JP7075780B2 - 燃料電池システム - Google Patents

燃料電池システム Download PDF

Info

Publication number
JP7075780B2
JP7075780B2 JP2018034604A JP2018034604A JP7075780B2 JP 7075780 B2 JP7075780 B2 JP 7075780B2 JP 2018034604 A JP2018034604 A JP 2018034604A JP 2018034604 A JP2018034604 A JP 2018034604A JP 7075780 B2 JP7075780 B2 JP 7075780B2
Authority
JP
Japan
Prior art keywords
oxidant gas
flow path
compressed oxidant
gas
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018034604A
Other languages
English (en)
Other versions
JP2019149339A (ja
Inventor
雄士 岡村
朋彦 畠田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2018034604A priority Critical patent/JP7075780B2/ja
Publication of JP2019149339A publication Critical patent/JP2019149339A/ja
Application granted granted Critical
Publication of JP7075780B2 publication Critical patent/JP7075780B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

本発明は、燃料電池のアノード電極及びカソード電極に燃料ガス及び酸化剤ガスを供給して発電を行う燃料電池システムに関する。
燃料電池システムでは、アノード電極に水素等の燃料ガスを供給し、且つカソード電極に空気等の酸化剤ガスを供給することで電気化学反応を生じさせ発電を行う。アノード電極から排出される燃料排ガスには、電気化学反応で消費されなかった燃料ガスの未消費分が含まれる。この未消費分を再びアノード電極に供給するべく、アノード電極の燃料排ガス排出口と燃料ガス供給口とを連通させる循環流路を設け、該循環流路を介して燃料排ガスを循環させる場合がある。
燃料排ガスには、カソード電極から電解質膜を介してアノード電極に移動してきた、酸化剤ガス中の窒素や生成水等の不純物が含まれる。このため、燃料排ガスから分離した不純物を排出流体として循環流路の外部に排出する排出流路が設けられる。
この種の燃料電池システムは、特に、車載等の用途では、氷点下等の低温環境下で低温起動することも想定される。この場合、低温の排出流路内で生成水等が凍結して、該排出流路が閉塞されることがある。排出流路が閉塞されると、排出流体の適切な排出が妨げられるため、安定した発電が行えなくなる懸念が生じる。排出流路の凍結を抑制するべく燃料電池の発電量を低減させて、生成水の発生量を低減させることも考えられるが、この場合、電気化学反応による発熱量も低減するため、燃料電池システムの暖機に要する時間が長尺化してしまう。
そこで、例えば、特許文献1には、排出流路を開閉するドレイン弁にヒータを取り付けておき、ドレイン弁が凍結した場合にヒータを駆動して凍結を解消することが提案されている。
特開2013-179064号公報
上記のようにヒータを取り付けて凍結を解消する場合、ヒータを設置することができない排出流路の細部の凍結を解消することは困難であり、結局、低温環境下における発電安定性を十分に向上させることができない懸念がある。
本発明は上記した問題を解決するためになされたものであり、排出流路の凍結を効果的に抑制又は解消して、低温環境下における発電安定性を向上させることが可能な燃料電池システムを提供することを目的とする。
上記の目的を達成するために、本発明は、燃料電池のアノード電極に燃料ガスを供給し、且つ前記燃料電池のカソード電極に酸化剤ガスを供給して発電を行う燃料電池システムであって、前記カソード電極に供給する前記酸化剤ガスを圧縮して圧縮酸化剤ガスとする圧縮ポンプと、前記アノード電極から排出される燃料排ガスを気体と液体とに分離する気液分離器と、前記気液分離器の液体排出口に連通する排出流路と、前記圧縮酸化剤ガスを前記排出流路又は該排出流路の近傍に導く圧縮酸化剤ガス流路と、を備えることを特徴とする。
この燃料電池システムでは、気液分離器において燃料排ガスから分離され、該気液分離器の液体排出口から排出される排出流体が排出流路に流入する。排出流体には、燃料電池での電気化学反応によって生じる生成水等の液体が含まれるため、低温環境下では排出流体が凍結して排出流路が閉塞されることも想定される。この排出流路又はその近傍に、圧縮酸化剤ガス流路を介して圧縮酸化剤ガスを導くことができる。
圧縮酸化剤ガスは、圧縮ポンプで圧縮されることにより昇温している。このため、上記のように排出流路又はその近傍に圧縮酸化剤ガスを導くことで、該圧縮酸化剤ガスの熱により排出流路及びその近傍を加熱することができる。この際、気体である圧縮酸化剤ガスであれば、ヒータ等を設置することが困難な排出流路及びその近傍の細部にも容易に流入させることができるため、排出流路及びその近傍の細部まで効果的に加熱することができる。
従って、この燃料電池システムによれば、排出流路の凍結を効果的に抑制又は解消することができるため、低温環境下における燃料電池の発電安定性を向上させることができる。
上記の燃料電池システムにおいて、前記圧縮酸化剤ガス流路に介装され、前記排出流路又は該排出流路の近傍に導かれる前の前記圧縮酸化剤ガスを加熱するヒータユニットをさらに備えることが好ましい。気体の熱伝導率は、該気体の温度が上昇するにつれて上昇する。圧縮酸化剤ガスは、上記の通り圧縮されることで昇温している分、熱伝導率も上昇しているため、圧縮酸化剤ガス流路に介装されたヒータユニットにより圧縮酸化剤ガスを加熱することで、その温度を効率的に上昇させることができる。このように、ヒータユニットによってさらに昇温させた圧縮酸化剤ガスを排出流路及びその近傍に導くことで、排出流路の凍結を一層効果的に抑制又は解消することが可能になる。
上記の燃料電池システムにおいて、前記圧縮酸化剤ガス流路は、前記ヒータユニットに前記圧縮酸化剤ガスを導入するヒータ上流部と、前記ヒータユニットで加熱された前記圧縮酸化剤ガスを前記排出流路又は該排出流路の近傍に導くヒータ下流部と、を有し、前記ヒータユニットは、前記ヒータ上流部と連通する導入空間及び前記ヒータ下流部と連通する加熱空間を形成するボディと、前記加熱空間を加熱するヒータと、前記導入空間と前記加熱空間の連通及び遮断を切り換える弁機構と、を有し、前記弁機構は、前記導入空間と前記加熱空間との間に配置され、且つ線膨張係数が同じ複数枚のプレートが間隔を置いて重ねられた状態で接合された弁プレートと、前記弁プレートの一端縁部の前記加熱空間側が当接することで前記導入空間と前記加熱空間とを遮断し、且つ前記弁プレートの一端縁部が離間することで前記導入空間と前記加熱空間とを連通する弁座部と、を有し、前記弁プレートの他端縁部側が前記ボディに固定された状態で、該弁プレートが前記導入空間と前記加熱空間の温度差及び内圧差に応じて弾性変形することで、前記弁プレートの一端縁部と前記弁座部との距離が調整され、前記弁機構の開度が調整されることが好ましい。
このヒータユニットでは、ヒータによって加熱空間が加熱され、該加熱空間と導入空間との温度差が大きくなると、弁プレートを構成する複数枚のプレートのうち、導入空間に近接して配設される導入空間側のプレートの熱膨張量が、加熱空間に近接して配設される加熱空間側のプレートの熱膨張量よりも大きくなる。
このように熱膨張量の差が生じた弁プレートでは、その一端縁部を弁座部から導入空間側に向かって離間させる方向に弾性変形させる応力が生じる。この応力が、導入空間に流入した圧縮酸化剤ガスにより弁プレートの一端縁部を弁座部に押圧する押圧力(導入空間と加熱空間との内圧差により生じる押圧力)を超える場合、該一端縁部が弁座部から離間して、加熱空間と導入空間とが連通する。
一方、加熱空間と導入空間との温度差が生じていない又は生じていても小さいことで、弁プレートに生じる上記の応力が圧縮酸化剤ガスによる押圧力を超えない場合は、弁プレートの一端縁部が弁座部に当接するため、加熱空間と導入空間とが遮断される。この場合、導入空間に流入した圧縮酸化剤ガスが、加熱空間に流入しないため、圧縮酸化剤ガス流路のヒータユニットよりも下流側に圧縮酸化剤ガスが流通することを停止することができる。
つまり、このヒータユニットでは、加熱空間と導入空間との温度差や内圧差に応じて、弁プレートの一端縁部と弁座部との距離、換言すると、弁機構の開度が調整される。このようなヒータユニットによれば、電磁弁や電動ポンプ等を制御部によって制御する特別な構成によらず、排出流路及びその近傍に導く圧縮酸化剤ガスの流量を適切に調整することができる。
例えば、このヒータユニットでは、燃料電池システムの暖機の進行に合わせて、ヒータ下流部に適切な流量の圧縮酸化剤ガスを流通させることも可能である。低温環境下で起動した燃料電池システムの暖機初期では、排出流路及びその近傍の温度が低いため、これらに導く圧縮酸化剤ガスの流量が多いことが望ましい。この暖機初期では、導入空間の温度が低い分、ヒータにより加熱した加熱空間と導入空間との温度差が大きくなり、弁機構の開度も大きくなる。これによって、加熱空間に流入する圧縮酸化剤ガスの流量を増大させることができるため、ヒータ下流部を介して排出流路及びその近傍に導く圧縮酸化剤ガスの流量を適切な大きさとすることができる。
一方、暖機後期では、圧縮酸化剤ガスを排出流路及びその近傍に導くことに代えて、カソード電極に供給する圧縮酸化剤ガスの流量を増大させることで、燃料電池での電気化学反応を促進することが望ましい。この暖機後期では、燃料電池システム全体の温度が暖機完了温度に近づいているため、導入空間の温度も上昇しており、加熱空間と導入空間との温度差が小さくなり、弁機構の開度も小さくなる。これによって、圧縮酸化剤ガス流路に流入する圧縮酸化剤ガスの流量を減少させることができる分、カソード電極に供給する圧縮酸化剤ガスの流量を増大させることができる。
また、このヒータユニットでは、導入空間に流入する圧縮酸化剤ガスの単位時間当たりの流量(流速)が変動しても、ヒータの温度制御によらずに、加熱空間から排出される圧縮酸化剤ガスの温度を目標の加熱温度に維持することができる。例えば、導入空間に流入する圧縮酸化剤ガスの流速が減少した場合、導入空間の内圧が減少して、弁機構の開度が大きくなる。一方、導入空間に流入する圧縮酸化剤ガスの流速が増大した場合、導入空間の内圧が増大して、弁機構の開度が小さくなる。従って、導入空間に流入する圧縮酸化剤ガスの流速が増減しても、加熱空間を通過する圧縮酸化剤ガスの流速の増減が抑制されるように弁機構の開度が調整されるため、加熱空間内で圧縮酸化剤ガスを同様に加熱して目標の加熱温度とすることができる。
さらに、このヒータユニットでは、ヒータの温度を調整して、圧縮酸化剤ガスの目標加熱温度を調整した場合であっても、調整後の目標加熱温度を良好に維持することができる。例えば、ヒータの温度を上昇させて加熱空間の温度を上昇させると、加熱空間と導入空間との温度差が大きくなるため、弁機構の開度が大きくなり、加熱空間に流入する圧縮酸化剤ガスの流速が増大する。これによって、圧縮酸化剤ガスに奪われる加熱空間の熱量が大幅に増大し、加熱空間の温度が低下した場合、上記の温度差が小さくなるため、弁機構の開度が小さくなる。このため、加熱空間からヒータ下流部に流入する圧縮酸化剤ガスの温度を目標加熱温度に維持することができる。
一方、ヒータの温度を降下させると、上記の温度差が小さくなり、弁機構の開度が小さくなるため、加熱空間に流入する圧縮酸化剤ガスの流速が減少する。これによって、圧縮酸化剤ガスに奪われる加熱空間の熱量が大幅に減少し、加熱空間の温度が上昇した場合、上記の温度差が大きくなるため、弁機構の開度が大きくなる。このため、加熱空間からヒータ下流部に流入する圧縮酸化剤ガスの温度を目標加熱温度に維持することができる。
上記の燃料電池システムにおいて、前記排出流路を開閉するドレイン弁をさらに備え、前記圧縮酸化剤ガス流路は、前記ドレイン弁に前記圧縮酸化剤ガスを導くことが好ましい。ドレイン弁に付着した排出流体が凍結すると、開弁指示を行ってもドレイン弁が開弁せず、排出流体の適切な排出が妨げられることがある。上記のように、圧縮酸化剤ガス流路を介して、ドレイン弁に圧縮酸化剤ガスを導くことで、ドレイン弁を良好に加熱することができるため、ドレイン弁の凍結を効果的に抑制又は解消できる。
上記の燃料電池システムにおいて、前記圧縮酸化剤ガス流路は、前記排出流路を構成する配管の前記ドレイン弁の上流側の外周面を囲う外側管の内部に前記圧縮酸化剤ガスを導き、前記外側管は、前記排出流路の前記ドレイン弁の下流側と連通して、該排出流路内に前記圧縮酸化剤ガスを導くことが好ましい。この場合、外側管の内部に導かれた圧縮酸化剤ガスにより排出流路を加熱することができる。また、外側管がドレイン弁の下流側に連通することで、該外側管からドレイン弁の出口ポートに圧縮酸化剤ガスを導いて、該ドレイン弁の出口ポート側を直接加熱することができる。これらによって、排出流路及びドレイン弁を効果的に加熱することができる。
上記の燃料電池システムにおいて、前記排出流路の前記ドレイン弁よりも下流側は、前記カソード電極から酸化剤排ガスが排出される酸化剤排ガス流路に連通することが好ましい。酸化剤排ガスには、カソード電極で生じた生成水が含まれるため、低温環境下では、酸化剤排ガス流路も凍結する場合がある。この場合であっても、排出流路を介して酸化剤排ガス流路に圧縮酸化剤ガスを流通させることで、酸化剤排ガス流路を加熱することができる。従って、酸化剤排ガス流路の凍結も抑制又は解消することが可能になる。
上記の燃料電池システムにおいて、前記ドレイン弁の下流側で前記圧縮酸化剤ガスの流量を制限する流量制限部により、前記圧縮酸化剤ガス流路に導入される前記圧縮酸化剤ガスの最大流量が制限されることが好ましい。この場合、圧縮酸化剤ガスが流量制限部よりも上流側に滞留し易くなるため、該圧縮酸化剤ガスによって排出流路及びドレイン弁を効果的に加熱することが可能になる。また、流量制限部により、圧縮酸化剤ガスが圧縮酸化剤ガス流路に流入する最大流量を制限することで、カソード電極に供給する圧縮酸化剤ガスの流量を適切に維持することができる。
本発明によれば、排出流路の凍結を効果的に抑制又は解消して、低温環境下における燃料電池システムの発電安定性を向上させることができる。
本発明の実施形態に係る燃料電池システムの概略構成図である。 ドレイン弁と、その周辺の排出流路、圧縮酸化剤ガス流路、外側管とについての要部概略断面図である。 ヒータユニットの弁機構が閉状態であるときの概略構成図である。 ヒータユニットの弁機構が開状態であるときの概略構成図である。
以下、本発明に係る燃料電池システムについて好適な実施形態を挙げ、添付の図面を参照しながら詳細に説明する。
本実施形態では、図1に示す燃料電池システム10が、燃料電池電気自動車等の燃料電池車両(図示せず)に搭載される場合を例に挙げて説明するが、特にこれには限定されない。例えば、燃料電池システム10は、燃料電池車両を除く種々の移動体に適用することや、定置型として用いることも可能である。
燃料電池システム10は、該燃料電池システム10の制御を行う制御部12と、発電セル14を複数積層したスタック(不図示)からなる燃料電池16を備える。個々の発電セル14は、例えば、固体高分子からなる電解質膜18と、該電解質膜18を挟んで対向するアノード電極20及びカソード電極22とを有する電解質膜・電極構造体24が一対のセパレータ26で挟持されることにより構成される。アノード電極20に、水素を含む燃料ガスが供給され、且つカソード電極22に、酸素を含む酸化剤ガスが供給されることで発電が行われる。
燃料電池16では、アノード電極20の燃料ガス供給口28に、燃料ガスを供給するための燃料ガス供給流路30が接続され、アノード電極20の燃料排ガス排出口32に、燃料排ガスを排出するための燃料排ガス流路34が接続されている。また、カソード電極22の酸化剤ガス供給口36に、酸化剤ガスを供給するための酸化剤ガス供給流路38が接続され、カソード電極22の酸化剤排ガス排出口40に、酸化剤排ガスを排出するための酸化剤排ガス流路42が接続されている。
酸化剤ガス供給流路38には、その上流側から順に、圧縮ポンプ44と、加湿器46とが設けられる。また、酸化剤ガス供給流路38の圧縮ポンプ44と加湿器46との間には、圧縮酸化剤ガス流路48が接続されている。圧縮ポンプ44は、大気から酸化剤ガス供給流路38に酸化剤ガスとして空気を取り込み、該酸化剤ガスを圧縮した圧縮酸化剤ガスとして、酸化剤ガス供給流路38の下流側に圧送する。加湿器46は、酸化剤ガス供給流路38内の圧縮酸化剤ガスと、酸化剤排ガス流路42内の酸化剤排ガスとを水分交換させることで、カソード電極22に供給される前の圧縮酸化剤ガスを加湿する。
燃料ガス供給流路30には、水素タンク50に貯留された水素が燃料ガスとして供給される。燃料排ガス流路34の下流側には、燃料排ガスを気体と液体とに分離する気液分離器52が接続されている。燃料排ガスには、アノード電極20で消費されなかった燃料ガスの未消費分(以下、単に未消費分ともいう)と、カソード電極22から電解質膜18を介してアノード電極20に移動してきた、酸化剤ガス中の窒素や生成水等の不純物が含まれる。
気液分離器52では、燃料排ガス流路34を介して流入した燃料排ガスを、未消費分(以下、単に未消費分ともいう)を主に含む排出ガスと、生成水等を主に含む排出流体とに分離する。排出ガスを排出する気液分離器52の気体排出口54には、循環流路56が接続されているため、気体排出口54から循環流路56に排出ガスが排出される。
循環流路56の下流側は、燃料ガス供給流路30と接続されている。循環流路56と燃料ガス供給流路30との接続部にはエジェクタ58が設けられている。エジェクタ58には、その上流側に設けられた電磁弁(インジェクタ)60を介して燃料ガスが供給される。これによって、エジェクタ58は、排出ガスと燃料ガスとを混合して混合ガスとし、該混合ガスを、燃料ガス供給流路30の該エジェクタ58の下流側に排出する。
排出流体を排出する気液分離器52の液体排出口62には、排出流路64が接続されているため、液体排出口62から排出流路64に排出流体が排出される。排出流路64には、該排出流路64を開閉するドレイン弁66が介装され、該ドレイン弁66の下流側に流量制限部68が介装される。また、排出流路64の流量制限部68よりも下流側の端部は、酸化剤排ガス流路42に接続される。このため、ドレイン弁66が開状態にあるとき、排出流路64に排出された排出流体は、流量制限部68を介して酸化剤排ガス流路42に流入する。
図2に示すように、ドレイン弁66は、ソレノイド部70と弁部72とを有する。ソレノイド部70は、ソレノイドコイル74と、固定コア76と、プランジャ78と、固定コア76及びプランジャ78の間に介在するリターンスプリング80とを主に有する。ソレノイド部70では、ソレノイドコイル74の励磁によりプランジャ78を固定コア76で磁気吸引することが可能になっている。つまり、ソレノイドコイル74への通電を停止している状態では、プランジャ78は、リターンスプリング80の弾発力によって、固定コア76から離間した状態で維持される。一方、ソレノイドコイル74に通電を行っている状態では、プランジャ78は、リターンスプリング80の弾発力に抗して固定コア76に接近した状態で維持される。
弁部72は、入口ポート82及び出口ポート84が設けられた本体部86と、プランジャ78の固定コア76とは反対側の端部に取り付けられたダイヤフラム88とを主に有する。入口ポート82の上流側の端部は、排出流路64のドレイン弁66の上流側を構成する第1配管90(配管)とシール部材92を介して接続される。このため、液体排出口62から第1配管90の内部の排出流路64に流入した排出流体は、ドレイン弁66の入口ポート82に流入する。
入口ポート82の下流側の端部は、弁座94を構成する。プランジャ78が固定コア76から離間した状態にあるとき、弁座94にダイヤフラム88が着座する。この場合、入口ポート82の下流側の端部がダイヤフラム88によって閉塞されるため、ドレイン弁66は閉状態となる。
一方、プランジャ78が固定コア76に接近した状態にあるとき、弁座94からダイヤフラム88が離間する。この場合、入口ポート82の下流側の端部が開放され、ドレイン弁66は開状態となる。ドレイン弁66が開状態にあるとき、入口ポート82と該入口ポート82の外周側に設けられた出口ポート84とが連通するため、排出流体が入口ポート82から出口ポート84へと流通する。出口ポート84は、後述する外側管96の内部に連通する。
上記の通り、圧縮酸化剤ガス流路48は、酸化剤ガス供給流路38に接続されることで、圧縮酸化剤ガスが流入する(図1参照)。また、図2に示すように、圧縮酸化剤ガス流路48を構成する第2配管98の下流側の端部は、外側管96の上流側に接続されている。これによって、圧縮酸化剤ガス流路48を介して外側管96の内部に圧縮酸化剤ガスが導入される。
外側管96は、第1配管90の少なくともドレイン弁66の近傍の外周面と、ドレイン弁66の本体部86とを囲うことで、該第1配管90と二重管構造を形成する。外側管96の内周面と、第1配管90の外周面とが離間して、互いの間に圧縮酸化剤ガスの流路が形成されるように、外側管96の内径は、第1配管90の外径より大きく設定されている。
外側管96の上流側の端部には、該外側管96の内周面と第1配管90の外周面との間を閉塞する閉塞部100が設けられる。外側管96の下流側の端部は、ドレイン弁66の本体部86の出口ポート84にシール部材102を介して外嵌される。また、外側管96の下流側の端部の近傍には、排出流路64のドレイン弁66の下流側を構成する第3配管104が接続されている。このため、ドレイン弁66の入口ポート82から出口ポート84に排出された排出流体は外側管96の内部を介して第3配管104の内部、すなわち、排出流路64に流入する。また、圧縮酸化剤ガス流路48を介して外側管96の内部に導入された圧縮酸化剤ガスも、第3配管104の内部の排出流路64に流入する。
第3配管104の内部には、流量制限部68が設けられている。流量制限部68は、例えば、オリフィス等からなり、外側管96の内部から排出流路64へと排出される圧縮酸化剤ガスの流量を制限する。これによって、酸化剤ガス供給流路38から圧縮酸化剤ガス流路48に流入する圧縮酸化剤ガスの最大流量を所定の大きさに制限する。
図1に示すように、圧縮酸化剤ガス流路48には、外側管96の内部に導入される前の圧縮酸化剤ガスを加熱するヒータユニット106が介装される。つまり、圧縮酸化剤ガス流路48は、酸化剤ガス供給流路38からヒータユニット106に圧縮酸化剤ガスを導入するヒータ上流部48aと、ヒータユニット106で加熱された圧縮酸化剤ガスを外側管96の内部に導くヒータ下流部48bとを有する。
図3及び図4に示すように、ヒータユニット106は、ヒータ上流部48aと連通する導入空間112及びヒータ下流部48bと連通する加熱空間114を形成するボディ116と、加熱空間114を加熱するヒータ118と、導入空間112と加熱空間114の連通及び遮断を切り換える弁機構120とを有する。
ヒータ118は、その一端部側が、ボディ116に設けられた貫通孔122を介して加熱空間114の内部に挿通される。また、加熱空間114の外部に露出するヒータ118の他端部側は、不図示の電源に接続されている。なお、ヒータ118は、加熱空間114の内部に挿通されることに代えて、ボディ116の外部から加熱空間114を加熱可能に設けられてもよい。
弁機構120は、弁プレート124と、弁座部126とを主に有する。弁プレート124は、例えば金属等からなる線膨張係数が同じ複数枚のプレート128を、間隔をおいて重ねた状態で接合して形成される。本実施形態では、弁プレート124は、互いに間隔をおいて重ねた2枚のプレート128a、128bが、その鉛直方向の上側の一端縁部に設けられた接合部130を介して接合されている。
弁プレート124は、ボディ116の内部の導入空間112と加熱空間114との間に配設され、該弁プレート124の一端縁部が弁座部126に臨むように、該弁プレート124の他端縁部側(鉛直方向の下側)が、固定部131を介してボディ116に固定されている。
弁座部126は、図3に示すように、弁プレート124の一端縁部の加熱空間114側が該弁座部126に当接することで、導入空間112と加熱空間114とを遮断し、且つ図4に示すように、弁プレート124の一端縁部が該弁座部126から離間することで導入空間112と加熱空間114とを連通するように、ボディ116の鉛直方向上部に該ボディ116と一体に設けられる。
導入空間112の弁座部126の近傍には、弁プレート124の一端縁部が、弁座部126と当接する位置(閉位置)と、弁座部126から離間する位置(開位置)との間を移動可能にするべく、ボディ116の鉛直方向の上側に向かって広がる膨出部132が設けられている。
このように構成されるヒータユニット106では、弁プレート124が導入空間112と加熱空間114の温度差及び内圧差に応じて弾性変形することで、弁プレート124の一端縁部と弁座部126との距離、換言すると、弁機構120の開度が調整される。
具体的には、ヒータ118によって加熱空間114が加熱され、該加熱空間114と導入空間112との温度差が大きくなると、弁プレート124を構成するプレート128a、128bのうち、導入空間112に近接して配設される導入空間112側のプレート128aの熱膨張量が、加熱空間114に近接して配設される加熱空間114側のプレート128bの熱膨張量よりも大きくなる。
このように熱膨張量の差が生じた弁プレート124では、その一端縁部を弁座部126から導入空間112側に向かって離間させる方向に弾性変形させる応力が生じる。この応力が、ヒータ上流部48aから導入空間112に流入した圧縮酸化剤ガスにより弁プレート124の一端縁部を弁座部126に押圧する押圧力(導入空間112と加熱空間114との内圧差により生じる押圧力)を超える場合、該一端縁部が弁座部126から離間する。すなわち、弁機構120が開状態となる。
一方、加熱空間114と導入空間112との温度差が生じていない又は生じていても小さいことで、弁プレート124に生じる上記の応力が圧縮酸化剤ガスによる押圧力を超えない場合は、弁プレート124の一端縁部が弁座部126に当接する。すなわち、弁機構120が閉状態となる。
燃料電池16は、該燃料電池16に設けられた冷却媒体流路133に、冷却媒体を供給・排出するための冷却媒体供給流路134及び冷却媒体排出流路136がさらに付設されている。
制御部12は、不図示のCPU等を備えるマイクロコンピュータとして構成され、該CPUは、制御プログラムに従って所定の演算を実行し、燃料電池システム10の通常運転制御や、暖機制御等の種々の処理や制御を行う。また、制御部12は、燃料電池システム10の温度を検出する温度センサの検出情報のほか、燃料電池システム10を構成する各流路に流れる流体の圧力、温度、流量等を検出するセンサの検出情報や、燃料電池システム10がおかれる環境温度を検出する外気温センサの検出情報等が入力される(何れのセンサも不図示)。
そして、制御部12は、各センサの検出情報等に基づき、圧縮ポンプ44、ドレイン弁66、電磁弁60等を制御する。この制御により、燃料電池システム10には、要求発電量に応じた流量及び圧力の反応ガスが燃料電池16に供給される。また、燃料電池システム10の通常運転時には、所定のタイミングでドレイン弁66を開閉することで、燃料排ガスから分離された窒素等の不純物の排出も行われる。
基本的には、上記のように構成される燃料電池システム10の低温起動時の動作について、以下に説明する。
上記の温度センサや外気温センサの検出情報等に基づいて、燃料電池システム10の暖機が必要であると制御部12により判断された場合、燃料電池システム10の暖機運転を開始する。これによって、水素タンク50から燃料ガス供給流路30に燃料ガスが供給されるとともに、圧縮ポンプ44の回転作用下に酸化剤ガス供給流路38に圧縮酸化剤ガスが供給される。燃料ガス供給流路30に供給された燃料ガスは、電磁弁60及びエジェクタ58を経由して、アノード電極20に供給される。酸化剤ガス供給流路38に供給された酸化剤ガスは、その一部が圧縮酸化剤ガス流路48のヒータ上流部48aに流入し、残部が加湿器46を経由してカソード電極22に供給される。この圧縮酸化剤ガスは、圧縮ポンプ44により圧縮されることで、圧縮前の酸化剤ガスよりも高温になっている。
ヒータ上流部48aに流入した圧縮酸化剤ガスは、ヒータユニット106の導入空間112に流入する。ヒータユニット106では、ヒータ118により加熱空間114が加熱されている。また、低温環境下での起動時である分、導入空間112の温度が低くなっている。このため、加熱空間114と導入空間112との温度差が大きく、図4に示すように、弁機構120が開状態となっている。従って、互いに離間した弁プレート124の一端縁部と、弁座部126との間を介して導入空間112から加熱空間114へと圧縮酸化剤ガスが流入する。
加熱空間114に流入した圧縮酸化剤ガスは、ヒータ下流部48bに向かって加熱空間114内を流通する間に加熱される。ヒータユニット106では、目標の加熱温度となった圧縮酸化剤ガスがヒータ下流部48bに流入するように、加熱空間114を圧縮酸化剤ガスが流れる流速やヒータ118の温度等が設定される。
ヒータ下流部48bに流入した圧縮酸化剤ガスは、外側管96の内部に導かれる。外側管96の内部では、圧縮酸化剤ガスの熱によって、第1配管90を介して排出流路64が加熱される。また、外側管96に導入された圧縮酸化剤ガスは、排出流路64を加熱しつつドレイン弁66の出口ポート84の内部まで流通するため、ドレイン弁66の出口ポート84側も直接加熱することができる。
上記のように外側管96を流通した圧縮酸化剤ガスは、該外側管96の下流側の端部の近傍に接続された第3配管104の内部の排出流路64に流入する。第3配管104の内部には、流量制限部68が設けられている。このため、第3配管104の流量制限部68の下流側には、圧縮酸化剤ガスが流量を制限されつつ流入する。流量制限部68を通過する圧縮酸化剤ガスの流量は、酸化剤ガス供給流路38から圧縮酸化剤ガス流路48に流入する圧縮酸化剤ガスの最大流量が適切な大きさとなるように設定されている。
排出流路64の流量制限部68の下流側に流入した圧縮酸化剤ガスは、酸化剤排ガス流路42に導入される。これによって、圧縮酸化剤ガスは、酸化剤排ガス流路42を加熱する。
燃料電池16では、上記のように供給された燃料ガス及び酸化剤ガスが、アノード電極20のアノード触媒及びカソード電極22のカソード触媒での電気化学反応で消費され、発電が行われる。なお、燃料電池16の冷却媒体流路133には、冷却媒体供給流路134から冷却媒体が供給される。冷却媒体は、冷却媒体流路133を流通した後、冷却媒体排出流路136に排出される。
カソード電極22に供給されて一部の酸素が消費された酸化剤ガスは、酸化剤排ガスとして酸化剤排ガス流路42に排出される。この酸化剤排ガスは、例えば、加湿器46において、カソード電極22に新たに供給される酸化剤ガスを加湿した後、上記のように排出流路64を介して酸化剤排ガス流路42に流入した排出流体とともに燃料電池システム10の外部に排出される。
アノード電極20で消費されなかった燃料ガスの未消費分及び生成水や窒素等の不純物は、燃料排ガスとして燃料排ガス流路34に排出された後、気液分離器52に導入される。これによって、燃料排ガスは、気体成分である排出ガスと、液体成分である排出流体とに分離される。
上記のように電磁弁60からエジェクタ58の上流側に燃料ガスが噴射されることにより、循環流路56には負圧が生じている。このため、排出ガスは、循環流路56を介してエジェクタ58に吸引され、燃料ガス供給流路30に新たに供給された燃料ガスと混合された状態で、エジェクタ58の下流側に排出される。
つまり、発電反応で消費されずに燃料排ガスとしてアノード電極20から排出された未消費分は、生成水等の液体の水が分離されて排出ガスとなった後、再びアノード電極20に供給される。
一方、燃料排ガスから分離された、生成水等の液体の水を含む排出流体は、第1配管90の内部の排出流路64に流入する。上記の通り、排出流路64及びドレイン弁66は、圧縮酸化剤ガスにより加熱されるため、排出流路64やドレイン弁66の内部で排出流体が凍結することが抑制される。また、排出流路64やドレイン弁66の内部で排出流体が凍結した場合であっても、該凍結が解消される。
従って、排出流体は、第1配管90の内部と、制御部12による開弁指示に応じて開弁したドレイン弁66とを通過した後、外側管96の内部の圧縮酸化剤ガスとともに第3配管104の内部へ流入する。これによって、排出流体は、圧縮酸化剤ガス及び酸化剤排ガスとともに酸化剤排ガス流路42に流入し、燃料電池システム10の外部に排出される。
上記のように燃料電池システム10の暖機運転を行うことで、例えば、燃料電池システム10の温度が暖機完了温度に達したと制御部12により判断された場合には、暖機運転を終了し、燃料電池システム10の通常運転を開始する。
以上から、本実施形態に係る燃料電池システム10では、上記の通り、外側管96の内部に高温の圧縮酸化剤ガスを導くことで、該圧縮酸化剤ガスの熱により排出流路64やドレイン弁66を加熱することができる。気体である圧縮酸化剤ガスによれば、ヒータ等を設置することが困難な細部であっても容易に流入させて、排出流路64やドレイン弁66をその細部まで効果的に加熱することができる。
従って、この燃料電池システム10によれば、排出流路64やドレイン弁66の凍結を効果的に抑制又は解消することができるため、低温環境下における燃料電池16の発電安定性を良好に向上させることができる。
上記の通り、燃料電池システム10では、外側管96に導入される前の圧縮酸化剤ガスを加熱するヒータユニット106を備えることとした。気体の熱伝導率は、該気体の温度が上昇するにつれて上昇する。圧縮酸化剤ガスは、上記の通り圧縮ポンプ44により圧縮されることで昇温している分、熱伝導率も上昇している。このため、ヒータユニット106により圧縮酸化剤ガスを加熱することで、その温度を効率的に上昇させることができる。このように、ヒータユニット106によってさらに昇温させた圧縮酸化剤ガスを外側管96の内部に導くことで、排出流路64の凍結を一層効果的に解消することが可能になる。
ヒータユニット106が、上記のように構成されることで、電磁弁や電動ポンプ等を制御部12によって制御する特別な構成(不図示)によらず、排出流路64やドレイン弁66に導く圧縮酸化剤ガスの流量を適切に調整することができる。
例えば、このヒータユニット106では、燃料電池システム10の暖機の進行に合わせて、ヒータ下流部48bに適切な流量の圧縮酸化剤ガスを流通させることが可能である。低温環境下で起動した燃料電池システム10の暖機初期では、排出流路64やドレイン弁66等の温度が低いため、外側管96の内部に導く圧縮酸化剤ガスの流量が多いことが望ましい。この暖機初期では、導入空間112の温度が低い分、ヒータ118により加熱した加熱空間114と導入空間112との温度差が大きくなり、弁機構120の開度も大きくなる。これによって、加熱空間114に流入する圧縮酸化剤ガスの流量を増大させることができるため、ヒータ下流部48bを介して外側管96の内部に導く圧縮酸化剤ガスの流量を適切な大きさとすることができる。
一方、暖機後期では、圧縮酸化剤ガスを外側管96の内部に導くことに代えて、カソード電極22に供給する圧縮酸化剤ガスの流量を増大させることで、燃料電池16での電気化学反応を促進することが望ましい。この暖機後期では、燃料電池システム10全体の温度が暖機完了温度に近づいているため、導入空間112の温度も上昇しており、加熱空間114と導入空間112との温度差が小さくなり、弁機構120の開度も小さくなる。これによって、酸化剤ガス供給流路38から圧縮酸化剤ガス流路48に流入する圧縮酸化剤ガスの流量を減少させることができる分、カソード電極22に供給する圧縮酸化剤ガスの流量を増大させることができる。
また、このヒータユニット106では、導入空間112に流入する圧縮酸化剤ガスの単位時間当たりの流量(流速)が変動しても、ヒータ118の温度制御によらずに、加熱空間114から排出される圧縮酸化剤ガスの温度を目標の加熱温度に維持することができる。例えば、導入空間112に流入する圧縮酸化剤ガスの流速が減少した場合、導入空間112の内圧が減少して、弁機構120の開度が大きくなる。一方、導入空間112に流入する圧縮酸化剤ガスの流速が増大した場合、導入空間112の内圧が増大して、弁機構120の開度が小さくなる。従って、導入空間112に流入する圧縮酸化剤ガスの流速が増減しても、加熱空間114を通過する圧縮酸化剤ガスの流速の増減が抑制されるように弁機構120の開度が調整されるため、加熱空間114内で圧縮酸化剤ガスを同様に加熱して目標の加熱温度とすることができる。
さらに、このヒータユニット106では、ヒータ118の温度を調整して、圧縮酸化剤ガスの目標加熱温度を調整した場合であっても、調整後の目標加熱温度を良好に維持することができる。例えば、ヒータ118の温度を上昇させて加熱空間114の温度を上昇させると、加熱空間114と導入空間112との温度差が大きくなるため、弁機構120の開度が大きくなり、加熱空間114に流入する圧縮酸化剤ガスの流速が増大する。これによって、圧縮酸化剤ガスに奪われる加熱空間114の熱量が大幅に増大し、加熱空間114の温度が低下した場合、上記の温度差が小さくなるため、弁機構120の開度が小さくなる。このため、加熱空間114からヒータ下流部48bに流入する圧縮酸化剤ガスの温度を目標加熱温度に維持することができる。
一方、ヒータ118の温度を降下させると、上記の温度差が小さくなり、弁機構120の開度が小さくなるため、加熱空間114に流入する圧縮酸化剤ガスの流速が減少する。これによって、圧縮酸化剤ガスに奪われる加熱空間114の熱量が大幅に減少し、加熱空間114の温度が上昇した場合、上記の温度差が大きくなるため、弁機構120の開度が大きくなる。このため、加熱空間114からヒータ下流部48bに流入する圧縮酸化剤ガスの温度を目標加熱温度に維持することができる。
上記の通り、燃料電池システム10では、圧縮酸化剤ガス流路48が外側管96の内部に圧縮酸化剤ガスを導き、外側管96が第3配管104の内部の排出流路64に圧縮酸化剤ガスを導くこととした。これによって、排出流路64を加熱することと、ドレイン弁66の出口ポート84側を直接加熱することができるため、排出流路64やドレイン弁66の凍結をより効果的に抑制又は解消することができる。なお、圧縮酸化剤ガス流路48が圧縮酸化剤ガスを導く先は、外側管96の内部に限定されるものではなく、少なくとも排出流路64又はその近傍であればよい。
上記の通り、燃料電池システム10では、排出流路64のドレイン弁66よりも下流側が、酸化剤排ガス流路42に連通することとした。これによって、排出流路64を介して酸化剤排ガス流路42に圧縮酸化剤ガスを流通させることができるため、酸化剤排ガス流路42を加熱することも可能になる。その結果、酸化剤排ガス流路42における、酸化剤排ガスに含まれる生成水等の凍結も抑制及び解消することが可能になる。なお、排出流路64の下流側は、酸化剤排ガス流路42に連通していなくてもよく、例えば、排出流路64から燃料電池システム10の外部に直接圧縮酸化剤ガスを排出可能な構成としてもよい。また、圧縮酸化剤ガスを、酸化剤排ガス流路42以外の加熱することが好ましい燃料電池システム10の構成要素に導いてもよい。
上記の通り、燃料電池システム10では、ドレイン弁66の下流側で圧縮酸化剤ガスの流量を制限する流量制限部68により、圧縮酸化剤ガス流路48に導入される圧縮酸化剤ガスの最大流量が制限されることとした。これによって、圧縮酸化剤ガスが流量制限部68よりも上流側に滞留し易くなるため、該圧縮酸化剤ガスによって排出流路64及びドレイン弁66を効果的に加熱することが可能になる。なお、流量制限部68は、圧縮酸化剤ガス流路48のドレイン弁66の上流側に設けられていてもよいし、圧縮酸化剤ガス流路48に設けられていなくてもよい。
上記のヒータユニット106では、弁座部126がボディ116の鉛直方向上部に設けられることとしたため、例えば、ヒータユニット106を流通する圧縮酸化剤ガスに結露水等が含まれていた場合であっても、該結露水が弁座部126や、弁プレート124の一端縁部に付着することを回避できる。これによって、上記の結露水によって妨げられることなく、ヒータユニット106を通過する圧縮酸化剤ガスの流量を弁機構120によって良好に制御することができる。なお、ボディ116の弁座部126が設けられる箇所は、鉛直方向上部に限定されない。
本発明は、上記した実施形態に特に限定されるものではなく、本発明の主旨を逸脱しない範囲で種々の変更が可能である。
例えば、上記の実施形態に係る燃料電池システム10では、圧縮酸化剤ガス流路48にヒータユニット106を介装することとしたが、燃料電池システム10は、ヒータユニット106を備えていなくてもよい。また、ヒータユニット106に代えて、不図示のヒータ等の圧縮酸化剤ガスを加熱する構成と、不図示の電磁弁等の圧縮酸化剤ガス流路48を流通する圧縮酸化剤ガスの流量を制御する構成とをそれぞれ別個に設けてもよい。
上記の実施形態では、接続部にエジェクタ58を設けることとしたが、特にこれに限定されるものではない。例えば、エジェクタ58を設けることに代えて、循環流路56に不図示のポンプ等を設けて、循環ガスを循環させてもよい。
10…燃料電池システム 16…燃料電池
20…アノード電極 22…カソード電極
38…酸化剤ガス供給流路 42…酸化剤排ガス流路
44…圧縮ポンプ 48…圧縮酸化剤ガス流路
48a…ヒータ上流部 48b…ヒータ下流部
52…気液分離器 62…液体排出口
64…排出流路 66…ドレイン弁
68…流量制限部 96…外側管
106…ヒータユニット 112…導入空間
114…加熱空間 116…ボディ
118…ヒータ 120…弁機構
124…弁プレート 126…弁座部
128、128a、128b…プレート

Claims (6)

  1. 燃料電池のアノード電極に燃料ガスを供給し、且つ前記燃料電池のカソード電極に酸化剤ガスを供給して発電を行う燃料電池システムであって、
    前記カソード電極に供給する前記酸化剤ガスを圧縮して圧縮酸化剤ガスとする圧縮ポンプと、
    前記アノード電極から排出される燃料排ガスを気体と液体とに分離する気液分離器と、
    前記気液分離器の液体排出口に連通する排出流路と、
    前記圧縮酸化剤ガスを前記排出流路又は該排出流路の近傍に導く圧縮酸化剤ガス流路と、
    前記圧縮酸化剤ガス流路に介装され、前記排出流路又は該排出流路の近傍に導かれる前の前記圧縮酸化剤ガスを加熱するヒータユニットと、を備えることを特徴とする燃料電池システム。
  2. 請求項記載の燃料電池システムにおいて、
    前記圧縮酸化剤ガス流路は、前記ヒータユニットに前記圧縮酸化剤ガスを導入するヒータ上流部と、前記ヒータユニットで加熱された前記圧縮酸化剤ガスを前記排出流路又は該排出流路の近傍に導くヒータ下流部と、を有し、
    前記ヒータユニットは、前記ヒータ上流部と連通する導入空間及び前記ヒータ下流部と連通する加熱空間を形成するボディと、前記加熱空間を加熱するヒータと、前記導入空間と前記加熱空間の連通及び遮断を切り換える弁機構と、を有し、
    前記弁機構は、前記導入空間と前記加熱空間との間に配置され、且つ線膨張係数が同じ複数枚のプレートが間隔を置いて重ねられた状態で接合された弁プレートと、前記弁プレートの一端縁部の前記加熱空間側が当接することで前記導入空間と前記加熱空間とを遮断し、且つ前記弁プレートの一端縁部が離間することで前記導入空間と前記加熱空間とを連通する弁座部と、を有し、
    前記弁プレートの他端縁部側が前記ボディに固定された状態で、該弁プレートが前記導入空間と前記加熱空間の温度差及び内圧差に応じて弾性変形することで、前記弁プレートの一端縁部と前記弁座部との距離が調整され、前記弁機構の開度が調整されること特徴とする燃料電池システム。
  3. 燃料電池のアノード電極に燃料ガスを供給し、且つ前記燃料電池のカソード電極に酸化剤ガスを供給して発電を行う燃料電池システムであって、
    前記カソード電極に供給する前記酸化剤ガスを圧縮して圧縮酸化剤ガスとする圧縮ポンプと、
    前記アノード電極から排出される燃料排ガスを気体と液体とに分離する気液分離器と、
    前記気液分離器の液体排出口に連通する排出流路と、
    前記圧縮酸化剤ガスを前記排出流路又は該排出流路の近傍に導く圧縮酸化剤ガス流路と、
    前記排出流路を開閉するドレイン弁と、を備え、
    前記圧縮酸化剤ガス流路は、前記ドレイン弁に前記圧縮酸化剤ガスを導き、
    前記ドレイン弁の下流側で前記圧縮酸化剤ガスの流量を制限する流量制限部により、前記圧縮酸化剤ガス流路に導入される前記圧縮酸化剤ガスの最大流量が制限されることを特徴とする燃料電池システム。
  4. 燃料電池のアノード電極に燃料ガスを供給し、且つ前記燃料電池のカソード電極に酸化剤ガスを供給して発電を行う燃料電池システムであって、
    前記カソード電極に供給する前記酸化剤ガスを圧縮して圧縮酸化剤ガスとする圧縮ポンプと、
    前記アノード電極から排出される燃料排ガスを気体と液体とに分離する気液分離器と、
    前記気液分離器の液体排出口に連通する排出流路と、
    前記圧縮酸化剤ガスを前記排出流路又は該排出流路の近傍に導く圧縮酸化剤ガス流路と、
    前記排出流路を開閉するドレイン弁と、を備え、
    前記圧縮酸化剤ガス流路は、前記ドレイン弁に前記圧縮酸化剤ガスを導き、
    前記圧縮酸化剤ガス流路は、前記排出流路を構成する配管の前記ドレイン弁の上流側の外周面を囲う外側管の内部に前記圧縮酸化剤ガスを導き、
    前記外側管は、前記排出流路の前記ドレイン弁の下流側と連通して、該排出流路内に前記圧縮酸化剤ガスを導くことを特徴とする燃料電池システム。
  5. 請求項4記載の燃料電池システムにおいて、
    前記排出流路の前記ドレイン弁よりも下流側は、前記カソード電極から酸化剤排ガスが排出される酸化剤排ガス流路に連通することを特徴とする燃料電池システム。
  6. 請求項又は記載の燃料電池システムにおいて、
    前記ドレイン弁の下流側で前記圧縮酸化剤ガスの流量を制限する流量制限部により、前記圧縮酸化剤ガス流路に導入される前記圧縮酸化剤ガスの最大流量が制限されることを特徴とする燃料電池システム。
JP2018034604A 2018-02-28 2018-02-28 燃料電池システム Active JP7075780B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018034604A JP7075780B2 (ja) 2018-02-28 2018-02-28 燃料電池システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018034604A JP7075780B2 (ja) 2018-02-28 2018-02-28 燃料電池システム

Publications (2)

Publication Number Publication Date
JP2019149339A JP2019149339A (ja) 2019-09-05
JP7075780B2 true JP7075780B2 (ja) 2022-05-26

Family

ID=67850729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018034604A Active JP7075780B2 (ja) 2018-02-28 2018-02-28 燃料電池システム

Country Status (1)

Country Link
JP (1) JP7075780B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7354920B2 (ja) * 2020-05-11 2023-10-03 トヨタ自動車株式会社 燃料電池システム
DE102021214865A1 (de) * 2021-12-22 2023-06-22 Robert Bosch Gesellschaft mit beschränkter Haftung Brennstoffzellenvorrichtung
JP2023101132A (ja) * 2022-01-07 2023-07-20 マイクロコントロールシステムズ株式会社 燃料電池排ガスを水交換により除湿する窒素ガス生成装置及び方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000251915A (ja) 1999-03-03 2000-09-14 Nissan Motor Co Ltd 燃料電池システム
JP2002313389A (ja) 2001-04-10 2002-10-25 Honda Motor Co Ltd 燃料電池の始動制御装置
JP2007115485A (ja) 2005-10-19 2007-05-10 Nissan Motor Co Ltd 燃料電池システム
JP2009176498A (ja) 2008-01-23 2009-08-06 Honda Motor Co Ltd 燃料電池システム
JP2016501348A (ja) 2012-12-05 2016-01-18 インテリジェント エナジー リミテッドIntelligent Energy Limited マイクロバルブ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000251915A (ja) 1999-03-03 2000-09-14 Nissan Motor Co Ltd 燃料電池システム
JP2002313389A (ja) 2001-04-10 2002-10-25 Honda Motor Co Ltd 燃料電池の始動制御装置
JP2007115485A (ja) 2005-10-19 2007-05-10 Nissan Motor Co Ltd 燃料電池システム
JP2009176498A (ja) 2008-01-23 2009-08-06 Honda Motor Co Ltd 燃料電池システム
JP2016501348A (ja) 2012-12-05 2016-01-18 インテリジェント エナジー リミテッドIntelligent Energy Limited マイクロバルブ

Also Published As

Publication number Publication date
JP2019149339A (ja) 2019-09-05

Similar Documents

Publication Publication Date Title
JP6886914B2 (ja) 燃料電池システム及びその制御方法
CA2380213C (en) Start control device for fuel cell system
US8628886B2 (en) Fuel cell system
JP4687679B2 (ja) 燃料電池システム
JP7075780B2 (ja) 燃料電池システム
US8431282B2 (en) Closed coolant loop with expansion device for a fuel cell system
CN109950576B (zh) 燃料电池系统以及其控制方法
JP6015525B2 (ja) 燃料電池システム
JP2017147135A (ja) 燃料電池システムの制御方法
JP4379205B2 (ja) 電磁弁制御装置
US10511032B2 (en) Fuel cell with purge manifold
JP2009193781A (ja) 燃料電池システム
US8722269B2 (en) Fuel cell system and scavenging method therefor
JP4280185B2 (ja) 弁装置
JP2010027217A (ja) 燃料電池システム
JP6307536B2 (ja) 燃料電池システムの低温起動方法
JP6185296B2 (ja) パージ弁
JP4656185B2 (ja) 燃料電池システム
JP2017084665A (ja) 燃料電池システムの制御方法及び燃料電池システム
JP7294266B2 (ja) 燃料電池システムおよび燃料電池システムの制御方法
EP4250410A2 (en) Fuel cell system
JP2005276764A (ja) 燃料電池システム
JP2008071669A (ja) 燃料電池システム
JP2020170650A (ja) 燃料電池システム
JP2020027708A (ja) 燃料電池システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220516

R150 Certificate of patent or registration of utility model

Ref document number: 7075780

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150