JP6263441B2 - Thickness control method by crystal oscillation type film thickness monitor - Google Patents

Thickness control method by crystal oscillation type film thickness monitor Download PDF

Info

Publication number
JP6263441B2
JP6263441B2 JP2014107511A JP2014107511A JP6263441B2 JP 6263441 B2 JP6263441 B2 JP 6263441B2 JP 2014107511 A JP2014107511 A JP 2014107511A JP 2014107511 A JP2014107511 A JP 2014107511A JP 6263441 B2 JP6263441 B2 JP 6263441B2
Authority
JP
Japan
Prior art keywords
film
measurement
film thickness
substrate
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014107511A
Other languages
Japanese (ja)
Other versions
JP2015222244A (en
Inventor
康信 小林
康信 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Tokki Corp
Original Assignee
Canon Tokki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Tokki Corp filed Critical Canon Tokki Corp
Priority to JP2014107511A priority Critical patent/JP6263441B2/en
Priority to KR1020150064419A priority patent/KR102008046B1/en
Priority to CN201510262480.3A priority patent/CN105088171B/en
Publication of JP2015222244A publication Critical patent/JP2015222244A/en
Application granted granted Critical
Publication of JP6263441B2 publication Critical patent/JP6263441B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、水晶発振式膜厚モニタによる膜厚制御方法に関するもので、水晶振動子で測定する膜厚と、基板上の実膜厚の誤差を補正する技術に関するものである。   The present invention relates to a film thickness control method using a crystal oscillation type film thickness monitor, and relates to a technique for correcting an error between a film thickness measured by a crystal resonator and an actual film thickness on a substrate.

蒸着やスパッタリングなどによって、成膜材料を基板に堆積させて薄膜を形成する成膜装置において、膜厚及び成膜速度(レート)を制御(管理)するために、膜厚計(膜厚モニタ)が用いられるが、これには水晶振動子法を用いた水晶発振式膜厚モニタが広く用いられている。   A film thickness meter (film thickness monitor) is used to control (manage) the film thickness and film forming rate (rate) in a film forming apparatus that forms a thin film by depositing a film forming material on a substrate by vapor deposition or sputtering. In this case, a crystal oscillation type film thickness monitor using a crystal resonator method is widely used.

この水晶発振式膜厚モニタは、測定部となる水晶振動子を成膜室内に設け、この水晶振動子に成膜材料が付着すると、共振振動がその質量の変化によって変化することを利用したもので、例えばこの共振振動(発振周波数)の変化を測定することで、膜厚や成膜速度(レート)を計測し、例えば成膜装置として真空蒸着装置を用いる場合には、この測定結果を蒸発源の加熱制御装置にフィードバックして、基板への蒸着薄膜のレートを一定に制御するなどして膜厚を管理するものである。   This crystal oscillation type film thickness monitor uses the fact that a quartz resonator serving as a measurement unit is provided in the film forming chamber, and that when the film forming material adheres to this crystal resonator, the resonance vibration changes due to changes in its mass. Thus, for example, by measuring the change in the resonance vibration (oscillation frequency), the film thickness and the film forming speed (rate) are measured. For example, when a vacuum evaporation apparatus is used as the film forming apparatus, the measurement result is evaporated. The film thickness is managed by feeding back to the heating control device of the source and controlling the rate of the deposited thin film on the substrate to be constant.

また、一方このような水晶振動子は、測定に伴って徐々に薄膜が厚くなって行くが、この水晶振動子表面の薄膜が厚くなると、共振振動が徐々に低下して行く。その際、例えば図1に示すように、水晶振動子のモニタ上の成膜速度と、基板上の実際の成膜速度が徐々にずれてしまい、水晶振動子の使用初期には正確な膜厚が測定出来ていても、時間経過と共に、膜厚測定に誤差が生じてしまう(使用初期に成膜した基板と、時間が経過した後に成膜した基板とでは、膜厚に誤差が生じてしまう。)。   On the other hand, in such a crystal resonator, the thin film gradually increases with the measurement, but as the thin film on the surface of the crystal resonator becomes thicker, the resonance vibration gradually decreases. At that time, for example, as shown in FIG. 1, the film formation speed on the monitor of the crystal unit and the actual film formation rate on the substrate gradually deviate, and an accurate film thickness is obtained at the initial use of the crystal unit. Even if measurement is possible, an error occurs in the film thickness measurement as time elapses (an error occurs in the film thickness between the substrate formed in the initial stage of use and the substrate formed after the time has elapsed). .)

このように水晶振動子に堆積される薄膜の膜厚の増大によって発振周波数は徐々に低下して行くに伴って、実膜厚との誤差が大きくなり、これを補正する必要がある。   As the oscillation frequency gradually decreases due to the increase in the thickness of the thin film deposited on the quartz resonator as described above, an error from the actual film thickness increases, and this needs to be corrected.

この点、例えば特許文献1(特開2008−122200号公報)には、測定用の水晶振動子に並設して校正用水晶振動子を設け、測定用の水晶振動子の膜厚の増大に応じて、膜厚が増大していない校正用水晶振動子のシャッターを開けてこの校正用水晶振動子により膜厚を測定し、この測定値と測定用水晶振動子の測定値との比率を補正比率として乗じて膜厚換算を行う補正手法が開示されている。   In this regard, for example, in Patent Document 1 (Japanese Patent Application Laid-Open No. 2008-122200), a calibration crystal resonator is provided in parallel with a measurement crystal resonator to increase the film thickness of the measurement crystal resonator. In response, open the shutter of the calibration crystal unit whose thickness has not increased, measure the film thickness with this calibration crystal unit, and correct the ratio between this measurement value and the measurement value of the measurement crystal unit. A correction method for converting the film thickness by multiplying as a ratio is disclosed.

しかし、水晶振動子とは別に校正用水晶振動子を並設しなければならず、測定途中で逐次シャッターを開いて校正用水晶振動子での測定を行い換算補正する必要があり、また、この換算補正もあくまで水晶振動子での測定に基づくものであり、基板の薄膜の実膜厚に基づくものではなく、しかもこの校正用水晶振動子には測定用水晶振動子よりは薄膜は堆積しないが、やはり成膜材料が徐々に堆積し膜厚はやはり徐々に増大して行くため、誤差を補正する補正精度に劣り、基板の膜厚の測定精度は十分に改善されるとは言えない。   However, it is necessary to arrange a calibration crystal unit separately from the crystal unit, and it is necessary to open the shutter in the middle of the measurement and measure with the calibration crystal unit to correct the conversion. The conversion correction is based solely on the measurement with the crystal resonator, not based on the actual film thickness of the thin film on the substrate, and the calibration crystal resonator is less deposited than the measurement crystal resonator. Also, since the film forming material is gradually deposited and the film thickness gradually increases, the correction accuracy for correcting the error is inferior, and it cannot be said that the measurement accuracy of the substrate film thickness is sufficiently improved.

また、特許文献2(特開平8−82517号公報)には、基板の薄膜の膜厚を実測して補正する手法が開示されているが、発振周波数の高い状態と低い状態との実膜厚を測定し、最小2乗法により最適な補正係数を算出する手法にすぎないため、この2点間は計算結果による固定値によって補正しているにすぎず、やはり誤差補正精度は低く、基板の膜厚の測定精度は十分ではない。   Patent Document 2 (Japanese Patent Laid-Open No. 8-82517) discloses a method of measuring and correcting the film thickness of the thin film on the substrate, but the actual film thickness between the high and low oscillation frequencies is disclosed. This is merely a method for calculating an optimal correction coefficient by the least square method, and the correction between these two points is merely based on a fixed value based on the calculation result. Thickness measurement accuracy is not enough.

特開2008−122200号公報JP 2008-122200 A 特開平8−82517号公報JP-A-8-82517

本発明は、このような問題を解決したもので、成膜工程前に事前測定用水晶振動子を用いて、この事前測定用水晶振動子の異なる発振周波数毎での測定用基板の薄膜の膜厚を測定して、前記事前測定用水晶振動子で測定する目標膜厚と前記各発振周波数毎に測定した測定用基板の薄膜の実膜厚との比率を補正比率として算出し、成膜工程においては、成膜時の前記水晶振動子により測定される(成膜用)基板の薄膜の膜厚若しくは成膜速度に、前記各補正比率のうち発振周波数に応じた補正比率を乗じて(成膜用)基板の薄膜の膜厚若しくは成膜速度を補正し膜厚を制御することで、誤差補正精度が極めて向上して膜厚測定精度が極めて向上すると共に、水晶振動子の使用時間(使用周波数帯)を延ばせることにもなる極めて優れた水晶発振式膜厚モニタによる膜厚制御方法を提供することを目的としている。   The present invention solves such a problem, and uses a pre-measurement crystal resonator before the film-forming step, and the thin film of the measurement substrate at each oscillation frequency of the pre-measurement crystal resonator is different. Measure the thickness, calculate the ratio between the target film thickness measured by the pre-measurement crystal resonator and the actual film thickness of the measurement substrate thin film measured at each oscillation frequency as the correction ratio, and form the film In the process, the film thickness or the film formation speed of the thin film of the substrate (for film formation) measured by the crystal resonator during film formation is multiplied by a correction ratio corresponding to the oscillation frequency among the respective correction ratios ( For film formation) By correcting the film thickness or film formation speed of the substrate and controlling the film thickness, the error correction accuracy is greatly improved and the film thickness measurement accuracy is greatly improved. Excellent crystal oscillation that can extend the frequency band used) And its object is to provide a film thickness control method according to film thickness monitor.

添付図面を参照して本発明の要旨を説明する。   The gist of the present invention will be described with reference to the accompanying drawings.

基板1表面に成膜材料を堆積させて薄膜を形成する成膜装置3の成膜室4内に水晶発振式膜厚モニタの測定部となる水晶振動子5を設け、この水晶振動子5に前記成膜材料を堆積させて前記基板1表面に形成される薄膜の膜厚を測定する成膜装置3に設ける水晶発振式膜厚モニタによる膜厚制御方法であって、成膜工程前に事前測定用水晶振動子を用いて、この事前測定用水晶振動子の異なる発振周波数毎での測定用基板の薄膜の膜厚を測定して、前記事前測定用水晶振動子で測定する目標膜厚と前記各発振周波数毎に測定した測定用基板の薄膜の実膜厚との比率を補正比率として算出し、成膜工程においては、成膜時の前記水晶振動子5により測定される前記基板1の薄膜の膜厚若しくは成膜速度に、前記各補正比率のうち発振周波数に応じた補正比率を乗じて基板1の薄膜の膜厚若しくは成膜速度を補正し膜厚を制御する方法において、
前記成膜工程前に行う事前測定工程においては、前記測定用基板表面に成膜材料を堆積させて薄膜を形成する前記成膜装置3の前記成膜室4内に事前測定用水晶振動子を設け、この事前測定用水晶振動子に成膜材料を堆積させて測定用基板の実際の薄膜の膜厚を測定し、この測定用基板の薄膜の実膜厚の前記事前測定用水晶振動子により測定される目標膜厚に対する比率を前記補正比率として算出し、この補正比率の算出は、前記事前測定用水晶振動子に堆積して行く前記成膜材料の膜厚の増大により変化して行く発振周波数の変化段階毎に、逐次異なる測定用基板に取り替えてこの測定用基板に堆積される薄膜の膜厚をn回測定して、異なる発振周波数毎の前記補正比率を各々算出するものとし、
前記成膜工程においては、前記事前測定用水晶振動子に替えて新たな別の水晶振動子5を前記成膜室4内に設け、前記水晶振動子5の発振周波数に対応する前記補正比率を、水晶振動子5により測定される膜厚若しくは成膜速度に乗じて、発振周波数の変化に対応して補正することを特徴とする水晶発振式膜厚モニタによる膜厚制御方法に係るものである。
A crystal resonator 5 serving as a measurement unit of a crystal oscillation type film thickness monitor is provided in a film forming chamber 4 of a film forming apparatus 3 for forming a thin film by depositing a film forming material on the surface of the substrate 1. wherein a film thickness control method according to the crystal oscillator type film thickness monitor deposition material is deposited providing the film deposition apparatus 3 for measuring the thickness of the thin film formed on the substrate 1 surface, advance before film formation step Using the measurement crystal resonator, measure the film thickness of the thin film on the measurement substrate for each different oscillation frequency of the pre-measurement crystal resonator, and measure the target film thickness with the pre-measurement crystal resonator. And the ratio of the actual thickness of the thin film of the measurement substrate measured at each oscillation frequency is calculated as a correction ratio, and in the film formation process, the substrate 1 measured by the crystal resonator 5 at the time of film formation is calculated. Depending on the oscillation frequency of the above correction ratios, In corrected method of controlling the thickness of the film thickness or film forming speed of the thin film substrate 1 is multiplied by the correction ratio was,
In the pre-measurement step performed before the film-forming step, a pre-measurement crystal resonator is placed in the film-forming chamber 4 of the film-forming apparatus 3 for forming a thin film by depositing a film-forming material on the surface of the measurement substrate. The pre-measurement crystal resonator of the actual film thickness of the thin film of the measurement substrate is measured by measuring the actual thin film thickness of the measurement substrate by depositing a film forming material on the pre-measurement crystal resonator The ratio to the target film thickness measured by the calculation is calculated as the correction ratio, and the calculation of the correction ratio varies depending on the increase in the film thickness of the film forming material deposited on the pre-measurement crystal resonator. Each time the oscillation frequency changes, the measurement substrate is sequentially replaced with a different measurement substrate, and the thickness of the thin film deposited on the measurement substrate is measured n times to calculate the correction ratio for each different oscillation frequency. ,
In the film forming step, another new crystal resonator 5 is provided in the film forming chamber 4 instead of the prior measurement crystal resonator, and the correction ratio corresponding to the oscillation frequency of the crystal resonator 5 is provided. Is multiplied by the film thickness or film formation speed measured by the crystal resonator 5 and is corrected in accordance with the change in the oscillation frequency. is there.

本発明は上述のように構成したから、誤差補正精度が極めて向上して膜厚測定精度が極めて向上すると共に、水晶振動子の使用時間(使用周波数帯)を延ばせることにもなる極めて優れた水晶発振式膜厚モニタによる膜厚制御方法となる。   Since the present invention is configured as described above, the error correction accuracy is greatly improved, the film thickness measurement accuracy is greatly improved, and the use time (use frequency band) of the crystal resonator can be extended. This is a film thickness control method using an oscillation type film thickness monitor.

補正前の水晶振動子により測定する成膜速度に対する基板上の実際の成膜速度の発振周波数相関図を示すグラフであり、膜厚が増大して発振周波数が低下するに従い誤差が大きくなることを示すグラフである。It is a graph which shows the oscillation frequency correlation diagram of the actual film-forming speed on the substrate with respect to the film-forming speed measured by the crystal oscillator before correction, and shows that the error increases as the film thickness increases and the oscillation frequency decreases. It is a graph to show. 本実施例の補正後の成膜速度の周波数相関図を示すグラフであり、誤差補正精度が高まることを示すグラフである。It is a graph which shows the frequency correlation figure of the film-forming speed | velocity | rate after a correction | amendment of a present Example, and is a graph which shows that an error correction precision increases. 本実施例の事前測定工程により取得した補正比率に基づいて補正する手順を示すフローチャート図である。It is a flowchart figure which shows the procedure corrected based on the correction ratio acquired by the prior measurement process of a present Example. 本実施例の概略構成説明図である。It is schematic structure explanatory drawing of a present Example.

好適と考える本発明の実施形態を、図面に基づいて本発明の作用を示して簡単に説明する。   An embodiment of the present invention which is considered to be suitable will be briefly described with reference to the drawings showing the operation of the present invention.

成膜装置3により(成膜用)基板1表面に成膜材料を堆積させて薄膜を形成する成膜工程前に、事前測定用水晶振動子を用いて、この事前測定用水晶振動子の異なる発振周波数毎での測定用基板の薄膜の膜厚を測定して、前記事前測定用水晶振動子で測定する目標膜厚と前記各発振周波数毎に測定した測定用基板の薄膜の実膜厚との比率を補正比率として算出しておく。   Before the film-forming step of forming a thin film by depositing a film-forming material on the surface of the substrate 1 (for film-forming) by the film-forming apparatus 3, the pre-measurement crystal vibrator is different. Measure the thickness of the thin film on the measurement substrate at each oscillation frequency, and measure the target film thickness with the crystal resonator for pre-measurement and the actual thickness of the thin film on the measurement substrate measured at each oscillation frequency. The ratio is calculated as a correction ratio.

成膜工程においては、成膜時の前記水晶振動子5により測定される前記(成膜用)基板1の薄膜の膜厚若しくは成膜速度に、前記取得しておいた各補正比率のうちの測定時の発振周波数に応じた補正比率を乗じて(成膜用)基板1の薄膜の膜厚若しくは成膜速度を補正する。   In the film formation step, the film thickness or film formation speed of the thin film (for film formation) substrate 1 measured by the crystal resonator 5 at the time of film formation, The film thickness or film formation speed of the thin film of the substrate 1 is corrected by multiplying the correction ratio according to the oscillation frequency at the time of measurement (for film formation).

即ち、水晶発振式膜厚モニタの前記事前測定用水晶振動子に堆積して行く前記成膜材料の膜厚の増大により変化して行く発振周波数の変化段階毎に、例えば図2,図3に示すように、前記事前測定用水晶振動子に堆積して行く前記成膜材料の膜厚の増大により徐々に低下して行く発振周波数のn段階毎に、逐次異なる測定用基板に取り替えてこの測定用基板に堆積される薄膜の膜厚をn回測定して、異なる発振周波数毎の前記補正比率を各々算出し取得しておき、成膜工程においては、新たな測定用の水晶振動子5の測定時の発振周波数に対応する前記補正比率を、この水晶振動子5により測定される膜厚若しくは成膜速度に乗じて、発振周波数の変化に対応した補正を行う。   That is, for each change stage of the oscillation frequency that changes as the film thickness of the film forming material deposited on the crystal oscillator for pre-measurement of the crystal oscillation type film thickness monitor increases, for example, FIG. As shown in FIG. 4, the measurement substrate is sequentially replaced with a different measurement substrate every n stages of the oscillation frequency that gradually decreases as the film thickness of the film-forming material deposited on the pre-measurement crystal resonator increases. The film thickness of the thin film deposited on the measurement substrate is measured n times, and the correction ratios for the different oscillation frequencies are calculated and acquired. The correction ratio corresponding to the oscillation frequency at the time of measurement 5 is multiplied by the film thickness or film formation speed measured by the crystal resonator 5 to perform correction corresponding to the change in the oscillation frequency.

従って、水晶振動子5による測定値が発振周波数の変化に伴って実膜厚との誤差が徐々に大きくなるとしても、固定値ではなく、予め測定した各発振周波数毎(n段階毎)の測定用基板の実膜厚との比較により求めた各発振周波数毎の補正比率により水晶振動子5の測定値を補正するため、極めて誤差補正精度が高まることとなる。   Therefore, even if the error of the measured value of the crystal unit 5 from the actual film thickness gradually increases with the change of the oscillation frequency, it is not a fixed value but a measurement at each oscillation frequency (every n stages) measured in advance. Since the measured value of the crystal unit 5 is corrected by the correction ratio for each oscillation frequency obtained by comparison with the actual film thickness of the substrate for use, the error correction accuracy is extremely increased.

また、この成膜工程の前に前記異なる発振周波数毎に前記測定用基板に堆積される薄膜の実膜厚を測定する前記事前測定工程は、この事前測定用水晶振動子を用いて徐々に変化して行く各発振周波数毎、具体的には多数の変化段階毎(n段階毎)に例えば逐次測定用基板を取り替えつつ実膜厚を順次測定して行くことで、各発振周波数毎の補正比率を多段階(n段階)に簡単に取得でき、この補正比率を用いて水晶振動子5のその測定時の発振周波数に対応する補正比率により誤差補正を行うことができるため、簡易に効率良く多段階に実膜厚に基づいた補正比率を取得でき、またこれを予め例えば水晶発振式膜厚モニタの誤差補正処理部に入力しておき、その発振周波数の変化に対応して補正比率を選択してこれを測定値に乗じて誤差補正することが容易に行えることとなり、極めて誤差補正精度が高く、実用性に優れた水晶発振式膜厚モニタによる膜厚制御方法となるものである。   Further, the pre-measurement step of measuring the actual film thickness of the thin film deposited on the measurement substrate for each of the different oscillation frequencies before the film formation step is gradually performed using the pre-measurement crystal resonator. For each oscillating frequency that changes, specifically, for each oscillating frequency, for example, by sequentially measuring the actual film thickness while replacing the substrate for sequential measurement at every number of changing stages (every n stages) Since the ratio can be easily acquired in multiple stages (n stages), and this correction ratio can be used to perform error correction using the correction ratio corresponding to the oscillation frequency of the crystal resonator 5 at the time of measurement, it is simple and efficient. The correction ratio based on the actual film thickness can be acquired in multiple stages, and this is input in advance to the error correction processing section of the crystal oscillation film thickness monitor, for example, and the correction ratio is selected according to the change in the oscillation frequency And multiply this by the measured value to correct the error. It becomes the Rukoto is easily, in which a very error correction accurately, the film thickness control method according to good crystal oscillation type film thickness monitor practical.

本発明の具体的な実施例について図面に基づいて説明する。   Specific embodiments of the present invention will be described with reference to the drawings.

本実施例は、成膜室4(真空チャンバー4)内で蒸発源2から成膜材料(蒸着材料)を蒸着させて基板ホルダーに固定した(成膜用)基板1表面に堆積させ薄膜を形成する成膜装置(蒸着装置)3に、水晶発振式膜厚モニタを設けてこの基板1の膜厚を制御(管理)するもので、この水晶発振式膜厚モニタの測定部となる水晶振動子5を蒸着装置3の真空チャンバー4内に設け、この蒸着装置3による(成膜用)基板1の膜厚や成膜速度(レート)を測定し、蒸発源2の加熱制御装置7にフィードバックすることでこのレートを均一に制御するが、この水晶振動子5の測定値と実膜厚との誤差を前記補正比率を乗じて補正し、膜厚を管理するものである。   In this embodiment, a film forming material (vapor deposition material) is evaporated from the evaporation source 2 in the film forming chamber 4 (vacuum chamber 4) and fixed to the substrate holder (for film forming) and deposited on the surface of the substrate 1 to form a thin film. A crystal oscillation type film thickness monitor is provided in the film forming apparatus (vapor deposition apparatus) 3 to control (manage) the film thickness of the substrate 1, and a crystal resonator serving as a measurement unit of the crystal oscillation type film thickness monitor 5 is provided in the vacuum chamber 4 of the vapor deposition apparatus 3, and the film thickness and film deposition rate (rate) of the substrate 1 (for film formation) by the vapor deposition apparatus 3 are measured and fed back to the heating control device 7 of the evaporation source 2. Thus, the rate is uniformly controlled, but the error between the measured value of the crystal resonator 5 and the actual film thickness is corrected by multiplying by the correction ratio, and the film thickness is managed.

また、本実施例の水晶発振式膜厚モニタは、例えば図4に示すように、真空チャンバー4内に設ける測定部としての水晶振動子5と、この水晶振動子5による測定値に基づいてレートをモニタ及びコントロールする膜厚監視装置8とから成り、この膜厚監視装置8は、前述のように膜厚検査装置9(エリプソメータや触針式表面粗さ測定器など)により予め各発振周波数毎に測定用基板の実膜厚を測定し、演算部で実測値から予め各発振周波数毎の補正比率を算出して上位コントローラ10にメモリしておく(前記演算部は別機構として設けているが、上位コントローラ10に組み込んでも良い。)。そして、図2,図3に示すように測定ポイントとした各発振周波数での各補正ポイント毎、そのポイントで測定した実膜厚に基づいて算出し取得していた補正比率を、この上位コントローラ10から入力して水晶振動子5で測定値を補正して、蒸着源2の加熱を行う電源の出力制御を行う加熱制御装置7にフィードバックするなどしてレートを一定に保持し、基板1の膜厚を制御(管理)するように構成している。   Further, the crystal oscillation type film thickness monitor according to the present embodiment has a rate based on a crystal resonator 5 as a measurement unit provided in the vacuum chamber 4 and a measurement value by the crystal resonator 5 as shown in FIG. The film thickness monitoring device 8 monitors and controls the film thickness, and the film thickness monitoring device 8 is previously measured for each oscillation frequency by the film thickness inspection device 9 (such as an ellipsometer or a stylus type surface roughness measuring device) as described above. The actual thickness of the measurement substrate is measured, and the correction ratio for each oscillation frequency is calculated in advance from the actual measurement value in the calculation unit and stored in the host controller 10 (although the calculation unit is provided as a separate mechanism). Or may be incorporated in the host controller 10.) Then, as shown in FIGS. 2 and 3, for each correction point at each oscillation frequency as a measurement point, the correction ratio calculated and acquired based on the actual film thickness measured at that point is the higher-level controller 10. The rate is kept constant by correcting the measured value by the quartz crystal resonator 5 and feeding back to the heating control device 7 for controlling the output of the power source for heating the vapor deposition source 2. It is configured to control (manage) the thickness.

即ち、前述のように、本実施例では、成膜工程(蒸着工程)の前に行う事前測定工程において、基板1表面に成膜材料(蒸着材料)を堆積させて薄膜を形成する前記蒸着装置3の前記真空チャンバー4内に前記水晶振動子5に替えて前記事前測定用水晶振動子を設け、この事前測定用水晶振動子に蒸着材料を堆積させて測定用基板の実際の薄膜の膜厚を前記膜厚検査装置9により測定し、この測定用基板の薄膜の実膜厚の前記事前測定用水晶振動子により測定される目標膜厚に対する比率を前記補正比率として算出して上位コントローラ10にメモリしておく。   That is, as described above, in the present embodiment, the vapor deposition apparatus for forming a thin film by depositing a film deposition material (vapor deposition material) on the surface of the substrate 1 in a preliminary measurement process performed before the film deposition process (vapor deposition process). The pre-measurement crystal resonator is provided in the vacuum chamber 4 in place of the crystal resonator 5, and an evaporation material is deposited on the pre-measurement crystal resonator to form an actual thin film on the measurement substrate. The host controller measures the thickness by the film thickness inspection device 9 and calculates the ratio of the actual film thickness of the thin film of the measurement substrate to the target film thickness measured by the pre-measurement crystal resonator as the correction ratio. Keep memory in 10.

また、この補正比率の算出取得を、前記事前測定用水晶振動子に堆積して行く前記蒸着材料の膜厚の増大により低下して行く発振周波数の変化段階毎(測定ポイント毎)にn回行って、異なる発振周波数毎の補正比率を各々算出し、蒸着工程においては、前記水晶振動子5の発振周波数に対応する前記補正比率を、その測定ポイントに対応した補正ポイント毎に選択取得して水晶振動子5により測定される膜厚若しくは成膜速度に乗じる演算処理を行い、発振周波数の変化に対応して補正する。   In addition, the correction ratio is calculated and acquired n times for each change stage (measurement point) of the oscillation frequency that decreases as the film thickness of the vapor deposition material deposited on the pre-measurement crystal unit increases. The correction ratio for each different oscillation frequency is calculated, and in the vapor deposition process, the correction ratio corresponding to the oscillation frequency of the crystal resonator 5 is selected and acquired for each correction point corresponding to the measurement point. An arithmetic process that multiplies the film thickness or film forming speed measured by the quartz oscillator 5 is performed, and correction is performed in accordance with the change in the oscillation frequency.

具体的には、蒸着工程の前に前記異なる発振周波数毎に実際の前記測定用基板に堆積される薄膜の膜厚を測定する前記事前測定工程は、この各発振周波数毎に異なる測定用基板に取り替えてこの測定用基板に堆積される薄膜の膜厚を測定する工程とし、この事前測定を終えると、前記事前測定用水晶振動子に替えて別の新しい水晶振動子5を前記成膜室4内に設ける。   Specifically, the pre-measurement step of measuring the film thickness of the thin film deposited on the actual measurement substrate for each different oscillation frequency before the vapor deposition step is different for each oscillation frequency. In this step, the film thickness of the thin film deposited on the measurement substrate is measured. When the preliminary measurement is completed, another new crystal resonator 5 is formed in place of the preliminary measurement crystal resonator. It is provided in the chamber 4.

従って、水晶振動子5による測定値が発振周波数の変化に伴って実膜厚との誤差が徐々に大きくなるとしても、固定値ではなく、予め測定した各発振周波数毎(n段階毎)の測定用基板の実膜厚との比較により求めた各発振周波数毎の補正比率により水晶振動子5の測定値を補正するため、極めて誤差補正精度が高まることとなる。   Therefore, even if the error of the measured value of the crystal unit 5 from the actual film thickness gradually increases with the change of the oscillation frequency, it is not a fixed value but a measurement at each oscillation frequency (every n stages) measured in advance. Since the measured value of the crystal unit 5 is corrected by the correction ratio for each oscillation frequency obtained by comparison with the actual film thickness of the substrate for use, the error correction accuracy is extremely increased.

尚、本発明は、本実施例に限られるものではなく、各構成要件の具体的構成は適宜設計し得るものである。   Note that the present invention is not limited to this embodiment, and the specific configuration of each component can be designed as appropriate.

1 基板
3 成膜装置
4 成膜室
5 水晶振動子
DESCRIPTION OF SYMBOLS 1 Substrate 3 Deposition apparatus 4 Deposition chamber 5 Crystal resonator

Claims (1)

基板表面に成膜材料を堆積させて薄膜を形成する成膜装置の成膜室内に水晶発振式膜厚モニタの測定部となる水晶振動子を設け、この水晶振動子に前記成膜材料を堆積させて前記基板表面に形成される薄膜の膜厚を測定する成膜装置に設ける水晶発振式膜厚モニタによる膜厚制御方法であって、成膜工程前に事前測定用水晶振動子を用いて、この事前測定用水晶振動子の異なる発振周波数毎での測定用基板の薄膜の膜厚を測定して、前記事前測定用水晶振動子で測定する目標膜厚と前記各発振周波数毎に測定した測定用基板の薄膜の実膜厚との比率を補正比率として算出し、成膜工程においては、成膜時の前記水晶振動子により測定される前記基板の薄膜の膜厚若しくは成膜速度に、前記各補正比率のうち発振周波数に応じた補正比率を乗じて基板の薄膜の膜厚若しくは成膜速度を補正し膜厚を制御する方法において、
前記成膜工程前に行う事前測定工程においては、前記測定用基板表面に成膜材料を堆積させて薄膜を形成する前記成膜装置の前記成膜室内に事前測定用水晶振動子を設け、この事前測定用水晶振動子に成膜材料を堆積させて測定用基板の実際の薄膜の膜厚を測定し、この測定用基板の薄膜の実膜厚の前記事前測定用水晶振動子により測定される目標膜厚に対する比率を前記補正比率として算出し、この補正比率の算出は、前記事前測定用水晶振動子に堆積して行く前記成膜材料の膜厚の増大により変化して行く発振周波数の変化段階毎に、逐次異なる測定用基板に取り替えてこの測定用基板に堆積される薄膜の膜厚をn回測定して、異なる発振周波数毎の前記補正比率を各々算出するものとし、
前記成膜工程においては、前記事前測定用水晶振動子に替えて新たな別の水晶振動子を前記成膜室内に設け、前記水晶振動子の発振周波数に対応する前記補正比率を、水晶振動子により測定される膜厚若しくは成膜速度に乗じて、発振周波数の変化に対応して補正することを特徴とする水晶発振式膜厚モニタによる膜厚制御方法。
A crystal resonator serving as a measurement unit of a crystal oscillation type film thickness monitor is provided in a film forming chamber of a film forming apparatus for forming a thin film by depositing a film forming material on the surface of the substrate, and the film forming material is deposited on the crystal resonator. a film thickness control method according to the crystal oscillator type film thickness monitor provided in the film forming apparatus for measuring the thickness of a thin film formed on the cause to the substrate surface, prior to film formation process using the pre-measurement for crystal oscillator Measure the film thickness of the thin film on the measurement substrate for each different oscillation frequency of this pre-measurement crystal unit and measure for each target film thickness and each oscillation frequency measured by the pre-measurement crystal unit The ratio of the measured substrate to the actual film thickness of the thin film is calculated as a correction ratio, and in the film formation process, the film thickness or film formation speed of the substrate thin film measured by the crystal resonator during film formation is calculated. Multiplying each correction ratio by the correction ratio according to the oscillation frequency A method of controlling the film thickness by correcting the thickness or deposition rate of the thin film of the substrate,
In the pre-measurement step performed before the film formation step, a pre-measurement crystal resonator is provided in the film formation chamber of the film formation apparatus for forming a thin film by depositing a film formation material on the surface of the measurement substrate. The film thickness of the thin film on the measurement substrate is measured by depositing a film forming material on the pre-measurement crystal resonator, and the actual thickness of the thin film on the measurement substrate is measured by the pre-measurement crystal resonator. The ratio to the target film thickness is calculated as the correction ratio, and the calculation of the correction ratio is an oscillation frequency that changes as the film thickness of the film forming material deposited on the pre-measurement crystal unit increases. For each change step, the thickness of the thin film deposited on the measurement substrate is sequentially changed to n times, and the correction ratio for each different oscillation frequency is calculated.
In the film forming step, another new crystal resonator is provided in the film forming chamber instead of the pre-measurement crystal resonator, and the correction ratio corresponding to the oscillation frequency of the crystal resonator is A film thickness control method using a crystal oscillation type film thickness monitor, wherein a film thickness or a film formation speed measured by a child is multiplied and corrected in accordance with a change in oscillation frequency .
JP2014107511A 2014-05-23 2014-05-23 Thickness control method by crystal oscillation type film thickness monitor Active JP6263441B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014107511A JP6263441B2 (en) 2014-05-23 2014-05-23 Thickness control method by crystal oscillation type film thickness monitor
KR1020150064419A KR102008046B1 (en) 2014-05-23 2015-05-08 Method for controlling film thickness by crystal oscillation type film thickness monitor
CN201510262480.3A CN105088171B (en) 2014-05-23 2015-05-21 Film thickness monitoring method based on quartz oscillation formula film thickness monitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014107511A JP6263441B2 (en) 2014-05-23 2014-05-23 Thickness control method by crystal oscillation type film thickness monitor

Publications (2)

Publication Number Publication Date
JP2015222244A JP2015222244A (en) 2015-12-10
JP6263441B2 true JP6263441B2 (en) 2018-01-17

Family

ID=54569483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014107511A Active JP6263441B2 (en) 2014-05-23 2014-05-23 Thickness control method by crystal oscillation type film thickness monitor

Country Status (3)

Country Link
JP (1) JP6263441B2 (en)
KR (1) KR102008046B1 (en)
CN (1) CN105088171B (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105091843B (en) * 2015-06-25 2018-01-23 深圳市华星光电技术有限公司 A kind of method for measuring film contracting
CN106092002A (en) * 2016-06-07 2016-11-09 应达利电子股份有限公司 Quartz-crystal resonator, monitor and monitoring method for film forming thickness monitoring
JP6564745B2 (en) * 2016-09-06 2019-08-21 株式会社アルバック Film thickness sensor
CN106987821B (en) * 2017-03-21 2019-05-21 武汉华星光电技术有限公司 The method of Organic Light Emitting Diode evaporation film compensation
KR102217755B1 (en) * 2018-01-03 2021-02-18 주식회사 엘지화학 Depostion method and device for thin film layer
JP7064407B2 (en) * 2018-08-31 2022-05-10 キヤノントッキ株式会社 Film forming equipment and control method of film forming equipment
JP7188973B2 (en) * 2018-10-15 2022-12-13 キヤノントッキ株式会社 Film forming apparatus, manufacturing system, organic EL panel manufacturing system, film forming method, and organic EL element manufacturing method
CN111829428B (en) * 2020-06-17 2022-02-15 华中科技大学 Double-quartz-crystal diaphragm thickness control instrument and error correction method
JP7329005B2 (en) * 2021-03-01 2023-08-17 キヤノントッキ株式会社 Film forming apparatus, film forming method, and electronic device manufacturing method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07180055A (en) * 1993-12-22 1995-07-18 Toshiba Glass Co Ltd Vacuum film forming device
JP3393934B2 (en) * 1994-09-12 2003-04-07 株式会社アルバック Film thickness monitoring control method
JP2007171028A (en) * 2005-12-22 2007-07-05 Nippon Seiki Co Ltd Deposited film thickness measuring method and device thereof
JP4818073B2 (en) * 2006-11-10 2011-11-16 株式会社アルバック Film thickness measurement method
JP2012112037A (en) * 2010-11-04 2012-06-14 Canon Inc Film forming device and film forming method using the same
JP5854731B2 (en) * 2010-11-04 2016-02-09 キヤノン株式会社 Film forming apparatus and film forming method using the same

Also Published As

Publication number Publication date
CN105088171A (en) 2015-11-25
CN105088171B (en) 2019-04-30
JP2015222244A (en) 2015-12-10
KR20150135082A (en) 2015-12-02
KR102008046B1 (en) 2019-08-06

Similar Documents

Publication Publication Date Title
JP6263441B2 (en) Thickness control method by crystal oscillation type film thickness monitor
JP5888919B2 (en) Film forming apparatus and film forming method
EP3144411B1 (en) Measurement apparatus and coating device
JP4818073B2 (en) Film thickness measurement method
JP5854731B2 (en) Film forming apparatus and film forming method using the same
CN111829428B (en) Double-quartz-crystal diaphragm thickness control instrument and error correction method
JP2012112037A (en) Film forming device and film forming method using the same
KR20170028980A (en) Film-thickness monitor and film-thickness determination method
KR102035143B1 (en) Film thickness control device, film thickness control method, and film formation device
JP2016181468A (en) Manufacturing method for organic el display device, and film thickness measurement device
JP6564745B2 (en) Film thickness sensor
WO2016140321A1 (en) Sensor for film thickness monitoring device, film thickness monitoring device provided with same, and method for manufacturing sensor for film thickness monitoring device
JP2019099870A (en) Vapor deposition device and vapor deposition method
JP6412384B2 (en) Quartz crystal resonator, sensor head having the crystal resonator, film formation control device, and method for manufacturing film formation control device
JP2007171028A (en) Deposited film thickness measuring method and device thereof
CN112752865A (en) Coating control using forward parametric correction and enhanced reverse engineering
JP2019131859A (en) Vapor deposition device and vapor deposition method
CN104032264A (en) Film Coating System Capable Of Performing Thin Film Deposition In Rigorous Evaporation Environment
TW201629651A (en) Control device and control method
JP6091590B2 (en) Deposition equipment
TW202249136A (en) System and method for deconvolution of real-time mass from the influence of temperature and pressure on crystal microbalance
WO2022022817A1 (en) Computer implemented method for improving measurement quality of a deposition rate measurement device and deposition measurment system
KR100622223B1 (en) Deposition system using noise canceller and method for controlling the same
KR20190083219A (en) Depostion method and device for thin film layer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170522

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20170731

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20170831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171218

R150 Certificate of patent or registration of utility model

Ref document number: 6263441

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250