延在しており、前記開口部に面する前記絶縁層の周縁部と接している接続部を含み、かつ前記半導体層と電気的に接続されている二次元材料層と、
    前記絶縁層上に配置されており、かつ前記二次元材料層と電気的に接続されている第1電極部と、
    前記半導体層と電気的に接続されている第2電極部と、
    前記半導体層と前記二次元材料層の前記接続部との間に配置されており、前記半導体層および前記二次元材料層の各々と電気的に接続されているユニポーラ障壁層とを備え、
    前記ユニポーラ障壁層は、平面視において前記開口部の内部に環状に配置されている環状部分を有し、
    平面視において前記環状部分よりも内側に位置する前記半導体層の一部と前記二次元材料層との間に配置されている第1部分を有するトンネル層をさらに備え、
    前記二次元材料層は、前記トンネル層を流れるトンネル電流によって、前記半導体層と電気的に接続される、電磁波検出器。
  5. 前記トンネル層は、前記環状部分と前記二次元材料層との間に配置されている第2部分をさらに有する、請求項4に記載の電磁波検出器。
  6. 前記開口部の内部において前記二次元材料層と前記ユニポーラ障壁層の前記環状部分との間に配置されているバッファ層とをさらに備え、
    前記ユニポーラ障壁層の前記環状部分と前記二次元材料層との間には空隙が形成されており、
    前記環状部分と前記二次元材料層との間の最短距離は10nm以下である、請求項4に記載の電磁波検出器。
  7. 前記半導体層の導電型は、n型であり、
    前記ユニポーラ障壁層の電子親和力およびイオン化ポテンシャルは、前記半導体層の電子親和力およびイオン化ポテンシャルと比べて小さく、
    前記ユニポーラ障壁層のバンドギャップは、前記半導体層のバンドギャップと比べて大きい、請求項1~のいずれか1項に記載の電磁波検出器。
  8. 前記半導体層の導電型は、p型であり、
    前記ユニポーラ障壁層の電子親和力およびイオン化ポテンシャルは、前記半導体層の電子親和力およびイオン化ポテンシャルと比べて大きく、
    前記ユニポーラ障壁層のバンドギャップは、前記半導体層のバンドギャップと比べて大きい、請求項1~のいずれか1項に記載の電磁波検出器。
  9. 前記ユニポーラ障壁層を構成する材料は、酸化物半導体である、請求項1~のいずれか1項に記載の電磁波検出器。
  10. 前記二次元材料層の導電型は前記半導体層の導電型と同じである、請求項1~のいずれか1項に記載の電磁波検出器。
  11. 前記二次元材料層の導電型は前記半導体層の導電型と異なる、請求項1~のいずれか1項に記載の電磁波検出器。
  12. 前記半導体層は、前記二次元材料層と接しておりかつ第1導電型を有する第1半導体領域と、前記第2電極部と接しておりかつ前記第1導電型とは異なる第2導電型を有する第2半導体領域とを含み、
    前記第1半導体領域は、前記第2半導体領域とpn接合している、請求項1~3のいずれか1項に記載の電磁波検出器。
  13. 前記ユニポーラ障壁層は、前記半導体層の少数キャリアであるキャリアが前記半導体層から前記二次元材料層に流入することを妨げず、前記二次元材料層において熱励起により生じたキャリアであって前記半導体層の多数キャリアであるキャリアが前記二次元材料層から前記半導体層に流入することを妨げる物性を有する、請求項1~12のいずれか1項に記載の電磁波検出器
  14. 請求項1~13のいずれか1項に記載の電磁波検出器を複数備え、
    前記複数の電磁波検出器は、第1方向および前記第1方向に交差する第2方向の少なくともいずれかに沿って並んで配置されている、電磁波検出器アレイ。
JP2021560891A 2021-03-30 2021-03-30 電磁波検出器、及び電磁波検出器アレイ Active JP7101905B1 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/013671 WO2022208690A1 (ja) 2021-03-30 2021-03-30 電磁波検出器、電磁波検出器アレイ、および電磁波検出器の製造方法

Publications (2)

Publication Number Publication Date
JP7101905B1 true JP7101905B1 (ja) 2022-07-15
JPWO2022208690A1 JPWO2022208690A1 (ja) 2022-10-06

Family

ID=82446220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021560891A Active JP7101905B1 (ja) 2021-03-30 2021-03-30 電磁波検出器、及び電磁波検出器アレイ

Country Status (4)

Country Link
US (1) US20240154046A1 (ja)
JP (1) JP7101905B1 (ja)
CN (1) CN117063298A (ja)
WO (1) WO2022208690A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014022525A (ja) * 2012-07-17 2014-02-03 Nippon Hoso Kyokai <Nhk> 有機光電変換素子、及び、これを含む受光素子
US20160380219A1 (en) * 2015-06-25 2016-12-29 International Business Machines Corporation Organic monolayer passivation and silicon heterojunction photovoltaic devices using the same
WO2020184015A1 (ja) * 2019-03-12 2020-09-17 パナソニックIpマネジメント株式会社 撮像素子、撮像素子の製造方法及び撮像装置
WO2021002070A1 (ja) * 2019-07-04 2021-01-07 三菱電機株式会社 電磁波検出器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014022525A (ja) * 2012-07-17 2014-02-03 Nippon Hoso Kyokai <Nhk> 有機光電変換素子、及び、これを含む受光素子
US20160380219A1 (en) * 2015-06-25 2016-12-29 International Business Machines Corporation Organic monolayer passivation and silicon heterojunction photovoltaic devices using the same
WO2020184015A1 (ja) * 2019-03-12 2020-09-17 パナソニックIpマネジメント株式会社 撮像素子、撮像素子の製造方法及び撮像装置
WO2021002070A1 (ja) * 2019-07-04 2021-01-07 三菱電機株式会社 電磁波検出器

Also Published As

Publication number Publication date
JPWO2022208690A1 (ja) 2022-10-06
CN117063298A (zh) 2023-11-14
WO2022208690A1 (ja) 2022-10-06
US20240154046A1 (en) 2024-05-09

Similar Documents

Publication Publication Date Title
US9673347B2 (en) Minority carrier based HgCdTe infrared detectors and arrays
US8441032B2 (en) Low-level signal detection by semiconductor avalanche amplification
KR20180008327A (ko) 이중 대역 광검출기 및 이의 제작 방법
JP6884288B1 (ja) 電磁波検出器
JP6487284B2 (ja) 赤外線センサ素子及びその製造方法
WO2007135739A1 (ja) 紫外受光素子
JP7499857B2 (ja) 電磁波検出器および電磁波検出器集合体
JP7101905B1 (ja) 電磁波検出器、及び電磁波検出器アレイ
US20160035928A1 (en) Photodiode
US20230343882A1 (en) Electromagnetic wave detector and electromagnetic wave detector array
US7619240B2 (en) Semiconductor photodetector, device for multispectrum detection of electromagnetic radiation using such a photodetector and method for using such a device
JP7212437B2 (ja) 半導体デバイス、その製造方法および半導体製造システム
WO2021192296A1 (ja) 電磁波検出器、電磁波検出器アレイ、および電磁波検出器の製造方法
CN114041210B (zh) 电磁波检测器
JP7422963B1 (ja) 電磁波検出器
JP7433533B1 (ja) 電磁波検出器および電磁波検出器アレイ
TWI458109B (zh) 紫外光檢測器的製造方法
JP2018182261A (ja) 半導体受光デバイス
KR20180019269A (ko) 반도체 장치
US10644114B1 (en) Reticulated shallow etch mesa isolation
CN114846628A (zh) 电磁波检测器以及电磁波检测器集合体
JP2013201209A (ja) 赤外線センサ

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211013

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211013

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20211013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220502

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220705

R150 Certificate of patent or registration of utility model

Ref document number: 7101905

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150