JP7064407B2 - Film forming equipment and control method of film forming equipment - Google Patents

Film forming equipment and control method of film forming equipment Download PDF

Info

Publication number
JP7064407B2
JP7064407B2 JP2018162790A JP2018162790A JP7064407B2 JP 7064407 B2 JP7064407 B2 JP 7064407B2 JP 2018162790 A JP2018162790 A JP 2018162790A JP 2018162790 A JP2018162790 A JP 2018162790A JP 7064407 B2 JP7064407 B2 JP 7064407B2
Authority
JP
Japan
Prior art keywords
shielding
film forming
film
state
forming apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018162790A
Other languages
Japanese (ja)
Other versions
JP2020033620A5 (en
JP2020033620A (en
Inventor
雄二郎 添田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Tokki Corp
Original Assignee
Canon Tokki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Tokki Corp filed Critical Canon Tokki Corp
Priority to JP2018162790A priority Critical patent/JP7064407B2/en
Priority to KR1020190097157A priority patent/KR20200026047A/en
Priority to CN201910811028.6A priority patent/CN110872695B/en
Priority to CN202310551502.2A priority patent/CN116397208A/en
Publication of JP2020033620A publication Critical patent/JP2020033620A/en
Publication of JP2020033620A5 publication Critical patent/JP2020033620A5/ja
Priority to JP2022070776A priority patent/JP7262647B2/en
Application granted granted Critical
Publication of JP7064407B2 publication Critical patent/JP7064407B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/542Controlling the film thickness or evaporation rate
    • C23C14/545Controlling the film thickness or evaporation rate using measurement on deposited material
    • C23C14/546Controlling the film thickness or evaporation rate using measurement on deposited material using crystal oscillators
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/26Vacuum evaporation by resistance or inductive heating of the source
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/564Means for minimising impurities in the coating chamber such as dust, moisture, residual gases

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Description

本発明は、真空蒸着方式により成膜対象物に薄膜を形成する成膜装置及びその制御方法に関する。 The present invention relates to a film forming apparatus for forming a thin film on a film forming object by a vacuum deposition method and a control method thereof.

成膜対象物としての基板上に薄膜を形成する成膜装置として、真空チャンバ内において、成膜材料を収容した容器(坩堝)を加熱し、成膜材料を蒸発(昇華又は気化)させて容器外へ噴射させ、基板の表面に付着・堆積させる真空蒸着方式の成膜装置がある。かかる成膜装置において、所望の膜厚を得るべく、真空チャンバ内に配置したモニタユニットを用いて成膜レートを取得し、容器の加熱制御にフィードバックする装置構成が知られている。モニタユニットには水晶振動子が備えられており、成膜レートは、成膜材料の付着による水晶振動子の固有振動数の変化に基づいて取得される。水晶振動子に対する成膜材料の付着量が増え過ぎると、付着量の変化が固有振動数の変化として正確に表れなくなるため、新しい水晶振動子に交換することが必要となる。 As a film forming apparatus for forming a thin film on a substrate as a film forming object, a container (a pit) containing a film forming material is heated in a vacuum chamber to evaporate (sublimate or vaporize) the film forming material. There is a vacuum vapor deposition type film forming apparatus that is sprayed to the outside and adhered to and deposited on the surface of the substrate. In such a film forming apparatus, there is known an apparatus configuration in which a film forming rate is acquired by using a monitor unit arranged in a vacuum chamber and fed back to the heating control of a container in order to obtain a desired film thickness. The monitor unit is equipped with a crystal oscillator, and the film formation rate is acquired based on the change in the natural frequency of the crystal oscillator due to the adhesion of the film formation material. If the amount of film-forming material adhered to the crystal oscillator increases too much, the change in the amount of adhesion does not accurately appear as a change in the natural frequency, so it is necessary to replace it with a new crystal oscillator.

ここで、水晶振動子に対する成膜材料の付着量は、加熱を一定に制御すれば常に安定したものとなるわけではなく、例えば、成膜材料の突沸によって突発的に変動することがある。このような突発的な成膜材料の付着量の乱れは、実際の基板上の成膜量とモニタ値とを乖離させ、また水晶振動子の適切な交換タイミングを逸せしめる可能性があり、成膜レートのモニタ精度の低下につながる懸念がある。特許文献1には、モニタ値を予め設定した基準値と比較することで、坩堝内の蒸着原料の突沸により生じる不所望なスプラッシュの有無を検知する構成が開示されている。 Here, the amount of the film-forming material adhered to the crystal oscillator is not always stable if the heating is controlled to be constant, and may suddenly fluctuate due to, for example, bumping of the film-forming material. Such a sudden disturbance in the amount of film-forming material adhered may cause the actual amount of film-forming film on the substrate to deviate from the monitor value, and may miss the appropriate replacement timing of the crystal unit. There is a concern that the monitoring accuracy of the membrane rate may decrease. Patent Document 1 discloses a configuration for detecting the presence or absence of an undesired splash caused by bumping of a vapor-deposited raw material in a crucible by comparing a monitor value with a preset reference value.

しかしながら、モニタ値の変動は、モニタユニットの不具合や故障によって生じる場合もあり、モニタ値から直ちにその原因を特定することが容易ではない場合がある。また、真空チャンバ内に配置されるモニタユニットは、その動作状態を直接確認することが容易でなく、そのような確認作業の発生は製造タクトに大きな影響を与える。 However, fluctuations in the monitor value may be caused by a malfunction or failure of the monitor unit, and it may not be easy to immediately identify the cause from the monitor value. Further, it is not easy to directly confirm the operating state of the monitor unit arranged in the vacuum chamber, and the occurrence of such confirmation work has a great influence on the manufacturing tact.

特開2006-45581号公報Japanese Unexamined Patent Publication No. 2006-45581

本発明は、装置の状況をより正確に簡易に把握して成膜制御を行うことを可能にする技術を提供することを目的とする。 An object of the present invention is to provide a technique that enables more accurate and easy grasping of the state of an apparatus and control of film formation.

上記目的を達成するため、本発明の成膜装置は、
成膜対象物を収容するチャンバと、
前記チャンバ内に配置された容器に収容される成膜材料を加熱するための加熱源へ供給する電力を制御する加熱制御部と、
前記チャンバ内に配置される、成膜対象物に対する成膜材料の成膜レートを検知するためのモニタユニットであって、水晶振動子と、遮蔽部及び開口部を有し前記水晶振動子と前記容器との間に配置される回転体と、を有するモニタユニットと、
前記遮蔽部が前記容器と前記水晶振動子との間に位置する遮蔽状態と、前記開口部が前記容器と前記水晶振動子との間に位置する非遮蔽状態と、のいずれかを取り得るように、前記回転体の回転を制御する回転制御部と、
前記水晶振動子の共振周波数の変化に基づいて前記成膜レートを取得する取得部と、
を備え、
前記成膜対象物に前記成膜材料による膜を成膜する成膜装置であって、
前記加熱制御部が前記加熱源へ供給する電力を一定に保った状態で、所定の期間における前記非遮蔽状態となる期間の長さが変化するように前記回転制御部が前記回転体の回転速度を変動させたときの前記所定の期間における前記共振周波数の変動量の変化に基づい
て、前記成膜材料に突沸が発生しているか否か、又は、前記モニタユニットに故障が発生しているか否か、を判定する状態判定部を備えることを特徴とする。
上記目的を達成するため、本発明の成膜装置の制御方法は、
成膜対象物を収容するチャンバと、
前記チャンバ内に配置された容器に収容される成膜材料を加熱するための加熱源へ供給する電力を制御する加熱制御部と、
前記チャンバ内に配置される、成膜対象物に対する成膜材料の成膜レートを検知するためのモニタユニットであって、水晶振動子と、遮蔽部及び開口部を有し前記水晶振動子と前記容器との間に配置される回転体と、を有するモニタユニットと、
前記遮蔽部が前記容器と前記水晶振動子との間に位置する遮蔽状態と、前記開口部が前記容器と前記水晶振動子との間に位置する非遮蔽状態と、のいずれかを取り得るように、前記回転体の回転を制御する回転制御部と、
前記水晶振動子の共振周波数の変化に基づいて前記成膜レートを取得する取得部と、
を備え、
前記成膜対象物に前記成膜材料による膜を成膜する成膜装置の制御方法において、
前記取得部が取得する前記成膜レートが所定の値に維持されるように前記加熱制御部が電力量を制御するレート制御により前記成膜を行う第1工程と、
前記取得部が取得する前記成膜レートが所定の閾値を超えたときに、前記レート制御から、前記取得部が取得する前記成膜レートに依らずに設定される電力量で前記加熱制御部が電力供給する電力制御に切り替えて前記成膜を行う第2工程と、
前記第2工程の間に、所定の期間における前記非遮蔽状態となる期間の長さが変化するように前記回転制御部が前記回転体の回転速度を変動させる第3工程と、
前記第3工程において前記回転速度を変動させたときの前記所定の期間における前記共振周波数の変動量の変化に基づいて、前記成膜材料に突沸が発生しているか否か、又は、前記モニタユニットに故障が発生しているか否か、を判定する第4工程と、
を有することを特徴とする。
In order to achieve the above object, the film forming apparatus of the present invention is used.
A chamber that houses the film-forming object and
A heating control unit that controls the electric power supplied to the heating source for heating the film-forming material contained in the container arranged in the chamber.
A monitor unit arranged in the chamber for detecting the film formation rate of the film-forming material with respect to the film-forming object, which has a crystal oscillator, a shielding portion and an opening, and the crystal oscillator and the above. A monitor unit having a rotating body arranged between the containers and
It is possible to take either a shielded state in which the shielding portion is located between the container and the crystal oscillator, or a non-shielding state in which the opening is located between the container and the crystal oscillator. In addition, a rotation control unit that controls the rotation of the rotating body,
An acquisition unit that acquires the film formation rate based on a change in the resonance frequency of the crystal unit, and
Equipped with
A film forming apparatus for forming a film formed of the film forming material on the film forming object.
While the power supplied by the heating control unit to the heating source is kept constant, the rotation control unit changes the rotation speed of the rotating body so that the length of the non-shielding state in a predetermined period changes. Whether or not bumping has occurred in the film-forming material or whether or not the monitor unit has failed based on the change in the amount of fluctuation of the resonance frequency in the predetermined period when the above-mentioned is changed. It is characterized by including a state determination unit for determining whether or not .
In order to achieve the above object, the control method of the film forming apparatus of the present invention is:
A chamber that houses the film-forming object and
A heating control unit that controls the electric power supplied to the heating source for heating the film-forming material contained in the container arranged in the chamber.
A monitor unit arranged in the chamber for detecting the film formation rate of the film-forming material with respect to the film-forming object, which has a crystal oscillator, a shielding portion and an opening, and the crystal oscillator and the above. A monitor unit having a rotating body arranged between the containers and
It is possible to take either a shielded state in which the shielding portion is located between the container and the crystal oscillator, or a non-shielding state in which the opening is located between the container and the crystal oscillator. In addition, a rotation control unit that controls the rotation of the rotating body,
An acquisition unit that acquires the film formation rate based on a change in the resonance frequency of the crystal unit, and
Equipped with
In the control method of the film forming apparatus for forming a film by the film forming material on the film forming object.
The first step of performing the film formation by the rate control in which the heating control unit controls the amount of electric power so that the film formation rate acquired by the acquisition unit is maintained at a predetermined value.
When the film formation rate acquired by the acquisition unit exceeds a predetermined threshold value, the heating control unit uses a power amount set from the rate control regardless of the film formation rate acquired by the acquisition unit. The second step of switching to power control to supply power and performing the film formation, and
During the second step, the third step in which the rotation control unit changes the rotation speed of the rotating body so that the length of the non-shielding state in a predetermined period changes.
Whether or not bumping occurs in the film-forming material based on the change in the amount of fluctuation of the resonance frequency in the predetermined period when the rotation speed is changed in the third step, or the monitor unit. 4th step to determine whether or not a failure has occurred in
It is characterized by having.

本発明によれば、装置の状況をより正確に簡易に把握して成膜制御を行うこが可能となる。 According to the present invention, it is possible to more accurately and easily grasp the situation of the apparatus and control the film formation.

本発明の実施例における成膜装置の模式的断面図Schematic sectional view of the film forming apparatus in the embodiment of the present invention. 本発明の実施例における成膜レートモニタ装置の構成を示す模式図Schematic diagram showing the configuration of the film formation rate monitoring device in the embodiment of the present invention. 本発明の実施例における水晶モニタヘッドと遮蔽部材の構成を示す模式図Schematic diagram showing the configuration of the crystal monitor head and the shielding member in the embodiment of the present invention. 本発明の実施例におけるヒータへの電力供給制御のフローチャートFlow chart of power supply control to heater in the embodiment of the present invention 本発明の実施例における遮蔽部材の回転制御の説明図Explanatory drawing of rotation control of shielding member in Example of this invention

以下、図面を参照しつつ本発明の好適な実施形態及び実施例を説明する。ただし、以下の実施形態及び実施例は本発明の好ましい構成を例示的に示すものにすぎず、本発明の範囲をそれらの構成に限定されない。また、以下の説明における、装置のハードウェア構成及びソフトウェア構成、処理フロー、製造条件、寸法、材質、形状などは、特に特定的な
記載がないかぎりは、本発明の範囲をそれらのみに限定する趣旨のものではない。
Hereinafter, preferred embodiments and examples of the present invention will be described with reference to the drawings. However, the following embodiments and examples merely illustrate preferred configurations of the present invention, and the scope of the present invention is not limited to those configurations. Further, unless otherwise specified, the hardware configuration and software configuration, processing flow, manufacturing conditions, dimensions, materials, shapes, etc. of the apparatus in the following description are limited to those of the present invention. It is not the purpose.

[実施例1]
図1~図5を参照して、本発明の実施例に係る成膜レートモニタ装置及び成膜装置について説明する。本実施例に係る成膜装置は、真空蒸着により基板に薄膜を成膜する成膜装置である。本実施例に係る成膜装置は、各種半導体デバイス、磁気デバイス、電子部品などの各種電子デバイスや、光学部品などの製造において基板(基板上に積層体が形成されているものも含む)上に薄膜を堆積形成するために用いられる。より具体的には、本実施例に係る成膜装置は、発光素子や光電変換素子、タッチパネルなどの電子デバイスの製造において好ましく用いられる。中でも、本実施例に係る成膜装置は、有機EL(ErectroLuminescence)素子などの有機発光素子や、有機薄膜太陽電池などの有機光電変換素子の製造において特に好ましく適用可能である。なお、本発明における電子デバイスは、発光素子を備えた表示装置(例えば有機EL表示装置)や照明装置(例えば有機EL照明装置)、光電変換素子を備えたセンサ(例えば有機CMOSイメージセンサ)も含むものである。本実施例に係る成膜装置は、スパッタ装置等を含む成膜システムの一部として用いることができる。
[Example 1]
The film forming rate monitoring device and the film forming apparatus according to the embodiment of the present invention will be described with reference to FIGS. 1 to 5. The film forming apparatus according to this embodiment is a film forming apparatus for forming a thin film on a substrate by vacuum deposition. The film forming apparatus according to this embodiment is on a substrate (including a laminate having a laminate formed on the substrate) in the manufacture of various electronic devices such as various semiconductor devices, magnetic devices, and electronic components, and optical components. It is used to deposit and form a thin film. More specifically, the film forming apparatus according to this embodiment is preferably used in the manufacture of electronic devices such as light emitting elements, photoelectric conversion elements, and touch panels. Above all, the film forming apparatus according to this embodiment is particularly preferably applicable in the production of an organic light emitting element such as an organic EL (ElectroLuminescence) element and an organic photoelectric conversion element such as an organic thin film solar cell. The electronic device in the present invention also includes a display device (for example, an organic EL display device) and a lighting device (for example, an organic EL lighting device) equipped with a light emitting element, and a sensor (for example, an organic CMOS image sensor) equipped with a photoelectric conversion element. It's a waste. The film forming apparatus according to this embodiment can be used as a part of a film forming system including a sputtering apparatus and the like.

<成膜装置の概略構成>
図1は、本発明の実施例に係る成膜装置2の構成を示す模式図である。成膜装置2は、排気装置24、ガス供給装置25により、内部が真空雰囲気か窒素ガスなどの不活性ガス雰囲気に維持される真空チャンバ(成膜室、蒸着室)200を有する。なお、本明細書において「真空」とは、大気圧より低い圧力の気体で満たされた空間内の状態をいう。
<Outline configuration of film forming equipment>
FIG. 1 is a schematic view showing the configuration of the film forming apparatus 2 according to the embodiment of the present invention. The film forming apparatus 2 has a vacuum chamber (deposition chamber, vapor deposition chamber) 200 whose inside is maintained in a vacuum atmosphere or an inert gas atmosphere such as nitrogen gas by the exhaust device 24 and the gas supply device 25. In the present specification, "vacuum" means a state in a space filled with a gas having a pressure lower than the atmospheric pressure.

成膜対象物である基板100は、搬送ロボット(不図示)によって真空チャンバ200内部に搬送されると真空チャンバ200内に設けられた基板保持ユニット(不図示)によって保持され、マスク220上面に載置される。マスク220は、基板100上に形成する薄膜パターンに対応する開口パターン221を有するメタルマスクであり、真空チャンバ200内部において水平面に平行に設置されている。基板100は、基板保持ユニットによってマスク220の上面に載置されことで、真空チャンバ200内部において、水平面と平行に、かつ、被処理面である下面がマスク220で覆われる態様で設置される。 When the substrate 100, which is the object of film formation, is conveyed to the inside of the vacuum chamber 200 by a transfer robot (not shown), it is held by a substrate holding unit (not shown) provided in the vacuum chamber 200 and placed on the upper surface of the mask 220. Placed. The mask 220 is a metal mask having an opening pattern 221 corresponding to the thin film pattern formed on the substrate 100, and is installed parallel to the horizontal plane inside the vacuum chamber 200. The substrate 100 is placed on the upper surface of the mask 220 by the substrate holding unit, so that the substrate 100 is installed inside the vacuum chamber 200 in a manner parallel to the horizontal plane and the lower surface as the surface to be processed is covered with the mask 220.

真空チャンバ200内部におけるマスク220の下方には、蒸発源装置300が設けられている。蒸発源装置300は、概略、成膜材料(蒸着材料)400を収容する蒸発源容器(坩堝)301(以下、容器301)と、容器301に収容された成膜材料400を加熱する加熱手段(加熱源)としてのヒータ302と、を備える。容器301内の成膜材料400は、ヒータ302の加熱によって容器301内で蒸発し、容器301上部に設けられたノズル303を介して容器301外へ噴出される。容器301外へ噴射した成膜材料400は、装置300上方に設置された基板100の表面に、マスク220に設けられた開口パターン221に対応して、蒸着する。 An evaporation source device 300 is provided below the mask 220 inside the vacuum chamber 200. The evaporation source device 300 generally includes an evaporation source container (crucible) 301 (hereinafter referred to as a container 301) accommodating a film forming material (deposited material) 400 and a heating means (hereinafter referred to as a container 301) for heating the film forming material 400 contained in the container 301. A heater 302 as a heating source) is provided. The film-forming material 400 in the container 301 evaporates in the container 301 by heating the heater 302, and is ejected to the outside of the container 301 through the nozzle 303 provided in the upper part of the container 301. The film-forming material 400 ejected to the outside of the container 301 is deposited on the surface of the substrate 100 installed above the apparatus 300 in accordance with the opening pattern 221 provided on the mask 220.

ヒータ302は、通電により発熱する一本の線状(ワイヤ状)の発熱体を容器301の筒状部外周に複数回巻き回した構成となっている。なお、複数本の発熱体を巻き回す構成であってもよい。ヒータ302としては、発熱体としてステンレス鋼等の金属発熱抵抗体を用いたものでもよいし、カーボンヒータ等でもよい。
蒸発源装置300は、その他、図示は省略しているが、ヒータ302による加熱効率を高めるためのリフレクタや伝熱部材、それらを含む蒸発源装置300の各構成全体を収容する枠体、シャッタなどが備えられる場合がある。また、蒸発源装置300は、成膜を基板100全体に一様に行うため、固定載置された基板100に対して相対移動可能に構成される場合がある。
The heater 302 has a configuration in which a single linear (wire-shaped) heating element that generates heat by energization is wound around the outer periphery of the cylindrical portion of the container 301 a plurality of times. In addition, a configuration in which a plurality of heating elements are wound around may be used. As the heater 302, a metal heating element such as stainless steel may be used as the heating element, or a carbon heater or the like may be used.
Although not shown, the evaporation source device 300 includes a reflector and a heat transfer member for increasing the heating efficiency of the heater 302, a frame body including the entire configuration of the evaporation source device 300 including them, a shutter, and the like. May be provided. Further, since the evaporation source device 300 uniformly forms a film on the entire substrate 100, it may be configured to be relatively movable with respect to the fixedly placed substrate 100.

本実施例に係る成膜装置2は、容器301から噴出する成膜材料400の蒸気量、あるいは基板100に成膜される薄膜の膜厚を検知するための手段として、成膜レートモニタ装置1を備えている。成膜レートモニタ装置1は、容器301から噴出する成膜材料400の一部を、回転体としての遮蔽部材12により間欠的に遮蔽状態と非遮蔽状態とを繰り返して、水晶モニタヘッド11に備えられた水晶振動子に付着させるように構成されている。成膜材料400が堆積することによる水晶振動子の共振周波数(固有振動数)の変化量(減少量)を検知することで、所定の制御目標温度に対応した成膜レート(蒸着レート)として、単位時間当たりの成膜材料400の付着量(堆積量)を取得することができる。この成膜レートをヒータ302の加熱制御における制御目標温度の設定にフィードバックすることで、成膜レートを任意に制御することが可能となる。したがって、成膜レートモニタ装置1によって成膜処理中に常時、成膜材料400の吐出量あるいは基板100上の膜厚をモニタすることで、精度の高い成膜が可能となる。本実施例に係る成膜装置2の制御部(演算処理装置)20は、モニタユニット10の動作の制御、成膜レートの測定、取得を行うモニタ制御部21と、蒸発源装置300の加熱制御を行う加熱制御部22と、を有する。 The film forming apparatus 2 according to the present embodiment is a film forming rate monitoring apparatus 1 as a means for detecting the amount of steam of the film forming material 400 ejected from the container 301 or the film thickness of the thin film formed on the substrate 100. It is equipped with. The film forming rate monitoring device 1 is provided in the crystal monitor head 11 by intermittently repeating a shielding state and a non-shielding state by a shielding member 12 as a rotating body for a part of the film forming material 400 ejected from the container 301. It is configured to adhere to the crystal unit. By detecting the amount of change (decrease) in the resonance frequency (natural frequency) of the crystal oscillator due to the deposition of the film-forming material 400, the film-forming rate (vapor deposition rate) corresponding to a predetermined control target temperature can be obtained. The amount of adhesion (deposited amount) of the film-forming material 400 per unit time can be obtained. By feeding back this film formation rate to the setting of the control target temperature in the heating control of the heater 302, the film formation rate can be arbitrarily controlled. Therefore, by constantly monitoring the discharge amount of the film forming material 400 or the film thickness on the substrate 100 during the film forming process by the film forming rate monitoring device 1, highly accurate film forming is possible. The control unit (arithmetic processing device) 20 of the film forming apparatus 2 according to the present embodiment is a monitor control unit 21 that controls the operation of the monitor unit 10, measures and acquires the film forming rate, and heat control of the evaporation source device 300. It has a heating control unit 22 for performing the above.

<成膜レートモニタ装置>
図2は、本実施例に係る成膜レートモニタ装置1の概略構成を示す模式図である。図2に示すように、本実施例に係る成膜レートモニタ装置1は、モニタヘッド11や遮蔽部材(チョッパ)12などを備えるモニタユニット10と、モニタ制御部21と、を備える。モニタユニット10は、モニタヘッド11と、遮蔽部材12と、水晶モニタヘッド11に組み込まれた水晶ホルダ(回転支持体)14の回転駆動源としてのサーボモータ16と、遮蔽部材12の回転駆動源としてのサーボモータ15と、を備える。モニタ制御部21は、遮蔽部材12の回転駆動を制御する遮蔽部材制御部(回転制御部)212と、水晶振動子13の共振周波数(の変化量)の取得を行う成膜レート取得部213と、水晶ホルダ14の回転駆動を制御するホルダ制御部214と、を有する。
<Film film rate monitoring device>
FIG. 2 is a schematic diagram showing a schematic configuration of the film formation rate monitoring device 1 according to the present embodiment. As shown in FIG. 2, the film-forming rate monitoring device 1 according to the present embodiment includes a monitor unit 10 including a monitor head 11 and a shielding member (chopper) 12, and a monitor control unit 21. The monitor unit 10 includes a monitor head 11, a shielding member 12, a servomotor 16 as a rotation driving source of a crystal holder (rotational support) 14 incorporated in the crystal monitor head 11, and a shielding member 12 as a rotation driving source. Servo motor 15 and the above. The monitor control unit 21 includes a shielding member control unit (rotation control unit) 212 that controls the rotation drive of the shielding member 12, and a film forming rate acquisition unit 213 that acquires (the amount of change) of the resonance frequency (change amount) of the crystal oscillator 13. , A holder control unit 214 that controls the rotational drive of the crystal holder 14.

図3は、モニタヘッド11(水晶ホルダ14)と遮蔽部材12をそれぞれの回転軸線方向に沿って見たときの両者の配置関係を示す模式図である。図3に示すように、モニタヘッド11の内部には、複数の水晶振動子13(13a、13b)を円周方向に等間隔で配置して支持する水晶ホルダ14が組み込まれている。モニタヘッド11には、水晶振動子13よりも僅かに大きいモニタ開口11aが一つ設けられており、水晶ホルダ14は、支持する水晶振動子13のうちの1つを、モニタ開口11aを介して外部(蒸着源装置300)に暴露される位置(回転位相)で支持する。 FIG. 3 is a schematic view showing the arrangement relationship between the monitor head 11 (crystal holder 14) and the shielding member 12 when viewed along the respective rotation axis directions. As shown in FIG. 3, inside the monitor head 11, a crystal holder 14 for supporting a plurality of crystal oscillators 13 (13a, 13b) by arranging them at equal intervals in the circumferential direction is incorporated. The monitor head 11 is provided with one monitor opening 11a slightly larger than the crystal oscillator 13, and the crystal holder 14 supports one of the crystal oscillators 13 via the monitor opening 11a. It is supported at a position (rotational phase) exposed to the outside (vapor deposition source device 300).

図2及び図3に示すように、水晶ホルダ14は、その中心がサーボモータ16のモータ軸16aに連結されており、サーボモータ16によって回転駆動される。これにより、モニタ開口11aを介して外部に暴露される水晶振動子13を順次切り替えることができるように構成されている。すなわち、水晶ホルダ14に支持された複数の水晶振動子13のうち、1つの水晶振動子13aがモニタ開口11aと位相が重なる位置にあり、他の水晶振動子13bは、使用済み又は交換用の水晶振動子として、モニタヘッド11の内部に隠れた位置にある。モニタ開口11aを介して外部に暴露されている水晶振動子13が、成膜材料400の付着量が所定量を超えて寿命に到達すると、水晶ホルダ14が回転して、新しい水晶振動子13を、モニタ開口11aと重なる暴露位置に移動させる。
ホルダ制御部214によるサーボモータ16の回転制御は、検出部18aと被検出部18bとからなる位相位置検出手段18が検出する水晶ホルダ14の回転位置(回転位相)に基づいて行われる。なお、位置(位相)検知手段としては、ロータリーエンコーダ等の既知の位置センサを用いてもよい。
As shown in FIGS. 2 and 3, the center of the crystal holder 14 is connected to the motor shaft 16a of the servomotor 16, and the crystal holder 14 is rotationally driven by the servomotor 16. As a result, the crystal oscillator 13 exposed to the outside through the monitor opening 11a can be sequentially switched. That is, of the plurality of crystal oscillators 13 supported by the crystal holder 14, one crystal oscillator 13a is in a position where the phase overlaps with the monitor opening 11a, and the other crystal oscillator 13b is used or replaced. As a crystal oscillator, it is in a position hidden inside the monitor head 11. When the crystal unit 13 exposed to the outside through the monitor opening 11a reaches the end of its life when the amount of the film-forming material 400 adhered exceeds a predetermined amount, the crystal holder 14 rotates to provide a new crystal unit 13. , Move to an exposed position that overlaps with the monitor opening 11a.
The rotation control of the servomotor 16 by the holder control unit 214 is performed based on the rotation position (rotational phase) of the crystal holder 14 detected by the phase position detecting means 18 including the detection unit 18a and the detected unit 18b. As the position (phase) detecting means, a known position sensor such as a rotary encoder may be used.

図3に示すように、遮蔽部材12は、略円盤状の部材であり、その中心がサーボモータ
15のモータ軸15aに連結されており、サーボモータ15によって回転駆動される。遮蔽部材12は、扇型の開口スリット(開口部、非遮蔽部)12aが、回転中心から離れた位置であって、その回転軌道が、モニタヘッド11のモニタ開口11aと重なる位置に設けられている。
As shown in FIG. 3, the shielding member 12 is a substantially disk-shaped member, the center of which is connected to the motor shaft 15a of the servomotor 15, and is rotationally driven by the servomotor 15. The shielding member 12 is provided at a position where a fan-shaped opening slit (opening, non-shielding portion) 12a is located away from the center of rotation and its rotation trajectory overlaps with the monitor opening 11a of the monitor head 11. There is.

図2及び図3に示すように、遮蔽部材12が回転することで、モニタ開口11aに対する開口スリット12aの相対位置(相対位相)が、モニタ開口11aと重なる位置(開口位置、非遮蔽位置)と、重ならない位置(非開口位置、遮蔽位置)と、に変化する。これにより、遮蔽部材12において開口スリット12aを除いた領域部分が遮蔽部12bとなり、これがモニタ開口11aと重なる(覆う)位置(位相)にあるとき、水晶振動子13aへの成膜材料400の付着が妨げられる遮蔽状態(非開口状態)となる。また、開口スリット12aがモニタ開口11aと重なる位置(位相)にあるとき、水晶振動子13aへの成膜材料400の付着が許容される非遮蔽状態(開口状態)となる。
遮蔽部材制御部212によるサーボモータ15の回転制御は、検出部17aと被検出部17bとからなる位相位置検出手段17が検出する遮蔽部材12の回転位置(回転位相)に基づいて行われる。なお、位置(位相)検知手段としては、ロータリーエンコーダ等の既知の位置センサを用いてもよい。
As shown in FIGS. 2 and 3, the rotation of the shielding member 12 causes the relative position (relative phase) of the opening slit 12a with respect to the monitor opening 11a to overlap with the monitor opening 11a (opening position, non-shielding position). , It changes to a position that does not overlap (non-opening position, shielding position). As a result, when the region portion of the shielding member 12 excluding the opening slit 12a becomes the shielding portion 12b and this is in the overlapping (covering) position (phase) with the monitor opening 11a, the film forming material 400 adheres to the crystal oscillator 13a. It becomes a shielded state (non-opening state) that is hindered. Further, when the opening slit 12a is at a position (phase) overlapping with the monitor opening 11a, the film forming material 400 is allowed to adhere to the crystal oscillator 13a in a non-shielding state (opening state).
The rotation control of the servomotor 15 by the shielding member control unit 212 is performed based on the rotation position (rotational phase) of the shielding member 12 detected by the phase position detecting means 17 including the detecting unit 17a and the detected unit 17b. As the position (phase) detecting means, a known position sensor such as a rotary encoder may be used.

開口スリット12aは、本実施例では、閉じた孔となっているが、遮蔽部材12の周端で開放された切り欠き状になっていてもよい。また、設ける個数も2個以上でもよいし、スリット形状も、本実施例で示した扇型に限定されず種々の形状を採用し得るものであり。開口スリット12aを複数設ける場合には、個々に異なる形状としてもよい。 Although the opening slit 12a is a closed hole in this embodiment, it may be in the shape of a notch opened at the peripheral end of the shielding member 12. Further, the number of slits may be two or more, and the slit shape is not limited to the fan shape shown in this embodiment, and various shapes can be adopted. When a plurality of opening slits 12a are provided, they may have different shapes.

水晶振動子13aは、電極、同軸ケーブル等を介して外部共振器19に接続されている。水晶振動子13a表面に堆積した成膜材料400の薄膜と、裏面の電極との間に電圧を印加することで生成される発信信号が、水晶振動子13の共振周波数(の変化量)として、共振器19から成膜レート取得部213に伝達され、取得される。 The crystal oscillator 13a is connected to the external resonator 19 via an electrode, a coaxial cable, or the like. The transmission signal generated by applying a voltage between the thin film of the film forming material 400 deposited on the surface of the crystal oscillator 13a and the electrode on the back surface serves as the resonance frequency (change amount) of the crystal oscillator 13. It is transmitted from the resonator 19 to the film formation rate acquisition unit 213 and acquired.

図示を省略するが、モニタユニット10には、熱源となるモータ15、16の熱を冷却するための冷却水を流すための流路が備えられている。
なお、ここで示した成膜レートモニタ装置の構成はあくまで一例であり、これに限定されるものではなく、既知の種々の構成を適宜採用してよい。
Although not shown, the monitor unit 10 is provided with a flow path for flowing cooling water for cooling the heat of the motors 15 and 16 which are heat sources.
The configuration of the film formation rate monitoring device shown here is merely an example, and the present invention is not limited to this, and various known configurations may be appropriately adopted.

<本実施例の特徴>
図4は、本実施例に係る成膜装置2におけるヒータ302への電力供給制御のフローチャートである。以下で説明するフローの制御主体は、上述した制御部20であり、本発明における状態判定部を兼ねる。
<Characteristics of this example>
FIG. 4 is a flowchart of power supply control to the heater 302 in the film forming apparatus 2 according to the present embodiment. The control body of the flow described below is the control unit 20 described above, which also serves as the state determination unit in the present invention.

ヒータ302の発熱量は、ヒータ302に供給される電力量(電流値)が電源回路を含む加熱制御部22により制御されることで制御される。電力供給量は、例えば、不図示の温度検出手段により検出される温度が、所望の成膜レートを得るのに適した所定の制御目標温度に維持されるようにPID制御にて調整される。所定の成膜レートを維持できるヒータ302の発熱量(ヒータ302への供給電力)を、所定の時間維持することで、基板100の被成膜面に所望の膜厚の薄膜を成膜することができる(膜厚=成膜レート[Å/S]×時間[t])。 The amount of heat generated by the heater 302 is controlled by controlling the amount of electric power (current value) supplied to the heater 302 by the heating control unit 22 including the power supply circuit. The power supply amount is adjusted by PID control, for example, so that the temperature detected by the temperature detecting means (not shown) is maintained at a predetermined control target temperature suitable for obtaining a desired film formation rate. By maintaining the calorific value of the heater 302 (power supplied to the heater 302) capable of maintaining a predetermined film formation rate for a predetermined time, a thin film having a desired film thickness is formed on the surface to be filmed of the substrate 100. (Film thickness = film formation rate [Å / S] x time [t]).

本実施例に係る成膜装置2では、ヒータ302の加熱制御における供給電力の制御方法として、レート制御と平均パワー制御とを切り替えて実行可能に構成されている。なお、電力制御方法はこれらに限定されるものではない。
レート制御では、成膜レートモニタ装置1により取得される成膜レートのモニタ値(実
測値)が所望の目標レート(理論値)と一致するように制御目標温度が適時変更され、設定される制御目標温度に応じてヒータ302への供給電力量が制御される。
本実施例では、成膜レートモニタ装置1により取得される成膜レートのモニタ値(実測値)に依らずにヒータ302への供給電力量を決定する電力制御として、平均パワー制御を用いている。平均パワー制御では、供給電力の過去数サンプリングの移動平均を目標電力量として、かかる目標電力量を維持するようにヒータ302への電力供給を制御する。なお、予め設定された電力量(目標電力量)を維持するようにヒータ302に電力供給するパワー制御を用いてもよい。これらの電力制御では、成膜レートを、成膜材料の種類や基板と蒸発源との相対速度等の成膜条件に基づいて設定される理論値を用いて膜厚を制御する。
The film forming apparatus 2 according to the present embodiment is configured to be feasible to switch between rate control and average power control as a method of controlling the supply power in the heating control of the heater 302. The power control method is not limited to these.
In rate control, the control target temperature is timely changed and set so that the monitor value (actual measurement value) of the film formation rate acquired by the film formation rate monitor device 1 matches the desired target rate (theoretical value). The amount of power supplied to the heater 302 is controlled according to the target temperature.
In this embodiment, the average power control is used as the power control for determining the amount of power supplied to the heater 302 regardless of the monitor value (actual measurement value) of the film formation rate acquired by the film formation rate monitor device 1. .. In the average power control, the moving average of the past number sampling of the supplied power is set as the target power amount, and the power supply to the heater 302 is controlled so as to maintain the target power amount. It should be noted that the power control for supplying electric power to the heater 302 may be used so as to maintain the preset electric energy (target electric energy). In these power controls, the film thickness is controlled by using a theoretical value set based on the film formation conditions such as the type of film formation material and the relative speed between the substrate and the evaporation source.

本実施例においては、基本的な電力制御方法として、上述したレート制御(第1工程)を採用し、ヒータ302への供給電力が開始される(S101)。すなわち、成膜レートモニタ装置1により取得される成膜レートのモニタ値が、所望のレートを維持するように、ヒータ302への供給電力量(制御目標温度)が適時調整される。 In this embodiment, the rate control (first step) described above is adopted as the basic power control method, and the power supply to the heater 302 is started (S101). That is, the amount of power supplied to the heater 302 (control target temperature) is timely adjusted so that the monitor value of the film formation rate acquired by the film formation rate monitor device 1 maintains a desired rate.

このとき、成膜レートモニタ装置1により取得される成膜レートのモニタ値が、何らかの原因で、目標レートから乖離した異常な値となる場合がある。モニタ値が異常な値を取る原因として、本実施例では、(1)成膜材料400の突沸の発生、(2)モニタユニット10の故障の発生、の2つの原因を想定し、これら成膜装置2の異常状態を判別する制御を行うことを特徴とする。容器301内の成膜材料400に突沸が発生すると、水晶振動子13aに対する成膜材料400の付着量が瞬間的・突発的に増加することがある。また、モニタユニット10の故障として、水晶振動子13に対する成膜材料400の付着量が過度に増えてモニタ値が異常な値となることがある。そこで、レート制御において取得されるモニタ値が上述した異常状態にある値を示しているのか否かを判断するための閾値を設定し、レート制御中において成膜レートの取得の度にその当否を確認する(S102)。 At this time, the monitor value of the film formation rate acquired by the film formation rate monitor device 1 may be an abnormal value deviating from the target rate for some reason. In this embodiment, two causes, (1) bumping of the film forming material 400 and (2) failure of the monitor unit 10, are assumed as the causes of the monitor value taking an abnormal value, and these film formations are assumed. It is characterized in that control for determining an abnormal state of the device 2 is performed. When bumping occurs in the film-forming material 400 in the container 301, the amount of the film-forming material 400 adhered to the crystal oscillator 13a may increase instantaneously or suddenly. Further, as a failure of the monitor unit 10, the amount of the film-forming material 400 adhered to the crystal oscillator 13 may be excessively increased and the monitor value may become an abnormal value. Therefore, a threshold value is set for determining whether or not the monitor value acquired in the rate control indicates the value in the above-mentioned abnormal state, and the appropriateness is determined each time the film formation rate is acquired during the rate control. Confirm (S102).

取得される成膜レートが閾値を超えない場合(S102:YES)、引き続きレート制御が継続され(S101)、そのまま異常な成膜レートが取得されなければ、成膜シーケンスの終了までレート制御が継続される(S103)。 If the acquired film formation rate does not exceed the threshold value (S102: YES), the rate control is continued (S101), and if an abnormal film formation rate is not acquired as it is, the rate control continues until the end of the film formation sequence. (S103).

取得される成膜レートが閾値に達した場合(S102:NO)、成膜装置2の状態を判定する判定シーケンスに移行し、電力制御がレート制御から平均パワー制御(第2工程)に切り替えられる(S104)。すなわち、固定された電力量でヒータ302に電力が供給される。そして、この状態で、遮蔽部材(チョッパ)12の回転制御モードが、レート制御時に実行される回転制御モード(第1遮蔽モード)とは異なる回転制御モード(第2遮蔽モード)に変更(第3工程)される(S105)。具体的には、所定の期間(所定の単位期間)における非遮蔽状態となる期間の長さが変化するように、つまり所定の期間における水晶振動子13aの暴露時間が変化するように、遮蔽部材12の回転制御を変化させる。そして、この回転制御の変化による所定の期間内における暴露時間の変動によって、所定の期間における水晶振動子13aの共振周波数の変化量(変動量)が、暴露時間の変動に応じた変化量なのか否か、すなわち、水晶振動子13aに対する成膜材料400の付着量の所定の期間における変動量が、所定の期間における暴露時間の変動量に応じた値を示すのか否か、が確認(第4工程)される(S106)。この共振周波数の変動量から、成膜装置2の状態が判定される。 When the acquired film forming rate reaches the threshold value (S102: NO), the process shifts to the determination sequence for determining the state of the film forming apparatus 2, and the power control is switched from the rate control to the average power control (second step). (S104). That is, electric power is supplied to the heater 302 with a fixed amount of electric power. Then, in this state, the rotation control mode of the shielding member (chopper) 12 is changed to a rotation control mode (second shielding mode) different from the rotation control mode (first shielding mode) executed at the time of rate control (third). Step) (S105). Specifically, the shielding member changes the length of the non-shielding state in the predetermined period (predetermined unit period), that is, the exposure time of the crystal oscillator 13a in the predetermined period changes. Twelve rotation controls are changed. Then, is the change amount (variation amount) of the resonance frequency of the crystal oscillator 13a in the predetermined period due to the change in the exposure time within the predetermined period due to the change in the rotation control, the change amount according to the change in the exposure time? Whether or not, that is, whether or not the fluctuation amount of the adhesion amount of the film forming material 400 to the crystal transducer 13a in a predetermined period shows a value corresponding to the fluctuation amount of the exposure time in the predetermined period is confirmed (fourth). Step) (S106). The state of the film forming apparatus 2 is determined from the fluctuation amount of the resonance frequency.

ここで、図5を参照して、本実施例における遮蔽部材12の回転制御モードについて説明する。図5は、本実施例における遮蔽部材12の回転制御について説明するグラフであり、(a)は、第1モードにおける遮蔽部材12の回転制御を説明するグラフ、(b)は
、第2モードにおける遮蔽部材12の回転制御を説明するグラフである。図5において、遮蔽部材12が水晶振動子13を遮蔽した状態にあるときを0、遮蔽していない状態にあるときを1、でそれぞれ示している。
本実施例では、成膜装置2の状態を判定すべく、遮蔽部材12の回転動作の制御を変更することを特徴とする。具体的には、所定の期間内における水晶振動子13aの暴露時間が、通常のレート制御における回転制御である第1遮蔽モード(以下、第1モード)よりも長くなるように、遮蔽部材12の回転速度を制御する第2遮蔽モード(以下、第2モード)を実行する。
Here, the rotation control mode of the shielding member 12 in this embodiment will be described with reference to FIG. 5A and 5B are graphs for explaining rotation control of the shielding member 12 in this embodiment, FIG. 5A is a graph for explaining rotation control of the shielding member 12 in the first mode, and FIG. 5B is a graph for explaining rotation control of the shielding member 12 in the second mode. It is a graph explaining the rotation control of a shielding member 12. In FIG. 5, the time when the shielding member 12 is in the state of shielding the crystal oscillator 13 is indicated by 0, and the time when the shielding member 12 is in the state of not shielding is indicated by 1.
The present embodiment is characterized in that the control of the rotational operation of the shielding member 12 is changed in order to determine the state of the film forming apparatus 2. Specifically, the shielding member 12 is provided so that the exposure time of the crystal oscillator 13a within a predetermined period is longer than that of the first shielding mode (hereinafter referred to as the first mode) which is the rotation control in the normal rate control. The second shielding mode (hereinafter referred to as the second mode) for controlling the rotation speed is executed.

第2モードでは、開口スリット12aがモニタ開口11aと重なる非遮蔽状態における遮蔽部材12の定常回転速度が、開口スリット12aがモニタ開口11aと重ならない遮蔽状態における定常回転速度の1/10となるように制御する。第1モードでは、開口スリット12aとモニタ開口11aの遮蔽・非遮蔽の如何にかかわらず、一定の定常回転速度で遮蔽部材13の回転を制御する。第2モードの遮蔽状態における定常回転速度と、第1モードにおける定常回転速度とは同じ速度となっており、したがって、第2モードでの非遮蔽状態のおける定常回転速度が、第1モードでの非遮蔽状態における定常回転速度の1/10となっている。これにより、同じ所定の期間(単位期間)で比較したときに、第2モードにおいて非遮蔽状態となる期間の時間長さ(第2の長さ)は、第1モードにおいて非遮蔽状態となる期間の時間長さ(第1の長さ)よりも長くなる。 In the second mode, the steady rotation speed of the shielding member 12 in the non-shielding state where the opening slit 12a overlaps with the monitor opening 11a becomes 1/10 of the steady rotation speed in the shielding state where the opening slit 12a does not overlap with the monitor opening 11a. To control. In the first mode, the rotation of the shielding member 13 is controlled at a constant steady rotation speed regardless of whether the opening slit 12a and the monitor opening 11a are shielded or unshielded. The steady rotation speed in the shielded state of the second mode and the steady rotation speed in the first mode are the same, and therefore, the steady rotation speed in the unshielded state in the second mode is the steady rotation speed in the first mode. It is 1/10 of the steady rotation speed in the unshielded state. As a result, when compared in the same predetermined period (unit period), the time length (second length) of the period in which the second mode is in the unshielded state is the period in which the first mode is in the unshielded state. Is longer than the time length (first length) of.

図5(a)に、第1モードにおいて非遮蔽状態(膜付け状態)となる期間の時間長さTO1を示し、図5(b)に、第2モードにおいて非遮蔽状態となる期間の時間長さTO2を示している。図5に示すように、定常回転速度が1/10となることで、TO2は、TO1の10倍の時間となっている。所定の期間として、図5に示した時間内において、第1モードと第2モードとを比較すると、第1モードにおいて非遮蔽状態となる回数が3回であるのに対し、第2モードにおいて非遮蔽状態となる回数は2回となり、回数は第1モードの方が多くある。しかしながら、1回の非遮蔽状態の継続時間は、第2モードの方が第1モードより長くなり、所定の期間内におけるトータルの非遮蔽状態の継続時間も、第2モードの方が第1モードよりも長くなる。 FIG. 5A shows the time length TO1 of the non-shielding state (film-attached state) in the first mode, and FIG. 5B shows the time length of the non-shielding state (film-attached state) in the second mode. It shows TO2. As shown in FIG. 5, the steady rotation speed is reduced to 1/10, so that TO2 has 10 times the time of TO1. Comparing the first mode and the second mode within the time shown in FIG. 5 as a predetermined period, the number of times the unshielded state is set in the first mode is three times, whereas in the second mode it is not. The number of times the shielded state is set is two, and the number of times is larger in the first mode. However, the duration of one unshielded state is longer in the second mode than in the first mode, and the total duration of the unshielded state within a predetermined period is also longer in the second mode in the first mode. Will be longer than.

図5に示す例では、単位時間当たりに占める非遮蔽状態の時間の割合が、第1モードでは約3.3%であるのに対し、第2モードでは約25%となっている。
第1モードにおける約3.3%の上記割合は、等速回転制御による数値であるので、遮蔽部材12の開口率(遮蔽部12bに対する開口部12aの面積比)と一致する数値である。つまり、本実施例における遮蔽部材12は、遮蔽部12bと開口部12aの面積比率が、開口部12a:1/30、遮蔽部12b:29/30で構成されており、遮蔽部材12の開口率は1/30=3.3%となる。
これに対し、第2モードにおける約25%の上記割合は、次のように求められる。すなわち、非遮蔽状態時における定常回転速度が遮蔽状態時における定常回転速度に対して1/10となることで、開状態(非遮蔽状態)となる時間が、第1モードと比して、1/30*1/10=10/30となる。一方、閉状態(遮蔽状態)となる時間は、第1モードと同様、29/30である。したがって、開口率=開状態の時間÷1回転の時間=10/30÷(10/30+29/30)=10/39=0.25となる。
すなわち、本実施例による遮蔽部材12の変速制御(非遮蔽状態における定常回転速度を遮蔽状態における定常回転速度よりも遅くする制御)により、遮蔽部材12の開口率を実質的に増大させることができる。これにより、遮蔽部材12の形状を物理的に変化させるなどの手法を取らずに(装置構成を複雑化させずに)、遮蔽部材12の開口率を可変に制御し、水晶振動子13に対する成膜量を任意に制御することが可能となる。
In the example shown in FIG. 5, the ratio of the unshielded time to the unit time is about 3.3% in the first mode, while it is about 25% in the second mode.
Since the above ratio of about 3.3% in the first mode is a numerical value by constant velocity rotation control, it is a numerical value that matches the aperture ratio of the shielding member 12 (the area ratio of the opening 12a to the shielding portion 12b). That is, in the shielding member 12 in this embodiment, the area ratio of the shielding portion 12b and the opening portion 12a is composed of the opening portion 12a: 1/30 and the shielding portion 12b: 29/30, and the opening ratio of the shielding member 12 Is 1/30 = 3.3%.
On the other hand, the above ratio of about 25% in the second mode is obtained as follows. That is, since the steady rotation speed in the non-shielded state is 1/10 of the steady rotation speed in the shielded state, the time for the open state (non-shielded state) is 1 as compared with the first mode. / 30 * 1/10 = 10/30. On the other hand, the time for the closed state (shielding state) is 29/30 as in the first mode. Therefore, the aperture ratio = the time in the open state ÷ the time for one rotation = 10/30 ÷ (10/30 + 29/30) = 10/39 = 0.25.
That is, the aperture ratio of the shielding member 12 can be substantially increased by the shift control of the shielding member 12 according to the present embodiment (control to make the steady rotation speed in the non-shielding state slower than the steady rotation speed in the shielding state). .. As a result, the aperture ratio of the shielding member 12 can be variably controlled without taking a method such as physically changing the shape of the shielding member 12 (without complicating the device configuration), and the crystal oscillator 13 can be formed. It is possible to arbitrarily control the amount of film.

遮蔽部材12の回転制御モードが変化すると、単位時間当たりに占める非遮蔽状態の時
間の割合が変動し、遮蔽部材12の実質的な開口率が変動することになる。その結果、所定の期間における水晶振動子13に対する成膜材料400の付着量が変動することになり、所定の期間における水晶振動子13の共振周波数の変動量も変動することになる。すなわち、モニタユニット10が正常に動作している限り、所定の期間内における遮蔽部材12による非遮蔽状態の期間の長さの変化が、所定の期間における水晶振動子13の共振周波数の変動量の変化として表れるはずである。しかしながら、上述したような故障が発生してモニタユニット10が正常に動作していない場合には、遮蔽部材12の回転制御を変えても、所定の期間における水晶振動子13の共振周波数の変動量が十分に変化しない、あるいは変動量がゼロとなるような状態となり得る。
When the rotation control mode of the shielding member 12 changes, the ratio of the non-shielding state time to the unit time changes, and the substantial aperture ratio of the shielding member 12 changes. As a result, the amount of adhesion of the film-forming material 400 to the crystal oscillator 13 in a predetermined period will fluctuate, and the amount of fluctuation in the resonance frequency of the crystal oscillator 13 in a predetermined period will also fluctuate. That is, as long as the monitor unit 10 is operating normally, the change in the length of the non-shielding state period by the shielding member 12 within the predetermined period is the fluctuation amount of the resonance frequency of the crystal oscillator 13 in the predetermined period. It should show up as a change. However, when the above-mentioned failure occurs and the monitor unit 10 is not operating normally, the amount of fluctuation of the resonance frequency of the crystal oscillator 13 in a predetermined period even if the rotation control of the shielding member 12 is changed. Can not change sufficiently, or the amount of fluctuation can be zero.

そこで、遮蔽部材12の回転制御の変化の前後で取得される水晶振動子13の共振周波数の変動量の変化が、遮蔽部材12の回転制御の変化に応じた変化を示す場合には、S102における成膜レートの異常値の原因は突沸であると判定される(S106:YES)。例えば、モニタユニット10が正常に動作している場合に期待される共振周波数の変動量の変化の割合として予め実験等により設定された値もしくは所定の数値範囲に収まるか否かにより、判定される。取得された共振周波数の変動量の変化が、所定の値もしくは所定の数値範囲に収まる場合には、成膜レートの異常値の原因は突沸であると判定される。
この場合、突沸対応制御(第5工程)が実施される(S107)。本実施例では、突沸対応制御として、レート制御に戻す制御を行う。なお、突沸対応制御はこれに限定されず、突沸の程度や頻度等に応じて成膜シーケンスを中断する制御を行ってもよい。
Therefore, when the change in the amount of change in the resonance frequency of the crystal oscillator 13 acquired before and after the change in the rotation control of the shielding member 12 shows the change according to the change in the rotation control of the shielding member 12, in S102. It is determined that the cause of the abnormal value of the film formation rate is bumping (S106: YES). For example, it is determined by whether or not the rate of change in the amount of variation in the resonance frequency expected when the monitor unit 10 is operating normally is within a value set in advance by an experiment or the like or a predetermined numerical range. .. When the change in the acquired resonance frequency fluctuation amount falls within a predetermined value or a predetermined numerical range, it is determined that the cause of the abnormal value of the film formation rate is bumping.
In this case, bumping chip control (fifth step) is carried out (S107). In this embodiment, control is performed to return to rate control as bumping chip control. The bumping chip control is not limited to this, and control may be performed to interrupt the film formation sequence according to the degree and frequency of bumping.

一方、遮蔽部材12の回転制御の変化の前後で取得される水晶振動子13の共振周波数の変動量が、遮蔽部材12の回転制御の変化に応じた変化を示さない場合(S106:NO)には、モニタユニット10に上述した何かしらの故障が発生していると判定する。例えば、取得された共振周波数の変動量の変化が、上述した所定の値とならない、もしくは所定の数値範囲に収まらない場合には、成膜レートの異常値の原因はモニタユニット10の故障であると判定される。具体的には、遮蔽部材12の回転制御を変化させた後(第1モード→第2モード)の水晶振動子13の共振周波数の変動量がゼロとなる場合や変動量の変化が著しく低下するような場合が考えられるが、これに限定されるものではない。
この場合、モニタ対応制御(第6工程)が実施される(S108)。本実施例では、モニタ対応制御として、S104において切り替えられた平均パワー制御を、成膜シーケンスの終了まで継続する制御を行う(S109)。なお、モニタ対応制御はこれに限定されず、例えば、成膜シーケンスを中断して、モニタユニット10の故障を使用者に報知する制御を行ってもよい。
On the other hand, when the fluctuation amount of the resonance frequency of the crystal oscillator 13 acquired before and after the change of the rotation control of the shielding member 12 does not show the change according to the change of the rotation control of the shielding member 12 (S106: NO). Determines that some of the above-mentioned failures have occurred in the monitor unit 10. For example, if the change in the acquired resonance frequency fluctuation amount does not reach the predetermined value described above or does not fall within the predetermined numerical range, the cause of the abnormal value of the film formation rate is a failure of the monitor unit 10. Is determined. Specifically, when the fluctuation amount of the resonance frequency of the crystal oscillator 13 after changing the rotation control of the shielding member 12 (first mode → second mode) becomes zero, or the change in the fluctuation amount is significantly reduced. Such cases are possible, but are not limited to this.
In this case, monitor-compatible control (sixth step) is carried out (S108). In this embodiment, as monitor-compatible control, the average power control switched in S104 is continuously controlled until the end of the film formation sequence (S109). The monitor-compatible control is not limited to this, and for example, the film forming sequence may be interrupted to notify the user of the failure of the monitor unit 10.

以上の制御により、成膜レートの異常値が、蒸発源容器301内の成膜材料400に突沸によるものなのか、モニタユニット10の故障によるものなのか、を適切に判定して、成膜制御を行うことができる。また、電力制御の切り替えと、遮蔽部材の回転制御の変更とによる簡易な制御により、原因の判定を行うことができる。特に、モニタユニット10の故障については、真空チャンバ内に配置されるモニタユニットを直接確認することは容易でなく、上記制御によって確認することができることで、製造タクトの短縮に非常に有利である。すなわち、本実施例によれば、装置の状況をより正確に簡易に把握して成膜制御を行うことが可能となる。 By the above control, it is appropriately determined whether the abnormal value of the film forming rate is due to bumping of the film forming material 400 in the evaporation source container 301 or due to the failure of the monitor unit 10, and the film forming control is performed. It can be performed. Further, the cause can be determined by simple control by switching the power control and changing the rotation control of the shielding member. In particular, it is not easy to directly check the monitor unit arranged in the vacuum chamber with respect to the failure of the monitor unit 10, and it is possible to check by the above control, which is very advantageous for shortening the manufacturing tact. That is, according to this embodiment, it is possible to more accurately and easily grasp the state of the apparatus and control the film formation.

所定の期間における水晶振動子の共振周波数の変動量の変化を確認するための遮蔽部材12の回転制御の手法としては、上述した制御方法に限定されない。例えば、第2モードにおける遮蔽部材12の回転制御において、遮蔽部材12の回転方向を一時的に逆方向に変えて往復動させることで、所定の期間内において非遮蔽状態となる回数を増やす(頻度を高める)ようにしてもよい。開口スリット12aがモニタ開口11aの近傍で行ったり来たりするように遮蔽部材12を往復回転運動させることで、単一方向に回転させて非遮
蔽状態を周期的に形成する場合よりも、所定の期間内における非遮蔽状態の発生回数を増やすことができる。これにより、所定の期間内におけるトータルの非遮蔽状態の継続時間を長くすることができる。なお、成膜ムラ回避の観点から、往復回転運動における回転方向の切り返しは、開口スリット12aがモニタ開口11aを完全に通過してから(すなわち、水晶振動子13aが十分に遮蔽された状態となってから)行うことが好ましい。
あるいは、第2モードにおいて、遮蔽状態における定常回転速度を、非遮蔽状態における定常回転速度(第1モードにおける定常回転速度)よりも速い速度に変更する制御により、所定期間内における非遮蔽状態の回数を増やすようにしてもよい。
また、第2モードにおいて、非遮蔽状態時に遮蔽部材12の回転を一時的に停止することで、所定の期間内における非遮蔽状態の継続期間を長くするようにしてもよい。
さらに、上述した制御を組み合わせた制御としてもよい。例えば、非遮蔽状態における定常回転速度を減速しつつ、遮蔽状態と非遮蔽状態とを短期間で繰り返すように往復回転させる制御としてもよい。
また、本実施例では、第2モードの遮蔽状態における定常回転速度と、第1モードにおける定常回転速度とを同じ速度としているが、遮蔽部材12の開口率を実質的に増大させる効果が得られる範囲で、適宜異なる速度に設定してもよい。
The method for controlling the rotation of the shielding member 12 for confirming the change in the fluctuation amount of the resonance frequency of the crystal oscillator in a predetermined period is not limited to the above-mentioned control method. For example, in the rotation control of the shielding member 12 in the second mode, the rotation direction of the shielding member 12 is temporarily changed in the opposite direction to reciprocate, thereby increasing the number of times the shielding member 12 is in the non-shielding state within a predetermined period (frequency). May be increased). By reciprocating the shielding member 12 so that the opening slit 12a moves back and forth in the vicinity of the monitor opening 11a, the shielding member 12 is rotated in a single direction to periodically form a non-shielding state. It is possible to increase the number of occurrences of the unshielded state within the period. As a result, the duration of the total unshielded state within a predetermined period can be lengthened. From the viewpoint of avoiding uneven film formation, the turning back in the rotational direction in the reciprocating rotational motion is performed after the opening slit 12a completely passes through the monitor opening 11a (that is, the crystal oscillator 13a is sufficiently shielded). It is preferable to do it afterwards.
Alternatively, in the second mode, the number of unshielded states within a predetermined period is controlled by changing the steady rotation speed in the shielded state to a speed faster than the steady rotation speed in the unshielded state (steady rotation speed in the first mode). May be increased.
Further, in the second mode, the rotation of the shielding member 12 may be temporarily stopped in the non-shielding state to prolong the duration of the non-shielding state within a predetermined period.
Further, the control may be a combination of the above-mentioned controls. For example, control may be performed in which the steady rotation speed in the non-shielded state is decelerated while the reciprocating rotation is performed so that the shielded state and the non-shielded state are repeated in a short period of time.
Further, in this embodiment, the steady rotation speed in the shielded state of the second mode and the steady rotation speed in the first mode are set to the same speed, but the effect of substantially increasing the aperture ratio of the shielding member 12 can be obtained. In the range, different speeds may be set as appropriate.

1…成膜レートモニタ装置、10…モニタユニット、11…水晶モニタヘッド、11a…モニタ開口、12…遮蔽部材(チョッパ)、12a…開口スリット(開口部、非遮蔽部)、12b…遮蔽部、13(13a、13b)…水晶振動子、14…水晶ホルダ(回転支持体)、15…サーボモータ(駆動源)、15a…モータ軸、16…サーボモータ(駆動源)、16a…モータ軸16a、17(17a、17b)…位置(回転位相)検出手段、18(18a、18b)…位置(回転位相)検出手段、19…共振器、2…成膜装置、100…基板、20…制御部(取得部、加熱制御部)、200…真空チャンバ(成膜室)、300…蒸発源装置、301…蒸発源容器(坩堝)、302…ヒータ(加熱源)、303…ノズル 1 ... film formation rate monitor device, 10 ... monitor unit, 11 ... crystal monitor head, 11a ... monitor opening, 12 ... shielding member (chopper), 12a ... opening slit (opening, non-shielding portion), 12b ... shielding portion, 13 (13a, 13b) ... Crystal oscillator, 14 ... Crystal holder (rotary support), 15 ... Servo motor (drive source), 15a ... Motor shaft, 16 ... Servo motor (drive source), 16a ... Motor shaft 16a, 17 (17a, 17b) ... position (rotational phase) detecting means, 18 (18a, 18b) ... position (rotating phase) detecting means, 19 ... resonator, 2 ... film forming apparatus, 100 ... substrate, 20 ... control unit ( Acquisition unit, heating control unit), 200 ... Vacuum chamber (deposition chamber), 300 ... Evaporation source device, 301 ... Evaporation source container (servo), 302 ... Heater (heating source), 303 ... Nozzle

Claims (23)

成膜対象物を収容するチャンバと、
前記チャンバ内に配置された容器に収容される成膜材料を加熱するための加熱源へ供給する電力を制御する加熱制御部と、
前記チャンバ内に配置される、成膜対象物に対する成膜材料の成膜レートを検知するためのモニタユニットであって、水晶振動子と、遮蔽部及び開口部を有し前記水晶振動子と前記容器との間に配置される回転体と、を有するモニタユニットと、
前記遮蔽部が前記容器と前記水晶振動子との間に位置する遮蔽状態と、前記開口部が前記容器と前記水晶振動子との間に位置する非遮蔽状態と、のいずれかを取り得るように、前記回転体の回転を制御する回転制御部と、
前記水晶振動子の共振周波数の変化に基づいて前記成膜レートを取得する取得部と、
を備え、
前記成膜対象物に前記成膜材料による膜を成膜する成膜装置であって、
前記加熱制御部が前記加熱源へ供給する電力を一定に保った状態で、所定の期間における前記非遮蔽状態となる期間の長さが変化するように前記回転制御部が前記回転体の回転速度を変動させたときの前記所定の期間における前記共振周波数の変動量の変化に基づいて、前記成膜材料に突沸が発生しているか否か、又は、前記モニタユニットに故障が発生しているか否か、を判定する状態判定部を備えることを特徴とする成膜装置。
A chamber that houses the film-forming object and
A heating control unit that controls the electric power supplied to the heating source for heating the film-forming material contained in the container arranged in the chamber.
A monitor unit arranged in the chamber for detecting the film formation rate of the film-forming material with respect to the film-forming object, which has a crystal oscillator, a shielding portion and an opening, and the crystal oscillator and the above. A monitor unit having a rotating body arranged between the containers and
It is possible to take either a shielded state in which the shielding portion is located between the container and the crystal oscillator, or a non-shielding state in which the opening is located between the container and the crystal oscillator. In addition, a rotation control unit that controls the rotation of the rotating body,
An acquisition unit that acquires the film formation rate based on a change in the resonance frequency of the crystal unit, and
Equipped with
A film forming apparatus for forming a film formed of the film forming material on the film forming object.
While the power supplied by the heating control unit to the heating source is kept constant, the rotation control unit changes the rotation speed of the rotating body so that the length of the non-shielding state in a predetermined period changes. Whether or not bumping has occurred in the film-forming material or whether or not the monitor unit has failed based on the change in the amount of fluctuation of the resonance frequency in the predetermined period when the above-mentioned is changed. A film forming apparatus including a state determination unit for determining whether or not .
前記成膜を、前記取得部が取得する前記成膜レートが所定の値に維持されるように前記加熱制御部が電力量を制御するレート制御により行い、
前記取得部が取得する前記成膜レートが所定の閾値を超えたときに、前記状態判定部による成膜装置の状態の判定シーケンスが実行されることを特徴とする請求項1に記載の成膜装置。
The film formation is performed by rate control in which the heating control unit controls the amount of electric power so that the film formation rate acquired by the acquisition unit is maintained at a predetermined value.
The film formation according to claim 1, wherein when the film formation rate acquired by the acquisition unit exceeds a predetermined threshold value, the state determination sequence of the film formation apparatus by the state determination unit is executed. Device.
前記取得部が取得する前記成膜レートが所定の閾値を超えたときに、前記レート制御から、前記取得部が取得する前記成膜レートに依らずに設定される電力量で前記加熱制御部が電力供給する電力制御に切り替えることを特徴とする請求項2に記載の成膜装置。 When the film formation rate acquired by the acquisition unit exceeds a predetermined threshold value, the heating control unit uses a power amount set from the rate control regardless of the film formation rate acquired by the acquisition unit. The film forming apparatus according to claim 2, wherein the film forming apparatus is switched to power control for supplying power. 所定の期間における前記非遮蔽状態となる期間の長さが変化するように前記回転制御部が前記回転体の回転速度を変動させたときの前記所定の期間における前記共振周波数の変動量が、所定の期間における前記非遮蔽状態となる期間の長さの変化に応じた変動量でない場合、前記状態判定部は前記モニタユニットに故障が発生している状態であると判定することを特徴とする請求項1~3のいずれか1項に記載の成膜装置。 The amount of change in the resonance frequency in the predetermined period when the rotation control unit changes the rotation speed of the rotating body so that the length of the non-shielding state in the predetermined period changes is predetermined. If the amount does not fluctuate according to a change in the length of the non-shielding state during the period of, the state determination unit determines that the monitor unit is in a state of failure. Item 6. The film forming apparatus according to any one of Items 1 to 3. 所定の期間における前記非遮蔽状態となる期間の長さが変化するように前記回転制御部が前記回転体の回転速度を変動させたときの前記所定の期間における前記共振周波数の変動量が、所定の値を超えない場合、前記状態判定部は前記モニタユニットに故障が発生している状態であると判定することを特徴とする請求項1~のいずれか1項に記載の成膜装置。 The amount of change in the resonance frequency in the predetermined period when the rotation control unit changes the rotation speed of the rotating body so that the length of the non-shielding state in the predetermined period changes is predetermined. The film forming apparatus according to any one of claims 1 to 3 , wherein if the value does not exceed the value of, the state determination unit determines that the monitor unit is in a state of failure. 所定の期間における前記非遮蔽状態となる期間の長さが変化するように前記回転制御部が前記回転体の回転速度を変動させたときの前記所定の期間における前記共振周波数の変動量が、所定の期間における前記非遮蔽状態となる期間の長さの変化に応じた変動量の場合、前記状態判定部は前記成膜材料に突沸が発生した状態であると判定することを特徴とする請求項1~のいずれか1項に記載の成膜装置。 The amount of change in the resonance frequency in the predetermined period when the rotation control unit changes the rotation speed of the rotating body so that the length of the non-shielding state in the predetermined period changes is predetermined. The claim is characterized in that, in the case of a fluctuation amount corresponding to a change in the length of the non-shielding state in the period of the above, the state determination unit determines that the film forming material is in a state where bumping has occurred. The film forming apparatus according to any one of 1 to 3 . 所定の期間における前記非遮蔽状態となる期間の長さが変化するように前記回転制御部が前記回転体の回転速度を変動させたときの前記所定の期間における前記共振周波数の変動量が、所定の値を超える場合、前記状態判定部は前記成膜材料に突沸が発生した状態であると判定することを特徴とする請求項1~のいずれか1項に記載の成膜装置。 The amount of change in the resonance frequency in the predetermined period when the rotation control unit changes the rotation speed of the rotating body so that the length of the non-shielding state in the predetermined period changes is predetermined. The film forming apparatus according to any one of claims 1 to 3 , wherein when the value exceeds the value of, the state determining unit determines that the film forming material is in a state of sudden boiling. 前記状態判定部が前記モニタユニットに故障が発生している状態であると判定した場合、その後の前記成膜を、前記取得部が取得する前記成膜レートに依らずに設定される電力量で前記加熱制御部が電力供給する電力制御により行うことを特徴とする請求項1~7のいずれか1項に記載の成膜装置。 When the state determination unit determines that the monitor unit is in a state of failure, the amount of power set for the subsequent film formation regardless of the film formation rate acquired by the acquisition unit. The film forming apparatus according to any one of claims 1 to 7, wherein the film forming apparatus is performed by power control supplied by the heating control unit. 前記状態判定部が前記成膜材料に突沸が発生した状態であると判定した場合、その後の前記成膜を、前記取得部が取得する前記成膜レートが所定の値に維持されるように前記加熱制御部が電力を制御するレート制御により行うことを特徴とする請求項1~8のいずれか1項に記載の成膜装置。 When the state determination unit determines that bumping has occurred in the film forming material, the film formation rate acquired by the acquisition unit is maintained at a predetermined value for the subsequent film formation. The film forming apparatus according to any one of claims 1 to 8, wherein the heating control unit performs rate control for controlling electric power. 所定の期間において前記非遮蔽状態となる期間が第1の長さとなるように前記回転制御部が前記遮蔽部を回転させる第1遮蔽モードと、
前記所定の期間において前記非遮蔽状態となる期間が前記第1の長さよりも長い第2の長さとなるように前記回転制御部が前記遮蔽部を回転させる第2遮蔽モードと、
を有し、
前記加熱制御部が前記加熱源へ供給する電力を一定に保った状態で、前記第1遮蔽モードから前記第2遮蔽モードに切り替えたときの、前記所定の期間における前記共振周波数の変動量の変化に基づいて、前記状態判定部が成膜装置の状態を判定することを特徴とする請求項1~9のいずれか1項に記載の成膜装置。
A first shielding mode in which the rotation control unit rotates the shielding unit so that the non-shielding state period becomes the first length in a predetermined period.
A second shielding mode in which the rotation control unit rotates the shielding portion so that the non-shielding state period becomes a second length longer than the first length in the predetermined period.
Have,
Change in the amount of fluctuation of the resonance frequency in the predetermined period when the first shielding mode is switched to the second shielding mode while the electric power supplied to the heating source by the heating control unit is kept constant. The film forming apparatus according to any one of claims 1 to 9, wherein the state determining unit determines the state of the film forming apparatus based on the above.
前記回転制御部は、前記第2遮蔽モードにおいて、前記非遮蔽状態における回転速度が、前記遮蔽状態における回転速度よりも遅くなるように、前記遮蔽部を回転させることを特徴とする請求項10に記載の成膜装置。 The tenth aspect of the present invention is characterized in that the rotation control unit rotates the shielding unit so that the rotation speed in the non-shielding state becomes slower than the rotation speed in the shielding state in the second shielding mode. The film forming apparatus according to the above. 前記回転制御部は、前記第2遮蔽モードの前記非遮蔽状態における回転速度が、前記第1遮蔽モードの前記非遮蔽状態における回転速度よりも遅くなるように、前記遮蔽部を回転させることを特徴とする請求項10または11に記載の成膜装置。 The rotation control unit is characterized in that the shielding unit is rotated so that the rotation speed of the second shielding mode in the non-shielding state is slower than the rotation speed of the first shielding mode in the non-shielding state. The film forming apparatus according to claim 10 or 11. 前記回転制御部は、前記第2遮蔽モードにおける前記所定の期間において前記非遮蔽状態となる頻度が、前記第1遮蔽モードにおける前記所定の期間において前記非遮蔽状態となる頻度よりも高くなるように、前記第2遮蔽モードにおいて前記遮蔽部を往復回転させることを特徴とする請求項10に記載の成膜装置。 The rotation control unit is set so that the frequency of being in the non-shielding state in the predetermined period of the second shielding mode is higher than the frequency of being in the non-shielding state in the predetermined period of the first shielding mode. The film forming apparatus according to claim 10, wherein the shielding portion is reciprocally rotated in the second shielding mode. 前記成膜材料を収容し、前記チャンバ内に配置される容器と、
電力が供給されることで前記容器を加熱する加熱源であって、供給される電力が前記加熱制御部によって制御される加熱源と、
をさらに備えることを特徴とする請求項1~13のいずれか1項に記載の成膜装置。
A container that houses the film-forming material and is placed in the chamber,
A heating source that heats the container by being supplied with electric power, and a heating source whose supplied electric power is controlled by the heating control unit.
The film forming apparatus according to any one of claims 1 to 13, further comprising.
成膜対象物を収容するチャンバと、
前記チャンバ内に配置された容器に収容される成膜材料を加熱するための加熱源へ供給する電力を制御する加熱制御部と、
前記チャンバ内に配置される、成膜対象物に対する成膜材料の成膜レートを検知するためのモニタユニットであって、水晶振動子と、遮蔽部及び開口部を有し前記水晶振動子と前記容器との間に配置される回転体と、を有するモニタユニットと、
前記遮蔽部が前記容器と前記水晶振動子との間に位置する遮蔽状態と、前記開口部が前記容器と前記水晶振動子との間に位置する非遮蔽状態と、のいずれかを取り得るように、前記回転体の回転を制御する回転制御部と、
前記水晶振動子の共振周波数の変化に基づいて前記成膜レートを取得する取得部と、
を備え、
前記成膜対象物に前記成膜材料による膜を成膜する成膜装置の制御方法において、
前記取得部が取得する前記成膜レートが所定の値に維持されるように前記加熱制御部が電力量を制御するレート制御により前記成膜を行う第1工程と、
前記取得部が取得する前記成膜レートが所定の閾値を超えたときに、前記レート制御から、前記取得部が取得する前記成膜レートに依らずに設定される電力量で前記加熱制御部が電力供給する電力制御に切り替えて前記成膜を行う第2工程と、
前記第2工程の間に、所定の期間における前記非遮蔽状態となる期間の長さが変化するように前記回転制御部が前記回転体の回転速度を変動させる第3工程と、
前記第3工程において前記回転速度を変動させたときの前記所定の期間における前記共振周波数の変動量の変化に基づいて、前記成膜材料に突沸が発生しているか否か、又は、前記モニタユニットに故障が発生しているか否か、を判定する第4工程と、
を有することを特徴とする成膜装置の制御方法。
A chamber that houses the film-forming object and
A heating control unit that controls the electric power supplied to the heating source for heating the film-forming material contained in the container arranged in the chamber.
A monitor unit arranged in the chamber for detecting the film formation rate of the film-forming material with respect to the film-forming object, which has a crystal oscillator, a shielding portion and an opening, and the crystal oscillator and the above. A monitor unit having a rotating body arranged between the containers and
It is possible to take either a shielded state in which the shielding portion is located between the container and the crystal oscillator, or a non-shielding state in which the opening is located between the container and the crystal oscillator. In addition, a rotation control unit that controls the rotation of the rotating body,
An acquisition unit that acquires the film formation rate based on a change in the resonance frequency of the crystal unit, and
Equipped with
In the control method of the film forming apparatus for forming a film by the film forming material on the film forming object.
The first step of performing the film formation by the rate control in which the heating control unit controls the amount of electric power so that the film formation rate acquired by the acquisition unit is maintained at a predetermined value.
When the film formation rate acquired by the acquisition unit exceeds a predetermined threshold value, the heating control unit uses a power amount set from the rate control regardless of the film formation rate acquired by the acquisition unit. The second step of switching to power control to supply power and performing the film formation, and
During the second step, the third step in which the rotation control unit changes the rotation speed of the rotating body so that the length of the non-shielding state in a predetermined period changes.
Whether or not bumping occurs in the film-forming material based on the change in the amount of fluctuation of the resonance frequency in the predetermined period when the rotation speed is changed in the third step, or the monitor unit. 4th step to determine whether or not a failure has occurred in
A method for controlling a film forming apparatus, which comprises.
前記第4工程において、前記変動量が所定の値を超えない場合、前記モニタユニットに故障が発生している状態であると判定し、前記変動量が所定の値を超える場合、前記成膜材料に突沸が発生した状態であると判定することを特徴とする請求項15に記載の成膜装置の制御方法。 In the fourth step, if the fluctuation amount does not exceed a predetermined value, it is determined that the monitor unit has a failure, and if the fluctuation amount exceeds a predetermined value, the film forming material is formed. The control method for a film forming apparatus according to claim 15, wherein it is determined that bumping has occurred. 前記第4工程において、成膜装置の状態を前記成膜材料に突沸が発生した状態であると判定した場合、前記電力制御から前記レート制御に切り替えて前記成膜を継続する第5工程をさらに有することを特徴とする請求項15または16に記載の成膜装置の制御方法。 In the fourth step, when it is determined that the state of the film forming apparatus is a state in which bumping occurs in the film forming material, the fifth step of switching from the power control to the rate control and continuing the film forming is further performed. The control method for a film forming apparatus according to claim 15 or 16, wherein the film forming apparatus is provided. 前記第4工程において、成膜装置の状態を前記モニタユニットに故障が発生している状態であると判定した場合、前記電力制御により前記成膜を継続する第6工程をさらに有することを特徴とする請求項15~17のいずれか1項に記載の成膜装置の制御方法。 In the fourth step, when it is determined that the state of the film forming apparatus is a state in which a failure has occurred in the monitor unit, it is characterized by further having a sixth step of continuing the film forming by the power control. The control method for a film forming apparatus according to any one of claims 15 to 17. 前記成膜装置は、
所定の期間において前記非遮蔽状態となる期間が第1の長さとなるように前記回転制御
部が前記遮蔽部を回転させる第1遮蔽モードと、
前記所定の期間において前記非遮蔽状態となる期間が前記第1の長さよりも長い第2の長さとなるように前記回転制御部が前記遮蔽部を回転させる第2遮蔽モードと、
を有し、
前記第1工程において、前記第1遮蔽モードを実行し、
前記第3工程において、前記第1遮蔽モードから前記第2遮蔽モードに切り替えることを特徴とする請求項15~18のいずれか1項に記載の成膜装置の制御方法。
The film forming apparatus is
A first shielding mode in which the rotation control unit rotates the shielding unit so that the non-shielding state period becomes the first length in a predetermined period.
A second shielding mode in which the rotation control unit rotates the shielding portion so that the non-shielding state period becomes a second length longer than the first length in the predetermined period.
Have,
In the first step, the first shielding mode is executed,
The control method for a film forming apparatus according to any one of claims 15 to 18, wherein in the third step, the first shielding mode is switched to the second shielding mode.
前記回転制御部は、前記第2遮蔽モードにおいて、前記非遮蔽状態における回転速度が、前記遮蔽状態における回転速度よりも遅くなるように、前記遮蔽部を回転させることを特徴とする請求項19に記載の成膜装置の制御方法。 19. The rotation control unit is characterized in that, in the second shielding mode, the shielding unit is rotated so that the rotation speed in the non-shielding state is slower than the rotation speed in the shielding state. The method for controlling a film forming apparatus according to the description. 前記回転制御部は、前記第2遮蔽モードの前記非遮蔽状態における回転速度が、前記第1遮蔽モードの前記非遮蔽状態における回転速度よりも遅くなるように、前記遮蔽部を回転させることを特徴とする請求項19または20に記載の成膜装置の制御方法。 The rotation control unit is characterized in that the shielding unit is rotated so that the rotation speed of the second shielding mode in the non-shielding state is slower than the rotation speed of the first shielding mode in the non-shielding state. The control method of the film forming apparatus according to claim 19 or 20. 前記回転制御部は、前記第2遮蔽モードにおける前記所定の期間において前記非遮蔽状態となる頻度が、前記第1遮蔽モードにおける前記所定の期間において前記非遮蔽状態となる頻度よりも高くなるように、前記第2遮蔽モードにおいて前記遮蔽部を往復回転させることを特徴とする請求項19に記載の成膜装置の制御方法。 The rotation control unit is such that the frequency of being in the non-shielding state in the predetermined period of the second shielding mode is higher than the frequency of being in the non-shielding state in the predetermined period of the first shielding mode. The control method for a film forming apparatus according to claim 19, wherein the shielding portion is reciprocally rotated in the second shielding mode. 前記成膜装置は、
前記成膜材料を収容し、前記チャンバ内に配置される容器と、
電力が供給されることで前記容器を加熱する加熱源であって、供給される電力が前記加熱制御部によって制御される加熱源と、
をさらに備えることを特徴とする請求項15~22のいずれか1項に記載の成膜装置の制御方法。
The film forming apparatus is
A container that houses the film-forming material and is placed in the chamber,
A heating source that heats the container by being supplied with electric power, and a heating source whose supplied electric power is controlled by the heating control unit.
The control method for a film forming apparatus according to any one of claims 15 to 22, further comprising.
JP2018162790A 2018-08-31 2018-08-31 Film forming equipment and control method of film forming equipment Active JP7064407B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2018162790A JP7064407B2 (en) 2018-08-31 2018-08-31 Film forming equipment and control method of film forming equipment
KR1020190097157A KR20200026047A (en) 2018-08-31 2019-08-09 Film forming apparatus and control method thereof
CN201910811028.6A CN110872695B (en) 2018-08-31 2019-08-30 Film forming apparatus and control method for film forming apparatus
CN202310551502.2A CN116397208A (en) 2018-08-31 2019-08-30 Film forming apparatus and control method for film forming apparatus
JP2022070776A JP7262647B2 (en) 2018-08-31 2022-04-22 Film forming apparatus and film forming apparatus control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018162790A JP7064407B2 (en) 2018-08-31 2018-08-31 Film forming equipment and control method of film forming equipment

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2022070776A Division JP7262647B2 (en) 2018-08-31 2022-04-22 Film forming apparatus and film forming apparatus control method

Publications (3)

Publication Number Publication Date
JP2020033620A JP2020033620A (en) 2020-03-05
JP2020033620A5 JP2020033620A5 (en) 2021-04-15
JP7064407B2 true JP7064407B2 (en) 2022-05-10

Family

ID=69667301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018162790A Active JP7064407B2 (en) 2018-08-31 2018-08-31 Film forming equipment and control method of film forming equipment

Country Status (3)

Country Link
JP (1) JP7064407B2 (en)
KR (1) KR20200026047A (en)
CN (2) CN110872695B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102527120B1 (en) * 2020-03-31 2023-04-27 캐논 톡키 가부시키가이샤 Film forming apparatus, film forming method and manufacturing method of electronic device
CN114172281A (en) * 2021-12-07 2022-03-11 楚赟精工科技(上海)有限公司 Power supply system, power supply method, film forming apparatus, and measuring apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000008164A (en) 1998-06-25 2000-01-11 Toray Ind Inc Production of base material with thin film and production device therefor
JP2006193811A (en) 2005-01-17 2006-07-27 Tohoku Pioneer Corp Film thickness monitoring device, film deposition system, film deposition method and method of producing spontaneous light emitting element
JP2014055335A (en) 2012-09-13 2014-03-27 Hitachi High-Technologies Corp Vacuum film deposition apparatus, and temperature control method and apparatus for evaporation source therefor
WO2016017108A1 (en) 2014-07-31 2016-02-04 株式会社アルバック Diagnostic method for film thickness sensor, and film thickness monitor

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07180055A (en) * 1993-12-22 1995-07-18 Toshiba Glass Co Ltd Vacuum film forming device
US5665214A (en) * 1995-05-03 1997-09-09 Sony Corporation Automatic film deposition control method and system
JPH10251844A (en) * 1997-03-12 1998-09-22 Toray Ind Inc Production of thin film-coated substrate, its production device and thin film-coated substrate
JPH11222670A (en) * 1998-02-06 1999-08-17 Ulvac Corp Film thickness monitor and film forming device using this
JP2006045581A (en) 2004-07-30 2006-02-16 Nec Kansai Ltd Vacuum deposition apparatus and vacuum deposition method using the apparatus
US7828929B2 (en) * 2004-12-30 2010-11-09 Research Electro-Optics, Inc. Methods and devices for monitoring and controlling thin film processing
KR101283161B1 (en) * 2007-09-21 2013-07-05 가부시키가이샤 알박 Thin film forming apparatus, film thickness measuring method and film thickness sensor
JP5495493B2 (en) * 2008-02-07 2014-05-21 株式会社東京精密 Film thickness measuring apparatus and film thickness measuring method
CN101962750B (en) * 2009-07-24 2013-07-03 株式会社日立高新技术 Vacuum evaporation method and device
JP2014070243A (en) * 2012-09-28 2014-04-21 Hitachi High-Technologies Corp Sensor head for quartz oscillation type film thickness monitor
JP6284362B2 (en) * 2013-12-27 2018-02-28 キヤノントッキ株式会社 Quartz vibration type film thickness monitor
JP6263441B2 (en) * 2014-05-23 2018-01-17 キヤノントッキ株式会社 Thickness control method by crystal oscillation type film thickness monitor
CN106471152B (en) * 2014-07-15 2019-07-26 株式会社爱发科 Film thickness monitoring device, film thickness monitoring method and film formation device
JP6411975B2 (en) * 2014-09-30 2018-10-24 芝浦メカトロニクス株式会社 Film forming apparatus and film forming substrate manufacturing method
CN106104251A (en) * 2015-03-03 2016-11-09 株式会社爱发科 Thickness monitoring arrangement sensor, the thickness monitoring arrangement possessing this thickness monitoring arrangement sensor and the manufacture method of thickness monitoring arrangement sensor
KR102193817B1 (en) * 2016-05-06 2020-12-22 가부시키가이샤 알박 Thin film manufacturing device, thin film manufacturing method
JP6834438B2 (en) * 2016-12-12 2021-02-24 コニカミノルタ株式会社 Image forming apparatus, control method of image forming apparatus, and control program of image forming apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000008164A (en) 1998-06-25 2000-01-11 Toray Ind Inc Production of base material with thin film and production device therefor
JP2006193811A (en) 2005-01-17 2006-07-27 Tohoku Pioneer Corp Film thickness monitoring device, film deposition system, film deposition method and method of producing spontaneous light emitting element
JP2014055335A (en) 2012-09-13 2014-03-27 Hitachi High-Technologies Corp Vacuum film deposition apparatus, and temperature control method and apparatus for evaporation source therefor
WO2016017108A1 (en) 2014-07-31 2016-02-04 株式会社アルバック Diagnostic method for film thickness sensor, and film thickness monitor

Also Published As

Publication number Publication date
CN110872695A (en) 2020-03-10
JP2020033620A (en) 2020-03-05
CN116397208A (en) 2023-07-07
KR20200026047A (en) 2020-03-10
CN110872695B (en) 2023-06-02

Similar Documents

Publication Publication Date Title
JP7144232B2 (en) Film formation rate monitor device and film formation device
JP4844867B2 (en) Method of operating vacuum deposition apparatus and vacuum deposition apparatus
JP7064407B2 (en) Film forming equipment and control method of film forming equipment
US4816293A (en) Process for coating a workpiece with a ceramic material
TWI819206B (en) Film forming device and film forming method
JP2007169787A (en) System for applying coating and method for applying coating
WO1998051836A1 (en) Apparatus, system and method for controlling emission parameters attending vaporized materials in a hv environment
US5262194A (en) Methods and apparatus for controlling film deposition
US11225711B2 (en) Coating device and method for manufacturing coated article
JP7262647B2 (en) Film forming apparatus and film forming apparatus control method
JP2009127074A (en) Vacuum deposition apparatus, vacuum deposition method, and vacuum-deposited article
JP7253352B2 (en) Film forming apparatus, base film forming method, and film forming method
JP2002167662A (en) Device for feeding vapor deposition source material
JP2000008164A (en) Production of base material with thin film and production device therefor
US8778082B2 (en) Point source assembly for thin film deposition devices and thin film deposition devices employing the same
JPH10251844A (en) Production of thin film-coated substrate, its production device and thin film-coated substrate
JP7319140B2 (en) Film forming apparatus and film forming method
WO2013111833A1 (en) Film forming device, and film forming method
JP2014055335A (en) Vacuum film deposition apparatus, and temperature control method and apparatus for evaporation source therefor
JP2016130336A (en) Method of manufacturing vapor-deposited film and vapor deposition apparatus
JP2006022355A (en) Film deposition apparatus having heating means on correction plate
JP2013108106A (en) Vapor deposition apparatus and method for operating vapor deposition apparatus
KR20190026457A (en) Pulse Laser Deposition Equipment Comprising Vacuum Chamber
JP4150529B2 (en) Vacuum deposition equipment
JP2013100581A (en) Vapor deposition apparatus and vapor deposition method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210226

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210226

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20210226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220422

R150 Certificate of patent or registration of utility model

Ref document number: 7064407

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150