JP7097206B2 - レーザ加工装置,レーザ光による熱調質方法,及び熱調質材の製造方法 - Google Patents

レーザ加工装置,レーザ光による熱調質方法,及び熱調質材の製造方法 Download PDF

Info

Publication number
JP7097206B2
JP7097206B2 JP2018061389A JP2018061389A JP7097206B2 JP 7097206 B2 JP7097206 B2 JP 7097206B2 JP 2018061389 A JP2018061389 A JP 2018061389A JP 2018061389 A JP2018061389 A JP 2018061389A JP 7097206 B2 JP7097206 B2 JP 7097206B2
Authority
JP
Japan
Prior art keywords
temperature
region
laser beam
laser
head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018061389A
Other languages
English (en)
Other versions
JP2019173080A (ja
Inventor
均 小俣
英俊 金
直人 岡田
河 黄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Amada Co Ltd
Original Assignee
Amada Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Amada Co Ltd filed Critical Amada Co Ltd
Priority to JP2018061389A priority Critical patent/JP7097206B2/ja
Publication of JP2019173080A publication Critical patent/JP2019173080A/ja
Application granted granted Critical
Publication of JP7097206B2 publication Critical patent/JP7097206B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、レーザ加工装置,レーザ光による熱調質方法,及び熱調質材の製造方法に関する。
金属部材の局部的な熱調質を、レーザ光の照射によって行う技術が検討されている。
特許文献1には、熱調質のうちの焼き入れに関し、鋼板のワーク(スプライスプレート)に部分焼き入れを行う方法及び装置が記載されている。
また、特許文献1には、レーザ光の照射で鋼材を変態点以上に加熱した後の冷却速度は、一般に、焼き入れに十分な高速になることが記載されている(特許文献1:段落0009)。
特許第4616523号公報
ところで、熱調質のうちの焼きなましは、加熱後の冷却速度を遅くして徐冷することが必要である。
しかしながら、レーザ光の照射で加熱すると、局部的な加熱になることから冷却が高速となり、徐冷の温度制御が困難である。
そのため、レーザ光による焼きなましは、具体的な手法が確立していないのが現状である。
金属部材の局部的な焼きなましが安定的に可能になると、硬い金属材料を用いた部材の量産的曲げ加工が容易になるなど、メリットが多く、具体的手法の確立が期待されている。
そこで、本発明が解決しようとする課題は、レーザ光の照射による焼きなましを行うことができるレーザ加工装置,レーザ光による熱調質方法,及び熱調質材の製造方法を提供することにある。
上記の課題を解決するために、本発明は次の構成を有する。
1) ワークの一部領域である第1の領域を加熱して第1の温度に昇温維持する加熱部と、
前記ワークに対しレーザ光を照射するヘッドと、
前記ヘッドの動作を制御する制御部と、を備え、
前記制御部は、
前記レーザ光を、昇温維持された前記第1の領域内の第2の領域に所定時間照射して前記第2の領域を前記第1の温度よりも高い第2の温度に昇温し、前記所定時間経過後の前記第2の領域の冷却を、前記第1の領域を前記加熱部によって昇温維持した状態で行って、前記第2の領域を前記ワークの曲げ線として曲げ加工可能な線状にレーザ光によって熱調質するよう制御するレーザ加工装置である。
2) 前記制御部は、前記レーザ光の照射を、前記ヘッドを移動させながら行うことを特徴とする1)に記載のレーザ加工装置である。
3) 曲げ加工するワークの一部の領域である第1の領域に対し第1のレーザ光を照射する第1のヘッドと、
前記第1の領域に含まれる第2の領域に対し第2のレーザ光を照射する第2のヘッドと、
前記第1のヘッド及び前記第2のヘッドの動作を制御する制御部と、を備え、
前記制御部は、
前記第1の領域に対し前記第1のレーザ光を照射して前記第1の領域を第1の温度に昇温維持した状態で、前記第2の領域に前記第2のレーザ光を所定時間照射して前記第2の領域を前記第1の温度よりも高い第2の温度に昇温し、前記所定時間経過後の前記第2の領域の冷却を前記第1のレーザ光の照射下で行って前記第2の領域の熱調質をするよう制御するレーザ加工装置である。
4) 前記制御部は、前記第1のレーザ光及び前記第2のレーザ光の照射を前記第1のヘッド及び第2のヘッドを移動させながら行って、前記第2の領域を、前記ワークを前記第2の領域を曲げ線として曲げ加工可能な直状に熱調質することを特徴とする3)に記載のレーザ加工装置である。
5) ワークの一部領域である第1の領域を加熱部によって加熱して第1の温度に昇温維持する第1昇温ステップと、
昇温維持した状態の前記第1の領域内に、レーザ光を所定時間照射して前記第1の温度よりも高い第2の温度に昇温した第2の領域を形成する第2昇温ステップと、
前記所定時間経過後の前記第2の領域の冷却を、前記第1の領域を前記加熱部によって昇温維持した状態で行う冷却ステップと、を含むレーザ光による熱調質方法である。
6) 前記第2昇温ステップにおける前記レーザ光の照射を、照射位置を移動させながら行うことを特徴とする5)に記載のレーザ光による熱調質方法である。
7) 曲げ加工するワークの曲げ線を含む第1の領域に対し第1のレーザ光を照射して前記第1の領域を第1の温度に昇温維持する第1昇温ステップと、
昇温維持した状態の前記第1の領域における前記曲げ線の部分である第2の領域に対し第2のレーザ光を所定時間照射して、前記第2の領域を前記第1の温度よりも高い第2の温度に昇温する第2昇温ステップと、
前記所定時間経過後の前記第2の領域の冷却を、前記第1のレーザ光の照射下で行う冷却ステップと、を含むレーザ光による熱調質方法である。
8) 前記第2昇温ステップにおける前記第2のレーザ光の照射を、照射位置を移動させながら行うことを特徴とする7)に記載のレーザ光による熱調質方法である。
9) 鋼材を曲げ加工する際の曲げ線を含む第1の領域を加熱部によって加熱してA3変態点未満の第1の温度に昇温維持する第1昇温ステップと、
昇温維持した状態の前記第1の領域内に、レーザ光を所定時間照射してA3変態点を超える第2の温度に昇温した第2の領域を形成する第2昇温ステップと、
前記所定時間経過後の前記第2の領域の冷却を、前記第1の領域を前記加熱部によって昇温維持した状態で行う冷却ステップと、
を含み、前記第2の領域を前記曲げ線として線状にレーザ光による熱調質を行い製造する熱調質材の製造方法である。
10) 前記第2昇温ステップにおける前記レーザ光の照射を、照射位置を移動させながら行うことを特徴とする9)に記載の熱調質材の製造方法である。
11) 曲げ加工する鋼材の曲げ線を含む第1の領域に対し第1のレーザ光を照射して前記第1の領域をA3変態点未満の第1の温度に昇温維持する第1昇温ステップと、
昇温維持した状態の前記第1の領域における前記曲げ線の部分である第2の領域に対し第2のレーザ光を所定時間照射してA3変態点を越える第2の温度に昇温する第2昇温ステップと、
前記所定時間経過後、前記第2の領域を、前記第1のレーザ光の照射下で冷却する焼きなましステップと、
を含む熱調質材の製造方法である。
12) 前記第2昇温ステップにおける前記第2のレーザ光の照射を、照射位置を移動させながら行うことを特徴とする11)に記載の熱調質材の製造方法である。
本発明によれば、レーザ光の照射による焼きなましを行うことができる。
図1は、本発明の実施の形態に係るレーザ加工装置の実施例1であるレーザ加工装置51を示す模式的斜視図である。 図2は、レーザ加工装置51が備えるヒータ16による加熱領域ARaを説明するための平面図である。 図3は、レーザ加工装置51で熱調質したワークWにおける評価点P1の温度推移を示すグラフである。 図4は、鋼材のワークWに対しレーザ加工装置51で行った焼きなましの温度推移を示すグラフである。 図5は、本発明の実施の形態に係るレーザ加工装置の実施例2であるレーザ加工装置52を示す模式的側面図である。 図6は、レーザ加工装置52の制御部25を説明するためのブロック図である。 図7は、レーザ加工装置52がワークWに照射されたレーザ光のスポットLs1a,Ls2aを説明するためのワークWの上面図である。 図8は、レーザ加工装置52で熱調質したワークWにおける評価点P2の温度推移を示すグラフである。 図9は、鋼のワークWに対しレーザ加工装置52で行った焼きなましの温度推移を示すグラフである。 図10は、アルミニウム合金のワークに対しレーザ加工装置51で行った焼きなましの温度推移を示すグラフである。
本発明の実施の形態に係るレーザ加工装置を、実施例1のレーザ加工装置51及び実施例2のレーザ加工装置52により説明する。レーザ加工装置51,52は、ファイバレーザを用いたレーザ加工装置である。
(実施例1)
まず、レーザ加工装置51の全体構成について、図1を参照して説明する。説明の便宜上、水平軸(X軸,Y軸)及び垂直軸(Z軸)を図1の矢印方向に規定する。
レーザ加工装置51は、切断などのレーザ加工と、焼き入れや焼きなましなどの熱調質との両方を行うことができる。
レーザ加工装置51は、レーザ発振器11と、ヘッド12と、ヘッド12を移動するヘッド移動部13と、ワークWが載置されるテーブル14と、制御部としての制御部15と、を有する。
レーザ加工装置51は、さらに、加熱装置としてのヒータ16と、ヒータ駆動部17と、温度センサ18,19と、を有する。
レーザ発振器11は、ファイバレーザ発振器であり、生成したレーザ光をヘッド12に向け供給する。
ヘッド12は、本体部12aと、本体部12aの先端に着脱可能に装着されたノズル12bと、本体部12aに内蔵された光学系12cと、を有する。
ヘッド12は、レーザ発振器11から供給されたレーザ光を、光学系12cにより所望の光束形状や焦点位置のレーザ光Lsにしてノズル12bからテーブル14に向け出射する。
ヘッド移動部13は、ヘッド12をX軸,Y軸,Z軸方向に3次元的に移動する。また、ヘッド12から出射したレーザ光Lsの光軸が、Z軸に対して傾くようにヘッド12を任意の角度に傾斜させることもできる。
テーブル14は、上部にワークWが載置される。
レーザ発振器11,ヘッド12,及びヘッド移動部13の動作は、制御部15によって制御される。
加熱部であるヒータ16は、テーブル14に載置されたワークWの上方又は下方(この例では上方)に近接配置され、ワークWの一部領域を局部的に加熱する。
ヒータ16は、例えば棒状のハロゲンヒータであり、テーブル14に載置されたワークWに対し、X軸方向に延びる帯状に熱を付与する。
ワークWにおいて、ヒータ16によって加熱され、ある温度以上に維持される領域は、図2における加熱領域ARaのようにX軸方向に延びる細長の領域となる。
ヒータ16のON/OFF動作及び出力値は、ヒータ駆動部17を介して制御部15により制御される。
温度センサ18は、テーブル14に載置されたワークWにおける加熱領域ARaの温度を測定し、測定結果を制御部15に向け送出する。
温度センサ19は、例えばヘッド12の本体部12aに取り付けられ、テーブル14に載置されたワークW上の、レーザ光Lsに照射されている部分の温度を測定し、測定結果を温度情報として制御部15に向け送出する。
制御部15は、中央処理装置であるCPU15a,記憶部15b,入出力部15cを有する。制御部15は、温度センサ18,19からの温度情報や、記憶部15bに予め記憶された、或いは入出力部15cを介して入力された加工プログラム及び動作指示などに基づいて、レーザ加工装置51の全体動作を制御する。
レーザ加工装置51は、制御部15の制御の下、次の手順により、鋼材のワークWに対し、局部的な焼きなまし処理を行えるようになっている。この処理について、図2及び図3を参照して説明する。
図2は、テーブル14に載置したワークWの上面図である。図3は、図2に示されたワークWにおける評価点P1での、焼きなましにおける温度の時間推移を示したグラフである。評価点P1は、X軸方向が任意位置、Y軸方向が加熱領域ARaの中点に位置する点である。
説明する焼きなましは、例えば、ワークWのY軸方向中央部に、X方向に延びる軟化領域を形成するものである。
まず、ワークWを、軟化させたい領域がヒータ16の直下となるようテーブル14に載置する。ヘッド12は、ワークWの上方から外れた位置に移動しておく。
制御部15の制御の下、ヒータ16を動作させ、テーブル14に載置したワークWを加熱する。そして、加熱領域ARaの温度を、温度センサ18で監視しながら温度T12で飽和した安定状態にする(図3:時刻t11~t12)。
次いで、制御部15の制御の下、レーザ発振器11を動作させて、レーザ光Lsをノズル12bから下方に照射させる。
ヘッド移動部13を動作させて、ヘッド12の姿勢を、レーザ光Lsの光束がヒータ16と干渉せず、かつ照射位置がヒータ16の直下となるように傾斜させる。
すなわち、Y軸方向の照射位置を、ワークWの加熱領域ARaにおけるY軸方向の中央位置とする。以下、この中央位置を通りX軸に平行な仮想線を、本加熱線LNaと称する。また、レーザ光LsがワークWに照射された際の照射範囲をスポットLsaと称する(図2参照)。
次に、制御部15は、ヘッド移動部13を動作させて、レーザ光Lsが本加熱線LNa上を移動するようにヘッド12を速度V1で移動させる(矢印DR1)。
レーザ光LsがワークWに掛かると、ワークWの表面にスポットLsaが生じる。このスポットLsaは、本加熱線LNa上を図2の右方に速度V1で移動する。
このスポットLsaの移動に伴い、評価点P1では、ワークWのスポットLsaが掛かり始めると(時刻t12)、加熱されて温度は上昇する。そして、スポットLsa掛かり終わりに最高の温度T13に達し(時刻t13)、スポットLsaの通過後、温度は下降する。
ヒータ16による加熱領域ARaへの熱供給は継続的に行われていることから、評価点P1におけるスポットLsaの通過後の温度低下勾配は緩やかとなる。すなわち、評価点P1の温度はゆっくりと低下してレーザ光Lsを照射する前の温度T12に戻る(時刻t14)。
ここで、レーザ光Lsを、時刻t12~時刻t13の所定時間照射した後の時刻t13~時刻t14の温度推移線において、評価点P1の温度Tが、温度T12と温度T13との間の所定の温度T15,T14に低下した時刻を、それぞれ時刻t133,t134とする。そして、時刻t133から時刻t134までの時間を、便宜的に冷却時間tm1とする。
また、温度T15は、ワークWが鋼材の場合、その材料のA3変態点となる温度とする。
このように、実施例1のレーザ加工装置51によって行う熱調質方法によれば、ワークWにおける熱調質する部位を含む第1の領域を、レーザ光Lsの照射前にヒータ16によって予加熱した加熱領域ARaとして常温よりも高い所定の温度T12(第1の温度)に維持しておく。
これにより、昇温維持した加熱領域ARaのうちの、さらにレーザ光Lsの照射で温度T13(第2の温度)へ急激に昇温させた第2の領域である本加熱領域ARbは、昇温後の冷却速度が、予加熱しない場合と比べて小さく温度低下勾配が緩やかとなる。図2には、本加熱領域ARbとなる部分(スポットLsaが通過する部分)が括弧付き符号で示されている。
そのため、レーザ加工装置51は、ワークWの材質などに応じて、レーザ光Lsによる本加熱後の冷却速度を小さく(遅く)制御して焼きなましが可能である。
冷却速度を小さくするための制御で設定すべき直接的条件となる項目は、温度T12,~T15、及び、時間tm1である。
これらの項目は、光学系12cやレーザ発振器11からの出力などで設定されるレーザ光Lsに基づくパワー密度E,ヘッド12の移動の速度V1,ヒータ16の出力,ヒータ16とワークWとの距離、などにより調整できる。
また、これらの項目の設定値は一定でなくてよく、時間経過に伴い変化させてもよい。
これらの項目を調整し、レーザ加工装置51によって自動車用加工性冷間圧延高張力鋼板のSPFC980Y材をワークWとする熱調質試験を行った。
その結果、熱調質を行う前に困難だった曲げ加工が、熱調質により、本加熱線LNaを曲げ線として可能になった。これにより、焼きなましがなされたことを確認した。比較例は、ヒータ16を用いないで同様のレーザ光照射を行った場合であり、熱調質後も曲げ加工は困難であった。以下、図4を参照して詳述する。
試験条件は、
供試材(ワークW):SPFC980Y t1.0
レーザ発振器11:ファイバレーザ (最大出力4kW)
ヒータ16:出力2kW
温度T12:400℃
温度T13:920℃
温度T14:500℃
温度T11:20℃(常温)
時間tm1:8.5秒
とした。温度T13は、A3変態点の約910℃を越える値として設定し、温度T12は、A3変態点未満の値として設定してある。
図4において、評価点P1の温度の時間推移は、ヒータ16を使用した実施例1における熱調質を行った場合が実線で示されている。この温度は、ワークWの裏面に取り付けた熱電対により測定した。
また、横軸の時間は、評価点P1をスポットLsaが通り抜けた図3における時刻t13を、0(ゼロ)としてある。また、温度T13がA3変態点に近いため、時間tm1は、時刻0(ゼロ)から時刻t134までの時間としてある。
一方、図4には、ヒータ16を使用しない比較例としての焼きなましを行った場合を破線で示してある。比較例の温度推移においても同様に、時間tm1a(時間tm1に相当)は、時刻0(ゼロ)から時刻t134に相当する時刻t134aまでの時間とした。
レーザ発振器11におけるレーザ光Ls1の出力は、ヒータ16を使用した実施例1において約500Wであり、比較例においては、温度T13を同じ温度とするために約800Wとした。
図4に示されるように、ヒータ16を用いた実施例1における焼きなましでは、時間tm1が約7秒であったのに対し、比較例では、時間tm1aが約1.5秒であった。
すなわち、ヒータ16を用いて熱調質する部分を予め昇温させておく実施例の方が、冷却速度は遅くなっていた。
ワークWに対し、実施例1によってヒータ16を使用し予加熱して熱調質した熱調質材Wt1と、比較例としてヒータ16を使用せずに予加熱なしに熱調質した熱調質材Wt1aと、を製造し、ワークWの素材の曲げ加工が困難な抜き荷重のプレス機を用いて、本加熱線LNaを曲げ線として90°の曲げ加工を行った。
その結果、実施例1による熱調質材Wt1は、曲げ線以外の部分よりも曲げ線部分が確実に軟らかくなっていて曲げ加工が可能であったのに対し、比較例の熱調質材Wt1aは、曲げ線以外の部分と同等又はそれ以上に硬く、素材同様に曲げ加工が困難であった。
従って、実施例1による熱調質を行うことで、ワークWに対し局部的な焼きなましを施した熱調質材Wt1が得られることを確認できた。
(実施例2)
次に、実施例2のレーザ加工装置52の全体構成について、図5を参照して説明する。説明の便宜上、水平軸(X軸)及び垂直軸(Z軸)を図5の矢印方向に規定する。水平軸のY軸は、紙面表裏方向となる。
実施例2のレーザ加工装置52は、切断などのレーザ加工と、焼き入れや焼きなましなどの熱調質との両方を行うことができる。
レーザ加工装置52は、第1レーザ出射系21G及び第2レーザ出射系22Gと、ヘッド移動部23と、制御部25と、上面に載置されたワークWを水平に二次元移動させるテーブル26と、を有する。
レーザ加工装置52は、さらに温度センサ27,28を有する。
第1レーザ出射系21Gは、レーザ発振器21d及びヘッド21を有する。
第2レーザ出射系22Gは、レーザ発振器22d及びヘッド22を有する。
レーザ発振器21d,22dは、ファイバレーザ発振器であり、生成したレーザ光をそれぞれヘッド21,22に向け供給する。
ヘッド21は本体部21aと、本体部21aの先端に着脱可能に装着されたノズル21bと、本体部21aに内蔵された光学系21cと、を有する。
ヘッド22は、本体部22aと、本体部22aの先端に着脱可能に装着されたノズル22bと、本体部22aに内蔵された光学系22cと、を有する。
ヘッド21は、レーザ発振器21dから供給されたレーザ光を、光学系21cにより所望の光学特性(光束形状及び焦点位置など)のレーザ光Ls1にしてノズル21bからテーブル26に向け出射する。
ヘッド22は、レーザ発振器22dから供給されたレーザ光を、光学系22cにより所望の光学特性(光束形状及び焦点位置など)のレーザ光Ls2にしてノズル22bからテーブル26に向け出射する。
レーザ光Ls1は、光束の横断面形状が、例えば円形とされて出射される。
レーザ光Ls2は、光束の横断面形状が、例えばX軸方向を長手とする細長円形とされて出射される。
ヘッド21及びヘッド22は、ヘッドホルダ29によって光軸が上下方向となる姿勢で並設連結されている。
ヘッド移動部23は、並設連結されたヘッド21及びヘッド22を一体としてX軸,Y軸,Z軸方向に移動する。
レーザ光Ls1及びレーザ光Ls2は、図5に示されるように、テーブル26の上面に載置されたワークWに到達する前に、レーザ光Ls1の光束がレーザ光Ls2の光束内に含まれるようにそれぞれの光束形状を設定可能とされている。
レーザ発振器21d,22dとヘッド21,22とヘッド移動部23の動作は、制御部25により制御される。
制御部25は、図6にも示されるように、中央処理装置であるCPU25aと、記憶部25b及び入出力部25cと、を有する。
図6に示されるように、CPU25aは、レーザ出射系選択部25a1及び調整項目設定部25a2を含んで構成されている。
制御部25は、温度センサ27,28からの温度情報や、記憶部25bに予め記憶された、或いは入出力部25cを介して入力された加工プログラム及び動作指示などに基づいて、レーザ加工装置52の全体動作を制御する。
図7は、テーブル26に載置されたワークW上の、レーザ光Ls1及びレーザ光Ls2の照射領域を説明するための上面図である。
すなわち、ワークW上の照射領域形状は、レーザ光Ls1については円形のスポットLs1aとされ、レーザ光Ls2については、スポットLs1aを含むX軸方向を長手とする長丸状のスポットLs2aとされる。
スポットLs2aにけるスポットLs1aの位置はX軸方向については例えば(-)側に偏り、Y軸方向については中央とされる。
以下、スポットLs1aとスポットLs2aとをまとめて、スポット群LsaGと称する。
調整項目設定部25a2は、第1レーザ発振器21d,第2レーザ発振器22d,及び光学系21c,22cの動作を制御して、レーザ光Ls1のスポットLs1aにおけるパワー密度E1及びレーザ光Ls2のスポットLs2aにおけるパワー密度E2を設定する。例えば、パワー密度E1をパワー密度E2よりも大きく設定する。
以上の構成を有するレーザ加工装置52は、制御部25の制御の下、次の手順により、鋼材のワークWに対し局部的に焼きなましを行えるようになっている。次に、この焼きなまし方法について図7及び図8を参照して説明する。
この焼きなましは、例えば、図7に示されるワークWのY軸方向中央部に、評価点P2を含むX軸方向に延びる軟化領域を形成するものとする。
まず、テーブル26に載置したワークWに対するX軸方向外側に、ヘッド21,22を位置させ、レーザ光Ls1,Ls2を出射する。図7では、この状態でのスポット群LsaGの位置G1を、ワークWの右側に鎖線で示してある。
制御部25の制御の下、テーブル26をX軸(+)方向に所定の速度V2で移動する。これにより、スポット群LsaGは、ワークW上を図7の左方に相対的に速度V2で移動し(矢印DR2)、ワークWの左側へ抜け位置G2に達する。
スポット群LsaGがワークWをX軸方向に横切る動作において、評価点P2の温度Tの時間変化が図8に示される。
図8において、縦軸は温度T、横軸は時間tである。
時刻t21までは、評価点P2にスポット群LsaGが掛かっていない状態であり、常温の温度T21が維持される。
時刻t21で、評価点P2にスポットLs2aが掛かり始める。これにより、評価点P2の温度は上昇し、温度T22で飽和維持される。
時刻t22~時刻t23で、評価点P2に、スポットLs2a内に含まれるスポットLs1aが掛かる。
これにより、評価点P2は、スポットLs1aに加えスポットLs2aからも加熱され、温度が急上昇し、時刻t23で温度T23に達する。
時刻t23でスポットLs1aが通り抜けた以降、評価点P2にはスポットLs2aが掛かり続ける。そのため、評価点P2の温度は急激には低下せず、緩やかな温度勾配で温度T22に低下して維持される。
時刻t24で、評価点P2は、スポットLs2aからも抜けるので、温度は急激に低下し、常温のT24に戻る。
図8の、スポットLs1aが照射される時刻t12~時刻t13の所定時間経過後の時刻t23~時刻t24の温度推移において、温度T22と温度T23との間の所定の温度T25,T24に低下した時刻をそれぞれ時刻t233,t234とし、時刻t233から時刻t234までの時間を、便宜的に冷却時間tm2とする。ここで温度T25は、鋼の場合のA3変態点となる温度とする。
このように、実施例2のレーザ加工装置52による熱調質方法によれば、ワークWにおける熱調質する部位を含む一部の領域(第1の領域)を、ヘッド22(第1のヘッド)から出射されるレーザ光Ls2(第1のレーザ光)の移動方向に長いスポットLs2aによって、常温よりも高い所定の温度T22(第1の温度)に昇温維持する。
これにより、昇温維持した範囲のうちの、さらにヘッド21(第2のヘッド)から出射されるレーザ光Ls1(第2のレーザ光)の照射で急激に温度T23(第2の温度)に昇温させた本加熱領域AR1(第2の領域)(図7)は、レーザ光Ls2の照射下で冷却されるために冷却速度が遅く温度低下が緩やかになる。そのため、ワークWの材質に応じた条件設定によって焼きなましが可能である。図7には、本加熱領域AR1に対応した範囲を鎖線で示してある。
設定すべき直接的条件となる項目は、温度T22,~T25、及び、時間tm2である。
これらの項目は、光学系21c,22cやレーザ発振器21d,22dからの出力などで設定されるレーザ光Ls1,Ls2に基づくパワー密度E1,E2,ヘッド12の相対移動の速度V2などにより調整できる。
また、これらの項目の設定値は一定でなくてよく、時間経過に伴い変化させてもよい。
レーザ加工装置52の記憶部25bには、図6に示されるように、ワークWに対してレーザ加工装置52が行うレーザ加工及び熱調質に関する条件設定などの情報がデータベースDB2として格納されている。
データベースDB2には、切断等の形状を変える加工してのレーザ加工で用いるレーザ加工テーブルと、材料の組成を変える熱調質で用いる熱調質テーブルと、が含まれている。
レーザ加工テーブルは、切断などの加工を施すワークWの材質、板厚、加工種類、加工経路等と、それらに応じて選択可能なレーザ出射系、出射強度、光束形状、焦点位置、パワー密度、などの条件と、が紐付けされテーブル化されている。
熱調質テーブルは、熱加工するワークWの材質、板厚保、調質種類(焼き入れ、焼きなましなど)と、それらに応じて選択可能なレーザ出射系、出射強度、光束形状、焦点位置、パワー密度、予加熱温度、本加熱温度、移動の速度、などの条件と、が紐付けされテーブル化されている。
レーザ出射系選択部25a1は、記憶部25bに格納されたデータベースDB2を参照して、次に実行する処理に紐付された各条件を取得する。
そして、次に実行する処理が例えば切断加工であれば、二つあるレーザ出射系のうちの一方(例えば、第1レーザ出射系21G)を、動作させるレーザ出射系として選択する。
また、次に実行する処理が熱調質であれば、第1レーザ出射系21Gと第2レーザ出射系22Gとの両方を、使用するレーザ出射系として選択する。
調整項目設定部25a2は、レーザ出射系選択部25a1が選択したレーザ出射系のレーザ出射強度などの調整項目を、取得した条件に基づき設定する。
調整項目は、ワークW上の照射部位におけるパワー密度が適正となるように設定され、レーザ発振器21d,22dの出力値、光学系21c,22cによる光束形状やデフォーカスのための焦点位置調整、ヘッド移動部23の動作、テーブル26におけるワーク移動速度などを含む。
また、熱調質の実行中には、温度センサ27,28から得られる温度情報に基づいて各調整項目を閉ループ制御する。
調整項目設定部25a2は、調整項目をデータベースDB2に基づき設定することに限定されず、入出力部52cを介して作業者や外部機器から入力された情報に基づいて設定してもよい。
これらの調整項目を設定し、レーザ加工装置52によって自動車用加工性冷間圧延高張力鋼板のSPFC980Y材をワークWとして熱調質試験を行った。比較例は、レーザ光Ls2を照射せずにレーザ光Ls1の照射のみを行った場合とした。
その結果、熱調質を行う前に困難だった曲げ加工が、熱調質により、レーザ光Ls1のスポットLs1aが照射された直状部分を曲げ線として可能になった。これにより、焼きなましがなされたことを確認した。比較例は、レーザ光Ls2を照射しないでレーザ光Ls1のみを照射した場合であり、熱調質後も曲げ加工は困難であった。以下、図9を参照して詳述する。
試験条件は、
供試材(ワークW):SPFC980Y t1.0
レーザ発振器21d:ファイバレーザ (最大出力4kW)
レーザ発振器22d:ファイバレーザ (最大出力4kW)
温度T22:400℃
温度T23:920℃
温度T24:500℃
温度T21:20℃(常温)
時間tm2:8.5秒
とした。温度T23は、A3変態点の約910℃を超える値として設定し、温度T22は、A3変態点未満の値として設定してある。
図9において、評価点P2の温度の時間推移は、ワークWに対しレーザ光Ls1とレーザ光Ls2とを共に照射して実施例2による熱調質を行った場合が実線で示されている。
また、横軸の時間は、評価点P1をスポットLs1aが通り抜けた図8における時刻t23を、0(ゼロ)としてある。また、温度T23がA3変態点に近いため、時間tm2は、時刻0(ゼロ)から時刻t134までの時間としてある。
一方、図9には、ワークWに対しレーザ光Ls2を照射せずレーザ光Ls1のみを照射した比較例としての熱調質を行った場合を破線で示してある。比較例の温度推移においても同様に、時間tm2a(時間tm2に相当)は、時刻0(ゼロ)から時刻t234a(時刻t234に相当)までの時間とした。
図9に示されるように、レーザ光Ls1とレーザ光Ls2とを照射した実施例2による熱調質では、時間tm2が約7秒であったのに対し、比較例では、時間tm2aは約1.5秒であった。
すなわち、レーザ光Ls2を照射して熱調質する部分を予め昇温させておく実施例2による熱調質の方が、冷却速度は遅くなっていた。
実施例2により熱調質した熱調質材Wt2と、比較例として熱調質した熱調質材Wt2aと、に対し、ワークWの素材の曲げ加工が困難な、小さい抜き荷重のプレス機を用い、スポットLs1aが通過した本加熱領域AR1に含まれる曲げ線で90°曲げの曲げ加工を行った。
その結果、実施例2により熱調質した熱調質材Wt2は、曲げ線以外の部分よりも曲げ線部分が確実に軟らかくなっていて曲げ加工が可能であったのに対し、比較例の熱調質材Wt2aは、曲げ線以外の部分と同等又はそれ以上に硬く、素材同様に曲げ加工が困難であった。
従って、実施例2による熱調質を行うことで、ワークWに対し局部的な焼きなましを施した熱調質材Wt2が得られることを確認できた。
本発明の実施例は、上述した構成及び手順に限定されるものではなく、本発明の要旨を逸脱しない範囲において変形してもよい。
ワークWの材質がアルミニウム合金の場合も、レーザ加工装置51,52のレーザ光Ls,Ls1による集中加熱後の冷却速度を、それぞれヒータ16、レーザ光Ls2によって適切な緩やかさにすることで焼きなましの熱調質処理が可能である。
図10は、例として実施例1のレーザ加工装置51によりアルミニウム合金のワークWに焼きなましを行った場合の、評価点P1の温度推移グラフである。
この処理は、次の条件で実施した。
供試材(ワークW):A2017-T3(ジュラルミン) t1.0
レーザ発振器11:ファイバレーザ (最大出力4kW)
ヒータ16:出力2kW
温度T32:510℃
温度T33:425℃
温度T34:359℃
温度T35:293℃
温度T36:227℃
温度T31:20℃(常温)
時間tm3:43分
スポットLsaの移動の速度V3:2000mm/min
まず、常温T31のワークWの所定範囲を、ヒータ16により温度T33まで昇温し飽和維持させた(時刻t31)。
次にレーザ光LsのスポットLsaを、本加熱線LNa上に速度V3で移動させた。これにより評価点P1では時刻t32~時刻t33の間、スポットLsaが当てられた。
このようにして本加熱線LNaを含む細長の本加熱範囲を、スポットLsaの照射により温度T32の温度519℃まで昇温させた。ヒータ16はそのまま時刻t34まで継続加熱した。
次いで、ヒータ16の出力を段階的に低くし、時刻t34~時刻t35で温度T34、時刻t35~時刻t36で温度T35、時刻t36~時刻t37で温度T36、と、本加熱範囲の温度を段階的に低下させた。
時刻t37以降はヒータ16をオフにし、自然冷却とした。
このような温度制御により、レーザ光Lsによる本加熱後の冷却を、自然冷却よりもゆっくりと(冷却速度が遅くなるよう)、かつ段階的に低下させ、局部的に熱調質した熱調質材Wt3を得た。
比較例として、同じ材質のワークWを、ヒータ16を用いることなく、レーザ光Lsによって温度T32まで昇温させ、その後、冷却速度が速い自然冷却させた熱調質材Wt3aを作成した。
そして、熱調質材Wt3及び熱調質材Wt3aに対し90°曲げの曲げ加工を行って熱調質による材質軟化の効果を評価した。
その結果、自然冷却した熱調質材Wt3aは、素材と同様に90°曲げ加工が困難であったのに対し、冷却速度を遅くした熱調質材Wt3は、90°曲げ加工が可能になっていた。
また、熱調質条件のうち、温度T32のみを変え、90°曲げ加工が可能になる温度T32の範囲を調べたところ、温度T32が495℃~519℃において、90°曲げ加工が可能になることを確認した。
また、実施例2のレーザ加工装置52を用い、レーザ光Ls2のパワー密度を段階的に減少させて、本加熱領域AR1の温度を実施例1による場合と同様の温度及び時間で段階的に低下させても、同様の曲げ加工結果を得た。
従って、アルミニウム合金のワークWに対しても、実施例1及び実施例2による熱調質を行うことで、焼きなましがなされた熱調質材Wt3が得られることが確認できた。
実施例1のレーザ加工装置51において、加熱装置としてハロゲンヒータであるヒータ16を説明したが、加熱装置はヒータに限定されるものではなく、例えば加熱ガスを吹き付けるガス噴出装置であってもよい。
実施例2のレーザ加工装置52において、ヘッド21とヘッド22とは、それぞれ独立したヘッド移動部により移動させてもよい。
また、ワークWは固定し、ヘッド21,22を移動させる構造としてもよい。また、レーザ光の照射方法は、上述のフラットベッドタイプに限定されず、いわゆるガルバノタイプとしてレーザ光を走査させるタイプとしてもよい。
また、レーザ加工装置52は、レーザ光を出射するヘッド21,22を多自由度のアーム先端に備えたものとし、ワークWをテーブル26上ではなくクランパにより自由姿勢で保持可能としてレーザ加工及び熱調質を行うように構成してもよい。
更に、レーザ加工装置52は、レーザ光を出射するヘッド21,22を1つのヘッドにまとめることもできる。例えば、ヘッド内にガルバノスキャナミラーを設け、そのガルバノスキャナミラーの動作により、1つのヘッドで1つのレーザ光を、ヘッド21の機能を担う時間とヘッド22の機能を担う時間とに分割して並列処理しワークWに照射してもよい。
11 レーザ発振器
12 ヘッド
12a 本体部、 12b ノズル、 12c 光学系
13 ヘッド移動部
14 テーブル
15 制御部
15a CPU(中央処理装置)、 15b 記憶部、 15c 入出力部
16 ヒータ(加熱装置)
17 ヒータ駆動部
18,19 温度センサ
21G 第1レーザ出射系、 21 ヘッド
21a 本体部、 21b ノズル、 21c 光学系
21d 第1レーザ発振器
22G 第2レーザ出射系、 22 ヘッド
22a 本体部、 22b ノズル、 22c 光学系
22d 第2レーザ発振器
23 ヘッド移動部
25 制御部
25a CPU(中央処理装置)、 25a1 レーザ出射系選択部
25a2 調整項目設定部、 25b 記憶部、 25c 入出力部
26 テーブル
27,28 温度センサ
29 ヘッドホルダ
51,52 レーザ加工装置
ARa 加熱領域、 ARb,AR1 本加熱領域
DB2 データベース
E,E1,E2 パワー密度
G1,G2 位置
LNa 本加熱線
Ls,Ls1,Ls2 レーザ光
Lsa,Ls1a,Ls2a スポット、 LsaG スポット群
P1,P2 評価点
T11~T15,T21~T25 温度
t11~t14,t133,t134,t21~t24,t233,t234 時刻
tm1,tm2 時間
V1,V2 速度
W ワーク、 Wt1,Wt2 熱調質材

Claims (12)

  1. ワークの一部領域である第1の領域を加熱して第1の温度に昇温維持する加熱部と、
    前記ワークに対しレーザ光を照射するヘッドと、
    前記ヘッドの動作を制御する制御部と、を備え、
    前記制御部は、
    前記レーザ光を、昇温維持された前記第1の領域内の第2の領域に所定時間照射して前記第2の領域を前記第1の温度よりも高い第2の温度に昇温し、前記所定時間経過後の前記第2の領域の冷却を、前記第1の領域を前記加熱部によって昇温維持した状態で行って、前記第2の領域を前記ワークの曲げ線として曲げ加工可能な線状にレーザ光によって熱調質するよう制御するレーザ加工装置。
  2. 前記制御部は、前記レーザ光の照射を、前記ヘッドを移動させながら行うことを特徴とする請求項1記載のレーザ加工装置。
  3. 曲げ加工するワークの一部の領域である第1の領域に対し第1のレーザ光を照射する第1のヘッドと、
    前記第1の領域に含まれる第2の領域に対し第2のレーザ光を照射する第2のヘッドと、
    前記第1のヘッド及び前記第2のヘッドの動作を制御する制御部と、を備え、
    前記制御部は、
    前記第1の領域に対し前記第1のレーザ光を照射して前記第1の領域を第1の温度に昇温維持した状態で、前記第2の領域に前記第2のレーザ光を所定時間照射して前記第2の領域を前記第1の温度よりも高い第2の温度に昇温し、前記所定時間経過後の前記第2の領域の冷却を前記第1のレーザ光の照射下で行って前記第2の領域の熱調質をするよう制御するレーザ加工装置。
  4. 前記制御部は、前記第1のレーザ光及び前記第2のレーザ光の照射を前記第1のヘッド及び第2のヘッドを移動させながら行って、前記第2の領域を、前記ワークを前記第2の領域を曲げ線として曲げ加工可能な直状に熱調質することを特徴とする請求項3記載のレーザ加工装置。
  5. ワークの一部領域である第1の領域を加熱部によって加熱して第1の温度に昇温維持する第1昇温ステップと、
    昇温維持した状態の前記第1の領域内に、レーザ光を所定時間照射して前記第1の温度よりも高い第2の温度に昇温した第2の領域を形成する第2昇温ステップと、
    前記所定時間経過後の前記第2の領域の冷却を、前記第1の領域を前記加熱部によって昇温維持した状態で行う冷却ステップと、を含むレーザ光による熱調質方法。
  6. 前記第2昇温ステップにおける前記レーザ光の照射を、照射位置を移動させながら行うことを特徴とする請求項5記載のレーザ光による熱調質方法。
  7. 曲げ加工するワークの曲げ線を含む第1の領域に対し第1のレーザ光を照射して前記第1の領域を第1の温度に昇温維持する第1昇温ステップと、
    昇温維持した状態の前記第1の領域における前記曲げ線の部分である第2の領域に対し第2のレーザ光を所定時間照射して、前記第2の領域を前記第1の温度よりも高い第2の温度に昇温する第2昇温ステップと、
    前記所定時間経過後の前記第2の領域の冷却を、前記第1のレーザ光の照射下で行う冷却ステップと、を含むレーザ光による熱調質方法。
  8. 前記第2昇温ステップにおける前記第2のレーザ光の照射を、照射位置を移動させながら行うことを特徴とする請求項7記載のレーザ光による熱調質方法。
  9. 鋼材を曲げ加工する際の曲げ線を含む前記鋼材の一部領域である第1の領域を加熱部によって加熱してA3変態点未満の第1の温度に昇温維持する第1昇温ステップと、
    昇温維持した状態の前記第1の領域内に、レーザ光を所定時間照射してA3変態点を超える第2の温度に昇温した第2の領域を形成する第2昇温ステップと、
    前記所定時間経過後の前記第2の領域の冷却を、前記第1の領域を前記加熱部によって昇温維持した状態で行う冷却ステップと、
    を含み、前記第2の領域を前記曲げ線として線状にレーザ光による熱調質を行い製造する熱調質材の製造方法。
  10. 前記第2昇温ステップにおける前記レーザ光の照射を、照射位置を移動させながら行うことを特徴とする請求項9記載の熱調質材の製造方法。
  11. 曲げ加工する鋼材の曲げ線を含む第1の領域に対し第1のレーザ光を照射して前記第1の領域をA3変態点未満の第1の温度に昇温維持する第1昇温ステップと、
    昇温維持した状態の前記第1の領域における前記曲げ線の部分である第2の領域に対し第2のレーザ光を所定時間照射してA3変態点を越える第2の温度に昇温する第2昇温ステップと、
    前記所定時間経過後、前記第2の領域を、前記第1のレーザ光の照射下で冷却する焼きなましステップと、
    を含む熱調質材の製造方法。
  12. 前記第2昇温ステップにおける前記第2のレーザ光の照射を、照射位置を移動させながら行うことを特徴とする請求項11記載の熱調質材の製造方法。
JP2018061389A 2018-03-28 2018-03-28 レーザ加工装置,レーザ光による熱調質方法,及び熱調質材の製造方法 Active JP7097206B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018061389A JP7097206B2 (ja) 2018-03-28 2018-03-28 レーザ加工装置,レーザ光による熱調質方法,及び熱調質材の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018061389A JP7097206B2 (ja) 2018-03-28 2018-03-28 レーザ加工装置,レーザ光による熱調質方法,及び熱調質材の製造方法

Publications (2)

Publication Number Publication Date
JP2019173080A JP2019173080A (ja) 2019-10-10
JP7097206B2 true JP7097206B2 (ja) 2022-07-07

Family

ID=68166555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018061389A Active JP7097206B2 (ja) 2018-03-28 2018-03-28 レーザ加工装置,レーザ光による熱調質方法,及び熱調質材の製造方法

Country Status (1)

Country Link
JP (1) JP7097206B2 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006021217A (ja) 2004-07-07 2006-01-26 Kawasaki Heavy Ind Ltd スポット接合用摩擦撹拌接合装置
JP2009274136A (ja) 2008-05-15 2009-11-26 General Electric Co <Ge> レーザビームを使用する予熱
JP2009545455A (ja) 2006-08-04 2009-12-24 ラッセルシュタイン ゲゼルシャフト ミット ベシュレンクテル ハフツング 耐食性及び加工性を有する金属薄板の製造方法
US20160228993A1 (en) 2013-09-17 2016-08-11 Stiwa Holding Gmbh Welding device comprising an active heating device for heating the workpiece
JP2017025350A (ja) 2015-07-15 2017-02-02 トヨタ自動車株式会社 鋼材表面の硬化処理方法および装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6350417A (ja) * 1986-08-19 1988-03-03 Toshiba Corp レ−ザ熱処理方法およびその装置
JPH0672268B2 (ja) * 1986-10-22 1994-09-14 三菱電機株式会社 電気機器用鉄心の焼鈍方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006021217A (ja) 2004-07-07 2006-01-26 Kawasaki Heavy Ind Ltd スポット接合用摩擦撹拌接合装置
JP2009545455A (ja) 2006-08-04 2009-12-24 ラッセルシュタイン ゲゼルシャフト ミット ベシュレンクテル ハフツング 耐食性及び加工性を有する金属薄板の製造方法
JP2009274136A (ja) 2008-05-15 2009-11-26 General Electric Co <Ge> レーザビームを使用する予熱
US20160228993A1 (en) 2013-09-17 2016-08-11 Stiwa Holding Gmbh Welding device comprising an active heating device for heating the workpiece
JP2017025350A (ja) 2015-07-15 2017-02-02 トヨタ自動車株式会社 鋼材表面の硬化処理方法および装置

Also Published As

Publication number Publication date
JP2019173080A (ja) 2019-10-10

Similar Documents

Publication Publication Date Title
US11383322B2 (en) Laser cutting
JP6053745B2 (ja) 照射システムを制御する方法及び制御装置
ES2261881T3 (es) Metodo y aparato de conformacion incremental.
JP4182001B2 (ja) 脆性材料の加工方法及び加工装置
US10864603B2 (en) Method and system for heat treatment of sheet metal
JP6367808B2 (ja) 工作物を曲げる方法
JP7225457B2 (ja) コイリングマシンおよびコイルばねの製造方法
US20210178487A1 (en) 3D-Metal-Printing Method and Arrangement Therefor
JP2005212364A5 (ja)
JP2017536483A (ja) プレス硬化構成部材のレーザビーム熱処理の方法及びプレス硬化構成部材
JP7097206B2 (ja) レーザ加工装置,レーザ光による熱調質方法,及び熱調質材の製造方法
WO2003076151A1 (fr) Procede et systeme de traitement de materiaux fragiles
JP6846273B2 (ja) レーザ加工機、曲げ加工方法、及び打ち抜き加工方法
JP6367058B2 (ja) レーザフォーミング加工方法およびレーザフォーミング加工装置
JP5495674B2 (ja) 溶接装置、溶接方法
JP5997666B2 (ja) レーザ熱処理装置
KR20160140213A (ko) 유리 성형 장치 및 유리 성형 방법
WO2023243055A1 (ja) 逐次成形方法
JP2007327105A (ja) レーザ熱処理方法及びその装置
JP6843657B2 (ja) レーザ加工装置
JP2003225890A (ja) 樹脂材の加工方法及び加工装置
JP2020006600A (ja) 成形型クリーニング装置及び方法、樹脂成形装置、並びに樹脂成形品製造方法
WO2024038669A1 (ja) コイリングマシンおよびコイルばねの製造方法
KR102349328B1 (ko) 레이저 보조 미세가공 시스템 및 이를 이용한 미세가공 방법
JP2022072343A (ja) パネル部材の加工方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220627

R150 Certificate of patent or registration of utility model

Ref document number: 7097206

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150