JP7068849B2 - 研削装置 - Google Patents

研削装置 Download PDF

Info

Publication number
JP7068849B2
JP7068849B2 JP2018027436A JP2018027436A JP7068849B2 JP 7068849 B2 JP7068849 B2 JP 7068849B2 JP 2018027436 A JP2018027436 A JP 2018027436A JP 2018027436 A JP2018027436 A JP 2018027436A JP 7068849 B2 JP7068849 B2 JP 7068849B2
Authority
JP
Japan
Prior art keywords
wafer
grinding
thickness
measuring means
mobile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018027436A
Other languages
English (en)
Other versions
JP2019141946A (ja
Inventor
文雄 間瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Seimitsu Co Ltd
Original Assignee
Tokyo Seimitsu Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Seimitsu Co Ltd filed Critical Tokyo Seimitsu Co Ltd
Priority to JP2018027436A priority Critical patent/JP7068849B2/ja
Publication of JP2019141946A publication Critical patent/JP2019141946A/ja
Priority to JP2022075784A priority patent/JP7331198B2/ja
Application granted granted Critical
Publication of JP7068849B2 publication Critical patent/JP7068849B2/ja
Priority to JP2023129724A priority patent/JP2023153219A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
  • Grinding Of Cylindrical And Plane Surfaces (AREA)
  • Grinding-Machine Dressing And Accessory Apparatuses (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Description

本発明は、ウェハを研削する研削装置に関するものである。
半導体製造分野では、シリコンウェハ等の半導体ウェハ(以下、「ウェハ」という)の上面を研削して、ウェハを所望の形状に加工する研削装置が知られている。近年では、ウェハの薄膜化が進んだり、ウェハの表裏を貫通する貫通電極が形成される等して、ウェハを略均一な厚みに加工するニーズが高まっている。
また、薄いウェハを研削加工する場合に、ウェハの非研削面側に接着樹脂を介してサポート基板を貼り付けた状態で研削加工を行うことがある。しかしながら、サポート基板の厚みバラつきや接着樹脂の厚みムラが、研削加工後のウェハ形状に転写されてしまうため、サポート基板、接着樹脂の厚みの不均一性を考慮した上で、ウェハ厚みの枚様補正を行う必要がある。
ウェハ厚みを確認しながら研削加工を行う必要があるが、加工中はウェハの厚みが常に減少し続けるため、ウェハ上の厚み測定位置を変更すると、測定値の変化が削り代に起因するものかウェハ内の厚みばらつきに起因するものかが区別できなかった。
特許文献1記載の研削加工装置では、研削加工を途中まで行った後に下降を中断して、ウェハの形状を測定し、この測定された形状を所望の形状に補正するように研削を再開する。
また、特許文献2記載の表面研削装置では、ウェハの半半径方向に所定間隔をあけて配置された3つの非接触センサが、研削加工中のウェハの厚みを定点で測定することによりウェハの形状を測定する。
特開2008-264913号公報 特開平9-85619号公報
しかしながら、特許文献1記載の装置では、ウェハの厚みを測定するに際して、砥石をウェハから離れるように退避させる必要があり、加工時間が長くなるとともに、加工の中断前後で加工位置の連続性が保てないという問題があった。
また、特許文献2記載の装置では、定点測定を行う非接触センサを3つ用意する必要があり、装置構成が複雑になるという問題があった。
そこで、研削加工を効率的に行えるとともに部品点数が少ないシンプルな構成でウェハ形状を測定するために解決すべき技術的課題が生じてくるのであり、本発明はこの課題を解決することを目的とする。
上記目的を達成するために、本発明に係る研削装置は、砥石でウェハの上面を研削する研削装置であって、前記ウェハの研削加工中に前記ウェハの厚みを定点測定する固定式測定手段と、前記ウェハの研削加工中に前記ウェハの厚みを前記ウェハの半径方向に移動しながら測定する移動式測定手段と、前記移動式測定手段の測定値から前記固定式測定手段の測定値を減じることにより、前記ウェハの形状を演算する制御装置と、を備えている。
この構成によれば、移動式測定手段及び固定式測定手段が研削加工中にウェハの厚みを測定し、移動式測定手段の測定値から固定式測定手段の測定値を減じることにより、移動式測定手段の測定値の厚みの変化量から研削の削り代に起因する厚みの変化量が取り除かれるため、加工を中断することなくウェハの形状を演算することができる。また、移動式測定手段及び固定式測定手段を用いてウェハの形状を演算するため、少ない部品点数で装置を構築することができる。
また、本発明に係る研削装置は、前記ウェハを回転可能に吸着保持する保持手段をさらに備え、前記移動式測定手段は、前記保持手段の回転角度に基づいて前記ウェハの周方向における1周分の厚みを測定することが好ましい。
この構成によれば、移動式測定手段は、ウェハの周方向において1周分の厚みを測定するため、ウェハの厚みを効率良く測定して、短時間でウェハの形状を演算することができる。
また、本発明に係る研削装置は、前記制御装置は、前記半径方向における前記移動式測定手段の測定座標及び前記周方向における前記移動式測定手段の測定値に基づいて前記ウェハの形状を演算することが好ましい。
この構成によれば、移動式測定手段の測定座標、すなわち半径方向座標及び周方向座標毎にウェハの厚みを算出するため、ウェハの形状を精度良く演算することができる。
また、本発明に係る研削装置は、前記ウェハの上面にクーラントを供給するクーラント供給手段を備え、前記固定式測定手段又は前記移動式測定手段は、前記ウェハの回転方向において前記砥石を挟んで前記クーラント供給手段の反対側に配置されていることが好ましい。
この構成によれば、砥石を通過してスラッジを含むクーラントが、ウェハの回転に伴う遠心力で外側に飛散するため、固定式測定手段又は移動式測定手段は、ウェハの厚みを精度良く測定することができる。
また、本発明に係る研削装置は、前記移動式測定手段の測定範囲に圧縮空気を噴射するエア供給手段をさらに備えていることが好ましい。
この構成によれば、移動式測定手段の測定点に存在するクーラントが、エアブローで飛散するため、移動式測定手段は、ウェハの厚みを精度良く測定することができる。
本発明は、移動式測定手段及び固定式測定手段が研削加工中にウェハの厚みを測定し、移動式測定手段の測定値から固定式測定手段の測定値を減じることにより、移動式測定手段の測定値の厚みの変化量から研削の削り代に起因する厚みの変化量が取り除かれて、加工を中断することなくウェハの形状を演算することができる。また、移動式測定手段及び固定式測定手段を用いてウェハの形状を演算するため、少ない部品点数で装置を構築することができる。
本発明の一実施形態に係る研削装置を示す斜視図。 研削装置を示す平面図。 移動式厚み測定器の先端部分の内部構造を示す一部切欠側面図。 移動式厚み測定器の搖動範囲を示す模式図。 固定式厚み測定器の構造を示す模式図。 移動式厚み測定器がウェハ厚みを測定する位置を示す側面図。 ウェハ厚みの測定結果を示す図。 ウェハ厚みの測定結果からウェハ形状を導く過程を説明する図。 図7の測定結果に基づくウェハ形状を示す図。
本発明の実施形態について図面に基づいて説明する。なお、以下では、構成要素の数、数値、量、範囲等に言及する場合、特に明示した場合及び原理的に明らかに特定の数に限定される場合を除き、その特定の数に限定されるものではなく、特定の数以上でも以下でも構わない。
また、構成要素等の形状、位置関係に言及するときは、特に明示した場合及び原理的に明らかにそうでないと考えられる場合等を除き、実質的にその形状等に近似又は類似するもの等を含む。
また、図面は、特徴を分かり易くするために特徴的な部分を拡大する等して誇張する場合があり、構成要素の寸法比率等が実際と同じであるとは限らない。また、断面図では、構成要素の断面構造を分かり易くするために、一部の構成要素のハッチングを省略することがある。
図1は、本発明の一実施形態に係る研削装置1を示す斜視図である。図2は、研磨装置を示す平面図である。研削装置1は、ウェハチャック2に吸着保持されたウェハWの上面を研削して、ウェハWを所望の形状に形成するものである。
研削装置1は、ウェハチャック2と、研削手段3と、を備えている。
ウェハチャック2は、ウェハチャック2の中央を通る回転軸a1を中心として回転方向C1に沿って回転可能に設けられている。なお、複数のウェハWを連続して研削加工するために、研削装置1は、複数のウェハチャック2を備えている。複数のウェハチャック2は、インデックステーブル4の回転軸を中心に円周上で所定の間隔を空けてインデックステーブル4上に配置されている。なお、図2中の符号10は、研削装置1を収容するケーシングである。
ウェハチャック2は、上面にアルミナ等の多孔質材料からなる吸着体21が埋設されている。ウェハチャック2は、内部を通って吸着体21の表面に延びる図示しない管路を備えている。管路は、図示しないロータリージョイントを介して真空源、圧縮空気源又は給水源に接続されている。真空源が起動すると、ウェハチャック2に載置されたウェハWがウェハチャック2に吸着保持される。また、圧縮空気源又は給水源が起動すると、ウェハWとウェハチャック2との吸着が解除される。
ウェハWは、バッググラインドテープや、ガラス基板、シリコン基板等のサポート基板にマウントされた状態でウェハチャック2に吸着保持される。特に、ウェハWが薄く、大口径化するにつれて、サポート基板が用いられることが多い。
研削手段3は、研削砥石31と、研削砥石31が取り付けられたスピンドル32と、を備えている。
研削砥石31は、スピンドル32の先端に水平に取り付けられている。研削砥石31がウェハWに押し当てられることにより、ウェハWが研削される。
スピンドル32は、図示しないモータによって回転軸a2を中心として回転方向C2に沿って研削砥石31を回転させる。スピンドル32は、図示しないスピンドル送り機構に片持ち支持されており、スピンドル送り機構によって鉛直方向に昇降可能である。
ウェハチャック2には、回転軸a1を傾斜させるチルト機構5が設けられている。チルト機構5は、チルトテーブル51と、固定支持部52と、2つの可動支持部53、54と、を備えている。
チルトテーブル51は、平面視で略三角形状に形成されている。チルトテーブル51には、固定支持部52及び可動支持部53、54が、回転軸a1を中心にして同心円上に等間隔を空けて配置されている。
固定支持部52は、チルトテーブル51をインデックステーブル4に締結するボルトである。
可動支持部53、54は、インデックステーブル4とチルトテーブル51との間に介装されたボールネジを用いたスライド機構である。可動支持部53、54が、ボールネジの回転に応じてチルトテーブル51をインデックステーブル4に対してそれぞれ遠近移動させることにより、回転軸a1が傾斜する。可動支持部53は、固定支持部52に対してウェハチャック2の回転方向C1の上流側に配置されている。可動支持部54は、固定支持部52に対してウェハチャック2の回転方向C1の下流側に配置されている。
研削装置1は、クーラント供給機構6を備えている。クーラント供給機構6は、ノズル61の先端からウェハWの上面に向けてクーラントを供給する。ノズル61は、ウェハチャック2の回転方向C1において研削砥石31の上流側に配置されている。
研削装置1は、移動式厚み測定器7と、固定式厚み測定器8と、を備えている。
移動式厚み測定器7は、ウェハW上の半径方向に移動しながらウェハ厚みを測定する。移動式厚み測定器7は、センサ71と、センサ71が先端に設けられたアーム72と、を備えている。
センサ71は、研削加工中に非接触式でウェハWの厚みを測定する膜厚センサである。センサ71は、例えば、分光干渉式の膜厚センサが好ましい。分光干渉式の膜厚センサは、振動等の外乱に強く、高精度でウェハWの厚みを測定することができる。以下では、センサ71として、分光干渉式の膜厚センサを採用した場合を例に説明する。
センサ71の図示しないセンサヘッドが、センサヘッドからウェハWに向けて光を照射し、またウェハWの上面及び下面で反射した光が干渉した反射光を受光する。反射光は、分光器によって分光され、後述する制御装置9が、ウェハWの上面で反射した光とウェハWの下面で反射した光との光路差に基づいてウェハWの厚みを算出する。
図3に示すように、センサ71の光路上には、樹脂製の透光窓73が設けられている。これにより、ウェハWの上面に供給されたクーラントがセンサ71の内部に侵入することが回避される。
また、センサ71には、外部の圧縮空気源に接続されたエア供給口74が設けられている。エア供給口74から供給された圧縮空気は、エア排出口75を介してウェハWの上面に噴射される。これにより、センサ71の測定範囲に存在するクーラントが、エアブローによって除去されるため、クーラントによる光の散乱が抑制され、ウェハWの厚みを精度良く測定することができる。
アーム72は、駆動軸76を支点としてウェハWの半径方向に搖動可能である。具体的には、図4に示すように、アーム72は、センサ71がウェハWの外周縁から研削砥石31に干渉しない位置までをスキャンできるように搖動可能である。
固定式厚み測定器8は、ウェハW上の半径方向の所定位置においてウェハ厚みを定点測定する。固定式厚み測定器8は、一対のセンサヘッド81、82を備えている。図5に示すように、センサヘッド81は、ウェハWの上面に接触可能に配置されており、センサヘッド81の下端の高さを測定する。センサヘッド82は、センサヘッド81の外側に配置され、ウェハチャック2の上面に接触可能に設けられており、センサヘッド82の下端の高さを測定する。センサヘッド81、82の各測定値の差が、ウェハWの厚みとなる。
移動式厚み測定器7及び固定式厚み測定器8は、ウェハチャック2の回転方向C1において研削砥石31の下流側に配置されている。これにより、研削砥石31を通過してスラッジを含んだクーラントが、ウェハWの回転に伴う遠心力でウェハWの外側に飛散するため、移動式厚み測定器7及び固定式厚み測定器8は、スラッジ及びクーラントに阻害されることなく厚み測定を行うことができる。
研削装置1の動作は、制御装置9によって制御される。制御装置9は、研削装置1を構成する構成要素をそれぞれ制御するものである。制御装置9は、例えば、CPU、メモリ等により構成される。なお、制御装置9の機能は、ソフトウェアを用いて制御することにより実現されても良く、ハードウェアを用いて動作することにより実現されても良い。
次に、研削装置1の動作について、直径300mmのウェハを例に説明する。
[加工準備]
まず、ウェハWをウェハチャック2に吸着保持させ、研削砥石31をウェハWの近傍まで下降させる。次に、研削砥石31及びウェハチャック2をそれぞれ回転させる。また、クーラントをウェハWの上面に供給する。
センサヘッド81の先端をウェハWに着地させ、センサヘッド82の先端をウェハチャック2に着地させる。センサヘッド81は、ウェハWの回転中心を原点とする半径(R)方向座標系においてR=145mmの位置に配置される。制御装置9には、研削加工開始前のセンサヘッド81、82の差、すなわちウェハWの初期厚み(例えば、224μm)が記憶される。
アーム72を搖動させて、センサ71をR=145mmの位置(測定位置P1)に移動させる。また、圧縮空気の供給を開始してエア排出口75からウェハWの上面に向けてエアブローを開始する。
[研削加工]
スピンドル32をウェハWに当てた状態からさらに降下させ、研削砥石31をウェハWに押し付けることにより、ウェハWを研削する。固定式厚み測定器8は、加工中に亘ってウェハWの厚みを測定し続ける。
固定式厚み測定器8の測定値が、研削後の目標厚み(例えば、206μm)に達すると、制御装置9が、研削砥石31とウェハチャック2を停止させ、研削砥石31を上方に退避させることにより、研削加工を終える。
[形状演算]
研削加工中にウェハWの形状を演算する手順について説明する。センサヘッド81、82の差が初期厚みから約5μm減少すると、センサ71は、測定位置P1において、ウェハWが1周回転するまでウェハWの厚みを測定する。なお、センサ71による測定の開始及び終了は、ウェハチャック2を回転させるモータの回転角度θと同期して制御される。
測定位置P1においてウェハWの1周分の厚み測定が終了すると、制御装置9は、アーム72を搖動させて、センサ71をR=140mmの位置(測定位置P2)に移動させて、測定位置P1での測定と同様に、ウェハWが1周回転するまでウェハWの厚みを測定する。
以下、同様に、R=120mmの位置(測定位置P3)、R=110mmの位置(測定位置P4)、R=80mmの位置(測定位置P5)、R=60mmの位置(測定位置P6)、R=40mmの位置(測定位置P7)、R=20mmの位置(測定位置P8)においてウェハWの厚み測定を行う。上述した測定位置P1~P8の位置関係を図6に示す。なお、センサ71の測定位置の半径方向座標及び数は、上述した組み合わせに限定されず、他の組み合わせであっても構わない。
図7は、横軸を移動式厚み測定器7による測定を開始した時間を原点とした経過時間t(ms)、左縦軸を移動式厚み測定器7及び固定式厚み測定器8の測定値T(μm)、右縦軸を移動式厚み測定器7の測定値と固定式厚み測定器8の測定値との差ΔT(μm)に設定したグラフである。図7中の連続した線(測定値T1)は、固定式厚み測定器8の測定値であり、測定値T1に沿う上側の不連続な線(測定値T2)は、移動式厚み測定器7の測定値である。なお、移動式厚み測定器7の測定値は、図7中の左から順にP1~P8に対応している。
測定値T1によれば、研削加工が進むにつれてウェハWの厚みが徐々に薄くなることが分かる。また、測定値T2は、測定位置P1~P8におけるウェハWの1周分の厚みを示している。そして、測定値T2から測定値T1を減じることにより、ウェハWの形状を得ることができる。
測定位置P1を例に具体的に説明すると、図8に示すように、測定位置P1では、R=145mmの位置においてウェハWが1周する間に測定地点が移動するため、測定値T2の変化が、研削加工による削り代に起因するものか、それともウェハW内の厚みバラつきに起因するものかが判別できない。
一方、固定式厚み測定器8は、ウェハWの厚みを定点測定するため、測定値T1は、移動式厚み測定器7による測定を開始した時間から減少した厚みは、研削加工の削り代に対応する。
したがって、測定値T2から測定値T1から減じることにより、測定値T2の変化から研削加工による削り代の影響を除外できる。図7中の下側の不連続な線(T3)は、測定値T2から測定値T1を減じたものであり、図7中の左から順にP1~P8に対応している。
そして、制御装置9が、移動式厚み測定器7が厚み測定を行った測定点の座標(R、θ)における測定値T3に基づいてウェハWの形状を演算する。図9に、図8中の測定値T3に基づいて演算したウェハWの形状を示すコンター図を示す。なお、測定位置P1~P8の間及びR<20mmの領域は、移動式厚み測定器7によるスキャンは行われないため、例えば予め取得しておいた別のウェハの形状を参照してウェハWの形状を予測する。
これにより、本実施形態に係る研削装置1は、移動式厚み測定器7及び固定式厚み測定器8が研削加工中にウェハWの厚みを測定し、移動式厚み測定器7の測定値T2から固定式厚み測定器8の測定値T1を減じることにより、移動式厚み測定器7の測定値T2の厚み変化から研削の削り代に起因する変化が取り除かれて、加工を中断することなくウェハWの形状を演算することができる。また、移動式厚み測定器7及び固定式厚み測定器8を用いてウェハWの形状を演算するため、少ない部品点数で装置を構築することができる。
また、本発明は、本発明の精神を逸脱しない限り、上記以外にも種々の改変を為すことができ、そして、本発明が該改変されたものに及ぶことは当然である。
1 ・・・研削装置
2 ・・・ウェハチャック
21 ・・・吸着体
3 ・・・研削手段
31 ・・・研削砥石
32 ・・・スピンドル
4 ・・・インデックステーブル
5 ・・・チルト機構
51 ・・・チルトテーブル
52 ・・・固定支持部
53、54・・・可動支持部
6 ・・・クーラント供給機構
61 ・・・ノズル
7 ・・・移動式厚み測定器
71 ・・・センサ
72 ・・・アーム
73 ・・・透光窓
74 ・・・エア供給口
75 ・・・エア排出口
76 ・・・駆動軸
8 ・・・固定式厚み測定器
81、82・・・センサヘッド
9 ・・・制御装置
C1 ・・・(ウェハチャックの)回転方向
C2 ・・・(研削砥石の)回転方向
W ・・・ウェハ
a1 ・・・(ウェハチャックの)回転軸
a2 ・・・(研削砥石の)回転軸

Claims (6)

  1. 砥石でウェハの上面を研削する研削装置であって、
    前記ウェハの研削加工中に前記ウェハの厚みを定点測定する固定式測定手段と、
    前記ウェハの研削加工中に前記ウェハの厚みを前記ウェハの半径方向に移動しながら測定する移動式測定手段と、
    前記移動式測定手段の測定値から前記固定式測定手段の測定値を減じることにより、前記ウェハの形状を演算する制御装置と、
    を備えていることを特徴とする研削装置。
  2. 前記ウェハを回転可能に吸着保持する保持手段をさらに備え、
    前記移動式測定手段は、前記保持手段の回転角度に基づいて前記ウェハの周方向における1周分の厚みを測定することを特徴とする請求項1記載の研削装置。
  3. 前記制御装置は、前記半径方向における前記移動式測定手段の測定座標及び前記周方向における前記移動式測定手段の測定値に基づいて前記ウェハの形状を演算することを特徴とする請求項2記載の研削装置。
  4. 前記ウェハの上面にクーラントを供給するクーラント供給手段を備え、
    前記固定式測定手段又は前記移動式測定手段は、前記ウェハの回転方向において前記砥石を挟んで前記クーラント供給手段の反対側に配置されていることを特徴とする請求項1から3の何れか1項記載の研削装置。
  5. 前記移動式測定手段の測定範囲に圧縮空気を噴射するエア供給手段をさらに備えていることを特徴とする請求項1から4の何れか1項記載の研削装置。
  6. 前記制御装置は、前記移動式測定手段の測定値の厚み変化から、研削加工中の前記ウェハの削り代に対応する前記固定式測定手段の測定値の減少分を減じて、前記ウェハの形状を演算することを特徴とする請求項1から5の何れか1項記載の研削装置。
JP2018027436A 2018-02-19 2018-02-19 研削装置 Active JP7068849B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018027436A JP7068849B2 (ja) 2018-02-19 2018-02-19 研削装置
JP2022075784A JP7331198B2 (ja) 2018-02-19 2022-05-02 研削装置
JP2023129724A JP2023153219A (ja) 2018-02-19 2023-08-09 研削装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018027436A JP7068849B2 (ja) 2018-02-19 2018-02-19 研削装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2022075784A Division JP7331198B2 (ja) 2018-02-19 2022-05-02 研削装置

Publications (2)

Publication Number Publication Date
JP2019141946A JP2019141946A (ja) 2019-08-29
JP7068849B2 true JP7068849B2 (ja) 2022-05-17

Family

ID=67772990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018027436A Active JP7068849B2 (ja) 2018-02-19 2018-02-19 研削装置

Country Status (1)

Country Link
JP (1) JP7068849B2 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005195545A (ja) 2004-01-09 2005-07-21 Olympus Corp 3次元形状測定方法及び装置
JP2007335458A (ja) 2006-06-12 2007-12-27 Disco Abrasive Syst Ltd ウエーハ研削装置
JP2008264913A (ja) 2007-04-18 2008-11-06 Disco Abrasive Syst Ltd 研削加工装置
JP2009246240A (ja) 2008-03-31 2009-10-22 Tokyo Seimitsu Co Ltd 半導体ウェーハ裏面の研削方法及びそれに用いる半導体ウェーハ裏面研削装置
JP2013119123A (ja) 2011-12-06 2013-06-17 Disco Corp 研削装置
JP2016182644A (ja) 2015-03-25 2016-10-20 株式会社東京精密 研削加工方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005195545A (ja) 2004-01-09 2005-07-21 Olympus Corp 3次元形状測定方法及び装置
JP2007335458A (ja) 2006-06-12 2007-12-27 Disco Abrasive Syst Ltd ウエーハ研削装置
JP2008264913A (ja) 2007-04-18 2008-11-06 Disco Abrasive Syst Ltd 研削加工装置
JP2009246240A (ja) 2008-03-31 2009-10-22 Tokyo Seimitsu Co Ltd 半導体ウェーハ裏面の研削方法及びそれに用いる半導体ウェーハ裏面研削装置
JP2013119123A (ja) 2011-12-06 2013-06-17 Disco Corp 研削装置
JP2016182644A (ja) 2015-03-25 2016-10-20 株式会社東京精密 研削加工方法

Also Published As

Publication number Publication date
JP2019141946A (ja) 2019-08-29

Similar Documents

Publication Publication Date Title
JP5025200B2 (ja) 研削加工時の厚さ測定方法
JP7113119B2 (ja) 研削装置
TW201900338A (zh) 基板的研磨裝置和基板處理系統
KR20160119019A (ko) 연마 장치
US11400563B2 (en) Processing method for disk-shaped workpiece
JP2019093517A (ja) 被加工物の加工方法、及び、研削研磨装置
JP2008087104A (ja) 研削加工方法
JP6246598B2 (ja) チャックテーブル及び研削装置
JP7353406B2 (ja) 研磨装置
JP6539467B2 (ja) 研削加工装置
JP7068849B2 (ja) 研削装置
JP7315332B2 (ja) ダミーディスクおよびダミーディスクを用いた表面高さ測定方法
JP7331198B2 (ja) 研削装置
JP7464412B2 (ja) 加工装置
JP7504616B2 (ja) 加工システム
JP2018140459A (ja) 研削装置
JP6736728B2 (ja) 研削加工装置
JP6906312B2 (ja) 研磨装置
JP7529501B2 (ja) 加工システム
TW201600239A (zh) 磨削裝置
JP6712841B2 (ja) 研削加工方法
US11904432B2 (en) Grinding apparatus
TWI766702B (zh) 片狀工件研磨方法及研磨裝置
JP2001293653A (ja) 平面研磨装置
TW202346024A (zh) 研削裝置以及晶圓的研削方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220502

R150 Certificate of patent or registration of utility model

Ref document number: 7068849

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150