JP7087532B2 - リチウムイオン二次電池用負極およびリチウムイオン二次電池 - Google Patents

リチウムイオン二次電池用負極およびリチウムイオン二次電池 Download PDF

Info

Publication number
JP7087532B2
JP7087532B2 JP2018057194A JP2018057194A JP7087532B2 JP 7087532 B2 JP7087532 B2 JP 7087532B2 JP 2018057194 A JP2018057194 A JP 2018057194A JP 2018057194 A JP2018057194 A JP 2018057194A JP 7087532 B2 JP7087532 B2 JP 7087532B2
Authority
JP
Japan
Prior art keywords
negative electrode
peripheral portion
active material
electrode active
ion secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018057194A
Other languages
English (en)
Other versions
JP2019169391A (ja
Inventor
一正 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2018057194A priority Critical patent/JP7087532B2/ja
Publication of JP2019169391A publication Critical patent/JP2019169391A/ja
Application granted granted Critical
Publication of JP7087532B2 publication Critical patent/JP7087532B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、リチウムイオン二次電池用負極およびリチウムイオン二次電池に関する。
リチウムイオン二次電池は、ニッケルカドミウム電池、ニッケル水素電池等と比べ、軽量、高容量であるため、携帯電子機器用電源として広く応用されている。また、ハイブリッド自動車や、電気自動車用に搭載される電源として有力な候補ともなっている。そして、近年、スマートフォン、電気自動車、ドローン、電力貯蔵用などの電源として、リチウムイオン二次電池が多様な製品に利用されるようになり、それに伴って高エネルギー密度のリチウムイオン二次電池が要求されている。
リチウムイオン二次電池は、正極と負極とセパレータと電解質で主に構成され、正極と負極とセパレータとが複数積層された構成となる。セパレータは、正極と負極とを絶縁し、電解質は、正極と負極との間でイオンの移動を可能にする。また、リチウムデンドライトによる短絡防止のため、負極の面積は正極の面積よりも一般的に大きく設計されている。ところで市販されているリチウムイオン二次電池の負極として、黒鉛が負極活物質として主に用いられているが、更なる高容量化のためには、負極活物質を高密度に充填するか、または電極に対して高負荷(加圧)プレスして電極の体積密度を高くする必要がある。これに関連して例えば、負極活物質を高密度に充填するために粒度分布を変える試みが行われているが(例えば、特許文献1)、高容量化にはまだ不十分であり、さらに高負荷(加圧)プレスして電極の密度を上げることが必要となっている。
しかしながら、電極に対して高負荷(加圧)プレスして電極の密度を上げていくと、電解液の電極への浸透性が低下する場合がある。また、黒鉛よりも容量の大きいケイ素を負極活物質として用いた電極においても、密度を上げた電極では、黒鉛同様に電解液の電極への浸透性が低下する場合がある。電極材へのリチウムイオンの挿入・脱離反応は電解液を介しているため、電解液の浸透性の低下は、初回充放電時電池特性の低下を引き起こす問題があった。
特開2005-340025号公報
本発明の目的は、前記事情に鑑みてなされたものであり、高密度化が可能で、電解液浸透性に優れるリチウムイオン二次電池用負極、およびリチウムイオン二次電池を提供することにある。
本発明者は、鋭意検討の結果、負極活物質層において、外周部Bの密度Dが、内周部Aの密度Dよりも小さくすることで、電解液の含浸時間を短縮でき、充放電容量とエネルギー密度に優れるリチウムイオン二次電池が得られることを見出したため本発明に至った。
〔1〕 負極集電体と、前記負極集電体に保持された負極活物質層とを含む負極であって、
前記負極活物質層は、内周部Aと、外周部Bとを有し、
前記外周部の密度Dが、前記内周部の密度Dよりも小さい(D>D
ことを特徴とするリチウムイオン二次電池用負極。
〔2〕 前記負極活物質層の前記内周部Aの面積をS、前記外周部Bの面積をSとしたとき、S/Sが0.02≦S/S≦1.0である
ことを特徴とする〔1〕に記載されたリチウムイオン二次電池用負極。
〔3〕 前記負極活物質層において前記内周部Aの密度Dと、前記外周部Bの密度Dとの密度の比率D/Dが、1.00<D/D≦1.82であることを特徴とする〔1〕又は〔2〕に記載のリチウムイオン二次電池用負極。
〔4〕 前記負極活物質層は、少なくとも負極活物質と負極バインダーを含むことを特徴とする〔1〕~〔3〕のいずれかに記載されたリチウムイオン二次電池用負極。
〔5〕 〔1〕~〔4〕のいずれかに記載されたリチウムイオン二次電池用負極と、正極と、セパレータと、電解液とを含むことを特徴とするリチウムイオン二次電池。
本発明により、高密度化が可能で、電解液浸透性に優れ、充放電容量とエネルギー密度に優れるリチウムイオン二次電池用負極、およびリチウムイオン二次電池を提供することができる。
本実施形態にかかるリチウムイオン二次電池の断面模式図である。 本実施形態に係るリチウムイオン二次電池用負極を主面から見た模式図である。
以下、本実施形態について、図を適宜参照しながら詳細に説明する。以下の説明で用いる図面は、本発明の特徴をわかりやすくするために便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率などは実際とは異なっていることがある。以下の説明において例示される材料、寸法等は一例であって、本発明はそれらに限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することが可能である。
[リチウムイオン二次電池]
図1は、本実施形態にかかるリチウムイオン二次電池の断面模式図である。図1に示すリチウムイオン二次電池100は、主として積層体40、積層体40を密閉した状態で収容するケース50、および積層体40に接続された一対のリード60、62を備えている。
また図示されていないが、積層体40とともに電解液が、ケース50内に収容されている。
積層体40は、正極20と負極30とが、セパレータ10を挟んで対向配置されたものである。正極20は、板状(膜状)の正極集電体22上に正極活物質層24が設けられたものである。負極30は、板状(膜状)の負極集電体32上に負極活物質層34が設けられたものである。
正極活物質層24および負極活物質層34は、セパレータ10の両側にそれぞれ接触している。正極集電体22および負極集電体32の端部には、それぞれリード62、60が接続されており、リード60、62の端部はケース50の外部にまで延びている。図1では、ケース50内に積層体40が一つの場合を例示したが、複数積層されていてもよい。
「リチウムイオン二次電池用負極」
「第1実施形態」
本実施形態のリチウムイオン二次電池用負極30は、負極集電体32と、負極集電体32の上に設けられた負極活物質層34とを有する。図2に、本実施形態に係るリチウムイオン二次電池用負極の主面から見た場合の模式図を示す。
負極活物質層34は、内周部A(図2:34A)と、外周部B(図2:34B)とを有し、外周部Bの密度Dが、内周部Aの密度Dよりも小さい(D>D)ことを特徴とする。
負極活物質層34において、外周部Bの密度Dが、内周部Aの密度Dよりも小さくすることで、外周部Bの電解液の含浸性が、内周部Aよりも早くなる。その結果、内周部Aへの電解液の含浸性が早くなる。これは外周部Bから早期に電解液が含浸されるため、外周部Bから内周部Aへ電解液が流動しやすくなるので、結果、内周部Aへの含浸も早くなる。したがって、充放電反応が均一になるため、充放電容量とエネルギー密度に優れたリチウムイオン二次電池が得られる。さらに、電解液の含浸時間が短縮できるので、生産性が向上できる。
一方、外周部Bの密度が、内周部Aと同じ、または大きい場合、外周部Bの含浸性が低下するため、内周部Aへの含浸性も遅くなる。したがって、内周部Aにおいて電解液の含浸性が悪い場所では、充放電容量が低下し、優れたエネルギー密度を有するリチウムイオン二次電池が得られにくい。
負極活物質として黒鉛を用いた負極活物質層においては、内周部Aの密度Dは1.0~2.2g/cmの範囲であることが好ましく、1.3~2.1g/cmの範囲であることがより好ましい。特に1.3~2.1g/cmの範囲であれば、集電体と負極活物質層との密着性に優れ、優れたエネルギー密度を有するリチウムイオン二次電池が得られやすい。内周部Aの密度Dが1.0g/cmよりも小さいと、集電体と負極活物質層との密着性が弱く、集電体から負極活物質層が剥がれやすくなる。しいては優れたエネルギー密度を有するリチウムイオン二次電池が得られにくい。また、2.2g/cmよりも大きいと、負極活物質層の高密度化が困難となり、電極のプレス工程が多くなる場合がある。また、負極活物質である黒鉛が割れたり、プレス工程にて黒鉛が負極集電体に強く押し当てられ、当該箇所での集電体の厚みが薄くなり、充放電によって電極が破れやすくなる場合がある。
負極活物質としてケイ素を用いた負極活物質層においては、内周部Aの密度Dは1.0~1.7g/cmの範囲であることが好ましく、1.1~1.6g/cmの範囲であることがより好ましい。特に1.1~1.6g/cmの範囲であれば、集電体と負極活物質層との密着性に優れ、優れたエネルギー密度を有するリチウムイオン二次電池が得られやすい。内周部Aの密度Dが1.0g/cmよりも小さいと、集電体と負極活物質層との密着性が弱く、集電体から負極活物質層が剥がれやすくなる。しいては優れたエネルギー密度を有するリチウムイオン二次電池が得られにくい。また、1.7g/cmよりも大きいと、負極活物質層の高密度化が困難となり、電極のプレス工程が多くなる場合がある。また、黒鉛と同様に負極活物質であるケイ素が割れたり、プレス工程にてケイ素が負極集電体に強く押し当てられ、当該箇所での集電体の厚みが薄くなり、充放電によって電極が破れやすくなる場合がある。なお、ケイ素は黒鉛よりも容量が大きいため、黒鉛よりも負極活物質層を薄くすることができる。しいては、黒鉛よりも比較的小さい密度で、優れたエネルギー密度を有するリチウムイオン二次電池が得られる。
外周部Bの密度Dは、内周部Aの密度Dよりも小さければ特に制限はされないが、1.0~2.0g/cmの範囲であることが好ましく、1.0~1.6g/cmの範囲であることがより好ましい。1.0~1.6g/cmの範囲であれば、集電体と負極活物質層との密着性に優れ、電解液の含浸性も優れる。
前記負極活物質層34は正極活物質層24に対向する対向部と、正極活物質層24に対向していない非対向部とを有しており、負極活物質層34の内周部Aが正極活物質層24に対向する対向部であり、負極活物質層34の外周部Bが正極活物質層24に対向していない非対向部であることが好ましい。
前記外周部Bは、前記内周部Aに対して均一な幅で設けられていることが好ましい。外周部Bを均一な幅にすることで、外周部Bから内周部Aにかけて電解液が均一に拡散するためである。
前記負極活物質層34において前記内周部Aの面積をS、前記外周部Bの面積をSとしたとき、S/Sが0.02≦S/S≦0.1であることが好ましい。
/Sが上記範囲である場合、電解液の含浸性が優れるため、生産性を高めることができる。また優れた充放電容量のリチウムイオン二次電池が得られる。S/Sが0.1よりも大きくなると、外周部の面積Sが大きくなるので、Sでの副反応が多くなり、放電容量が低下しやすくなる。S/Sが0.02よりも小さくなると、外周部の面積Sが小さくなるので、デンドライトが負極表面で生成されやすくなり、同様に放電容量が低下しやすくなる。
前記負極活物質層34において前記内周部Aの密度Dと、前記外周部Bの密度Dとの密度の比率D/Dが、1.00<D/D≦1.82であることがより好ましい。
/Dが上記範囲である場合、電解液の含浸性が優れるため、生産性を高めることができる。また優れた充放電容量のリチウムイオン二次電池が得られる。1.00以下になると、電解液の含浸性が悪くなるため、含浸時間を長く必要となるため、生産性が低下する。
(負極集電体)
負極集電体32は、導電性の板材であればよく、例えば、銅箔、ステンレス箔、ニッケル箔などの金属薄板を用いることができる。
(負極活物質層)
負極活物質層34は、負極活物質と負極バインダーとを有し、必要に応じて負極導電材を有する。
(負極活物質)
本実施形態のリチウムイオン二次電池用負極に用いる負極活物質は、公知の負極活物質を含むことができる。負極活物質としては、例えば、金属リチウム、リチウムイオンを吸蔵・放出可能な黒鉛(天然黒鉛、人造黒鉛)、カーボンナノチューブ、難黒鉛化炭素、易黒鉛化炭素、低温度焼成炭素等の炭素材料、アルミニウム、シリコン、スズ等のリチウムと化合することのできる金属、二酸化スズ等の酸化物を主体とする非晶質の化合物、チタン酸リチウム(LiTi12)等を含む粒子が挙げられる。本実施形態のリチウムイオン二次電池用負極に用いる負極活物質は、ケイ素又は黒鉛を含むことが好ましい。
(負極導電材)
導電材としては、例えば、カーボンブラック類等のカーボン粉末、カーボンナノチューブ、炭素材料、ITO等の導電性酸化物が挙げられる。これらの中でも、アセチレンブラックやエチレンブラック等のカーボン粉末が特に好ましい。負極活物質のみで十分な導電性を確保できる場合は、リチウムイオン二次電池100は導電材を含んでいなくてもよい。
(負極バインダー)
バインダーは、活物質同士を結合すると共に、活物質と負極集電体32とを結合する。
本実施形態の負極活物質層に含まれる負極バインダーとしては、有機溶剤系バインダーでもよく、水系バインダーでもよい。例えば、ポリアミドイミド、ポリイミド、ポリアミド、ポリアクリル酸、ポリアクリル酸塩、アルギン酸塩、スチレン・ブタジエンゴム(SBR)、カルボキシメチルセルロース(CMC)、ポリウレタンなどが挙げられ、これらの1種を用いてもよく、複数種を併用することもできる。特に充放電による体積膨張が大きいケイ素を負極活物質に用いる場合、ポリアミドイミド、ポリイミド、ポリアミド、ポリアクリル酸を好適に用いることができる。一方、ケイ素およびケイ素化合物よりも体積膨張の小さい黒鉛を負極活物質に用いる場合、スチレン・ブタジエンゴムを好適に用いることができる。なお、前記に列挙したバインダーに限定されるものではない。
負極活物質層34に含まれる負極活物質、導電材およびバインダーの含有量は特に限定されない。負極活物質層34における負極活物質の構成比率は、質量比で65~98質量%であることが好ましい。また負極活物質層34における導電材の構成比率は、質量比で0~20質量%であることが好ましく、負極活物質層34におけるバインダーの構成比率は、質量比で2~35質量%であることが好ましい。特に水系バインダーであれば、2~20質量%の範囲が好ましく、有機溶剤系バインダーであれば、5~30質量%の範囲で好適に使用することができる。
負極活物質とバインダーの含有量を前記範囲とすることにより、バインダーの量が少なすぎて強固な負極活物質層を形成できなくなることを防ぐことができる。また、電気容量に寄与しないバインダーの量が多くなり、十分な体積エネルギー密度を得ることが困難となる傾向も抑制できる。
「第2実施形態」
本実施形態にかかるリチウムイオン二次電池用負極は、その負極活物質が黒鉛を含む点が、第1実施形態にかかるリチウムイオン二次電池用負極と異なる。
黒鉛を含む負極活物質としては、例えば、金属リチウム、リチウムイオンを吸蔵・放出可能な黒鉛(天然黒鉛、人造黒鉛)、カーボンナノチューブ、難黒鉛化炭素、易黒鉛化炭素、低温度焼成炭素等の炭素材料などが挙げられる。
本実施形態のリチウムイオン二次電池用負極に用いる負極活物質は、黒鉛を含む負極活物質の以外に、更に他の公知の負極活物質を含むことができる。他の負極活物質としては、例えば、金属リチウム、リチウムイオンを吸蔵・放出可能なアルミニウム、ケイ素、スズ等のリチウムと合金することのできる金属、二酸化スズ等の酸化物を主体とする非晶質の化合物、チタン酸リチウム(LiTi12)等を含む粒子が挙げられる。
「第3実施形態」
本実施形態のリチウムイオン二次電池用負極において、その負極活物質は、ケイ素を含む点が、第1実施形態にかかるリチウムイオン二次電池用負極と異なる。
ケイ素を含む負極活物質としては、リチウムイオンを吸蔵・放出可能な化合物であればよく、公知のケイ素を含む負極活物質を使用できる。ケイ素を含む負極活物質としては、例えば、ケイ素、ケイ素酸化物もしくはケイ酸塩を含む負極活物質が挙げられる。例えば、ケイ素ナノワイヤーやケイ素微粒子;スズ、ニッケル、銅、鉄、コバルト、マンガン、亜鉛、インジウム、銀、チタン、ゲルマニウム、ビスマス、アンチモンおよびクロムからなる群から選択される少なくとも1種の金属とケイ素との合金;ホウ素、窒素、酸素または炭素とケイ素との化合物などが挙げられる。ケイ素の合金あるいは化合物の具体例は、SiB、SiB、MgSi、NiSi、TiSi、MoSi、CoSi、NiSi、CaSi、CrSi、CuSi、FeSi、MnSi、NbSi、TaSi、VSi、WSi、ZnSi、SiC、Si、SiO、SiO(0<X≦2)あるいはLiSiOなどが挙げられる。
また、前記ケイ素、ケイ素酸化物もしくはケイ酸塩の表面に導電性の高い材料を担持又は被覆した負極活物質を用いることができる。例えば、SiOの表面に炭素又は酸化チタンを被覆した負極活物質が挙げられる。
また、炭素基体上に前記ケイ素、ケイ素酸化物もしくはケイ酸塩が分散された複合材料や、前記ケイ素、ケイ素酸化物もしくはケイ酸塩の微粒子と人造黒鉛粒子とが一部複合化している複合材料が挙げられる。
本実施形態のリチウムイオン二次電池用負極に用いる負極活物質は、ケイ素を含む負極活物質の以外に、更に他の公知の負極活物質を含むことができる。他の負極活物質としては、例えば、金属リチウム、リチウムイオンを吸蔵・放出可能な黒鉛(天然黒鉛、人造黒鉛)、カーボンナノチューブ、難黒鉛化炭素、易黒鉛化炭素、低温度焼成炭素等の炭素材料、アルミニウム、シリコン、スズ等のリチウムと化合することのできる金属、二酸化スズ等の酸化物を主体とする非晶質の化合物、チタン酸リチウム(LiTi12)等を含む粒子が挙げられる。
「正極」
正極20は、正極集電体22と、正極集電体22の上に設けられた正極活物質層24とを有する。
(正極集電体)
正極集電体22は、導電性の板材であればよく、例えば、アルミニウム、ニッケル箔の金属薄板を用いることができる。
(正極活物質層)
正極活物質層24に用いる正極活物質は、リチウムイオンの吸蔵および放出、リチウムイオンの脱離および挿入(インターカレーション)、又は、リチウムイオンとリチウムイオンのカウンターアニオン(例えば、PF )とのドープおよび脱ドープを可逆的に進行させることが可能な電極活物質を用いることができる。
例えば、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、マンガン酸リチウム(LiMnO)、リチウムマンガンスピネル(LiMn)、および、一般式:LiNiCoMn(x+y+z+a=1、0≦x<1、0≦y<1、0≦z<1、0≦a<1、MはAl、Mg、Nb、Ti、Cu、Zn、Crより選ばれる1種類以上の元素)で表される複合金属酸化物、リチウムバナジウム化合物(LiV)、オリビン型LiMPO(ただし、Mは、Co、Ni、Mn、Fe、Mg、Nb、Ti、Al、Zrより選ばれる1種類以上の元素又はVOを示す)、チタン酸リチウム(LiTi12)、ニッケルコバルトアルミ酸リチウム(LiNiCoAl(0.9<x+y+z<1.1))等の複合金属酸化物、ポリアセチレン、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセンなどが挙げられる。
(導電材)
導電材は、例えば、カーボンブラック類等のカーボン粉末、カーボンナノチューブ、炭素材料、銅、ニッケル、ステンレス、鉄等の金属微粉、炭素材料および金属微粉の混合物、ITO等の導電性酸化物が挙げられる。正極活物質のみで十分な導電性を確保できる場合は、リチウムイオン二次電池100は導電材を含んでいなくてもよい。
(正極バインダー)
本実施形態の正極活物質層24に含まれる正極バインダーとしては、有機溶剤系バインダーでもよく、水系バインダーでもよい。例えば、ポリフッ化ビニリデン(PVDF)、ポリイミド(PI)、ポリアミドイミド(PAI)、ポリアミド(PA)、ポリエチレンビニルアルコール(PVA)、ポリアクリレート、スチレン-ブタジエンゴム(SBR)、カルボキシメチルセルロース(CMC)、ポリウレタンなどが挙げられ、これらの1種を用いてもよく、複数種を併用することもできる。なお、これら列挙したバインダーに限定されるものではない。
正極活物質層24における正極活物質の構成比率は、質量比で80~96質量%であることが好ましい。また正極活物質層24における導電材の構成比率は、質量比で2.0~10質量%であることが好ましく、正極活物質層24におけるバインダーの構成比率は、質量比で2.0~10質量%であることが好ましい。
「セパレータ」
セパレータ10は、電気絶縁性の多孔質構造から形成されていればよく、例えば、ポリエチレン、ポリプロピレン又はポリオレフィンからなるフィルムの単層体、積層体や前記樹脂の混合物の延伸膜、或いはセルロース、ポリエステルおよびポリプロピレンからなる群より選択される少なくとも1種の構成材料からなる繊維不織布が挙げられる。
「電解液」
電解液は、例えば、非水溶媒とこの非水溶媒に溶解された電解質塩とを含んでおり、必要に応じて添加剤を含んでいてもよい。前記非水溶媒としては、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)などの環状炭酸エステル;ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)などの鎖状炭酸エステル;酢酸メチル(MA),酢酸エチル(EA),プロピオン酸メチル(MP),プロピオン酸エチル(EP)などの鎖状カルボン酸エステル;または、γ-ブチロラクトン(GBL)、γ-バレロラクトン(GVL)などの環状カルボン酸エステルなどが挙げられる。これらのいずれか1種、または2種以上を混合したものを、非水溶媒として用いることができる。また、前記列挙した非水溶媒に限定されることはなく、電解質塩を溶解させてリチウムイオン二次電池としたときにその特性を損なわない範囲でれば、特に制限はされない。
また、前記非水溶媒には、ビニレンカーボネート(VC)などの不飽和結合を有する環式炭酸エステルや、フルオロエチレンカーボネート(FEC)、ジフルオロエチレンカーボネート(DFEC)などのフッ素化環状カーボネート、1,3-プロパンスルトン(PS)などの硫黄含有化合物、フォスファゼン化合物などの難燃性液体を混合して非水溶媒として用いることができる。
「電解質塩」
電解質は、例えばリチウム塩が挙げられ、電解液中で解離してリチウムイオンを供給するものである。このリチウム塩としては、特に限定されるものではないが、例えば、LiPF、LiBF4、LiAsF、LiClO4、LiB(C6H5)4、LiCHSO、LiC(SOCF、LiN(CFSO)2(別名、LiTFSIと呼ぶこともある)、LiN(CSO(別名、LiBETIと呼ぶこともある)、LiCFSO、LiCSO、LiC(CFSO、LiN(CFSO)(CSO)、LiN(CFSO)(CSO)、LiN(CFSO)(CSO)、LiN(SOF)2(別名、LiFSIと呼ぶこともある)、LiAlCl、LiSiF、LiCl、LiCBO(別名、LiBOBと呼ぶこともある)、あるいはLiBrなどが挙げられ、これらの1種、または2種以上の任意の組み合わせから選択されるものを用いることができる。特に、LiPF6は高いイオン伝導性を得ることができるため好適に用いることができる。
LiPFを非水溶媒に溶解する際は、非水電解液中の電解質の濃度を、0.5~2.0mol/Lに調整することが好ましい。電解質の濃度が0.5mol/L以上であると、非水電解液のリチウムイオン濃度を充分に確保することができ、充放電時に十分な容量が得られやすい。また、電解質の濃度が2.0mol/L以内に抑えることで、非水電解液の粘度上昇を抑え、リチウムイオンの移動度を充分に確保することができ、充放電時に十分な容量が得られやすくなる。
LiPFをその他の電解質と混合する場合にも、非水電解液中のリチウムイオン濃度が0.5~2.0mol/Lに調整することが好ましく、LiPFからのリチウムイオン濃度がその50mol%以上含まれることがさらに好ましい。
「ケース」
ケース50は、その内部に積層体40および電解液を密封するものである。ケース50は、電解液の外部への漏出や、外部からのリチウムイオン二次電池100内部への水分等の侵入等を抑止できる物であれば特に限定されない。
例えば、ケース50として、図1に示すように、金属箔52を高分子膜54で両側からコーティングした金属ラミネートフィルムを利用できる。金属箔52としては例えばアルミニウム箔を、高分子膜54としてはポリプロピレン等の膜を利用できる。例えば、外側の高分子膜54の材料としては融点の高い高分子、例えば、ポリエチレンテレフタレート(PET)、ポリアミド等が好ましく、内側の高分子膜54の材料としてはポリエチレン(PE)、ポリプロピレン(PP)等が好ましい。
「リード」
リード60、62は、ニッケル、アルミニウム等の導電材料から形成されている。そして、公知の方法により、リード62を正極集電体22、リード60を負極集電体32にそれぞれ溶接し、正極20の正極活物質層24と負極30の負極活物質層34との間にセパレータ10を挟んだ状態で、電解液と共にケース50内に挿入し、ケース50の入り口をシールする。
[リチウムイオン二次電池の製造方法]
次に、リチウムイオン二次電池100を製造する方法について具体的に説明する。
まず、前記何れかの実施形態の負極活物質、バインダーおよび溶媒を混合して塗料を作製する。必要に応じ導電材や増粘剤を更に加えても良い。溶媒としては例えば、水、N-メチル-2-ピロリドン等を用いることができる。負極活物質として黒鉛を用いた場合は、水系バインダーを好適に用いることができ、負極活物質、導電材、バインダーの構成比率は、質量比で「92~98質量%:0~3質量%:2~5質量%」であることが好ましい。また、負極活物質、導電材、バインダー、増粘剤の構成比率は、質量比で「92~98質量%:0~3質量%:1~3質量%:0~2質量%」であることが好ましい。これらの質量比は、全体で100質量%となるように調整される。負極活物質としてケイ素を用いた場合は、溶剤系バインダーを好適に用いることができ、負極活物質、導電材、バインダーの構成比率は、質量比で「50~90質量%:0~30質量%:5~30質量%」であることが好ましい。これらの質量比は、全体で100質量%となるように調整される。
塗料を構成するこれらの成分の混合方法は特に制限されず、混合順序もまた特に制限されない。前記塗料を、負極集電体32に負極活物質層34を塗布する。塗布方法としては、特に制限はなく、通常電極を作製する場合に採用される方法を用いることができる。例えば、スリットダイコート、ドクターブレード、コンマロールコートなどが挙げられる。正極についても、同様に正極集電体22上に正極用の塗料を用いて正極活物質層24を塗布する。
続いて、正極集電体22および負極集電体32上に塗布された正極活物質層24および負極活物質層34中の溶媒を除去する。
除去方法は特に限定されない。例えば、塗料が塗布された正極集電体22および負極集電体32を、80℃~110℃の雰囲気下で乾燥させればよい。なお、正極集電体、負極集電体が酸化しない温度、時間で乾燥させるのが好ましい。
そして、このようにして正極活物質層24、負極活物質層34が形成された電極を必要に応じ、ロールプレス装置等によりプレス処理を行う。
本実施形態に係る負極の負極活物質層34は、同一平面において密度の異なる内周部Aと外周部Bとを有することが好ましい。その密度の異なる負極の作製方法としては、外周部Bの密度Dが内周部Aの密度Dよりも小さく(D>D)なることできれば特に制限がなく、例えば、プレス処理の工程において、外周部Bにおける所望の密度になるようにプレス処理を行う。次いで、内周部Aの形状に合わせた金型プレス等を用いて、内周部Aにおける所望の密度になるようにプレス処理を行うことで作製することができる。または、内周部Aと外周部Bのそれぞれの形状に合わせた金型プレスを用意し、それぞれの所望の密度になるようにプレスすることでも作製することができる。あるいは、負極集電体32上に負極活物質層34を作製した負極上に、内周部Aに対応する箇所のみに再度塗布し、これをプレスすることで作製することができる。再塗布の方法で作製すれば、負極活物質層34がフラットで、かつ同一平面において密度違いの負極活物質層34を作製することができる。
次いで、正極活物質層24を有する正極20と、負極活物質層34を有する負極30と、正極と負極との間に介在するセパレータ10と、電解液と、をケース50内に封入する。
例えば、負極30、セパレータ10、正極20の順に積層し、これを複数積層することで積層体40を作製する。前記積層体の負極と正極にリードを超音波溶着させ、これを予め作製した袋状のケース50に、積層体40を入れる。そして60℃の真空乾燥機中で水分を除去する。
最後に電解液をケース50内に注入し、減圧下にてケース50を密封する。そして、室温または恒温下で少なくとも30分以上放置しエージング処理を行うことより、リチウムイオン二次電池が作製される。なお、前記エージング時間は、リチウムイオン二次電池の電極サイズ、積層数、電極密度などによって適宜異なるものであり、前記エージング時間は、後述する実施例におけるリチウムイオン二次電池の電極サイズ、積層数、電極密度に対しての好適な時間となる。
本発明の第2実施形態の黒鉛を含むリチウムイオン二次電池用負極を用いる場合、本発明の効果を十分に発揮することができるため、エージング時間は30分以下が好ましい。本発明の第3実施形態のケイ素を含むリチウムイオン二次電池用負極を用いる場合、本発明の効果を十分に発揮することができるため、エージング時間は10分以下が好ましい。前記ケイ素を含むリチウムイオン二次電池用負極のエージング時間が、黒鉛よりも短いのは、ケイ素は黒鉛よりも理論容量が大きいため、負極活物質層に含まれるケイ素の目付量が、黒鉛よりも少なく設計される。しいてはケイ素を含むリチウムイオン二次電池用負極の負極活物質層の厚みが小さくなるため、電解液のエージング時間は、黒鉛よりも短時間で充分となる。
本発明の第1実施形態~第3実施形態のリチウムイオン二次電池用負極において、外周部の密度Dが内周部の密度Dよりも小さくすることで、外周部Bの電解液の含浸性が、内周部Aよりも早くなる。その結果、内周部Aへの電解液の含浸性が早くなる。これは外周部Bから早期に電解液が含浸されるため、外周部Bから内周部Aへ電解液が流動しやすくなるので、結果、内周部Aへの含浸も早くなる。したがって、充放電反応が均一になるため、充放電容量とエネルギー密度に優れたリチウムイオン二次電池が得られる。さらに、電解液の含浸時間が短縮できるので、生産性の向上につながる。
すなわち、本発明の第1実施形態~第3実施形態のリチウムイオン二次電池用負極を用いる場合、電解液の含浸時間が短くても、良好な電池特性を得ることができる。例えば、本発明の第2実施形態である黒鉛を含むリチウムイオン二次電池用負極を用いる場合、30分以下の含浸時間、本発明の第3実施形態であるケイ素を含むリチウムイオン二次電池用負極を用いる場合、10分以下の含浸時間でも、初回充放電時の電極内部への電解液の含浸性に優れるため、良好な充放電容量を得ることができる。前記時間よりも長い含浸時間である場合、優れた充放電容量は得られるものの、より含浸時間が長くなるため生産性に優れない。
以下本発明をさらに詳細な実施例に基づき説明するが、本発明はこれら実施例に限定されるものではない。
(実施例1)
[負極の作製]
(黒鉛負極)
負極活物質として人造黒鉛(日立化成株式会社製)を90質量%と、導電材としてアセチレンブラックを2質量%と、バインダーとしてスチレンブタジエンラバー(SBR)を6質量%と、増粘剤としてカルボキシメチルセルロース(CMC)を2質量%とを混合し、さらに溶媒である水とを混合分散させ負極スラリーを作製した。そして、コンマロールコーターを用いて、この負極スラリーを厚さ10μmの銅箔の一面に、厚さ45μmの負極合剤層を塗布した。なお、単位面積当たりの負極活物質層に含まれる負極活物質量(以下、目付量と呼ぶ)は4.6mg/cmとした。塗布後に、100℃で乾燥させ、溶媒を除去して負極活物質層を形成した。同様に銅箔の裏面にも同じ目付け量になるように負極合剤層を塗布し、次いで100℃で乾燥させ、負極活物質層を形成した。そして電極金型を用いて4.15cm×3.05cmの電極サイズに打ち抜いた(電極面積12.66cm)。
前記形成された負極活物質層の4.15cm×3.05cm全エリアにおいて、中心部分の4.10cm×3.00cmを内周部Aとし、内周部Aを除いた周辺部分を外周部Bとした。このときの内周部Aの面積Sが12.3cm、外周部Bの面積Sが0.36cmと設定した。そして前記負極活物質層の上に、負極活物質層の内周部Aのみに前記負極スラリーを用いて、スクリーン印刷機により厚さ37μmの負極活物質層を再度塗布した。このときの内周部Aにおける目付け量は、8.4mg/cmとした。裏面側も同様に、内周部Aのみに前記負極スラリーを用いて、スクリーン印刷機により同じ塗布量で再度塗布した。そしてロールプレス機によって、表裏面の負極活物質層の厚みが各45μmの厚みになるまでロールプレス機に通すことで負極集電体の両面に負極活物質層を圧着させ、内周部Aと外周部Bが異なる密度を有する負極を作製した。なお、本実施例の負極を備えた後述のフルセルを初回充放電後に分解し、負極活物質層の内周部Aと外周部Bの密度を測定した結果、内周部Aの密度Dが2.06g/cm、前記外周部Bの前記密度Dが1.13g/cmであり、外周部Bの密度は内周部Aよりも低いことを確認した。
[正極の作製]
正極活物質としてニッケルコバルトアルミ酸リチウムを96質量%と、導電助剤としてケッチェンブラックを2質量%と、バインダーとしてPVDFを2質量%と、N-メチル-2-ピロリドンの溶媒とを混合分散させて、ペースト状の正極スラリーを作製した。
そして、コンマロールコーターを用いて、この正極スラリーを厚さ20μmのアルミニウム箔の一面に正極活物質の目付量が12mg/cmになるように正極スラリーを塗布した。次いで、乾燥炉内にて、110℃で前記正極活物質中のN-メチル-2-ピロリドン溶媒を乾燥させ、正極活物質層を形成した。同様にアルミニウム箔の裏面にも同じ目付量になるように正極スラリーを塗布し、110℃で乾燥させて正極活物質層を形成した。そしてロールプレス機によって、正極活物質層を正極集電体の両面に圧着させ、所定の密度を有する正極を作製した。得られた正極は、電極金型を用いて4.10cm×3.00cmの電極サイズに打ち抜いた(電極面積12.3cm)。
(リチウムイオン二次電池の作製)
前記の負極7枚と正極6枚とを、負極活物質層と正極活物質層とが互いに対向するように、セパレータ(多孔質ポリエチレンシート)を介して積層し、12層から成る積層体を得た。これを前記積層体の負極において、負極活物質層を設けていない銅箔の突起端部にニッケル製の負極リードを取り付け、一方、積層体の正極においては、正極活物質層を設けていないアルミニウム箔の突起端部にアルミニウム製の正極リードを超音波溶接機によって取り付けた。この積層体を、アルミラミネートフィルムの外装体内に挿入して周囲の1箇所を除いてヒートシールすることにより閉口部を形成した。そして、最後に、外装体内に、電解液を注入し、残りの1箇所を真空シール機によって減圧しながらヒートシールで密封した。密封後、30℃の大気雰囲気下で30分間静置し(エージング処理)、実施例1に係るリチウムイオン二次電池を作製した。電解液としては、フルオロエチレンカーボネート(FEC)およびジエチルカーボネート(DEC)を体積比率3:7で混合した混合溶媒と、六フッ化リン酸リチウム(LiPF)を濃度1mol/Lで含む電解液を用いた。
前記
(充放電試験)
充放電試験装置(北斗電工株式会社製)を用いて、リチウムイオン二次電池に、充電レート0.2Cで4.3Vまで定電流定電圧充電し、放電レート0.2Cで2.5Vまで定電流放電する充放電を1サイクル行った。そして、初回充放電効率を下記の式(1)より算出した。
初回充放電効率[%]=(1サイクル目の放電容量[Ah]/1サイクル目の充電容量[Ah])×100・・・(1)
(負極活物質層の内周部Aの密度Dと外周部Bの密度Dの測定)
実施例1で作製したリチウムイオン二次電池について、初回充放電を行った後、ドライルーム内でフルセルを分解し、負極を取り出し、ジメチルカーボネート(DMC)で軽く洗浄し、ドライルーム内で乾燥させた。そして内周部Aと外周部Bにおける負極活物質層の厚みを三次元測長機NEXIV(ニコン社製)で非接触方式で測定し、それぞれ5カ所の平均値を負極活物質層の厚みとした。そして負極活物質層の密度を下記の式(2)より算出した。なお、内周部Aと外周部Bにおける負極面積当たりの活物質質量は、前記の負極の作製で調整した目付量の値を用いた。測定の結果、正極活物質層に対向する内周部Aの密度Dは2.06g/cmであり、正極の活物質層に対向していない外周部Bの密度Dは1.13g/cmであった。内周部Aの前記密度Dと、外周部Bの前記密度Dとの密度の比率D/Dは1.82であった。
負極活物質層の密度[g/cm]=10×負極面積当たりの目付量[mg/cm]/負極活物質層の厚み[μm]・・・(2)
(体積エネルギー密度)
実施例1で作製したリチウムイオン二次電池の体積エネルギー密度は、初回充放電測定で得られた放電容量と、平均放電電圧と、初回充放電後のセルの体積から、下位の式(3)より算出した。
体積エネルギー密度[Wh/L]=(放電容量[Ah]×平均放電電圧[V])/初回充放電後のセルの体積[cm]×1000・・・(3)
「実施例2~5および比較例1」
内周部Aの密度Dを2.06g/cmとし、外周部の前記密度Dを1.13~2.10g/cmの範囲で調整し、外周部の前記密度Dとの密度の比率D/Dを表1に示す通りに変更することで、実施例2~5および比較例1の負極を得た。得られた負極を用いて実施例1と同様にしてリチウムイオン二次電池を得た。そして実施例2~5および比較例1に係るリチウムイオン二次電池は、実施例1と同様な方法で評価し、その結果を表1に示す。なお、充電容量、放電容量、初期効率、体積エネルギー密度の値は、実施例1の負極での結果を100としたときの相対値でそれぞれ示す。
「実施例6~9および比較例2~6」
内周部Aの密度Dを1.82g/cmとし、外周部の前記密度Dを1.13~2.03g/cmの範囲で調整し、外周部の前記密度Dとの密度の比率D/Dを表1に示す通りに変更することで、実施例6~9および比較例2~6の負極を得た。得られた負極を用いて実施例1と同様にしてリチウムイオン二次電池を得た。そして比較例5、6を除くそれ以外の実施例と比較例のリチウムイオン二次電池は、実施例1と同様な方法で評価し、その結果を表1に示す。比較例5、6に係るリチウムイオン二次電池は、エージング時間を60分と120分に変更し、実施例1と同様な方法で評価した。なお、充電容量、放電容量、初期効率、体積エネルギー密度の値は、実施例6の負極での結果を100としたときの相対値でそれぞれ示す。
「実施例10~16および比較例7」
内周部Aの密度Dを1.58g/cmとし、外周部の前記密度Dを1.13~1.58g/cmの範囲で調整し、外周部の前記密度Dとの密度の比率D/Dを表1に示す通りに変更することで、実施例10~16および比較例7の負極を得た。得られた負極を用いて実施例1と同様にしてリチウムイオン二次電池を得た。そして実施例10~16および比較例7に係るリチウムイオン二次電池は、実施例1と同様な方法で評価し、その結果を表1に示す。なお、充電容量、放電容量、初期効率、体積エネルギー密度の値は、実施例10の負極での結果を100としたときの相対値でそれぞれ示す。
「実施例17~22および比較例8~10」
内周部Aの密度Dを1.41g/cmとし、外周部の前記密度Dを1.13~1.58g/cmの範囲で調整し、外周部の前記密度Dとの密度の比率D/Dを表1に示す通りに変更することで、実施例17~22および比較例8~10の負極を得た。得られた負極を用いて実施例1と同様にしてリチウムイオン二次電池を得た。そして実施例17~22および比較例8~10に係るリチウムイオン二次電池は、実施例1と同様な方法で評価し、その結果を表1に示す。なお、充電容量、放電容量、初期効率、体積エネルギー密度の値は、実施例17の負極での結果を100としたときの相対値でそれぞれ示す。
「実施例23~26および比較例11~14」
内周部Aの密度Dを1.35g/cmとし、外周部の前記密度Dを1.13~1.60g/cmの範囲で調整し、外周部の前記密度Dとの密度の比率D/Dを表1に示す通りに変更することで、実施例23~26および比較例11~14の負極を得た。得られた負極を用いて実施例1と同様にしてリチウムイオン二次電池を得た。そして実施例23~26および比較例11~14に係るリチウムイオン二次電池は、実施例1と同様な方法で評価し、その結果を表1に示す。なお、充電容量、放電容量、初期効率、体積エネルギー密度の値は、実施例23の負極での結果を100としたときの相対値でそれぞれ示す。
なお、比較例2、7を除く比較例の負極については、外周部Bに負極活物質層を再塗布することで表1に示すDおよびDを有する密度となる負極を得た。比較例2、7の負極については、外周部Bに負極活物質層を再塗布しないことで表1に示す密度となる負極を得た。
「実施例27~30」
電極金型のサイズを変更し、外周部Bの面積Sを0.12~1.48cmの範囲で調整し、内周部Aの面積S、外周部Bの面積S、外周部Bの面積Sと内周部Aの面積Sの比率S/Sを表2に示す通りに変更することで、実施例9と同様に実施例27~30の負極を得た。得られた負極と実施例1で作製した正極を用いて実施例9と同様にしてリチウムイオン二次電池を得た。そして実施例9と同様な方法で評価し、その結果を表2に示す。なお、充電容量、放電容量、初期効率、体積エネルギー密度の値は、実施例9の負極での結果を100としたときの相対値でそれぞれ示す。
「実施例31~32および比較例15~16」
[負極の作製]
(ケイ素負極)
負極活物質としてケイ素(アルドリッチ社製)を83質量%と、導電材としてアセチレンブラックを2質量%と、バインダーとしてポリアミドイミドを15質量%と、N-メチル-2-ピロリドンの溶媒とを混合分散させ負極スラリーを作製した。そして、コンマロールコーターを用いて、この負極スラリーを厚さ10μmの銅箔の一面に、厚さ15μmの負極活物質層を塗布した。なお、単位面積当たりの負極活物質層に含まれる負極活物質の量(目付量)は1.38mg/cmとした。塗布後に、100℃で乾燥させ、溶媒を除去して負極活物質層を形成した。同様に銅箔の裏面にも同じ目付量になるように負極活物質層を塗布し、次いで100℃で乾燥させ、負極活物質層を形成した。そして電極金型を用いて4.15cm×3.05cmの電極サイズに打ち抜いた(電極面積12.66cm)。
前記形成された負極活物質層の4.15cm×3.05cm全エリアにおいて、中心部分の4.10cm×3.00cmを内周部Aとし、内周部Aを除いた周辺部分を外周部Bとした。このときの内周部Aの面積Sが12.3cm、外周部Bの面積Sが0.36cmと設定した。そして前記負極活物質層の上に、負極活物質層の内周部Aのみに前記負極スラリーを用いて、スクリーン印刷機により厚さ0.7μmの負極活物質層を再度塗布した。このときの内周部Aにおける目付け量は、1.44mg/cmとした。裏面側も同様に、内周部Aのみに前記負極スラリーを用いて、スクリーン印刷機により同じ塗布量で再度塗布した。そしてロールプレス機によって、表裏面の負極活物質層の厚みが各11μmの厚みになるまでロールプレス機に通すことで負極集電体の両面に負極活物質層を圧着させ、内周部Aと外周部Bが異なる密度を有する負極を作製した。次いで、バインダーであるポリアミドイミドをより強固に結着させるために、真空下にて350℃で3時間熱処理し、これを本実施例に係る負極とした。なお、本実施例の負極を備えた後述のフルセルを初回充放電後に分解し、負極活物質層の内周部Aと外周部Bの密度を測定した結果、内周部Aの密度Dが1.58g/cm、前記外周部Bの前記密度Dが1.51g/cmであり、外周部Bの密度は内周部Aよりも低いことを確認した。
[正極の作製]
正極活物質の目付量を21mg/cmになるように正極スラリーを塗布したこと以外は、実施例1で作製した正極と同様の手順で作製した。
(リチウムイオン二次電池の作製)
負極活物質としてケイ素を含む負極を用い、エージング時間が10分であった以外は、実施例1と同様に実施例31~32および比較例15~16の負極を得た。得られた負極と、前記正極とを用いて実施例1と同様にしてリチウムイオン二次電池を得た。そして実施例1と同様な方法で評価し、その結果を表3に示す。なお、充電容量、放電容量、初期効率、体積エネルギー密度の値は、実施例31の負極での結果を100としたときの相対値でそれぞれ示す。
Figure 0007087532000001
表1に示すように、実施例1~26において、外周部Bの密度Dが内周部Aの密度Dより小さいので含浸性に優れ、エージング時間が30分で充放電容量が発現し、体積エネルギー密度が良好である。比較例1~14において、外周部Bの密度Dが内周部Aの密度Dと同じ、または高いので含浸性が悪く、エージング時間が30分であった場合、放電容量が発現しにくく、体積エネルギー密度も低下した。比較例5において、エージング時間が60分であった場合でも、容量が発現しにくく、体積エネルギー密度も低下した。比較例6において、エージング時間が120分であった場合でも含浸性がやや悪く、放電容量がやや発現しにくく、体積エネルギー密度もやや低下した。
Figure 0007087532000002
表2に示すように、実施例9、28と29において、外周部Bの密度Dが内周部Aの密度Dより小さく、かつ、内周部Aの面積をS、外周部Bの面積をSの比S/Sが0.02≦S/S≦0.1となる負極では、エージング時間が30分で充放電容量も発現し、体積エネルギー密度が良好である。実施例27において、外周部Bの密度Dが内周部Aの密度Dより小さく、かつ、内周部Aの面積をS、外周部Bの面積をSの比S/SがS/S<0.02となる負極では、放電容量がやや低下し、体積エネルギー密度もやや低下した。これは外周部Bの面積が小さすぎるため、僅かな積層ズレによってデンドライト生成などの副反応によって、初回効率が低下したことが原因と思われる。実施例30において、S/SがS/S>0.1となる負極では、放電容量が低下し、体積エネルギー密度も低下した。これは外周部Bの面積が大きいため、外周部Bでの含浸速度が低下し、これにより放電容量が低下したことが要因と思われる。したがって、SとSとの面積比は、0.02≦S/S≦0.1が好ましいことが分かった。
Figure 0007087532000003
表3に示すように、実施例31と32において、ケイ素を含む負極においても、外周部Bの密度Dが内周部Aの密度Dより小さいので、含浸性に優れるため、エージング時間が10分で充放電容量が発現し、体積エネルギー密度が良好である。比較例15と16において、外周部Bの密度Dが内周部Aの密度Dと同じまたはより高いので、含浸性が悪く、含浸時間が10分であった場合、充放電容量が発現しにくく、体積エネルギー密度も低下した。
10…セパレータ、20…正極、22…正極集電体、24…正極活物質層、30…負極、
32…負極集電体、34…負極活物質層、34A…内周部A、34B…外周部B、40…積層体、50…ケース、52…金属箔、
54…高分子膜、60,62…リード、100…リチウムイオン二次電池

Claims (5)

  1. 負極集電体と、前記負極集電体に保持された負極活物質層とを含む、リチウムイオン二次電池用負極であって、
    前記リチウムイオン二次電池が積層型であり、
    前記負極活物質層は、内周部Aと、外周部Bとを有し、
    前記外周部の密度Dが、前記内周部の密度Dよりも小さ(D>D
    前記負極活物質層の形状は電極の全周にわたり密度の小さい部分がある形状である
    ことを特徴とするリチウムイオン二次電池用負極。
  2. 前記負極活物質層の前記内周部Aの面積をS、前記外周部Bの面積をSとしたとき、S/Sが0.02≦S/S≦0.1である
    ことを特徴とする請求項1に記載されたリチウムイオン二次電池用負極。
  3. 前記負極活物質層において前記内周部Aの密度Dと、前記外周部Bの密度Dとの密度の比率D/Dが、1.00<D/D≦1.82であることを特徴とする
    請求項1又は2に記載のリチウムイオン二次電池用負極。
  4. 前記負極活物質層は、少なくとも負極活物質と負極バインダーを含むことを特徴とする請求項1~3のいずれか1項に記載されたリチウムイオン二次電池用負極。
  5. 請求項1~4のいずれか1項に記載されたリチウムイオン二次電池用負極と、
    正極と、
    セパレータと、
    電解液と、
    を含むことを特徴とするリチウムイオン二次電池。
JP2018057194A 2018-03-23 2018-03-23 リチウムイオン二次電池用負極およびリチウムイオン二次電池 Active JP7087532B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018057194A JP7087532B2 (ja) 2018-03-23 2018-03-23 リチウムイオン二次電池用負極およびリチウムイオン二次電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018057194A JP7087532B2 (ja) 2018-03-23 2018-03-23 リチウムイオン二次電池用負極およびリチウムイオン二次電池

Publications (2)

Publication Number Publication Date
JP2019169391A JP2019169391A (ja) 2019-10-03
JP7087532B2 true JP7087532B2 (ja) 2022-06-21

Family

ID=68106885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018057194A Active JP7087532B2 (ja) 2018-03-23 2018-03-23 リチウムイオン二次電池用負極およびリチウムイオン二次電池

Country Status (1)

Country Link
JP (1) JP7087532B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116995191B (zh) * 2023-09-28 2024-01-05 苏州清陶新能源科技有限公司 一种负极极片和锂离子电池

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007220450A (ja) 2006-02-16 2007-08-30 Matsushita Electric Ind Co Ltd リチウム二次電池用負極板、およびそれを用いたリチウム二次電池
JP2015103302A (ja) 2013-11-21 2015-06-04 トヨタ自動車株式会社 非水電解質二次電池
JP2017076631A (ja) 2012-06-11 2017-04-20 Necエナジーデバイス株式会社 電極の製造方法
WO2018021214A1 (ja) 2016-07-28 2018-02-01 三洋電機株式会社 二次電池及びその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007220450A (ja) 2006-02-16 2007-08-30 Matsushita Electric Ind Co Ltd リチウム二次電池用負極板、およびそれを用いたリチウム二次電池
JP2017076631A (ja) 2012-06-11 2017-04-20 Necエナジーデバイス株式会社 電極の製造方法
JP2015103302A (ja) 2013-11-21 2015-06-04 トヨタ自動車株式会社 非水電解質二次電池
WO2018021214A1 (ja) 2016-07-28 2018-02-01 三洋電機株式会社 二次電池及びその製造方法

Also Published As

Publication number Publication date
JP2019169391A (ja) 2019-10-03

Similar Documents

Publication Publication Date Title
JP3982165B2 (ja) 固体電解質電池
CN110574191B (zh) 形成锂金属和无机材料复合薄膜的方法、以及使用该方法对锂二次电池的负极预锂化的方法
JP7115296B2 (ja) 負極及びリチウムイオン二次電池
JP2019175657A (ja) リチウムイオン二次電池。
US10985399B2 (en) Negative electrode for lithium ion secondary battery, and lithium ion secondary battery using the same
JP2019164965A (ja) リチウムイオン二次電池
JP7003775B2 (ja) リチウムイオン二次電池
JP7064709B2 (ja) リチウムイオン二次電池用負極及びリチウムイオン二次電池
JP7087532B2 (ja) リチウムイオン二次電池用負極およびリチウムイオン二次電池
JP2014130729A (ja) 非水電解液二次電池の製造方法
WO2012114905A1 (ja) 非水電解質二次電池
JP7074203B2 (ja) リチウムイオン二次電池用負極およびリチウムイオン二次電池
JP2007172878A (ja) 電池およびその製造方法
JP7243381B2 (ja) 電極及び非水電解液二次電池
JP2019169392A (ja) リチウムイオン二次電池用負極およびリチウムイオン二次電池
JP7322684B2 (ja) リチウムイオン二次電池
WO2021010185A1 (ja) 正極及びリチウムイオン二次電池
US20230290938A1 (en) Negative electrode active material, negative electrode and lithium-ion secondary battery
JP7243380B2 (ja) 電極及び非水電解液二次電池
US20220311007A1 (en) Positive electrode for lithium ion secondary battery and lithium ion secondary battery
WO2023197946A1 (zh) 正极极片、二次电池、电子设备和移动装置
US20220384794A1 (en) Lithium ion secondary battery
US20220393167A1 (en) Lithium ion secondary battery
JP7035702B2 (ja) リチウムイオン二次電池
JP2008226555A (ja) 非水電解質電池

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220523

R150 Certificate of patent or registration of utility model

Ref document number: 7087532

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150