JP7076581B2 - コバルト基合金製造物 - Google Patents

コバルト基合金製造物 Download PDF

Info

Publication number
JP7076581B2
JP7076581B2 JP2020567620A JP2020567620A JP7076581B2 JP 7076581 B2 JP7076581 B2 JP 7076581B2 JP 2020567620 A JP2020567620 A JP 2020567620A JP 2020567620 A JP2020567620 A JP 2020567620A JP 7076581 B2 JP7076581 B2 JP 7076581B2
Authority
JP
Japan
Prior art keywords
mass
less
based alloy
cobalt
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020567620A
Other languages
English (en)
Other versions
JPWO2021131167A1 (ja
Inventor
敦夫 太田
晋也 今野
玉艇 王
恭大 穐山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Publication of JPWO2021131167A1 publication Critical patent/JPWO2021131167A1/ja
Application granted granted Critical
Publication of JP7076581B2 publication Critical patent/JP7076581B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/07Alloys based on nickel or cobalt based on cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0433Nickel- or cobalt-based alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/64Treatment of workpieces or articles after build-up by thermal means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/04Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of turbine blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/10Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of articles with cavities or holes, not otherwise provided for in the preceding subgroups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • B33Y40/20Post-treatment, e.g. curing, coating or polishing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/005Selecting particular materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/30Manufacture with deposition of material
    • F05D2230/31Layer deposition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/10Metals, alloys or intermetallic compounds
    • F05D2300/17Alloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/10Metals, alloys or intermetallic compounds
    • F05D2300/17Alloys
    • F05D2300/175Superalloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/60Properties or characteristics given to material by treatment or manufacturing
    • F05D2300/611Coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Engineering (AREA)
  • Civil Engineering (AREA)
  • Composite Materials (AREA)
  • Structural Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Description

本発明は、機械的特性に優れたコバルト基合金材料に関し、特に、付加造形法を利用したコバルト基合金製造物に関するものである。
コバルト(Co)基合金材料は、ニッケル(Ni)基合金材料とともに代表的な耐熱合金材料であり、超合金とも称されて高温部材(高温環境下で使用される部材、例えば、ガスタービンや蒸気タービンの部材)に広く用いられている。Co基合金材料は、Ni基合金材料と比べて材料コストは高いものの耐食性や耐摩耗性が優れており、固溶強化し易いことから、タービン静翼やタービン燃焼器部材などとして用いられてきた。
耐熱合金材料において、現在までに行われてきた種々の合金組成の改良および製造プロセスの改良によって、Ni基合金材料では、γ’相(例えばNi3(Al,Ti)相)の析出による強化が開発され現在主流になっている。一方、Co基合金材料においては、Ni基合金材料のγ’相のような機械的特性向上に大きく寄与する金属間化合物相が析出しづらいことから、炭化物相による析出強化が研究されてきた。
例えば、特許文献1(特開昭61-243143)には、結晶粒径が10μm以下であるコバルト基合金の基地に、粒径が0.5から10μmである塊状及び粒状の炭化物を析出させてなることを特徴とするCo基超塑性合金が開示されている。また、前記コバルト基合金は、重量比でC:0.15~1%、Cr:15~40%、W及び又はMo:3~15%、B:1%以下、Ni:0~20%、Nb:0~1.0%、Zr:0~1.0%、Ta:0~1.0%、Ti:0~3%、Al:0~3%、及び残部Coからなること、が開示されている。
ところで、近年、複雑形状を有する最終製品をニアネットシェイプで製造する技術として、付加造形法(Additive Manufacturing、AM法)などの三次元造形技術(いわゆる3Dプリンティング)が注目され、該三次元造形技術を耐熱合金部材へ適用する研究開発が活発に行われている。
特開昭61-243143号公報 特開2019-049022号公報
3Dプリンティングによる合金部材の製造は、タービン翼のような複雑形状を有する部材であっても直接的に造形できることから、製造ワークタイムの短縮や製造歩留まりの向上の観点(すなわち、製造コストの低減の観点)で有用な技術である。
一方、Co基合金材料は、Ni基合金材料のγ’相のような金属間化合物相の析出を前提としないことから、酸化し易いAlやTiを多く含有させておらず、大気中での溶解・鋳造プロセスが利用可能である。そのため、AM法用の合金粉末の作製やAM体の作製に有利であると考えられる。また、Co基合金材料は、Ni基合金材料と同等以上の耐食性や耐摩耗性を有する利点がある。
しかしながら、従来のCo基合金材料は、γ’相析出強化Ni基合金材料に比して機械的特性が低いという弱点を有する。言い換えると、γ’相析出強化Ni基合金材料と同等以上の機械的特性を達成することができれば、Co基合金AM体は、高温部材に適した材料となりうる。
本発明は、上記のような課題に鑑みてなされたものであり、その目的は、析出強化Ni基合金材料と同等以上の機械的特性を有するCo基合金製造物を提供することにある。
(I)本発明の一態様は、Co基合金材料からなる製造物であって、
前記Co基合金材料は、
0.08質量%以上0.25質量%以下の炭素(C)と、
0.04質量%超0.2質量%以下の窒素(N)とを含み、前記Cおよび前記Nの合計が0.12質量%超0.28質量%以下であり、
0.1質量%以下のホウ素(B)と、
10質量%以上30質量%以下のクロム(Cr)とを含み、
鉄(Fe)を5質量%以下でニッケル(Ni)を30質量%以下で含み、前記Feおよび前記Niの合計が30質量%以下であり、
タングステン(W)および/またはモリブデン(Mo)を含み、前記Wおよび前記Moの合計が5質量%以上12質量%以下であり、
0.5質量%以下のケイ素(Si)と、
0.5質量%以下のマンガン(Mn)とを含み、
WおよびMo以外の遷移金属で原子半径が130 pm超のM成分を0.5質量%以上2質量%以下で含み、
残部がCoと不純物とからなり、
前記不純物は、
0.5質量%以下のアルミニウム(Al)と、
0.04質量%以下の酸素(O)とを含む、化学組成を有し、
前記製造物は、母相結晶粒の多結晶体であり、
前記母相結晶粒の中には、前記M成分を含むMC型炭化物相、M(C,N)型炭窒化物相および/またはMN型窒化物相の粒子が0.13μm以上2μm以下の平均粒子間距離で析出している、
ことを特徴とするCo基合金製造物を提供するものである。
なお、本発明において、MC型、M(C,N)型およびMN型におけるMは遷移金属を意味し、Cは炭素を意味し、Nは窒素を意味する。
(II)本発明の他の一態様は、Co基合金材料からなる製造物であって、
前記Co基合金材料は、
0.08質量%以上0.25質量%以下のCと、
0.04質量%超0.2質量%以下のNとを含み、前記Cおよび前記Nの合計が0.12質量%超0.28質量%以下であり、
0.1質量%以下のBと、
10質量%以上30質量%以下のCrとを含み、
Feを5質量%以下でNiを30質量%以下で含み、前記Feおよび前記Niの合計が30質量%以下であり、
Wおよび/またはMoを含み、前記Wおよび前記Moの合計が5質量%以上12質量%以下であり、
0.5質量%以下のSiと、
0.5質量%以下のMnとを含み、
WおよびMo以外の遷移金属で原子半径が130 pm超のM成分を0.5質量%以上2質量%以下で含み、
残部がCoと不純物とからなり、
前記不純物は、
0.5質量%以下のAlと、
0.04質量%以下のOとを含む、化学組成を有し、
前記製造物は、母相結晶粒の多結晶体であり、
該母相結晶粒の中には、平均サイズが0.13μm以上2μm以下で前記M成分が境界領域に偏析している偏析セルが形成している、
ことを特徴とするコバルト基合金製造物を提供するものである。
本発明は、上記のCo基合金製造物(I)および(II)において、以下のような改良や変更を加えることができる。
(i)前記製造物は、前記偏析セルの前記境界領域上に前記M成分を含むMC型炭化物相、M(C,N)型炭窒化物相および/またはMN型窒化物相の粒子が析出している。
(ii)前記化学組成の前記M成分は、チタン(Ti)、ジルコニウム(Zr)、ハフニウム(Hf)、バナジウム(V)、ニオブ(Nb)およびタンタル(Ta)のうちの1種以上である。
(iii)前記化学組成の前記M成分は、
前記Tiを含む場合、該Tiは0.01質量%以上1質量%以下であり、
前記Zrを含む場合、該Zrは0.05質量%以上1.5質量%以下であり、
前記Hfを含む場合、該Hfは0.01質量%以上0.5質量%以下であり、
前記Vを含む場合、該Vは0.01質量%以上0.5質量%以下であり、
前記Nbを含む場合、該Nbは0.02質量%以上1質量%以下であり、
前記Taを含む場合、該Taは0.05質量%以上1.5質量%以下である。
(iv)前記化学組成の前記M成分は、前記Zrを必須とする。
(v)前記化学組成の前記M成分は、前記Ti、前記Zr、前記Hf、前記V、前記Nbおよび前記Taのうちの3種以上である。
(vi)前記製造物は、温度900℃、応力98 MPaの条件下でクリープ試験を行った場合のクリープ破断時間が1000時間以上であり、二次クリープ領域における定常クリープ速度が6×10-3 h-1以下である。
(vii)前記製造物は、高温部材である。
(viii)前記高温部材は、タービン静翼、タービン動翼、タービン燃焼器ノズルまたは熱交換器である。
本発明によれば、析出強化Ni基合金材料と同等以上の機械的特性を有するCo基合金製造物を提供することができる。
本発明に係るCo基合金製造物の製造方法の工程例を示すフロー図である。 選択的レーザ溶融工程で得られるCo基合金付加造形体の微細組織の一例を示す走査型電子顕微鏡(SEM)観察像である。 第2熱処理工程で得られるCo基合金製造物の微細組織の一例を示すSEM観察像である。 本発明に係るCo基合金製造物の一例であり、高温部材としてのタービン静翼を示す斜視模式図である。 本発明に係るCo基合金製造物を装備するガスタービンの一例を示す断面模式図である。 本発明に係るCo基合金製造物の他の一例であり、高温部材としての熱交換器を示す斜視模式図である。
[本発明の基本思想]
前述したように、Co基合金材料では、遷移金属の炭化物相の析出による強化が種々研究開発されてきた。析出しうる炭化物相としては、例えば、MC型、M2C型、M3C型、M6C型、M7C型、およびM23C6型の炭化物相が挙げられる。なお、前述したように、Mは遷移金属を意味し、Cは炭素を意味する。
従来のCo基合金材料では、当該炭化物相の粒子は、合金鋳造の際の最終凝固部(例えば、母相のデンドライト境界や結晶粒界)に沿って析出することが多い。例えば、Co基合金の普通鋳造材では、通常、デンドライト境界の平均間隔や平均結晶粒径が101~102μmオーダになるため、炭化物相粒子の平均間隔も101~102μmオーダになる。また、レーザ溶接などの凝固速度が比較的速いプロセスであっても、凝固部における炭化物相粒子の平均間隔は5μm程度である。
合金材料における析出強化は、析出物同士の平均間隔に反比例することが一般的に知られており、析出強化が有効になるのは、析出物同士の平均間隔が2μm程度以下の場合と言われている。しかしながら、上述した従来技術では、析出物同士の平均間隔がそのレベルに達しておらず、十分な析出強化の作用効果が得られない。言い換えると、従来技術では、合金強化に寄与する炭化物相粒子を微細分散析出させることが難しかった。これが、析出強化Ni基合金材料に比して、Co基合金材料は機械的特性が不十分と言われてきた主な要因である。
本発明者等は、Co基合金材料において、析出強化に寄与する炭化物相粒子を母相結晶粒内に分散析出させることができれば、Co基合金材料の機械的特性を飛躍的に向上させることができると考えた。
研究の初期には、Co基合金母相への固溶性が高く偏析しづらい金属元素の炭化物を生成させた方が、母相結晶粒内に分散析出させ易く有効であろうと考えたが、Cr炭化物相(Cr23C6相)の析出はCo基合金の強化にあまり寄与するものではなかった。そこで、逆転の発想として、Co基合金を凝固させた際に偏析し易い金属元素の炭化物を形成することを考え、Co基合金を構成する金属元素の原子半径に着目した。
例えば、特許文献1のCo基合金では、金属元素として、Co(原子半径:125 pm)、Cr(原子半径:128 pm)、Ni(原子半径:124 pm)、W(原子半径:139 pm)、Mo(原子半径:139 pm)、Nb(原子半径:146 pm)、Zr(原子半径:160 pm)、Ta(原子半径:146 pm)、Ti(原子半径:147 pm)、Al(原子半径:143 pm)が含まれている。特許文献1のCo基合金は、70質量%超がCo、Cr、Niからなることから、大部分の構成原子の原子半径は130 pm以下と言える。言い換えると、原子半径が130 pm超であるW、Mo、Nb、Zr、Ta、Ti、Alは、Co基合金を凝固させた際に偏析し易いのではないかと考えた。そして、Alを除くこれら遷移金属の炭化物相を母相結晶粒内に分散析出させる方法の研究を進めた。
その結果、特許文献2(特開2019-049022)に記載されているように、所定の合金組成を用いると共にAM法(特に、選択的レーザ溶融法)における局所溶融・急速凝固のための入熱量を所定の範囲に制御することにより、Co基合金AM体の母相結晶粒内に、特定成分(合金強化に寄与する炭化物相を形成する成分)が偏析した微小サイズの偏析セルが形成されることを見出した。また、当該AM体に所定の熱処理を施すことにより、偏析セルの境界の三重点/四重点だったと思われる箇所に、析出強化炭化物相の粒子が分散析出することを見出した。そして、そのようなCo基合金材料は、析出強化Ni基合金材料と同等以上の機械的特性を有することが確認された。
本発明者等は、その後も合金組成の最適化や製造方法の最適化を鋭意研究し続けた。その結果、特許文献2の研究当時では好ましくないと考えられていた高N含有率の合金組成において、Co基合金材料の機械的特性が更に向上することを見出した。本発明は、当該知見に基づいて完成されたものである。
以下、図面を参照しながら、本発明に係る実施形態を製造手順に沿って説明する。
[Co基合金製造物の製造方法]
図1は、本発明に係るCo基合金製造物の製造方法の工程例を示すフロー図である。図1に示したように、本発明に係るCo基合金製造物の製造方法は、概略的に、Co基合金粉末を用意する合金粉末用意工程(S1)と、用意したCo基合金粉末を用いて所望形状のAM体を形成する選択的レーザ溶融工程(S2)と、形成したAM体に対して第1熱処理を施す第1熱処理工程(S3)と、第1熱処理を施したAM体に対して第2熱処理を施す第2熱処理工程(S4)とを有する。
図1に示した製造工程は、基本的に特許文献2のそれと類似であるが、Co基合金中のN含有率を制御するために、合金粉末用意工程S1中の雰囲気におけるN原子の量(存在率)を制御する点において、特許文献2の製造方法と異なる。なお、第2熱処理工程S4で得られた製造物に対して、必要に応じて耐食性被覆層を形成する工程や表面仕上げ工程(図1に図示せず)を更に行ってもよい。
以下、各工程をより詳細に説明する。
(合金粉末用意工程)
本工程S1は、所定の化学組成を有するCo基合金粉末を用意する工程である。該化学組成は、0.08質量%以上0.25質量%以下のCと、0.04質量%超0.2質量%以下のNとを含み、CおよびNの合計が0.12質量%超0.28質量%以下であり、0.1質量%以下のBと、10質量%以上30質量%以下のCrとを含み、Feを5質量%以下でNiを30質量%以下で含み、FeおよびNiの合計が30質量%以下であり、Wおよび/またはMoを含み、WおよびMoの合計が5質量%以上12質量%以下であり、0.5質量%以下のSiと、0.5質量%以下のMnとを含み、WおよびMo以外の遷移金属で原子半径が130 pm超のM成分を0.5質量%以上2質量%以下で含み、残部がCoと不純物とからなることが好ましい。不純物としては、0.5質量%以下のAlと、0.04質量%以下のOとを含んでもよい。
C:0.08質量%以上0.25質量%以下
C成分は、析出強化相となるMC型炭化物相(Ti、Zr、Hf、V、Nbおよび/またはTaの炭化物相)および/またはM(C,N)型炭窒化物相(Ti、Zr、V、Nbおよび/またはTaの炭窒化物相)を構成する重要な成分である。C成分の含有率は、0.08質量%以上0.25質量%以下が好ましく、0.1質量%以上0.2質量%以下がより好ましく、0.12質量%以上0.18質量%以下が更に好ましい。C含有率が0.08質量%未満になると、析出強化相(MC型炭化物相および/またはM(C,N)型炭窒化物相)の析出量が不足し、機械的特性向上の作用効果が十分に得られない。一方、C含有率が0.25質量%超になると、MC型炭化物相以外の炭化物相が過剰析出したり、過度に硬化したりすることで、合金材料の靱性が低下する。
N:0.04質量%超0.2質量%以下
N成分は、M(C,N)型炭窒化物相および/またはMN型炭化物相(Ti、Zr、V、Nbおよび/またはTaの窒化物相)を構成する重要な成分である。N成分の含有率は、0.04質量%超0.2質量%以下が好ましく、0.06質量%以上0.19質量%以下がより好ましく、0.13質量%以上0.18質量%以下が更に好ましい。N含有率が0.04質量%以下になると、M(C,N)型炭窒化物相やMN型炭化物相の生成による作用効果が得られないだけであり、特段の問題はない(特許文献2と同じになるだけである)。一方、N含有率が0.2質量%超になると、機械的特性の低下要因になる。
従来よりも高N含有率でCo基合金材料の機械的特性が向上するメカニズムは、現段階で解明されていないが、C成分とN成分とをそれぞれ有意な量で共存させることにより、MC型炭化物相、M(C,N)型炭窒化物相および/またはMN型炭化物相がバランス良く安定的に生成して分散析出に寄与している可能性が考えられる。CおよびNの合計含有率は、0.12質量%超0.28質量%以下が好ましく、0.16質量%以上0.25質量%以下がより好ましい。
B:0.1質量%以下
B成分は、結晶粒界の接合性の向上(いわゆる粒界強化)に寄与する成分である。B成分は必須成分ではないが、含有させる場合、0.1質量%以下が好ましく、0.005質量%以上0.05質量%以下がより好ましい。B含有率が0.1質量%超になると、AM体形成時に割れ(例えば、凝固割れ)が発生し易くなる。
Cr:10質量%以上30質量%以下
Cr成分は、耐食性や耐酸化性の向上に寄与する成分である。Cr成分の含有率は、10質量%以上30質量%以下が好ましく、15質量%以上27質量%以下がより好ましい。Co基合金製造物の最表面に耐食性被覆層を別途設けるような場合は、Cr成分の含有率は、10質量%以上18質量%以下が更に好ましい。Cr含有率が10質量%未満になると、作用効果(耐食性や耐酸化性の向上)が十分に得られない。一方、Cr含有率が30質量%超になると、脆性のσ相が生成したりCr炭化物相が過剰生成したりして機械的特性(靱性、延性、強さ)が低下する。なお、本発明においては、Cr炭化物相の生成自体を拒否する(好ましくないものとする)ものではない。
Ni:30質量%以下
Ni成分は、Co成分と類似した特性を有しかつCoに比して安価なことから、Co成分の一部を置き換えるかたちで含有させることができる成分である。Ni成分は必須成分ではないが、含有させる場合、30質量%以下が好ましく、20質量%以下がより好ましく、5質量%以上15質量%以下が更に好ましい。Ni含有率が30質量%超になると、Co基合金の特徴である耐摩耗性や局所応力への耐性が低下する。これは、Coの積層欠陥エネルギーとNiのそれとの差異に起因すると考えられる。
Fe:5質量%以下
Fe成分は、Niよりもはるかに安価でありかつNi成分と類似した性状を有することから、Ni成分の一部を置き換えるかたちで含有させることができる成分である。すなわち、FeおよびNiの合計含有率は30質量%以下が好ましく、20質量%以下がより好ましく、5質量%以上15質量%以下が更に好ましい。Fe成分は必須成分ではないが、含有させる場合、Ni含有率よりも少ない範囲で5質量%以下が好ましく、3質量%以下がより好ましい。Fe含有率が5質量%超になると、耐食性や機械的特性の低下要因になる。
Wおよび/またはMo:合計5質量%以上12質量%以下
W成分およびMo成分は、母相の固溶強化に寄与する成分である。W成分および/またはMo成分(W成分およびMo成分の1種以上)の合計含有率は、5質量%以上12質量%以下が好ましく、7質量%以上10質量%以下がより好ましい。W成分とMo成分との合計含有率が5質量%未満になると、母相の固溶強化が不十分になる。一方、W成分とMo成分との合計含有率が12質量%超になると、脆性のσ相が生成し易くなって機械的特性(靱性、延性)が低下する。
Re:2質量%以下
Re成分は、母相の固溶強化に寄与すると共に、耐食性の向上に寄与する成分である。Re成分は必須成分ではないが、含有させる場合、W成分またはMo成分の一部を置き換えるかたちで2質量%以下が好ましく、0.5質量%以上1.5質量%以下がより好ましい。Re含有率が2質量%超になると、Re成分の作用効果が飽和するのに加えて、材料コストの増加がデメリットになる。
WおよびMo以外の遷移金属で原子半径が130 pm超のM成分:合計0.5質量%以上2質量%以下
WおよびMo以外の遷移金属で原子半径が130 pm超のM成分で、単純立方晶系のMC型炭化物相を形成しうる成分として、Ti成分、Zr成分、Hf成分、V成分、Nb成分およびTa成分が挙げられる。これらのMC型炭化物相は析出強化相になりえる。また、MN型窒化物相を形成しうる成分として、Ti成分、Zr成分、V成分、Nb成分およびTa成分が挙げられる。これらのMN型窒化物相も析出強化相になりえる。さらに、Ti成分、Zr成分、V成分、Nb成分およびTa成分は、析出強化相のM(C,N)型炭窒化物相を形成しうる成分でもある。
言い換えると、Ti、Zr、Hf、V、NbおよびTa成分のうちの1種以上を含むことが好ましく、その合計含有率は、0.5質量%以上2質量%以下が好ましく、0.5質量%以上1.8質量%以下がより好ましい。合計含有率が0.5質量%未満になると、析出強化相(MC型炭化物相、M(C,N)型炭窒化物相および/またはMN型炭化物相)の析出量が不足し、機械的特性向上の作用効果が十分に得られない。一方、当該合計含有率が2質量%超になると、析出強化相粒子が粗大化したり脆性相(例えばσ相)の生成を促進したり析出強化に寄与しない酸化物相粒子を生成したりして機械的特性が低下する。
また、析出強化相粒子の分散析出(析出強化相粒子の粗大化の抑制)の観点からは、Ti、Zr、Hf、V、NbおよびTa成分のうちの3種以上を含むことがより好ましく、4種以上を含むことが更に好ましい。
より具体的には、Tiを含有させる場合の含有率は、0.01質量%以上1質量%以下が好ましく、0.05質量%以上0.8質量%以下がより好ましい。
Zrを含有させる場合の含有率は、0.05質量%以上1.5質量%以下が好ましく、0.1質量%以上1.2質量%以下がより好ましい。なお、機械的強度を優先する場合はZr成分を必須成分とすることが好ましく、靭性を優先する場合はZr成分を含有成分としないことが好ましい。
Hfを含有させる場合の含有率は、0.01質量%以上0.5質量%以下が好ましく、0.02質量%以上0.1質量%以下がより好ましい。
Vを含有させる場合の含有率は、0.01質量%以上0.5質量%以下が好ましく、0.02質量%以上0.1質量%以下がより好ましい。
Nbを含有させる場合の含有率は、0.02質量%以上1質量%以下が好ましく、0.05質量%以上0.8質量%以下がより好ましい。
Taを含有させる場合の含有率は、0.05質量%以上1.5質量%以下が好ましく、0.1質量%以上1.2質量%以下がより好ましい。
Si:0.5質量%以下
Si成分は、脱酸素の役割を担って機械的特性の向上に寄与する成分である。Si成分は必須成分ではないが、含有させる場合、0.5質量%以下が好ましく、0.01質量%以上0.3質量%以下がより好ましい。Si含有率が0.5質量%超になると、酸化物(例えばSiO2)の粗大粒子を形成して機械的特性の低下要因になる。
Mn:0.5質量%以下
Mn成分は、脱酸素・脱硫の役割を担って機械的特性の向上や耐腐食性の向上に寄与する成分である。Mnは原子半径が127 pmであることから上述のM成分には含まれない。Mn成分は必須成分ではないが、含有させる場合、0.5質量%以下が好ましく、0.01質量%以上0.3質量%以下がより好ましい。Mn含有率が0.5質量%超になると、硫化物(例えばMnS)の粗大粒子を形成して機械的特性や耐食性の低下要因になる。
残部:Co成分+不純物
Co成分は、本合金の主要成分の一つであり、最大含有率の成分である。前述したように、Co基合金材料は、Ni基合金材料と同等以上の耐食性や耐摩耗性を有する利点がある。
Al成分は、本合金の不純物の一つであり、意図的に含有させる成分ではない。ただし、0.5質量%以下のAl含有率であれば、Co基合金製造物の機械的特性に大きな悪影響を及ぼさないことから許容される。Al含有率が0.5質量%超になると、酸化物や窒化物(例えばAl2O3やAlN)の粗大粒子を形成して機械的特性の低下要因になる。
O成分も、本合金の不純物の一つであり、意図的に含有させる成分ではない。ただし、0.04質量%以下のO含有率であれば、Co基合金製造物の機械的特性に大きな悪影響を及ぼさないことから許容される。O含有率が0.04質量%超になると、各種酸化物(例えば、Ti酸化物、Zr酸化物、Al酸化物、Fe酸化物、Si酸化物)の粗大粒子を形成して機械的特性の低下要因になる。
合金粉末用意工程S1は、所定の化学組成を有する(特に、所定量のN成分を含有させた)Co基合金粉末を用意する工程である。合金粉末を用意する方法・手法としては、基本的に従前の方法・手法を利用できる。例えば、所望の化学組成となるように原料を混合・溶解・鋳造して母合金塊(マスターインゴット)を作製する母合金塊作製素工程(S1a)と、該母合金塊から合金粉末を形成するアトマイズ素工程(S1b)とを行えばよい。
N含有率の制御をアトマイズ素工程S1bで行うことは好ましい。アトマイズ方法は、Co基合金中のN含有率を制御する以外は従前の方法・手法を利用できる。例えば、アトマイズ雰囲気中の窒素量(窒素分圧)を制御しながらのガスアトマイズ法や遠心力アトマイズ法を好ましく用いることができる。
また、必要に応じて、アトマイズ素工程S1bの後に、合金粉末に対して侵窒素熱処理(例えば、アンモニアガス雰囲気中、300℃以上520℃以下の熱処理)を行う侵窒素熱処理素工程(S1c)を行ってもよい。アンモニアガス雰囲気としては、アンモニア(NH3)ガスとN2ガスとの混合ガスや、NH3ガスと水素(H2)ガスとの混合ガスを好適に利用できる。
合金粉末の粒径は、次工程の選択的レーザ溶融工程S2におけるハンドリング性や合金粉末床の充填性の観点から、5μm以上100μm以下が好ましく、10μm以上70μm以下がより好ましく、10μm以上50μm以下が更に好ましい。合金粉末の粒径が5μm未満になると、次工程S2において合金粉末の流動性が低下し(合金粉末床の形成性が低下し)、AM体の形状精度が低下する要因となる。一方、合金粉末の粒径が100μm超になると、次工程S2において合金粉末床の局所溶融・急速凝固の制御が難しくなり、合金粉末の溶融が不十分になったりAM体の表面粗さが増加したりする要因となる。
上記のことから、合金粉末の粒径を5μm以上100μm以下の範囲に分級する合金粉末分級素工程(S1d)を行うことは、好ましい。なお、本発明においては、得られた合金粉末の粒径分布を測定した結果、所望の範囲内にあることを確認した場合も、本素工程S1dを行ったものと見なす。合金粉末用意工程S1によって得られた合金粉末は、本発明に係るCo基合金材料の一種となる。
(選択的レーザ溶融工程)
選択的レーザ溶融工程S2は、用意したCo基合金粉末を用いて選択的レーザ溶融(SLM)法により所望形状のAM体を形成する工程である。具体的には、Co基合金粉末を敷き詰めて所定厚さの合金粉末床を用意する合金粉末床用意素工程(S2a)と、合金粉末床の所定の領域にレーザ光を照射して該領域のCo基合金粉末を局所溶融・急速凝固させるレーザ溶融凝固素工程(S2b)と、を繰り返してAM体を形成する工程である。
本工程S2においては、最終的なCo基合金製造物で望ましい微細組織(母相結晶粒の中に析出強化相(MC型炭化物相、M(C,N)型炭窒化物相および/またはMN型炭化物相)の粒子が分散析出した微細組織)を得るために、該製造物の前駆体となるAM体の微細組織を制御する。そして、該AM体の微細組織を制御するために、合金粉末床の局所溶融・急速凝固を制御する。
より具体的には、合金粉末床の厚さh(単位:μm)とレーザ光の出力P(単位:W)とレーザ光の走査速度S(単位:mm/s)との関係において、「15 <h< 150」かつ「67(P/S)-3.5 <h< 2222(P/S)+13」を満たすように、合金粉末床の厚さhとレーザ光出力Pとレーザ光走査速度Sとを制御することが好ましい。当該制御条件を外れると、望ましい微細組織を有するAM体が得られない。
なお、レーザ光の出力Pおよびレーザ光の走査速度Sは、基本的にレーザ装置の構成に依存するが、例えば「10 ≦P≦ 1000」および「10 ≦S≦ 7000」の範囲内で選定すればよい。
図2は、SLM工程S2で得られるCo基合金AM体の微細組織の一例を示す走査型電子顕微鏡(SEM)観察像である。図2に示したように、SLM工程S2で得られるCo基合金AM体は、特異的な微細組織を有している。
該AM体は、母相結晶の多結晶体であり、該多結晶体の結晶粒内には、平均サイズが0.13μm以上2μm以下の偏析セルが形成している。偏析セルの平均サイズは、機械的強度の観点から0.15μm以上1.5μm以下がより好ましい。偏析セルの境界領域上の一部には、析出強化相の粒子が析出する場合があることが確認される。また、数多くの実験から、母相結晶の平均結晶粒径は5μm以上150μm以下が好ましいと確認された。
なお、本発明において、偏析セルのサイズとは、基本的に長径と短径との平均と定義するが、長径と短径とのアスペクト比が3以上の場合は、短径の2倍を採用するものとする。
また、本発明における析出強化相の粒子の平均間隔は、当該粒子が偏析セルの境界領域上に析出することから、偏析セルのサイズで代表すると定義する。
走査型透過電子顕微鏡-エネルギー分散型X線分光法(STEM-EDX)を用いて、さらに詳細に微細組織観察を行ったところ、当該偏析セルは、微小セル間の境界領域(偏析セルの外周領域、細胞壁のような領域)に析出強化相を形成する成分(Ti、Zr、Hf、V、Nb、Ta、C、N)が偏析していることが確認された。また、偏析セルの境界領域上に析出した粒子は、析出強化相の粒子であることが確認された。
本AM体は、母相結晶粒の粒界上にも析出強化相を形成する成分の偏析や析出強化相粒子の析出がある。選択的レーザ溶融工程S2によって得られるAM体は、本発明に係るCo基合金製造物の一形態となる。
(第1熱処理工程)
第1熱処理工程S3は、形成したCo基合金AM体に対して第1の熱処理を施す工程である。
第1熱処理の条件としては、1100℃以上1200℃以下の温度範囲の熱処理が好ましい。熱処理における保持時間は、被熱処理体の熱容量および温度を考慮しながら0.5時間以上10時間以下の範囲で適宜設定すればよい。熱処理後の冷却方法に特段の限定はなく、例えば、水冷、油冷、空冷、炉冷のいずれでも構わない。
第1熱処理を施すことにより、偏析セルの境界領域に偏析していた成分が境界上で(境界に沿って)拡散・化合して析出強化相を形成し始め、偏析セルのセル壁がほぼ消失することが分かった(より正確には、微細組織観察で偏析セルのセル壁の確認が困難になる)。析出強化相を形成し始める凝集点は、元偏析セル境界領域の上(セル壁があったであろう領域上)と推定され、母相結晶粒の全体(結晶粒内および結晶粒界上)に微細に分布した状態になる。また、AM体内で母相結晶粒の再結晶が生じることで、SLM工程S2の急速凝固の際に生じる可能性のあるAM体の残留内部ひずみを緩和することができ、後工程や合金製造物の使用時における望まない変形を防止することができる。
(第2熱処理工程)
第2熱処理工程S4は、第1熱処理を施したCo基合金AM体に対して第2の熱処理を施す工程である。第2熱処理の条件としては、750℃以上1000℃以下の温度範囲の熱処理が好ましい。熱処理における保持時間は、被熱処理体の熱容量および温度を考慮しながら0.5時間以上20時間以下の範囲で適宜設定すればよい。熱処理後の冷却方法に特段の限定はなく、例えば、水冷、油冷、空冷、炉冷のいずれでも構わない。
図3は、第2熱処理工程S4で得られるCo基合金製造物の微細組織の一例を示すSEM観察像である。図3に示したように、第2熱処理を施すことにより、母相結晶粒の粗大化を抑制しながら、母相結晶粒内に析出強化相の粒子が微細分散析出した微細組織を得ることができる。言い換えると、第2熱処理工程S4を経て得られるCo基合金製造物は、母相結晶の平均結晶粒径が5μm以上150μm以下であり、各母相結晶粒の粒内に0.13μm以上2μm以下の平均粒子間距離で析出強化相の粒子が微細分散析出した微細組織を有する。なお、Co基合金製造物は、前述したように、母相結晶粒の粒界上にも析出強化相の粒子が分散析出している。
STEM-EDX分析の結果、析出強化相は、Ti、Zr、Hf、V、Nbおよび/またはTaを含むMC型炭化物相、M(C,N)型炭窒化物相および/またはMN型炭化物相と見なすことができることを確認した。
[Co基合金製造物]
図4は、本発明に係るCo基合金製造物の一例であり、高温部材としてのタービン静翼を示す斜視模式図である。図4に示したように、タービン静翼100は、概略的に、内輪側エンドウォール101と翼部102と外輪側エンドウォール103とから構成される。翼部の内部には、しばしば冷却構造が形成される。
また、本発明のCo基合金製造物は、タービン動翼として用いてもよい。
図5は、本発明に係るCo基合金製造物を装備するガスタービンの一例を示す断面模式図である。図5に示したように、ガスタービン200は、概略的に、吸気を圧縮する圧縮機部210と燃料の燃焼ガスをタービン翼に吹き付けて回転動力を得るタービン部220とから構成される。本発明の高温部材は、タービン部220内のタービンノズル221やタービン静翼100として好適に用いることができる。本発明の高温部材は、ガスタービン用途に限定されるものではなく、他のタービン用途(例えば、蒸気タービン用途)であってもよいし、他の機械/装置における高温環境下で使用される部材であってもよい。
図6は、本発明に係るCo基合金製造物の他の一例であり、高温部材としての熱交換器を示す斜視模式図である。図6に示した熱交換器300は、プレートフィン型熱交換器の例であり、基本的にセパレート層301とフィン層302とが交互に積層された構造を有している。フィン層302の流路幅方向の両端は、サイドバー部303で封じられている。隣接するフィン層302に高温流体と低温流体とを交互に流通させることにより、高温流体と低温流体との間で熱交換がなされる。
本発明に係る熱交換器300は、従来の熱交換器における構成部品(例えば、セパレートプレート、コルゲートフィン、サイドバー)をろう付け接合や溶接接合することなしに一体形成されることから、従来の熱交換器よりも耐熱化や軽量化することができる。また、流路表面に適切な凹凸形状を形成することにより、流体を乱流化して熱伝達効率を向上させることができる。熱伝達効率の向上は、熱交換器の小型化につながる。
以下、実験例により本発明をさらに具体的に説明する。なお、本発明はこれらの実験例に限定されるものではない。
[実験1]
(Co基合金粉末IA-1~IA-2およびRA-1の用意)
表1に示す化学組成を有するCo基合金粉末を用意した(合金粉末用意工程S1)。具体的には、まず、原料を混合した後、真空高周波誘導溶解法により溶解・鋳造して母合金塊(質量:約2 kg)を作製する母合金塊作製素工程S1aを行った。次に、該母合金塊を再溶解して、N2ガス雰囲気中のガスアトマイズ法により合金粉末を形成するアトマイズ素工程S1bを行った。合金粉末IA-2に対しては、アトマイズ素工程S1bの後、侵窒素熱処理素工程S1c(NH3とN2との混合ガス雰囲気中、500℃)を行った。また、基準試料として、アトマイズ素工程S1bをアルゴンガス雰囲気中のガスアトマイズ法で行った基準合金粉末RA-1を別途用意した。
次に、得られた各合金粉末に対して、合金粉末の粒径を制御するための合金粉末分級素工程S1dを行って粉末粒径を5~25μmの範囲に分級した。
Figure 0007076581000001
表1に示したように、発明合金粉末IA-1~IA-2は、本発明の規定を満たす化学組成を有する合金粉末である。一方、基準合金粉末RA-1は、特許文献2に該当する合金粉末であり、N含有率のみが本発明の規定を外れている。
[実験2]
(選択的レーザ溶融工程におけるSLM条件の検討)
実験1で用意したIA-1の合金粉末を用いてSLM法によりAM体(直径8 mm×長さ10 mm)を形成した(選択的レーザ溶融工程S2)。SLM条件は、レーザ光の出力Pを85 Wとし、合金粉末床の厚さhおよびレーザ光の走査速度S(mm/s)を種々変更することによって局所入熱量P/S(単位:W・s/mm=J/mm)を制御した。局所入熱量の制御は、冷却速度の制御に相当する。
上記で作製した各AM体に対して、微細組織観察を行って偏析セルの平均サイズを測定した。微細組織観察はSEMにより行った。また、得られたSEM観察像に対して画像処理ソフトウェア(ImageJ、米国National Institutes of Health(NIH)開発のパブリックドメインソフトウェア)を用いた画像解析により、偏析セルの平均サイズを測定した。
偏析セルの平均サイズが0.13~2μmの範囲にあるものを「合格」と判定し、それ以外のものを「不合格」と判定した結果、選択的レーザ溶融工程S2におけるSLM条件は、合金粉末床の厚さh(単位:μm)とレーザ光の出力P(単位:W)とレーザ光の走査速度S(単位:mm/s)との関係が「15 <h< 150」かつ「67(P/S)-3.5 <h< 2222(P/S)+13」を満たすように制御することが好ましいことを確認した。
[実験3]
(Co基合金製造物IAP-1~IAP-2およびRAP-1の作製)
実験1で用意した発明合金粉末IA-1~IA-2および基準合金粉末RA-1を用いて、SLM法によりAM体(直径10 mm×長さ50 mm)を形成した(選択的レーザ溶融工程S2)。SLM条件は、合金粉末床の厚さhを100μmとし、レーザ光の出力Pを100 Wとし、レーザ光の走査速度S(mm/s)を制御することによって局所入熱量P/S(単位:W・s/mm=J/mm)を制御して、実験2の合格条件を満たすように調整した。
上記で作製した各AM体に対して、1150℃で4時間保持する熱処理を行った(第1熱処理工程S3)。次に、第1熱処理を施した各AM体に対して、900℃で4時間保持する熱処理を行って(第2熱処理工程S4)、IA-1~IA-2合金粉末を用いた発明合金製造物IAP-1~IAP-2、およびRA-1合金粉末を用いた基準合金製造物RAP-1を作製した。
(微細組織観察および機械的特性試験)
上記で作製したCo基合金製造物IAP-1~IAP-2およびRAP-1から、微細組織観察用および機械的特性試験用の試験片をそれぞれ採取し、微細組織観察および機械的特性試験を行った。
微細組織観察は、実験2と同様のSEM観察およびSEM観察像に対する画像解析を行って、母相結晶粒内での析出強化相粒子の平均粒子間距離を調査した。その結果、Co基合金製造物IAP-1~IAP-2およびRAP-1の全てにおいて、析出強化相粒子の平均粒子間距離が0.13~2μmの範囲にあることが確認された。
機械的特性試験としては、Co基合金製造物IAP-1およびRAP-1に対して、温度850℃、応力157 MPaの条件下でクリープ試験を行い、二次クリープ領域(定常クリープ領域)における定常クリープ速度とクリープ破断時間とを測定した。また、Co基合金製造物IAP-2およびRAP-1に対して、温度900℃、応力98 MPaの条件下でクリープ試験を行い、クリープ破断時間と定常クリープ速度とを測定した。
特許文献2の記載から、基準合金製造物RAP-1は、析出強化Ni基合金材料と同等以上の機械的特性を有すると見なせる。そこで、本実験では、基準合金製造物RAP-1よりも小さい定常クリープ速度かつ長いクリープ破断時間を「合格」と判定した。さらに、温度900℃、応力98 MPaの条件下のクリープ試験において、6×10-3 h-1以下の定常クリープ速度かつ1000時間以上のクリープ破断時間を「優秀」と判定した。機械的特性試験の結果を表2に示す。
Figure 0007076581000002
表2に示したように、発明合金製造物IAP-1~IAP-2は、基準合金製造物RAP-1よりも小さい定常クリープ速度かつ長いクリープ破断時間を示し、「合格」と判定される。さらに、発明合金製造物IAP-2は、6×10-3 h-1以下の定常クリープ速度かつ1000時間以上のクリープ破断時間を示し、「優秀」と判定される。
上述した実施形態や実験例は、本発明の理解を助けるために説明したものであり、本発明は、記載した具体的な構成のみに限定されるものではない。例えば、実施形態の構成の一部を当業者の技術常識の構成に置き換えることが可能であり、また、実施形態の構成に当業者の技術常識の構成を加えることも可能である。すなわち、本発明は、本明細書の実施形態や実験例の構成の一部について、発明の技術的思想を逸脱しない範囲で、削除・他の構成に置換・他の構成の追加をすることが可能である。
100…タービン静翼、101…内輪側エンドウォール、102…翼部、103…外輪側エンドウォール、200…ガスタービン、210…圧縮機部、220…タービン部、221…タービンノズル、300…熱交換器、301…セパレート層、302…フィン層、303…サイドバー部。

Claims (14)

  1. コバルト基合金材料からなる製造物であって、
    前記コバルト基合金材料は、
    0.08質量%以上0.25質量%以下の炭素と、
    0.04質量%超0.2質量%以下の窒素とを含み、前記炭素および前記窒素の合計が0.12質量%超0.28質量%以下であり、
    0.1質量%以下のホウ素と、
    10質量%以上30質量%以下のクロムとを含み、
    鉄を5質量%以下でニッケルを30質量%以下で含み、前記鉄および前記ニッケルの合計が30質量%以下であり、
    タングステンおよび/またはモリブデンを含み、前記タングステンおよび前記モリブデンの合計が5質量%以上12質量%以下であり、
    0.5質量%以下のケイ素と、
    0.5質量%以下のマンガンとを含み、
    タングステンおよびモリブデン以外の遷移金属で原子半径が130 pm超のM成分を0.5質量%以上2質量%以下で含み、
    残部がコバルトと不純物とからなり、
    前記不純物は、
    0.5質量%以下のアルミニウムと、
    0.04質量%以下の酸素とを含む、化学組成を有し、
    前記製造物は、母相結晶粒の多結晶体であり、
    前記母相結晶粒の中には、前記M成分を含むMC型炭化物相、M(C,N)型炭窒化物相および/またはMN型窒化物相の粒子が0.13μm以上2μm以下の平均粒子間距離で析出している、
    ことを特徴とするコバルト基合金製造物。
  2. 請求項1に記載のコバルト基合金製造物において、
    前記化学組成の前記M成分は、チタン、ジルコニウム、ハフニウム、バナジウム、ニオブおよびタンタルのうちの1種以上である、
    ことを特徴とするコバルト基合金製造物。
  3. 請求項2に記載のコバルト基合金製造物において、
    前記化学組成の前記M成分は、
    前記チタンを含む場合、該チタンは0.01質量%以上1質量%以下であり、
    前記ジルコニウムを含む場合、該ジルコニウムは0.05質量%以上1.5質量%以下であり、前記ハフニウムを含む場合、該ハフニウムは0.01質量%以上0.5質量%以下であり、
    前記バナジウムを含む場合、該バナジウムは0.01質量%以上0.5質量%以下であり、
    前記ニオブを含む場合、該ニオブは0.02質量%以上1質量%以下であり、
    前記タンタルを含む場合、該タンタルは0.05質量%以上1.5質量%以下である、
    ことを特徴とするコバルト基合金製造物。
  4. 請求項2又は請求項3に記載のコバルト基合金製造物において、
    前記化学組成の前記M成分は、
    前記ジルコニウムを必須とすることを特徴とするコバルト基合金製造物。
  5. 請求項2又は請求項3に記載のコバルト基合金製造物において、
    前記化学組成の前記M成分は、
    前記チタン、前記ジルコニウム、前記ハフニウム、前記バナジウム、前記ニオブおよび前記タンタルのうちの3種以上である、
    ことを特徴とするコバルト基合金製造物。
  6. 請求項1乃至請求項5のいずれか一項に記載のコバルト基合金製造物において、
    前記製造物は、温度900℃、応力98 MPaの条件下でクリープ試験を行った場合のクリープ破断時間が1000時間以上であり、二次クリープ領域における定常クリープ速度が6×10-3 h-1以下であることを特徴とするコバルト基合金製造物。
  7. 請求項1乃至請求項6のいずれか一項に記載のコバルト基合金製造物において、
    前記製造物は、高温部材であることを特徴とするコバルト基合金製造物。
  8. 請求項7に記載のコバルト基合金製造物において、
    前記高温部材は、タービン静翼、タービン動翼、タービン燃焼器ノズルまたは熱交換器であることを特徴とするコバルト基合金製造物。
  9. コバルト基合金材料からなる製造物であって、
    前記コバルト基合金材料は、
    0.08質量%以上0.25質量%以下の炭素と、
    0.04質量%超0.2質量%以下の窒素とを含み、前記炭素および前記窒素の合計が0.12質量%超0.28質量%以下であり、
    0.1質量%以下のホウ素と、
    10質量%以上30質量%以下のクロムとを含み、
    鉄を5質量%以下でニッケルを30質量%以下で含み、前記鉄および前記ニッケルの合計が30質量%以下であり、
    タングステンおよび/またはモリブデンを含み、前記タングステンおよび前記モリブデンの合計が5質量%以上12質量%以下であり、
    0.5質量%以下のケイ素と、
    0.5質量%以下のマンガンとを含み、
    タングステンおよびモリブデン以外の遷移金属で原子半径が130 pm超のM成分を0.5質量%以上2質量%以下で含み、
    残部がコバルトと不純物とからなり、
    前記不純物は、
    0.5質量%以下のアルミニウムと、
    0.04質量%以下の酸素とを含む、化学組成を有し、
    前記製造物は、母相結晶粒の多結晶体であり、
    該母相結晶粒の中には、平均サイズが0.13μm以上2μm以下偏析セルが形成しており、該偏析セルの境界領域には前記M成分が偏析している、
    ことを特徴とするコバルト基合金製造物。
  10. 請求項9に記載のコバルト基合金製造物において、
    前記製造物は、前記偏析セルの前記境界領域上に前記M成分を含むMC型炭化物相、M(C,N)型炭窒化物相および/またはMN型窒化物相の粒子が析出している、
    ことを特徴とするコバルト基合金製造物。
  11. 請求項9又は請求項10に記載のコバルト基合金製造物において、
    前記化学組成の前記M成分は、チタン、ジルコニウム、ハフニウム、バナジウム、ニオブおよびタンタルのうちの1種以上である、
    ことを特徴とするコバルト基合金製造物。
  12. 請求項11に記載のコバルト基合金製造物において、
    前記化学組成の前記M成分は、
    前記チタンを含む場合、該チタンは0.01質量%以上1質量%以下であり、
    前記ジルコニウムを含む場合、該ジルコニウムは0.05質量%以上1.5質量%以下であり、前記ハフニウムを含む場合、該ハフニウムは0.01質量%以上0.5質量%以下であり、
    前記バナジウムを含む場合、該バナジウムは0.01質量%以上0.5質量%以下であり、
    前記ニオブを含む場合、該ニオブは0.02質量%以上1質量%以下であり、
    前記タンタルを含む場合、該タンタルは0.05質量%以上1.5質量%以下である、
    ことを特徴とするコバルト基合金製造物。
  13. 請求項11又は請求項12に記載のコバルト基合金製造物において、
    前記化学組成の前記M成分は、
    前記ジルコニウムを必須とすることを特徴とするコバルト基合金製造物。
  14. 請求項11又は請求項12に記載のコバルト基合金製造物において、
    前記化学組成の前記M成分は、
    前記チタン、前記ジルコニウム、前記ハフニウム、前記バナジウム、前記ニオブおよび前記タンタルのうちの3種以上である、
    ことを特徴とするコバルト基合金製造物。
JP2020567620A 2019-12-26 2020-09-04 コバルト基合金製造物 Active JP7076581B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2019235624 2019-12-26
JP2019235624 2019-12-26
PCT/JP2020/033544 WO2021131167A1 (ja) 2019-12-26 2020-09-04 コバルト基合金製造物

Publications (2)

Publication Number Publication Date
JPWO2021131167A1 JPWO2021131167A1 (ja) 2021-07-01
JP7076581B2 true JP7076581B2 (ja) 2022-05-27

Family

ID=76575860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020567620A Active JP7076581B2 (ja) 2019-12-26 2020-09-04 コバルト基合金製造物

Country Status (7)

Country Link
US (1) US20210381084A1 (ja)
EP (1) EP3872202A4 (ja)
JP (1) JP7076581B2 (ja)
KR (1) KR102482808B1 (ja)
CN (1) CN113330130B (ja)
TW (1) TWI772993B (ja)
WO (1) WO2021131167A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6509290B2 (ja) * 2017-09-08 2019-05-08 三菱日立パワーシステムズ株式会社 コバルト基合金積層造形体、コバルト基合金製造物、およびそれらの製造方法
WO2020179082A1 (ja) 2019-03-07 2020-09-10 三菱日立パワーシステムズ株式会社 コバルト基合金粉末、コバルト基合金焼結体およびコバルト基合金焼結体の製造方法
KR102436200B1 (ko) 2019-03-07 2022-08-26 미츠비시 파워 가부시키가이샤 열교환기
JP6935580B2 (ja) 2019-03-07 2021-09-15 三菱パワー株式会社 コバルト基合金製造物およびその製造方法
WO2020179081A1 (ja) 2019-03-07 2020-09-10 三菱日立パワーシステムズ株式会社 コバルト基合金製造物
EP3733886B1 (en) 2019-03-07 2022-08-24 Mitsubishi Heavy Industries, Ltd. Cobalt-based alloy product, method for manufacturing said product, and cobalt-based alloy article
US11542029B2 (en) * 2020-08-31 2023-01-03 General Electric Company Methods of forming a dual-structured aircraft engine starter/generator apparatuses
CN114466944B (zh) * 2020-09-04 2023-06-27 三菱重工业株式会社 钴基合金材料和钴基合金制造物
CN115323221B (zh) * 2022-08-19 2023-08-01 三峡大学 一种钴铬镍合金及其热处理工艺、及得到的热处理强化钴铬镍合金

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016102257A (ja) 2014-11-28 2016-06-02 ゼネラル エレクトリック テクノロジー ゲゼルシャフト ミット ベシュレンクテル ハフツングGeneral Electric Technology GmbH アディティブ・マニュファクチャリング法を使用する部品の製造方法
JP2017145483A (ja) 2016-02-19 2017-08-24 セイコーエプソン株式会社 粉末冶金用金属粉末、コンパウンド、造粒粉末、焼結体および耐熱部品
JP2019049022A (ja) 2017-09-08 2019-03-28 三菱日立パワーシステムズ株式会社 コバルト基合金積層造形体、コバルト基合金製造物、およびそれらの製造方法
JP2019173175A (ja) 2019-04-02 2019-10-10 三菱日立パワーシステムズ株式会社 コバルト基合金積層造形体の製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61243143A (ja) 1984-11-06 1986-10-29 Agency Of Ind Science & Technol Co基超塑性合金およびその製造方法
JPS6311638A (ja) * 1986-03-20 1988-01-19 Hitachi Ltd 高強度高靭性コバルト基合金及びその製造法
JPH03294085A (ja) * 1990-04-12 1991-12-25 Daido Steel Co Ltd 硬化肉盛用Co基合金粉末
US8075839B2 (en) * 2006-09-15 2011-12-13 Haynes International, Inc. Cobalt-chromium-iron-nickel alloys amenable to nitride strengthening
CN107513642B (zh) * 2017-10-17 2019-10-11 广州纳联材料科技有限公司 钴基合金粉末及其制备方法和应用
CN109161729B (zh) * 2018-10-26 2020-12-08 南方科技大学 一种钴铬钽合金及其制备方法
JP6935580B2 (ja) * 2019-03-07 2021-09-15 三菱パワー株式会社 コバルト基合金製造物およびその製造方法
WO2020179081A1 (ja) * 2019-03-07 2020-09-10 三菱日立パワーシステムズ株式会社 コバルト基合金製造物
EP3733886B1 (en) * 2019-03-07 2022-08-24 Mitsubishi Heavy Industries, Ltd. Cobalt-based alloy product, method for manufacturing said product, and cobalt-based alloy article
EP4006188A4 (en) * 2020-09-04 2023-05-03 Mitsubishi Heavy Industries, Ltd. COBALT-BASED ALLOY PRODUCT AND METHOD FOR PRODUCTION THEREOF
CN114466944B (zh) * 2020-09-04 2023-06-27 三菱重工业株式会社 钴基合金材料和钴基合金制造物

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016102257A (ja) 2014-11-28 2016-06-02 ゼネラル エレクトリック テクノロジー ゲゼルシャフト ミット ベシュレンクテル ハフツングGeneral Electric Technology GmbH アディティブ・マニュファクチャリング法を使用する部品の製造方法
JP2017145483A (ja) 2016-02-19 2017-08-24 セイコーエプソン株式会社 粉末冶金用金属粉末、コンパウンド、造粒粉末、焼結体および耐熱部品
JP2019049022A (ja) 2017-09-08 2019-03-28 三菱日立パワーシステムズ株式会社 コバルト基合金積層造形体、コバルト基合金製造物、およびそれらの製造方法
JP2019173175A (ja) 2019-04-02 2019-10-10 三菱日立パワーシステムズ株式会社 コバルト基合金積層造形体の製造方法

Also Published As

Publication number Publication date
EP3872202A4 (en) 2022-04-06
WO2021131167A1 (ja) 2021-07-01
KR20210084422A (ko) 2021-07-07
US20210381084A1 (en) 2021-12-09
TW202140810A (zh) 2021-11-01
KR102482808B1 (ko) 2022-12-29
JPWO2021131167A1 (ja) 2021-07-01
TWI772993B (zh) 2022-08-01
CN113330130B (zh) 2022-07-26
CN113330130A (zh) 2021-08-31
EP3872202A1 (en) 2021-09-01

Similar Documents

Publication Publication Date Title
JP7076581B2 (ja) コバルト基合金製造物
JP6935579B2 (ja) コバルト基合金製造物および該製造物の製造方法
JP6935580B2 (ja) コバルト基合金製造物およびその製造方法
JP6935578B2 (ja) コバルト基合金製造物
JP6935577B2 (ja) コバルト基合金製造物
JP6994564B2 (ja) 熱交換器
WO2022049716A1 (ja) コバルト基合金材料およびコバルト基合金製造物
JP2023105829A (ja) コバルト基合金材料およびコバルト基合金製造物

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211224

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20220117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220517

R150 Certificate of patent or registration of utility model

Ref document number: 7076581

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150