JP7094732B2 - 投影装置及びその制御方法 - Google Patents

投影装置及びその制御方法 Download PDF

Info

Publication number
JP7094732B2
JP7094732B2 JP2018044178A JP2018044178A JP7094732B2 JP 7094732 B2 JP7094732 B2 JP 7094732B2 JP 2018044178 A JP2018044178 A JP 2018044178A JP 2018044178 A JP2018044178 A JP 2018044178A JP 7094732 B2 JP7094732 B2 JP 7094732B2
Authority
JP
Japan
Prior art keywords
light
subfield
light source
pixels
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018044178A
Other languages
English (en)
Other versions
JP2019159047A (ja
JP2019159047A5 (ja
Inventor
淳司 小谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2018044178A priority Critical patent/JP7094732B2/ja
Publication of JP2019159047A publication Critical patent/JP2019159047A/ja
Publication of JP2019159047A5 publication Critical patent/JP2019159047A5/ja
Application granted granted Critical
Publication of JP7094732B2 publication Critical patent/JP7094732B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、投影装置及びその制御方法に関するものである。
投影装置は、入力された画像信号に基づいた光を外部に投影することで画像の表示を行うものである。表示像を形成する光を得るために、投影装置は、光源からの光を画像信号に基づいて変調する光変調素子を有する。光変調素子としては、マトリクス状に配置された複数の画素を有する、液晶素子やデジタルミラー素子等が用いられる。このような光変調素子を駆動するために、サブフィールド駆動方式が知られている。サブフィールド駆動方式とは、1フレーム期間を時間軸上で複数のサブフィールド期間に分割し、サブフィールド毎に画素に対するON(白表示)状態とOFF(黒表示)状態とを制御する方式である。この方式により、1フレーム期間内のON期間の割合に基づき、該画素に階調を表示させることができる。
ここで、一般的なサブフィールド駆動方式について説明する。図3(A)には、1フレーム期間を複数のサブフィールド期間(ビット長)に分割する例を示している。この例では、1フレーム期間をサブフィールドSF1~SF6の6期間に分割している。SF1~SF6の各サブフィールド上に記載された数値は、そのサブフィールドの1フレーム期間内での時間重みを示し、本例での各サブフィールド期間の時間重みは夫々1,2,4,8,16,32である。図3(B)には、図3(A)に示したサブフィールド分割例に対応する全階調データを示す。図3(B)において、縦軸は階調を、横軸は1フレーム期間を示す。また、図中の白いサブフィールド期間は画素が白表示状態となるON期間を示し、黒いサブフィールド期間は画素が黒表示状態となるOFF期間を示す。この場合では0階調から63階調までの64段階の階調を表現することができる。なお、本明細書では、サブフィールドをSFと称する場合がある。
サブフィールド駆動方式に関しては、次のようにパルス幅変調された画像信号にて、液晶表示素子を駆動する技術が開示されている(特許文献1)。それは、1フィールドが複数のサブフィールドからなり、これら複数のサブフィールドの表示期間が、1フィールドの最初のサブフィールドで最も長く、以後、1フィールドの最後のサブフィールドへ進むに従って暫時短くなるような画像信号である。
一方、投影装置では、光変調素子によって黒レベルに相当する変調を行ったとしても、ある程度の明るさの光を外部に投射してしまう、所謂黒浮きと呼ばれる現象がある。黒浮きにより、表示像のコントラストの劣化や、暗いシーンを示す画像が表現意図と異なる表示像になってしまう、という問題が発生する場合がある。黒浮きは、液晶素子の漏れ光や、デジタルミラー素子のオフ光による迷光等による。
黒浮きを低減させる技術として、投射型画像表示装置において、次のような技術が開示されている(特許文献2)。それは、映像信号を分析して得られた分析データに基づいて絞り機構の絞り量を設定し、予め設定された黒時間量に基づいて設定された黒期間において絞り機構の絞り量を全閉とし、それ以外の期間には設定された絞り量で絞り機構を駆動する技術である。この技術により、黒レベルをより暗く表示できる。
特開2004-117759号公報 特開2013-168834号公報
しかしながら、特許文献2に開示のような技術では、黒レベルを暗く表示されるよう絞り期間を長く取ると、他の階調も連動して暗く表示されることが懸念される。
本発明は上記したような事情に鑑みてなされたものであり、黒レベル以外の階調の表示上の明るさの低減を抑えつつ、黒レベルの表示上の明るさを低減させることが可能な投影装置を提供することを目的とする。
本発明の第1態様は、
複数の画素において、光源が発する光を変調する光変調手段と、
前記光変調手段で変調された光を投影する投影手段と、
複数のフレームからなる入力画像データに基づき、1フレーム期間に含まれる複数のサブフィールドの画像データを生成する生成手段と、
各サブフィールドの画像データに基づき、各画素の光に対する透過率または反射率が、第1の状態と、前記第1の状態よりも低い第2の状態との何れかになるように、前記複数の画素を駆動する駆動手段と、
前記光源が発する光の光量を制御する光源制御手段と、
を有し、
前記光源制御手段は、前記第1の状態となる画素の画素数が予め設定された設定値以下である第1のサブフィールドに対する前記光量を、前記第1の状態となる画素の画素数が前記設定値より大きい第2のサブフィールドに対する前記光量よりも小さくなるように、前記光源を制御し、
前記第1のサブフィールドを含む第1のフレームが、m個以上(mは3以上の整数)、連続して存在する場合、前記光源制御手段は、
m番目以降の各第1のフレームに含まれる前記第1のサブフィールドに対する前記光源の制御は、第1の光量となるよう行い、
m-1番目までの各第1のフレームに含まれる前記第1のサブフィールドに対する前記光源の制御は、m番目の前記第1のフレームに含まれる前記第1のサブフィールドで前記第1の光量となるまで、前記第1の光量より大きい第2の光量から前記光量を多段階で小さくするよう行う
ことを特徴とする投影装置を提供する。

本発明の第2態様は、
複数の画素において、光源が発する光を変調する光変調ステップと、
前記光変調ステップで変調された光を投影する投影ステップと、
複数のフレームからなる入力画像データに基づき、1フレーム期間に含まれる複数のサブフィールドの画像データを生成する生成ステップと、
各サブフィールドの画像データに基づき、各画素の光に対する透過率または反射率が、第1の状態と、前記第1の状態よりも低い第2の状態との何れかになるように、前記複数の画素を駆動する駆動ステップと、
前記光源が発する光の光量を制御する光源制御ステップと、
を含み、
前記光源制御ステップでは、前記第1の状態となる画素の画素数が予め設定された設定値以下である第1のサブフィールドに対する前記光量を、前記第1の状態となる画素の画素数が前記設定値より大きい第2のサブフィールドに対する前記光量よりも小さくなるように、前記光源を制御し、
前記第1のサブフィールドを含む第1のフレームが、m個以上(mは3以上の整数)、連続して存在する場合、前記光源制御ステップでは、
m番目以降の各第1のフレームに含まれる前記第1のサブフィールドに対する前記光
源の制御は、第1の光量となるよう行い、
m-1番目までの各第1のフレームに含まれる前記第1のサブフィールドに対する前記光源の制御は、m番目の前記第1のフレームに含まれる前記第1のサブフィールドで前記第1の光量となるまで、前記第1の光量より大きい第2の光量から前記光量を多段階で小さくするよう行う
ことを特徴とする投影装置の制御方法を提供する。
本発明によれば、黒レベル以外の階調の表示上の明るさの低減を抑えつつ、黒レベルの表示上の明るさを低減させることが可能となる。
実施例1のプロジェクタの概略構成を示す図 実施例1のプロジェクタのパネル駆動部、及び、その周辺構成を示す図 サブフィールド及びサブフィールドが表現する階調を説明するための図 実施例1の液晶パネルの概略構成を説明するための図 実施例1の同期信号のタイミングを説明するための図 実施例1の液晶パネルと光源の制御タイミングを説明するための図 フレーム毎の統計情報を説明するための図 実施例1のプロジェクタの特徴的な動作を説明するためのフローチャート 実施例1の光量を低減する制御について説明するための図 実施例2の液晶パネルと光源の制御タイミングを説明するための図 実施例3の液晶パネルの部分照明について説明するための図 実施例3の液晶パネルと光源の制御タイミングを説明するための図 実施例4の階調変更処理を説明するための図
以下に、本発明の好ましい実施の形態を、添付の図面に基づいて詳細に説明する。
[実施例1]
以下に、実施例1の投影装置について図1~図9を用いて説明する。
<全体構成>
まず、図1を用いて、本実施例の全体構成を説明する。図1は、不図示の外部機器から画像信号(画像データ)を受信し、その画像信号に基づいた投影表示を行うプロジェクタ(投影装置)100の概略構成を示すブロック図である。
プロジェクタ100は、制御部104、バス105、画像入力部106、画像処理部107、パネル駆動部108、光源駆動部109、光学系110、ROM116、RAM117、操作部118、通信部119を有する。
プロジェクタ100は、不図示の外部機器からビデオケーブル101を介し、画像信号を受信する。プロジェクタ100は、入力された画像信号に従った画像を光学的に投射し、スクリーン102上に投射画像として表示させる。ビデオケーブル101としては、例えばHDMI(High-Definition Multimedia Interface)(登録商標)ケーブルを用いることができる。プロジェクタ100は、不図示の外部機器とネットワークケーブル103を介して通信が可能である。ネットワークケーブル103としては、例えばEthernet(登録商標)ケーブルを用いることができる。
<プロジェクタの基本的な構成>
引き続き図1を用いて、プロジェクタ100の内部構成を説明する。
制御部104は、マイクロコンピュータから構成され、プロジェクタ100全体を制御する。制御部104の動作については後述する。
制御部104は、バス105を介し、プロジェクタ100内の各部と通信可能である。
画像入力部106は、不図示の外部機器から画像信号を入力し、後段の回路が処理できる形式に変換し、画像処理部107に対し出力する。画像信号は、フレーム毎に画素毎の階調値を有する階調信号と、その階調信号のフレームの同期を示す同期信号からなる。
画像処理部107は、画像入力部106から受信した画像信号に対し、制御部104の指示に従い、画像処理を行う。画像処理としては、階調変換処理や、拡大や縮小処理がある。また、画像処理部107では、入力画像に対し、制御部104の指示する別の画像を重畳することができる。これにより、プロジェクタ100に対するユーザ設定項目をユーザに提示するメニュー画像を表示することもできる。画像処理部107は、処理後の画像信号を、後述するパネル駆動部108に出力する。
パネル駆動部108は、入力された画像信号を、後述する液晶パネル114上に像を形成させるための駆動信号に変換し、液晶パネル114に出力する。この駆動信号は、前述したサブフィールド期間に応じて、液晶パネル114の画素がONの状態(第1の状態)、またはOFFの状態(第2の状態)になるように駆動するものである。ここで、ONの状態は、図3(B)では白表示状態を示すが、これに限るものではなく、光に対する透過率または反射率が相対的に高い状態であればよい。OFFの状態は、図3(B)では黒表
示状態を示すが、これに限るものではなく、光に対する透過率または反射率が相対的に低い状態であればよい。
また、パネル駆動部108は、サブフィールド期間のタイミングを示す信号を光源駆動部109に出力する。パネル駆動部108の詳細構成に関しては、後述する。
光源駆動部109は、制御部104の指示に従い、後述する光源115の点灯や消灯を行う。更に、光源駆動部109は、制御部104の指示に従い、点灯時の光量変更を行うことも可能である。また、光源駆動部109は、点灯、消灯、光量変更をパネル駆動部108から受信したタイミング信号に基づき実施するが、その詳細は後述する。
光学系110は、光源115、液晶パネル114、照明光学系111、色分解合成光学系112、投射光学系113を含む。光学系110により、光源115からの光が液晶パネル114で変調されてプロジェクタ100外部に投射され、スクリーン102上に画像が投影表示される。
液晶パネル114上には、パネル駆動部108で生成された駆動信号により像が形成される。液晶パネル114としては、透過型液晶パネルや、反射型液晶パネルを用いることができる。液晶パネル114は複数のマトリクス状に配置された画素を有する。この構成を図4に示す。液晶パネル114は、複数の画素(縦N画素、横M画素)を有する。図4において、横位置i、縦位置jの画素をpijと記す。このように、液晶パネル114は、M列からなるN行の画素構成となっている。
光源115には、高圧水銀ランプやハロゲンランプ、LEDやレーザダイオードといった固体光源を用いることができる。
ROM116は、不揮発性のメモリであり、制御部104が動作するためのプログラムコードやデータが格納されている。また、ROM116は、プロジェクタ100が動作するために必要なデータを記憶する。
RAM117は、揮発性のメモリであり、制御部104が動作するためのワークメモリとして使用される。
操作部118は、ユーザからの要求を受け付けるための部材から構成される。操作部118は不図示の電源釦、メニュー釦、上下左右釦、決定釦といった部材を有するように構成してもよい。
通信部119は、ネットワークケーブル103を介して外部機器との通信が可能である。外部の機器から入力画像(入力画像データ)を受け取ることが可能である。
<プロジェクタの基本的な動作>
次に、プロジェクタ100の基本的な動作について説明する。
プロジェクタ100に不図示の電源ケーブルにてAC電源が供給されると、制御部104、ROM116、RAM117、操作部118に電源が供給され、制御部104は起動し待機状態となる。ここで、操作部118を介したユーザからの投射開始指示を制御部104が検知すると、制御部104はプロジェクタ100の各部の起動処理を行う。具体的には、各部に電源を供給するように制御を行い、画像入力部106、画像処理部107、パネル駆動部108、通信部119が動作可能にように設定を行う。また、制御部104は、光源駆動部109に光源115を点灯させるように指示を出す。制御部104は、併せて、不図示の冷却ファンを作動させる。これにより、プロジェクタ100は投影表示を開始し、制御部104は表示中状態となる。
ここで、操作部118を介したユーザからの表示画像に対する画質調整指示を制御部104が検知すると、制御部104は画像処理部107に対し、当該画質調整に関する画像処理を指示してもよい。
また、操作部118を介したユーザからの投射終了指示を制御部104が検知すると、制御部104は光源駆動部109に指示を出し光源115を消灯させ、プロジェクタ100各部の電源をシャットダウンさせる。これにより、制御部104は待機状態に戻る。
<プロジェクタの特徴的な構成>
プロジェクタ100の特徴的な構成について図2を用いて説明する。図2は、プロジェクタ100のパネル駆動部108の構成、及び、その周辺構成を示したブロック図である。
まず、パネル駆動部108の内部構成について説明する。パネル駆動部108は、階調変換部200、出力同期信号生成部201、フレームメモリ202、液晶駆動部203、階調統計部204から構成され、各部はバス105経由で制御部104と接続され通信可能である。パネル駆動部108には、画像処理部107から、画像信号、即ち、階調信号と同期信号が入力される。ここで、以下の説明では、画像処理部107から入力された同期信号を入力同期信号と称する。入力同期信号は、階調変換部200、階調統計部204、出力同期信号生成部201、制御部104に供給される。
階調変換部200は、バス105を介して受信した制御部104からの指示に基づき、画像処理部107から入力された階調信号の変換処理を行う。この変換処理により、階調と液晶パネル114での変調量とを所定の関係(例えば線形の関係)にすることができる。階調変換部200は、例えばルックアップテーブルにより構成される。階調変換部200は、処理後の階調信号を、入力同期信号に同期して、フレームメモリ202に書き込む。また、階調変換部200は、処理後の階調信号を階調統計部204に出力する。
出力同期信号生成部201は、入力された入力同期信号に基づき、出力同期信号を生成する。これらの同期信号のタイミングの関係について、図5(A)~図5(C)を用いて説明する。
図5(A)は、入力同期信号のタイミングを示す図である。画像信号のフレームレートが60Hzであったとき、入力同期信号は図示したように1/60秒の間隔を持ったパルス状の信号となる。このパルスのリーディングエッジがフレームの開始を意味する。以下の説明では、ある連続する3つの同期パルスに着目し、それらのリーディングエッジの時刻をt0、t2、t4として説明する。
図5(B)は、入力同期信号と共にパネル駆動部108に入力される階調信号のタイミングを示す図である。時刻t0、t2、t4に対応する入力同期信号のパルスに対応したフレームは、夫々T、T+1、T+2となる。階調信号は、各フレーム期間において、所定のデジタル値の範囲(本実施例では0~63)の階調値をラスタスキャン順で画素毎に表す。
図5(C)は、出力同期信号のタイミングを示す図である。出力同期信号生成部201は、図5(A)のような入力同期信号を受信し、図5(C)に示ように、所定時間delayの遅延を加え、出力同期信号として出力する。例えば、入力同期信号の時刻t0、t2、t4における同期パルスに応じ、出力同期信号生成部201は、時刻t1、t3、t5における同期パルスを有する出力同期信号を生成する。この出力同期信号は、液晶駆動部203、制御部104に供給される。
フレームメモリ202は、階調変換部200によるフレーム毎の階調信号の書き込みと、液晶駆動部203による読み出しに用いられる。また、フレームメモリ202は、複数フレーム分の容量を持っている。あるフレームの書き込みと、別のフレームの読み出しとが非同期に実行可能である。
液晶駆動部203は、前述したサブフィールド駆動方式で液晶パネル114の各画素を駆動する。すなわち、液晶駆動部203は、1フレーム期間を時間軸上で複数のサブフィールド期間に分割し、階調データに応じてサブフィールド期間ごとに画素に対する所定電圧のON(印加)とOFF(非印加)を制御することで該画素に階調を形成(表示)させる。1フレーム期間は、液晶素子に1フレーム画像が表示される期間である。本実施例では、図3(A)に示したように、1フレーム期間を、時間重みが夫々1,2,4,8,1
6,32となるように、SF1~SF6のサブフィールド期間に分割した例を説明する。しかしながら、このサブフィールドの分割数や時間重みに限定されるものではなく、その他の分割数や時間重みであってもよい。
以下、液晶駆動部203による駆動処理の詳細について説明する。
液晶駆動部203は、駆動のための画像データとして、出力同期信号に同期して、フレームメモリ202より、階調変換部200により書き込みが完了した直前の1フレームの階調信号を読み出す。このタイミングを、図5(A)~図5(C)を用いて説明する。階調変換部200は、図5(A)に示すt0の入力同期信号パルスに基づき、図5(B)に示すフレームTの階調信号をフレームメモリ202に書き込む。それに対し、液晶駆動部203は、図5(C)に示すt3の出力同期パルスに基づき、フレームTの階調信号を読み出す。
このように得られた階調信号の各画素の階調値に応じ、液晶駆動部203は、SF1~SF6のON/OFFパターンを生成する。生成の例を、図3(B)を用いて説明する。例えば、ある画素の階調が46だったとする。その場合、図3(B)の対応関係より、SF1~SF6の期間に対応して、夫々OFF、ON、ON、ON、OFF、ONというパターンが得られる。液晶駆動部203は、例えば、このような対応関係をルックアップテーブルとして構成するとよい。また、液晶駆動部203は、出力同期信号に基づくあるフレーム期間中における制御部104からの指示に従い、次のフレームの特定階調のON/OFFパターンを変更することができる。
続いて、本実施例における液晶パネル114の画像の更新タイミングについて説明する。
液晶駆動部203により、液晶パネル114の各行は全て同じタイミングで更新される。そのために液晶パネル114は、液晶駆動部203から全画素のON/OFF信号を同時に受信できるだけの幅を持ったデータIFバスを有していてもよい。また、液晶パネル114の別の構成として、データIFバスを減らすために、ON/OFF信号を一時的に保持するための不図示の保持部を備えた構成であってもよい。この場合、液晶パネル114は、液晶駆動部203から各画素のON/OFF信号を画素毎若しくは行毎に順に受信すると一旦保持部に格納する。そして、液晶パネル114は、全ての画素のON/OFF信号を受信した後に、自身の全画素に対して同時にON/OFF電圧を印加することで全画素同時に更新を行うことができる。
液晶駆動部203および液晶パネル114が上記の様に動作する場合の、液晶パネル114の各行の更新タイミングは図6(A)に示したようになる。
まず、時刻t3にて、出力同期信号に同期して、フレームTの画像の駆動期間が開始される。液晶駆動部203は、フレームTの画像の階調値に応じて、図3(A)で示したSF1から順にON/OFF信号を液晶パネル114に送信する。液晶パネル114には、まず、SF1での各画素のON/OFF電圧が印加され、順にSF2、SF3と続く。そして、時刻t3aにてSF6までのON/OFF電圧の印加が終了すると、次のフレーム(フレームT+1)の画像の駆動開始までブランキング期間BFとなり全画素にOFF電圧が印加される。フレームT+1以降の画像の駆動期間もフレームTの駆動と同様に行われる。
また、液晶駆動部203は、サブフィールド毎の液晶パネル114の全画素を駆動するタイミングを示す信号を光源駆動部109に出力する。この信号の例を図6(B)に示す。
図2に戻り、プロジェクタ100の特徴的な構成の説明を続行する。
階調統計部204は、階調変換部200から入力した階調信号について、1フレーム毎
に出現する階調の回数を計測する。その結果に基づき、液晶駆動部203での、階調からSF1~SF6のON/OFFパターンの変換処理と同様の処理を行うことで、1フレーム中でサブフィールド毎にONまたはOFFとなる画素数(1フレームにおける各サブフィールドの頻度)を算出する。
このようにして得られた結果の例を図7(A)に示す。これは液晶パネル114の画素数が100であった場合の例である。図7(A)に示すように、サブフィールド毎に、ONとなる画素数とOFFとなる画素数が得られる。なお、各画素においては、サブフィールド毎に、ON/OFFの何れかを取るので、サブフィールド毎のON画素数とOFF画素数の合計は100となる。階調統計部204は、入力同期信号の同期パルスを受信すると、計測した1フレーム中の階調やサブフィールド毎のON/OFF数といった計測値を不図示の記憶部に記憶する。この記憶された計測値は、次のフレームの同期パルスを受信するまで保持される。次のフレームの同期パルスを受信すると、記憶部の情報は新しい計測値に上書きされる。また、階調統計部204は、制御部104の指示に従い、記憶された計測値を送信する。
続いて、光源駆動部109について詳細な構成を説明する。
光源駆動部109は、前述したように、液晶駆動部203はサブフィールド毎のタイミング信号(SFタイミング信号)を受信する。また、前述したように、光源駆動部109は、制御部104からの指示に従い、ランプの点灯、消灯、及び、点灯時の光量の変化を制御可能である。更に、光源駆動部109は、制御部104から特定のサブフィールドが指示されることで、指示されたサブフィールドの期間に限定して、ランプの点灯、光量、及び、点灯時の光量の変化を制御可能である。
<プロジェクタの特徴的な動作>
以下に、プロジェクタ100の特徴的な動作について図8を用いて説明する。図8は、本実施例のプロジェクタ100の特徴的な動作を説明するためのフローチャートである。
制御部104が表示中状態となると、図8のフローチャートで示される動作を実行するタスクを起動する。また、制御部104は待機状態となると、図8のフローチャートで示される動作を終了させる。以下、図8のフローチャートについて説明する。
まず、ステップS100にて、制御部104は、SF1~SF6に対応させ、RAM117に変数COUNT1~COUNT6に対応する領域を確保し、夫々0を格納する。
次いで、ステップS101にて、制御部104は、入力同期信号のパルスが入力されるまで待機する。以下の説明では、図5(A)の時刻t2の同期パルスが入力された場合を例に取って説明する。
次いで、ステップS102にて、制御部104は、階調統計部204と通信を行い、1フレーム中のサブフィールド毎のONパターンとなる画素の出現回数を取得する。本実施例では、制御部104は、時刻t2の同期パルスを入力された直後に取得しているため、取得された出現回数は、図5(B)におけるフレームTの階調信号に対応したものとなる。
図7(A)~図7(C)に、取得された出現回数の例をそれぞれ示す。図7(A)は、全てのサブフィールドにおいてONとなる画素数が1以上ある例である。図7(B)は、SF6においてONとなる画素数が0であり、それ以外のサブフィールドにおいては、ONとなる画素数が1以上である例である。図7(C)は、SF3においてONとなる画素数が0であり、それ以外のサブフィールドにおいては、ONとなる画素数が1以上である例である。
なお本実施例では、1フレーム中のサブフィールド毎のONパターンとなる画素の出現回数を取得する方法を説明したが、結果的に1フレーム中のサブフィールド毎のONパターンとなる画素数が0であるか否かを判定できれば、どのような方法を用いてもよい。例
えば別の方法として、OFFパターンとなる画素数を取得してもよい。この場合、既知である全画素数からOFFパターンとなる画素数を引いた値を用いれば、本実施例と同様に実施可能となる。また、ONパターンの出現割合を取得してもよい。この場合、既知である全画素数にその割合をかけた値を用いれば、本実施例と同様に実施可能となる。
なお、図8に示す破線部で囲まれた部分は、本実施例では適用せず、後述の実施例4にて適用する。
次いで、ステップS103より、制御部104は、ステップS104以降、ステップS109またはステップS106までの期間をサブフィールド分ループする。ループの各サイクル中において、該当するサブフィールドをSFn、対応するCOUNT変数をCOUNTnと称する(本実施例において、nは1~6を取り得る)。
ステップS104にて、制御部104は、1フレーム中にSFnにおいてONパターンとなる画素が存在しないか否かを判定する。1フレーム中にSFnにおいてONパターンとなる画素が存在しなければ、ステップS105に遷移する。1フレーム中にSFnにおいてONパターンとなる画素が存在すれば、ステップS107に遷移する。例えば、ステップS102にて図7(B)の結果を得た場合であって、n=1の場合(SF1)においてはONパターンとなる画素が1以上あるため、ステップS105に遷移する。一方、n=6の場合(SF6)においてはONパターンとなる画素が存在しないため、ステップS107に遷移する。なお、ステップS104において、ON画素の有無を判定したが、ON画素の数が閾値以上であるか否かを判定するものであってもよい。ON画素の数が閾値よりも小さい場合に後述する光源の光量を低減する処理を実行することによって、コントラストを高めることが可能である。したがって、閾値は、画素の明るさが低下しても視覚上、影響が小さい範囲で定められることが望ましい。例えば、閾値は、全画素の20%以下の画素数に対応するものであってもよい。
ステップS105にて、制御部104は、変数COUNTnに0を格納する。
次いで、ステップS106にて、制御部104は、光源駆動部109に対し、SFnについて通常の光量で点灯するように指示を出す。即ち、制御部104は、SFnに対応する期間の光源の光量を通常の光量に設定するといえる。以上でステップS103から始まるループの1サイクルが終了する。
一方、ステップS107において、制御部104は、変数COUNTnに1を加算する。
次いで、ステップS108にて、制御部104は、光源駆動部109に指示するための、SFnについての光量の低減量を算出する。このときの算出方法としては様々な方法を適用することができる。
以下、図9(A)~図9(C)を用いて、算出方法の3つの例を説明する。
図9(A)~図9(C)は、夫々、ONパターンとなる画素が存在しないサブフィールドSFnを含むフレームの継続数と、光源駆動部109に指示する光量Dとの関係をプロットした図である。各図において、フレームの継続数を横軸に示し、光量Dを縦軸に示している。なお、このフレームの継続数の値は、時間的に連続して存在するフレームの数であり、COUNTnの値と等しい。この図を用いることで、光源駆動部109に指示するSFnに対応した光量を決定することができる。
図9(A)を用いる方法では、サブフィールドSFnにONパターンとなる画素が存在しなければ、フレームの継続数にかかわらず、当該SFnに対する光量を0%にする。
図9(B)を用いる方法では、ONパターンとなる画素が存在しないサブフィールドSFnを含むフレームが所定数(本実施例では例示的に6とする)続いた場合、当該SFnに対する光量を0%にする。これは、ONパターンとなる画素が存在しないサブフィールドSFnを含むフレームが、m個以上(mは2以上の整数)、連続して存在する場合、次
のような光源制御が行われるということができる。すなわち、m番目以降のフレームに含まれる当該SFnに対して、光量を低減させ(本実施例では0%)、m-1番目までのフレームに含まれる当該SFnに対しては、光量を変更しない(光量を低減させない)。
図9(C)を用いる方法では、ONパターンとなる画素が存在しないサブフィールドSFnを含むフレームの継続数に応じ、段階的に光量を低減させていき、所定数(本実施例では例示的に8とする)に到達した時点で、当該SFnに対する光量を0%にする。これはONパターンとなる画素が存在しないサブフィールドSFnを含むフレームが、m個以上(mは2以上の整数)、連続して存在する場合、連続して存在するフレームに含まれる当該SFnの全てに対して次のような光源制御が行われるということができる。すなわち、m番目以降のフレームに含まれる当該SFnに対して、光量を第1の光量(本実施例では0%)にする。そして、m-1番目までのフレームに含まれる当該SFnに対しては、m番目のフレームに含まれる当該SFnで第1の光量となるまで、光量を徐々に小さくする。
次いで、ステップS109にて、制御部104は、光源駆動部109に対し、SFnについてステップS108で決定した光量Dで点灯するように指示を出す。このとき、ステップS108、およびステップS109にて、制御部104は、SFnの画素の数が閾値以下であるフレームが、所定数以上である場合には、SFnに対応する期間の光源の光量を通常の光量よりも低い光量に設定するといえる。所定数は、1以上であればよい。また、上述したように連続するフレームの数に応じた光量を設定することも可能である。以上でステップS103から始まるループの1サイクルが終了する。
なお、制御部104は、以上のループ全体の処理を時刻t3までに完了する。
ステップS103から始まるループが完了すると、その後、ステップS101に遷移し、制御部104は次の同期パルスを待機する。
<プロジェクタの動作例>
本実施例の特徴的な構成、処理に基づく、プロジェクタ100の動作例について2例説明する。
まず、1つ目の例を説明する。これは、図8のステップS102にて得られた、フレームTにおけるサブフィールド毎のONパターンとなる画素の出現回数が図7(B)の場合であった例である。図7(B)では、最長のサブフィールド期間であるSF6において、ONとなる画素がフレーム内で存在しないことを示す(このフレームの画像は、画面全体が暗いシーンを表す画像であると言える)。その結果を受けて、制御部104は、ステップS109にて光源駆動部109に対し、SF6の期間、光量を100%から低減させたdに設定するように指示を出す。その指示を受けた光源駆動部109は、液晶駆動部203から受信した、フレームTのSF6のタイミング信号(図6(B)参照)に同期して、光源115の光量がdになるように制御する。結果として、光源115の光量は、図6(C)に示すように、SF6のタイミングに同期して光量dで発光する。一方で、図7(B)に示すように、SF3においてONとなる画素がフレーム内に存在する。この場合、ステップS104でNoと判定され、SF3の期間の光量を100%(通常の光量)に設定するように指示を出す。光源駆動部109は、液晶駆動部203から受信した、フレームTのSF3のタイミング信号(図6(B)参照)に同期して、光源115の光量を100%になるように制御する。
2つ目の例を説明する。これは、図8のステップS102にて得られた、フレームTにおけるサブフィールド毎のONパターンとなる画素の出現回数が図7(C)の場合であった例である。図7(C)では、SF3において、ONとなる画素がフレーム内で存在しないことを示す(このフレームの画像は、グラデーションが比較的少ない画像であると言える)。その結果を受けて、制御部104は、ステップS109にて光源駆動部109に対し、SF3の期間、光量をdに設定するように指示を出す。その指示を受けた光源駆動部
109は、液晶駆動部203から受信した、フレームTのSF3のタイミング信号(図6(B)参照)に同期して、光源115の光量がdになるように制御する。結果として、光源115の光量は、図6(D)に示すように、SF3のタイミングに同期して光量dで発光する。一方で、図7(C)に示すように、SF6においてONとなる画素がフレーム内に存在する。この場合、ステップS104でNoと判定され、SF6の期間の光量を100%(通常の光量)に設定するように指示を出す。光源駆動部109は、液晶駆動部203から受信した、フレームTのSF6のタイミング信号(図6(B)参照)に同期して、光源115の光量を100%になるように制御する。
上述したように、制御部104は、あるフレームにおいて、ONとなる画素の画素数が閾値以下であるサブフィールドに対する光源115の光量を、そうでないサブフィールドに対する光源115の光量よりも小さくする光源制御を行う。また、制御部104は、複数のフレームのあるサブフィールドにおいて、ONとなる画素の画素数が閾値以下である場合の光源115の光量を、そうでない場合の光源115の光量よりも小さくする光源制御を行う。
以上説明したように、本実施例によれば、サブフィールド駆動方式を用いたプロジェクタにおいて、サブフィールド毎にONの状態となる画素数に応じて、サブフィールドに同期して光源の光量を低減させることができる。特に、光量を低減させたサブフィールド期間においては、液晶パネル上のONとする画素がない。言い換えれば、黒を表示している。即ち、その期間の光源の光量の低減は、黒浮きの低減に繋がる。
この黒浮きの低減は、コントラスト感向上に繋がる。例えば、プロジェクタの白投影時の光束が4000lmであり、黒投影時の光束が2lmであった場合を考える。プロジェクタのコントラスト比は、4000:2=2000:1である。ここで、本発明を適用し、50%の階調を担当する最長のSF6に同期して光量を0にした場合を考える。図6(A)にBFで示したブランキング期間が1フレーム期間に対して短い場合、SF6期間は1フレーム期間に対して、時間的にほぼ50%に相当する。即ち、本発明により、漏れ光に相当する黒投影時の光束をほぼ50%低減できることになり、実質的なコントラスト比は(4000-2×0.5):(2×0.5)≒4000:1となり、ほぼ2倍に改善することができる。
さらに本実施例によれば、黒表示時の漏れ光に相当する光を低減させることができるため、明るい階調に対しては光量低減の割合が少なく、明るい階調の明るさの低減を抑えることが可能となる。上記の例では、黒に対する光量低減の割合は50%であるものの、白に対する光量低減の割合は(2lm×0.5)/4000lm=0.025%である。
また、ステップS108における光量Dを決定する方法において、図9(A)の方法を適用すれば、光量を低減させるまでのレイテンシを短くすることができ、高コントラスト感を知覚するまでの時間を短くすることができる効果がある。また、図9(B)、図9(C)の方法を適用すれば、光量を低減するフレームと光量を低減しないフレームとが短時間に交互に現れるケースでのフリッカ感を低減することができる効果がある。
なお、ステップS108における光量Dを決定する方法において、図9(A)の方法を適用する場合には、COUNT変数を用いなくてもよい。ステップS107に到達した場合にはCOUNTnが1以上であることは確定しており、COUNTnに因らず光量Dが一意に決定されるからである。
また、S108における光量Dを決定する方法において、サブフィールドによって、図9(A)~図9(C)の何れかの方法に変えてもよい。例えば、相対的に長い期間のサブフィールド(例えばSF6)においては図9(B)または図9(C)の方法を適用し、相対的に短い期間のサブフィールド(例えばSF1~5)においては図9(A)の方法を適用してもよい。これにより、光量低下が大きくフリッカが目立つおそれのある相対的に長い期間のサブフィールドでは、フリッカを目立たなくさせ、その他のサブフィールドでは、高コントラスト感を知覚するまでの時間を短くすることができる。
また、ステップS108における光量Dを決定する方法において、制御部104は、画像処理部107に指示を出し、図9(A)~図9(C)の何れかを選択させるメニュー画像を投影表示させ、操作部118経由でユーザに選択させてもよい。
また、各サブフィールドの光量を低減させる際、ブランキング期間の光量を低減させるようにしてもよい。例えば、SF6の光量低減と連動させてブランキング期間の光量を低減させる場合、パネル駆動部108は、図6(B)のSF6のタイミング信号を太い破線部分の波形となるようにしてもよい。これにより、光源115の光量は図6(C)の太い破線部分となり、時間平均でより光量を低減させることができる。
また、本実施例では、光源駆動部109により、光源115の点灯時の光量を直接制御する例について説明したが、これに限るものではなく、光変調素子以外でプロジェクタが投射する光の明るさを低減可能な方法であれば、どのような方法でもよい。例えば、光学系110に絞り機構を持たせ、光源駆動部109がサブフィールドのタイミング信号に同期して絞り機構を制御し、光源115からの光を絞る構成であってもよい。
また、本実施例では、サブフィールドの時間的な長さが異なる場合を例にとり、説明を行ったが、これに限るものではなく、各サブフィールドが全て同じ長さであってもよい。また、サブフィールドの時間的な長さは、本実施例とは異なる長さであってもよい。更に、光変調部で変調するサブフィールドのタイミングに同期して、光源115からの光量を制御可能であれば、どのような方法であってもよい。
また、本実施例では、入力画像が64段階の階調を有し、液晶パネル114が表示可能な階調も64段階である例を説明したが、階調数はそれぞれこれに限るものではない。また、入力画像の階調数と、液晶パネル114で表示可能な階調数が異なっていてもよい。この場合には、例えば、画像処理部107にて入力画像を、液晶パネル114で表示可能な階調数を有するように変換するようにすればよい。
また、本実施例では、単一色の変調を行う例を説明したが、3色を変調する形態であっても、本発明を好適に適用することが可能である。光源115が3色毎の光源であるか、または白色光源からの光を色分離する形態であり、3色の光を独立して3枚の液晶パネルに照射する形態であれば、単に、3色に対して夫々、本実施例同様の処理を適用すればよい。光源115が白色光源であり、その光源からの光を3色に色分解して、夫々3枚の液晶パネルに照明する形態であれば、3色に対して夫々、本実施例同様の処理を適用し、更に、図8のステップS104を次のような処理にすればよい。3色を仮にR,G,Bとし、夫々のSFnを、R_SFn、G_SFn、B_SFnとした場合、R_SFn、G_SFn、B_SFnにおいて全てONパターンが存在しないか判定するようにする。全てONパターンが存在しなければ、ステップS107に遷移し、そうでなければステップS105に遷移する。
このような処理にすることで、3色を変調するプロジェクタであっても本発明を好適に適用できる。更に、3色より多い複数色を変調するプロジェクタであっても本発明を好適に適用できる。
また、本実施例では、光変調素子として液晶素子を用いた例を説明したが、これに限るものではない。すなわち、サブフィールド駆動方式を用いる光変調素子であればどのような光変調素子でもよく、例えば、DMD(デジタルミラーデバイス)を用いてもよい。
[実施例2]
以下に、実施例2について図10(A)~図10(D)を用いて説明する。なお、本実施例では、実施例1と異なる構成や処理について説明し、実施例1と同様の構成や処理についての説明は省略する。
本実施例では、液晶駆動部203による液晶パネル114の各行の更新開始タイミングが互いに異なる点が、実施例1と異なる。
本実施例における液晶パネル114の各行の更新タイミングを図10(A)に示す。以下に、本実施例の液晶パネル114の各行の更新タイミングについて説明する。
まず、時刻t3にて、出力同期信号に同期して、フレームTの1行目の画像の駆動期間が開始される。液晶駆動部203は、フレームTの画像の階調値に応じて、図3(A)で示したSF1から順にON/OFF信号を液晶パネル114に送信する。液晶パネル114には、まずSF1での各画素のON/OFF電圧が印加され、順にSF2、SF3と続く。このような駆動が、2行目以降に順次時間差を生じさせながら実行される。1行目に関しては時刻t3aにてSF6までのON/OFF電圧の印加が終了し、N行目に関しては時刻t3bにてSF6までのON/OFF電圧の印加が終了する。以降、各行の次のフレームの画像(フレームT+1)の駆動開始までブランキング期間BFとなり全画素にOFF電圧が印加される。フレームT+1以降の画像の駆動期間もフレームTの駆動と同様に行われる。
本実施例における液晶駆動部203が生成するサブフィールド毎のタイミング信号を、図10(B)に示す。図10(B)に示すように、本実施例の液晶駆動部203が、各サブフィールドの駆動期間が1行目~N行目で共通して存在する期間を当該サブフィールドのタイミング信号として生成するように構成されている。図10(B)の例では、SF1、SF2には、駆動期間が1行目~N行目で共通して存在する期間は存在しない。SF3~SF6には図示した期間が存在する。
<プロジェクタの動作例>
本実施例の特徴的な構成、処理に基づく、プロジェクタ100の動作例について2例説明する。
まず、1つ目の例を説明する。これは、図8のステップS102にて得られた、フレームTにおけるサブフィールド毎のONパターンとなる画素の出現回数が図7(B)の場合であった例である。図7(B)では、最長のサブフィールド期間であるSF6において、ONとなる画素がフレーム内で存在しないことを示す(このフレームの画像は、画面全体が暗いシーンを表す画像であると言える)。その結果を受けて、制御部104は、ステップS109にて光源駆動部109に対し、SF6の期間、光量をdに設定するように指示を出す。その指示を受けた光源駆動部109は、液晶駆動部203から受信した、フレームTのSF6のタイミング信号(図10(B)参照)に同期して、光源115の光量がdになるように制御する。結果として、光源115の光量は、図10(C)に示すように、SF6のタイミングに同期して光量dで発光する。
2つ目の例を説明する。これは、図8のステップS102にて得られた、フレームTにおけるサブフィールド毎のONパターンとなる画素の出現回数が図7(C)の場合であった例である。図7(C)では、SF3において、ONとなる画素がフレーム内で存在しないことを示す(このフレームの画像は、グラデーションが比較的少ない画像であると言える)。その結果を受けて、制御部104は、ステップS109にて光源駆動部109に対し、SF3の期間、光量をdに設定するように指示を出す。その指示を受けた光源駆動部109は、液晶駆動部203から受信した、フレームTのSF3のタイミング信号(図10(B)参照)に同期して、光源115の光量がdになるように制御する。結果として、光源115の光量は、図10(D)に示すように、SF3のタイミングに同期して光量dで発光する。
このように、液晶パネル114の各行の更新開始タイミングが互いに異なる構成のプロジェクタであっても、上述した実施例1同様の効果を得ることができる。すなわち、サブフィールド毎にONの状態となる画素数に応じて、サブフィールドに同期して光源が発する光の光量を低減させることができる。それにより、黒以外の階調の表示上の明るさの低
減を抑えつつ、黒レベルの表示上の明るさを低減させることができる。
なお、本実施例では、液晶駆動部203が、各サブフィールドの駆動期間が1行目~N行目で共通して存在する期間を当該サブフィールドのタイミング信号として出力する例を説明した。ここで、図10(B)のSF3のタイミング信号が、図示されるより早く立ち上がった場合を考える。そのようなSF3のタイミング信号は、図10(A)の液晶パネル114の下部に対応するSF2の駆動タイミング(図10(A)参照)にかかってしまうことになる。このとき、早く立ち上がったSF3のタイミング信号に応じて光量を低減すると、SF2の下部が暗く表示されるため、画面全体の見えとして画面下部が暗い見えになってしまうことになる。逆に、SF3のタイミング信号が、図示されるより遅く立ち下がった場合を考える。そのようなSF3のタイミング信号は、液晶パネル114の上部に対応するSF4の駆動タイミング(図10(A)参照)にかかってしまうことになる。このとき、遅く立ち下がったSF3のタイミング信号に応じて光量を低減すると、SF4の上部が暗く表示されるため、画面全体の見えとして画面下部が暗い見えになってしまうことになる。
そこで、液晶駆動部203は、階調信号の画面上部、若しくは下部の領域が全て黒であった場合には、それらに応じて当該サブフィールドのタイミング信号を、早く立ち上げたり、遅く立ち下げたりして生成、出力してもよい。或いは、前後のサブフィールドの画面上部、若しくは、下部に対応する領域がOFFパターンであった場合には、上記同様のタイミング信号を生成してもよい。そうすれば、より黒レベルの明るさの低減を実現することができる。
また本実施例においても、各サブフィールドの光量を低減させる際、ブランキング期間の光量を低減させるようにしてもよい。例えば、SF6の光量低減と連動させてブランキング期間の光量を低減させる場合、パネル駆動部108は、図10(B)のSF6タイミング信号を太い破線部分の波形となるようにしてもよい。これにより、光源115の光量は図10(C)の太い破線部分となり、時間平均でより光量を低減させることができる。
[実施例3]
以下に、実施例3について図11(A)~図11(E)、図12(A)~図12(G)を用いて説明する。なお、本実施例では、実施例1,2と異なる構成や処理について説明し、実施例1,2と同様の構成や処理についての説明は省略する。
本実施例では、光学系の構成が、図1を用いて説明した光学系110と異なる。本実施例の光学系1100を図11(B)に示す。以下、本実施例の光学系1100について、光学系110との差異を中心に説明する。
図1に示した光学系110は、1つの光源115を有するものであったが、本実施例の光学系1100は、3つの光源1101a~1101cを有する。光源1101a~1101cには、高圧水銀ランプやハロゲンランプ、LEDやレーザダイオードといった固体光源を用いることができる。
また、本実施例の光学系1100は、光学系110における照明光学系111に相当する照明光学系1102を有する。照明光学系1102は、光源1101a~1101cが照射した光を、後述する液晶パネル114の異なる領域に夫々照明するように構成されている。
ここで、本実施例における液晶パネル114の照明領域の例を図11(A)に示す。前述したように、液晶パネル114は、複数の画素(縦N画素、横M画素)を有する。本実施例においては、複数の画素を行方向(縦方向)に3分割した領域AREA1、AREA2、AREA3を3つの照明領域とする。光源1101a~1101cから射出された光
は、照明光学系1102を介して、液晶パネル114の領域AREA1~AREA3を夫々照明する。照明光学系1102のその他の構成は、照明光学系111と同様の構成である。
本実施例の光源駆動部109は、制御部104からの指示に基づき、光源1101a~1101cに対し、点灯、消灯、光量変更といった制御を行う。また、光源1101a~1101cの点灯時においては、光源駆動部109は、図12(B)に示すように、光源1101c、1101b、1101a、1101c...という順に時間幅wで各光源を発光させるように制御する。この制御により、液晶パネル114に対する照明パターンは、時間幅wにて、順に図11(C)~図11(E)に示すようなパターンになる。図11(C)~図11(E)において、黒背景部は光源1101a~1101cの何れにも照明されない領域、白背景部は光源1101a~1101cの何れかに照明される領域を示す。更に、光源駆動部109は、詳しくは後述する、AREA1~AREA3毎に各サブフィールドのタイミングを示す信号を液晶駆動部203から受信する。光源駆動部109は、制御部104からサブフィールドを指定して、点灯、消灯、光量変更の指示を受けると、これらのAREA1~AREA3毎のSFタイミング信号に基づき、光源1101a~1101cに対する制御を行う。
本実施例の液晶駆動部203は、サブフィールド毎のタイミング信号を生成し、液晶パネル114の領域毎に出力する。この点について、図12(A)、図12(C)、図12(D)、図12(E)を用いて説明する。図12(A)は、図10(A)と同様の液晶パネル114の各行の駆動タイミングを示し、特に、液晶パネル114のAREA1~AREA3の各領域の駆動タイミングを示している。これに対し、液晶駆動部203は、AREA1~AREA3毎に各サブフィールドの駆動期間が当該領域内で共通して存在する期間を示すタイミング信号を生成し、AREA1~AREA3毎に出力する。
図12(C)にAREA1に対応したタイミング信号の例を示す。図12(C)に示すように、AREA1のタイミング信号は、図12(A)においてAREA1における各サブフィールドの駆動期間が共通して存在するタイミングに相当する(図12(A)、図12(C)で淡網がけ部Xで示す)。ここで、AREA1に含まれる第1の画素群に対して、1つのサブフィールドの期間のうち少なくとも一部の期間である淡網がけ部Xの期間で同時に駆動が行われる。
図12(D)にAREA2に対応したタイミング信号の例を示す。図12(D)に示すように、AREA2のタイミング信号は、図12(A)においてAREA2における各サブフィールドの駆動期間が共通して存在するタイミングに相当する(図12(A)、図12(D)で斜線部Yで示す)。ここで、AREA2に含まれる第2の画素群に対して、斜線部Yの期間で同時に駆動が行われる。
図12(E)にAREA3に対応したタイミング信号の例を示す。図12(E)に示すように、AREA3のタイミング信号は、図12(A)においてAREA3における各サブフィールドの駆動期間が共通して存在するタイミングに相当する(図12(A)、図12(E)で斜め格子部Zで示す)。
<プロジェクタの動作例>
本実施例の特徴的な構成、処理に基づく、プロジェクタ100の動作例について2例説明する。
まず、1つ目の例を説明する。これは、図8のステップS102にて得られた、フレームTにおけるサブフィールド毎のONパターンとなる画素の出現回数が図7(B)の場合であった例である。図7(B)では、最長のサブフィールド期間であるSF6において、ONとなる画素がフレーム内で存在しないことを示す(このフレームの画像は、画面全体が暗いシーンを表す画像であると言える)。その結果を受けて、制御部104は、ステッ
プS109にて光源駆動部109に対し、SF6の期間、光量をdに設定するように指示を出す。その指示を受けた光源駆動部109は、液晶駆動部203から受信した、フレームTのSFタイミング信号に応じて光源1101a~1101cを制御する。
具体的には、光源1101aについてはAREA1に対するフレームTのSF6のタイミング信号(図12(C)参照)に同期して、光源1101aの光量が図12(B)の点灯タイミング時に光量dとなるように制御する。同様に、光源1101bについてはAREA2に対するフレームTのSF6のタイミング信号(図12(D)参照)に同期し、光源1101cについてはAREA3に対するフレームTのSF6のタイミング信号(図12(E)参照)に同期し、同様の制御を行う。結果として、光源1101a~1101cの光量は、図12(F)に示すように、領域毎のSF6のタイミングに同期して光量dで発光する。
2つ目の例を説明する。これは、図8のステップS102にて得られた、フレームTにおけるサブフィールド毎のONパターンとなる画素の出現回数が図7(C)の場合であった例である。図7(C)では、SF3において、ONとなる画素がフレーム内で存在しないことを示す(このフレームの画像は、グラデーションが比較的少ない画像であると言える)。その結果を受けて、制御部104は、ステップS109にて光源駆動部109に対し、SF3の期間、光量をdに設定するように指示を出す。その指示を受けた光源駆動部109は、液晶駆動部203から受信した、フレームTのSFタイミング信号に応じて光源1101a~1101cを制御する。
具体的には、光源1101aについてはAREA1に対するフレームTのSF3のタイミング信号(図12(C)参照)に同期して、光源1101aの光量が図12(B)の点灯タイミング時に光量dとなるように制御する。同様に、光源1101bについてはAREA2に対するフレームTのSF3のタイミング信号(図12(D)参照)に同期し、光源1101cについてはAREA3に対するフレームTのSF3のタイミング信号(図12(E)参照)に同期し、同様の制御を行う。結果として、光源1101a~1101cの光量は、図12(G)に示すように、領域毎のSF3のタイミングに同期して光量dで発光する。
以上説明したように、液晶パネル114の各行の更新開始タイミングが互いに異なり、液晶パネル114が順次周期的に部分的に照明される形態のプロジェクタであっても、上述した実施例1,2同様の効果を得ることができる。
本実施例の構成では、実施例2の構成に対して、光量をより低減することが可能であり、より黒浮きを低減させることができる。
なお、本実施例では、パネルの各領域を照明する複数の光源を有し、液晶駆動部203が各光源の発光タイミングを順次切り替え制御する構成について説明したが、これに限るものではない。例えば、パネルの各領域を照明するために、共通の光源を有し、射出する光の光路を切り替えるポリゴンミラー等を用いて照明領域を順次切り替えるように構成してもよい。このとき、液晶駆動部203が、本実施例の発光タイミングと同様のタイミングに基づきポリゴンミラーの光の反射角度を変更させるように制御するとよい。
また本実施例においても、各サブフィールドの光量を低減させる際、ブランキング期間の光量を低減させるようにしてもよい。例えば、SF6の光量低減と連動させてブランキング期間の光量を低減させる場合、パネル駆動部108は、図12(C)~図12(E)のSF6のタイミング信号を太い破線部分の波形となるようにしてもよい。そのようにすれば、光源1101a~1101cの光量は図12(F)の太い破線部分となり、時間平均でより光量を低減させることができる。
[実施例4]
以下に、実施例4について図13(A)、図13(B)を用いて説明する。なお、本実施例では、実施例1~3と異なる構成や処理について説明し、実施例1~3と同様の構成や処理についての説明は省略する。
実施例1では、図8を用いて説明した制御部104の処理において、図8の破線部で囲まれた部分は適用しなかったが、本実施例では、図8において破線部で囲まれた部分(ステップS110~ステップS113)を適用した処理を行っている。
以下、図8のフローチャートについて、実施例1と異なる処理について説明する。
本実施例のステップS102では、実施例1のステップS102の処理に加え、次の処理が追加されている。すなわち制御部104は、階調統計部204と通信を行い、階調統計部204が計測した1フレーム中の階調の出現回数(ヒストグラム)を取得する。
ステップS102の処理の完了後、制御部104は、ステップS110から始まる、サブフィールド毎のループを開始する。ループの各サイクル中において、該当するサブフィールドをSFnと称する。
ステップS111にて、制御部104は、ステップS102で取得した情報を基に、SFnのON画素数が所定数以下(設定値以下)であるかを判定する。この例を、図7(D)を用いて説明する。図7(D)は、ステップS102で制御部104が取得した各サブフィールドのON画素数を示すテーブルである。例えば、判定基準となる所定数が5であったとすると、本ステップの判定が真となるのは、ON画素数が2であるSF6(n=6)の場合である。判定が真になった場合は、ステップS112に遷移し、偽であれば本ループの1サイクルが完了する。
続いて、ステップS112にて、制御部104は、ステップS102で取得したヒストグラムを基に、当該ON画素の階調変更候補の値を算出し、元の値と変更候補の値の階調差が所定数以下であるか判定する。この例を、図13(A)、図13(B)を用いて説明する。
図13(A)は、制御部104がステップS102で取得した階調のヒストグラムの例である。このヒストグラムを参照すると、ステップS111で判定したSF6のON画素は、例えば32階調と33階調であると分かる(SF6がONとなる階調は、図3(B)の階調表現においては32以上の範囲の階調に相当する)。
制御部104は、ステップS111で判定したSFnのON画素について、SFnがOFFとなる最大の階調値を、変更候補の階調値とする。この場合は、変更候補の階調は31階調である。続いて、制御部104は、階調変更を行った場合の、変更前後の階調の差を算出する。階調変更を行った場合のヒストグラムの例を図13(B)に示す。階調変更を行うと、32、33の階調を有する2画素が、夫々31の階調を有する画素に変更されることになる。即ち、この場合の階調の変化量は、(32-31)+(33-31)=3となる。判定基準とする所定数を5とすると、本例においては、判定結果は真となる。このような判定を行い、結果が真であれば、ステップS113に遷移し、偽であれば、本ループの1サイクルが完了する。
続いて、ステップS113にて、制御部104は、液晶駆動部203に対して、前述したON画素の階調を、変更候補とした階調に変更するように指示を出す。それにより、液晶駆動部203は、次の出力同期信号に同期して、階調変更を適用したON/OFF信号で液晶パネル114を駆動する。以上により、本ループの1サイクルが完了する。
ステップS110から開始されたループが完了すると、処理はステップS103に遷移する。
以上説明したように、本実施例によれば、あるサブフィールドにおいてONとなる画素数が0でない場合(1以上、設定値以下)であっても、当該ON画素数が少数である場合においては、当該サブフィールドにおいて光源の光量を低減することができる。それにより、黒浮きの低減が可能となる。
この処理により、更に黒浮きの低減の可能性が高まり、よりコントラスト感の向上に繋がる。また、その際、本実施例では、液晶パネル114で変調する階調値を低下させているが、ステップS112においてその階調変更による影響が少なくなるように光量低減の実施を制御しているため、明るさの低減を抑えることができる。
なお、本実施例においては、サブフィールドにおいてONとなる画素数が少数である場合には、液晶パネル114で変調する階調値を低下させて、当該サブフィールドに対する光量を低減するものであったが、これに限るものではない。例えば、サブフィールドにおいてONとなる画素数、またはONとなる画素数の割合が、より小さい場合であれば、液晶パネル114で変調する階調値を変更せず、当該サブフィールドに対する光量を低減するものであってもよい。この場合の光量の低減量の算出方法としては、実施例1で説明したように、図9(A)~図9(C)を用いて説明した方法等、様々な方法を適用することができる。
また、本発明をその好適な実施形態に基づいて詳述してきたが、本発明はこれら特定の実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の様々な形態も本発明に含まれる。さらに、上述した各実施例は本発明の一実施形態を示すものにすぎず、各実施例を適宜組み合わせることも可能である。
(その他の実施形態)
本発明は、上述の実施形態の1以上の機能を実現するプログラムを、ネットワーク又は記憶媒体を介してシステム又は装置に供給し、そのシステム又は装置のコンピュータにおける1つ以上のプロセッサーがプログラムを読出し実行する処理でも実現可能である。また、1以上の機能を実現する回路(例えば、ASIC)によっても実現可能である。
100…プロジェクタ、104…制御部、108…パネル駆動部、109…光源駆動部、113…投射光学系、114…液晶パネル、115…光源、203…液晶駆動部

Claims (8)

  1. 複数の画素において、光源が発する光を変調する光変調手段と、
    前記光変調手段で変調された光を投影する投影手段と、
    複数のフレームからなる入力画像データに基づき、1フレーム期間に含まれる複数のサブフィールドの画像データを生成する生成手段と、
    各サブフィールドの画像データに基づき、各画素の光に対する透過率または反射率が、第1の状態と、前記第1の状態よりも低い第2の状態との何れかになるように、前記複数の画素を駆動する駆動手段と、
    前記光源が発する光の光量を制御する光源制御手段と、
    を有し、
    前記光源制御手段は、前記第1の状態となる画素の画素数が予め設定された設定値以下である第1のサブフィールドに対する前記光量を、前記第1の状態となる画素の画素数が前記設定値より大きい第2のサブフィールドに対する前記光量よりも小さくなるように、前記光源を制御し、
    前記第1のサブフィールドを含む第1のフレームが、m個以上(mは3以上の整数)、連続して存在する場合、前記光源制御手段は、
    m番目以降の各第1のフレームに含まれる前記第1のサブフィールドに対する前記光源の制御は、第1の光量となるよう行い、
    m-1番目までの各第1のフレームに含まれる前記第1のサブフィールドに対する前記光源の制御は、m番目の前記第1のフレームに含まれる前記第1のサブフィールドで前記第1の光量となるまで、前記第1の光量より大きい第2の光量から前記光量を複数の段階で小さくするよう行う
    ことを特徴とする投影装置。
  2. 前記駆動手段は、前記複数の画素に含まれる画素群に対して、各サブフィールドのそれぞれの期間のうち、少なくとも一部の期間で同時に駆動を行う
    ことを特徴とする請求項1に記載の投影装置。
  3. 前記駆動手段は、
    前記複数の画素に含まれる第1の画素群に対して、各サブフィールドのそれぞれの期間のうち第1の期間で同時に駆動を行い、
    前記複数の画素に含まれる第2の画素群に対して、各サブフィールドのそれぞれの期間のうち第2の期間で同時に駆動を行う
    ことを特徴とする請求項1または2に記載の投影装置。
  4. 前記駆動手段は、前記複数の画素の全ての画素を、各サブフィールドのそれぞれの画像データに基づいて、同時に駆動する
    ことを特徴とする請求項1乃至3のいずれか1項に記載の投影装置。
  5. 前記第1のサブフィールドを含む第1のフレームが、m個以上(mは3以上の整数)、連続して存在する場合、前記光源制御手段は、連続して存在する各第1のフレームに含まれる前記第1のサブフィールドの全てに対して、前記光源を制御する
    ことを特徴とする請求項1乃至4のいずれか1項に記載の投影装置。
  6. 前記設定値は0である
    ことを特徴とする請求項1乃至5のいずれか1項に記載の投影装置。
  7. 画像データの階調値を変更する画像処理手段を有し、
    前記第1の状態となる画素の画素数が1以上、かつ、前記設定値以下であるとき、
    前記第1の状態にある画素が前記第2の状態となるように当該画素の階調値が前記画像処理手段により変更され、かつ、前記光源制御手段により前記光源が制御される
    ことを特徴とする請求項1乃至6のいずれか1項に記載の投影装置。
  8. 複数の画素において、光源が発する光を変調する光変調ステップと、
    前記光変調ステップで変調された光を投影する投影ステップと、
    複数のフレームからなる入力画像データに基づき、1フレーム期間に含まれる複数のサブフィールドの画像データを生成する生成ステップと、
    各サブフィールドの画像データに基づき、各画素の光に対する透過率または反射率が、第1の状態と、前記第1の状態よりも低い第2の状態との何れかになるように、前記複数の画素を駆動する駆動ステップと、
    前記光源が発する光の光量を制御する光源制御ステップと、
    を含み、
    前記光源制御ステップでは、前記第1の状態となる画素の画素数が予め設定された設定値以下である第1のサブフィールドに対する前記光量を、前記第1の状態となる画素の画素数が前記設定値より大きい第2のサブフィールドに対する前記光量よりも小さくなるように、前記光源を制御し、
    前記第1のサブフィールドを含む第1のフレームが、m個以上(mは3以上の整数)、連続して存在する場合、前記光源制御ステップでは、
    m番目以降の各第1のフレームに含まれる前記第1のサブフィールドに対する前記光源の制御は、第1の光量となるよう行い、
    m-1番目までの各第1のフレームに含まれる前記第1のサブフィールドに対する前記光源の制御は、m番目の前記第1のフレームに含まれる前記第1のサブフィールドで前記第1の光量となるまで、前記第1の光量より大きい第2の光量から前記光量を多段階で小さくするよう行う
    ことを特徴とする投影装置の制御方法。
JP2018044178A 2018-03-12 2018-03-12 投影装置及びその制御方法 Active JP7094732B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018044178A JP7094732B2 (ja) 2018-03-12 2018-03-12 投影装置及びその制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018044178A JP7094732B2 (ja) 2018-03-12 2018-03-12 投影装置及びその制御方法

Publications (3)

Publication Number Publication Date
JP2019159047A JP2019159047A (ja) 2019-09-19
JP2019159047A5 JP2019159047A5 (ja) 2021-04-08
JP7094732B2 true JP7094732B2 (ja) 2022-07-04

Family

ID=67997012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018044178A Active JP7094732B2 (ja) 2018-03-12 2018-03-12 投影装置及びその制御方法

Country Status (1)

Country Link
JP (1) JP7094732B2 (ja)

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002357810A (ja) 2001-05-31 2002-12-13 Matsushita Electric Ind Co Ltd 映像表示装置及び方法
JP2003036063A (ja) 2001-04-25 2003-02-07 Matsushita Electric Ind Co Ltd 映像表示装置及び映像表示方法
JP2004126470A (ja) 2002-10-07 2004-04-22 Fujitsu Ltd 表示装置及び表示方法
JP2004294767A (ja) 2003-03-27 2004-10-21 Mitsubishi Electric Corp 画像表示装置
JP2004325644A (ja) 2003-04-23 2004-11-18 Seiko Epson Corp プロジェクタ
JP2005181528A (ja) 2003-12-17 2005-07-07 Toshiba Lighting & Technology Corp 発光ダイオード式投写装置
JP2007304578A (ja) 2006-04-14 2007-11-22 Semiconductor Energy Lab Co Ltd 表示装置及びその駆動方法
JP2008020887A (ja) 2006-06-15 2008-01-31 Victor Co Of Japan Ltd 映像表示装置及び映像表示方法
JP2008070558A (ja) 2006-09-13 2008-03-27 Sharp Corp 透過型ディスプレイ装置、およびその表示制御方法
JP2008176024A (ja) 2007-01-18 2008-07-31 Seiko Epson Corp 画像表示装置およびプロジェクタ
JP2008225106A (ja) 2007-03-13 2008-09-25 Victor Co Of Japan Ltd 空間光変調器
JP2008225105A (ja) 2007-03-13 2008-09-25 Victor Co Of Japan Ltd 空間光変調器
JP2008262167A (ja) 2007-02-20 2008-10-30 Miradia Inc 高速応答光源による改善されたコントラスト
JP2008268325A (ja) 2007-04-17 2008-11-06 Seiko Epson Corp 表示装置、表示装置の駆動方法および電子機器
JP2010122669A (ja) 2008-10-24 2010-06-03 Semiconductor Energy Lab Co Ltd 表示装置
JP2014098890A (ja) 2012-10-16 2014-05-29 Canon Inc 表示装置、発光装置および表示装置の制御方法
US20150035868A1 (en) 2013-07-31 2015-02-05 Coretronic Corporation Projection device and luminance control method of frame thereof
JP2016170217A (ja) 2015-03-11 2016-09-23 カシオ計算機株式会社 投影装置、投影制御方法及びプログラム
JP2016212181A (ja) 2015-05-01 2016-12-15 株式会社Jvcケンウッド 表示装置および表示装置の駆動方法

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003036063A (ja) 2001-04-25 2003-02-07 Matsushita Electric Ind Co Ltd 映像表示装置及び映像表示方法
JP2002357810A (ja) 2001-05-31 2002-12-13 Matsushita Electric Ind Co Ltd 映像表示装置及び方法
JP2004126470A (ja) 2002-10-07 2004-04-22 Fujitsu Ltd 表示装置及び表示方法
JP2004294767A (ja) 2003-03-27 2004-10-21 Mitsubishi Electric Corp 画像表示装置
JP2004325644A (ja) 2003-04-23 2004-11-18 Seiko Epson Corp プロジェクタ
JP2005181528A (ja) 2003-12-17 2005-07-07 Toshiba Lighting & Technology Corp 発光ダイオード式投写装置
JP2007304578A (ja) 2006-04-14 2007-11-22 Semiconductor Energy Lab Co Ltd 表示装置及びその駆動方法
JP2008020887A (ja) 2006-06-15 2008-01-31 Victor Co Of Japan Ltd 映像表示装置及び映像表示方法
JP2008070558A (ja) 2006-09-13 2008-03-27 Sharp Corp 透過型ディスプレイ装置、およびその表示制御方法
JP2008176024A (ja) 2007-01-18 2008-07-31 Seiko Epson Corp 画像表示装置およびプロジェクタ
JP2008262167A (ja) 2007-02-20 2008-10-30 Miradia Inc 高速応答光源による改善されたコントラスト
JP2008225106A (ja) 2007-03-13 2008-09-25 Victor Co Of Japan Ltd 空間光変調器
JP2008225105A (ja) 2007-03-13 2008-09-25 Victor Co Of Japan Ltd 空間光変調器
JP2008268325A (ja) 2007-04-17 2008-11-06 Seiko Epson Corp 表示装置、表示装置の駆動方法および電子機器
JP2010122669A (ja) 2008-10-24 2010-06-03 Semiconductor Energy Lab Co Ltd 表示装置
JP2014098890A (ja) 2012-10-16 2014-05-29 Canon Inc 表示装置、発光装置および表示装置の制御方法
US20150035868A1 (en) 2013-07-31 2015-02-05 Coretronic Corporation Projection device and luminance control method of frame thereof
JP2016170217A (ja) 2015-03-11 2016-09-23 カシオ計算機株式会社 投影装置、投影制御方法及びプログラム
JP2016212181A (ja) 2015-05-01 2016-12-15 株式会社Jvcケンウッド 表示装置および表示装置の駆動方法

Also Published As

Publication number Publication date
JP2019159047A (ja) 2019-09-19

Similar Documents

Publication Publication Date Title
JP3583122B2 (ja) 画像表示装置及び表示制御方法
KR101148394B1 (ko) 화상 처리 장치 및 화상 표시 장치
JP4139189B2 (ja) 液晶表示装置
JP3840746B2 (ja) 画像表示装置及び画像表示方法
KR100687680B1 (ko) 액정 표시 장치
JP6080380B2 (ja) バックライト装置、その制御方法、及び画像表示装置
US20100110112A1 (en) Backlight apparatus and display apparatus
JP4752569B2 (ja) 投影装置、光源制御方法及びプログラム
JP4138677B2 (ja) 表示装置および表示方法、並びに投射型表示装置
US20100045784A1 (en) Image display apparatus and image display method
JP4901869B2 (ja) 画像表示装置
JP4167474B2 (ja) 液晶表示装置
JP2002040390A (ja) 液晶表示装置
JP2009134237A (ja) 表示装置
JP2007148444A (ja) 液晶表示装置
JP2006284982A (ja) 調光情報生成装置、その方法、そのプログラム、そのプログラムを記録した記録媒体、および画像表示装置
JP3583124B2 (ja) 液晶表示装置及び表示制御方法
JP2006520926A (ja) 走査型バックライトを備えたアクティブ・マトリックス型ディスプレイ
JP2009175626A (ja) 画像表示装置、その制御方法及び電子機器
JP2005107019A (ja) 画像表示方法及び装置並びにプロジェクタ
JP7094732B2 (ja) 投影装置及びその制御方法
JP6896507B2 (ja) 表示装置およびその制御方法
JP2010049047A (ja) 映像表示装置及び映像表示方法
JP4012812B2 (ja) プラズマディスプレイ駆動回路
JP2008165126A (ja) 画像表示装置及び方法並びにプロジェクタ

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20181116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210224

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220506

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220622

R151 Written notification of patent or utility model registration

Ref document number: 7094732

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151