JP6412384B2 - Quartz crystal resonator, sensor head having the crystal resonator, film formation control device, and method for manufacturing film formation control device - Google Patents

Quartz crystal resonator, sensor head having the crystal resonator, film formation control device, and method for manufacturing film formation control device Download PDF

Info

Publication number
JP6412384B2
JP6412384B2 JP2014194686A JP2014194686A JP6412384B2 JP 6412384 B2 JP6412384 B2 JP 6412384B2 JP 2014194686 A JP2014194686 A JP 2014194686A JP 2014194686 A JP2014194686 A JP 2014194686A JP 6412384 B2 JP6412384 B2 JP 6412384B2
Authority
JP
Japan
Prior art keywords
crystal resonator
frequency
axis
sensor head
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014194686A
Other languages
Japanese (ja)
Other versions
JP2016066909A (en
Inventor
伊藤 敦
敦 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2014194686A priority Critical patent/JP6412384B2/en
Publication of JP2016066909A publication Critical patent/JP2016066909A/en
Application granted granted Critical
Publication of JP6412384B2 publication Critical patent/JP6412384B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
  • Physical Vapour Deposition (AREA)

Description

本発明は、水晶振動子上に形成される薄膜の膜厚により発振周波数が変動する水晶振動子、この水晶振動子を有するセンサヘッド、発振器などを備えた成膜制御装置、および成膜制御装置の製造方法に関する。   The present invention relates to a crystal resonator whose oscillation frequency varies depending on the film thickness of a thin film formed on the crystal resonator, a sensor head having the crystal resonator, a film formation control device including an oscillator, and a film formation control device. It relates to the manufacturing method.

真空蒸着、スパッタリング、CVDなどの成膜工程においては、基板上の膜厚や蒸着レート(蒸着速度)を制御するために、成膜制御装置が用いられる。この成膜制御装置として、水晶振動子上に形成される薄膜の膜厚を測定することにより安定した成膜を行えるように制御するものが知られている。このような成膜制御装置は、水晶振動子の表面に物質が付着するとその共振振動(従振動、すべり振動、屈伸振動など)が変化することを利用して、物質の膜厚を測定する。   In film formation processes such as vacuum evaporation, sputtering, and CVD, a film formation control device is used to control the film thickness on the substrate and the evaporation rate (deposition rate). As this film formation control apparatus, an apparatus that controls so as to perform stable film formation by measuring the film thickness of a thin film formed on a crystal resonator is known. Such a film formation control apparatus measures the film thickness of a substance by utilizing the fact that a resonance vibration (such as a secondary vibration, a sliding vibration, a bending vibration) changes when the substance adheres to the surface of the crystal resonator.

例えば、特許文献1には、センサヘッドにSC−Cut水晶振動子を用いる水晶マイクロバランスセンサー装置が開示されている。この水晶マイクロバランスセンサー装置は、従来用いられていたAT−Cut水晶振動子での課題である、成膜中において成膜環境下で高温に曝されることによる発振周波数に与える影響を少なくするものであった。   For example, Patent Document 1 discloses a quartz crystal microbalance sensor device that uses an SC-Cut quartz resonator as a sensor head. This quartz microbalance sensor device has a problem with the AT-Cut quartz crystal resonator that has been used in the past, and reduces the influence on the oscillation frequency caused by exposure to high temperature in the deposition environment during deposition. Met.

特開2006−292733号公報JP 2006-292733 A

SC−Cut水晶振動子を用いた場合、上述したとおりAT−Cut水晶振動子を用いた場合に比べて高温環境下での温度による周波数変動を極力抑え、高精度な測定をすることができるものであった。しかし、特許文献1には、単にSC−Cut水晶振動子を用いることが開示されているのみであり、成膜工程において精度よく測定が可能なSC−Cut水晶振動子の詳細な構成については開示されていなかった。また、真空蒸着装置、スパッタ装置などの成膜装置においては、成膜対象のみならず水晶振動子にも薄膜が形成されてしまう。この薄膜が厚くなると、水晶振動子上の蒸発物質膜の剥離や内部応力の蓄積によって水晶振動子の共振振動が不安定になったり、周波数測定範囲から外れるようになったりする。しかし、特許文献1においては、成膜装置におけるこれらの事情については考慮されていなかった。   When using an SC-Cut crystal unit, as described above, frequency fluctuations due to temperature in a high temperature environment can be suppressed as much as possible compared to using an AT-Cut crystal unit, and high-accuracy measurement can be performed. Met. However, Patent Document 1 merely discloses the use of an SC-Cut crystal resonator, and discloses a detailed configuration of the SC-Cut crystal resonator that can be accurately measured in the film forming process. Was not. Further, in a film forming apparatus such as a vacuum evaporation apparatus or a sputtering apparatus, a thin film is formed not only on a film forming target but also on a crystal resonator. When this thin film becomes thick, the resonance vibration of the crystal resonator becomes unstable or deviates from the frequency measurement range due to peeling of the evaporative substance film on the crystal resonator or accumulation of internal stress. However, Patent Document 1 does not consider these circumstances in the film forming apparatus.

本発明はこのような事情を考慮してなされたもので、膜厚測定および成膜制御を高温環境下でも高精度に行うことができる水晶振動子、この水晶振動子を有するセンサヘッド、このセンサヘッドを備えた成膜制御装置、および成膜制御装置の製造方法を提供することを目的とする。   The present invention has been made in consideration of such circumstances, and a crystal resonator capable of performing film thickness measurement and film formation control with high accuracy even in a high temperature environment, a sensor head having the crystal resonator, and the sensor It is an object of the present invention to provide a film formation control device including a head and a method for manufacturing the film formation control device.

本発明に係る水晶振動子は、上述した課題を解決するために、成膜制御装置用センサに用いられるSC−Cutの水晶振動子であって、前記水晶振動子は、水晶結晶軸である直交座標系X軸、Y軸、Z軸においてZ軸周りにθ回転し、X軸周りにφ回転したものであり、前記θが33°30′、前記φが20°25′である
また、本発明に係るセンサヘッドは、上記水晶振動子と、この水晶振動子を保持するホルダと、を備えた。
さらに、本発明に係る成膜制御装置は、蒸着装置、スパッタリング装置またはCVD(化学蒸着)装置のセンサヘッドに、上記センサヘッドを備えた。
さらにまた、本発明に係る成膜制御装置の製造方法は、水晶結晶軸である直交座標軸系X軸、Y軸、Z軸においてZ軸周りの回転角度θとX軸周りの回転角度φとで決定されるSC−Cutの水晶板を用いる水晶振動子を有するセンサヘッドを備えた成膜制御装置の製造方法において、前記θおよび前記φをθおよびφとし、かつ前記水晶板が前記θおよびφを有する場合の基準温度と比較温度との周波数の差をΔFと定義して、3組の(θ,φ,ΔF)を決定し、3組の前記(θ,φ,ΔF)を通る平面の式である第1式θx+φy+ΔFz=0を求める工程と、前記θおよび前記φをθおよびφとし、かつ前記水晶板が前記θおよびφを有する場合の前記水晶振動子の表面に所定温度の熱衝撃が加えられる前と加えられている間とにおける周波数の差の最大値をΔFと定義して3組の(θ、φ、ΔF)を決定し、3組の前記(θ、φ、ΔF)を通る平面の式である第2式θx+φy+ΔFz=0を求める工程と、前記第1式と前記第2式とにおいてz=0として連立させてxおよびyを求める工程と、求められた前記xおよびyをそれぞれθおよびφとした水晶板を有する水晶振動子を前記センサヘッドに組み込む工程と、を備える。
In order to solve the above-described problem, a crystal resonator according to the present invention is an SC-Cut crystal resonator used in a sensor for a film formation control device, and the crystal resonator is orthogonal to a crystal crystal axis. In the coordinate system X-axis, Y-axis, and Z-axis, θ is rotated about the Z-axis and φ is rotated about the X-axis, and the θ is 33 ° 30 ′ and the φ is 20 ° 25 ′ .
A sensor head according to the present invention includes the above-described crystal resonator and a holder for holding the crystal resonator.
Furthermore, a film formation control apparatus according to the present invention includes the sensor head in a sensor head of a vapor deposition apparatus, a sputtering apparatus, or a CVD (chemical vapor deposition) apparatus.
Furthermore, the method of manufacturing the film formation control apparatus according to the present invention includes a rotation angle θ around the Z axis and a rotation angle φ around the X axis in the orthogonal coordinate axes X-axis, Y-axis, and Z-axis that are crystal crystal axes. In a method of manufacturing a film forming control apparatus having a sensor head having a crystal resonator using a determined SC-Cut crystal plate, θ and φ are θ 1 and φ 1 , and the crystal plate is the θ The frequency difference between the reference temperature and the comparison temperature in the case of having 1 and φ 1 is defined as ΔF 1 , three sets of (θ 1 , φ 1 , ΔF 1 ) are determined, and the three sets of the above (θ 1 , Φ 1 , ΔF 1 ), a step of obtaining a first equation θ 1 x + φ 1 y + ΔF 1 z = 0 that is an equation of a plane, θ and φ are θ 2 and φ 2 , and the quartz plate is the thermal shock of a predetermined temperature on the surface of the crystal oscillator in the case with theta 2 and phi 2 Erareru before the maximum value of the difference frequencies in the while that added is defined as [Delta] F 2 and three sets of (θ 2, φ 2, ΔF 2) determining the three sets of the (theta 2, phi 2 , ΔF 2 ), a step of obtaining a second equation θ 2 x + φ 2 y + ΔF 2 z = 0, which is a plane equation passing through, and simultaneously setting z = 0 in the first equation and the second equation x And y, and a step of incorporating a quartz crystal resonator having a quartz plate with the obtained x and y being θ and φ, respectively, into the sensor head.

本発明に係る水晶振動子、この水晶振動子を有するセンサヘッド、成膜制御装置、および成膜制御装置の製造方法においては、膜厚測定および成膜制御を高温環境下での温度による周波数変動を抑えて高精度に行うことができる。   In the crystal resonator according to the present invention, the sensor head having the crystal resonator, the film formation control device, and the method for manufacturing the film formation control device, the film thickness measurement and film formation control are subject to frequency fluctuations due to temperature in a high temperature environment. Can be performed with high accuracy.

本実施形態における水晶振動子を有するセンサヘッドおよび成膜制御装置が適用可能な真空蒸着装置の概略的な構成図。1 is a schematic configuration diagram of a vacuum vapor deposition apparatus to which a sensor head having a crystal resonator and a film formation control apparatus in this embodiment can be applied. AT−Cut水晶振動子の周波数−温度特性を示すグラフ。The graph which shows the frequency-temperature characteristic of an AT-Cut crystal resonator. AT−Cut水晶振動子の周波数−温度特性を、形成されたAl薄膜の膜厚(発振周波数)で比較したグラフ。The graph which compared the frequency-temperature characteristic of the AT-Cut crystal resonator with the film thickness (oscillation frequency) of the formed Al thin film. AT−Cut水晶振動子の表面に所定温度になるように熱衝撃を与えた場合の周波数の時間変化を示すグラフ。The graph which shows the time change of the frequency at the time of giving a thermal shock so that it may become predetermined temperature on the surface of an AT-Cut crystal resonator. AT−Cut水晶振動子の表面に所定温度になるように熱衝撃を与えた場合の周波数の時間変化を、形成された薄膜の膜厚(発振周波数)で比較したグラフ。The graph which compared the time change of the frequency at the time of giving a thermal shock so that it may become predetermined temperature on the surface of an AT-Cut crystal oscillator by the film thickness (oscillation frequency) of the formed thin film. SC−Cut水晶振動子の周波数−温度特性を、形成されたAl薄膜の膜厚(発振周波数)で比較したグラフ。The graph which compared the frequency-temperature characteristic of the SC-Cut crystal oscillator with the film thickness (oscillation frequency) of the formed Al thin film. SC−Cut水晶振動子の表面に所定温度になるように熱衝撃を与えた場合の周波数の時間変化を、形成された薄膜の膜厚(発振周波数)で比較したグラフ。The graph which compared the time change of the frequency at the time of giving a thermal shock so that it may become predetermined temperature on the surface of a SC-Cut crystal oscillator by the film thickness (oscillation frequency) of the formed thin film. AT−Cut水晶振動子を用いたセンサヘッドを備える成膜装置と、SC−Cut水晶振動子を用いたセンサヘッドを備える成膜装置とで、水晶振動子の発振周波数の時間変化を比較したグラフ。The graph which compared the time change of the oscillation frequency of a crystal oscillator with the film-forming apparatus provided with the sensor head using an AT-Cut crystal oscillator, and the film-forming apparatus provided with the sensor head using an SC-Cut crystal oscillator. . AT−Cut水晶振動子を用いたセンサヘッドを備える成膜装置と、SC−Cut水晶振動子を用いたセンサヘッドを備える成膜装置とで、蒸着レートの時間変化を比較したグラフ。The graph which compared the time-dependent change of the vapor deposition rate with the film-forming apparatus provided with the sensor head using an AT-Cut crystal oscillator, and the film-forming apparatus provided with the sensor head using an SC-Cut crystal oscillator. AT−Cut水晶振動子を用いたセンサヘッドを備える成膜装置と、SC−Cut水晶振動子を用いたセンサヘッドを備える成膜装置とで、電源出力の時間変化を比較したグラフ。The graph which compared the time change of the power supply output with the film-forming apparatus provided with the sensor head using an AT-Cut crystal resonator, and the film-forming apparatus provided with the sensor head using an SC-Cut crystal resonator. 本実施形態における成膜制御装置を適用したスパッタ装置の概略的な構成図。The schematic block diagram of the sputtering device to which the film-forming control apparatus in this embodiment is applied.

本発明に係る水晶振動子、この水晶振動子を有するセンサヘッドを備えた成膜制御装置、および成膜制御装置の製造方法の一実施形態を添付図面に基づいて説明する。   An embodiment of a crystal resonator according to the present invention, a film formation control device including a sensor head having the crystal resonator, and a method of manufacturing the film formation control device will be described with reference to the accompanying drawings.

図1は、本実施形態における水晶振動子を有するセンサヘッドおよび成膜制御装置が適用可能な真空蒸着装置の概略的な構成図である。   FIG. 1 is a schematic configuration diagram of a vacuum vapor deposition apparatus to which a sensor head having a crystal resonator and a film formation control apparatus according to this embodiment can be applied.

本実施形態における水晶振動子は、図1に示すような真空蒸着装置1に適用される。この真空蒸着装置1は、例えば半導体や電極用金属膜、有機EL膜などへの成膜に用いられる。真空蒸着装置1は、真空槽10内に、成膜材料を蒸発させる蒸発源11と、成膜対象物12と、成膜工程前などにおいて成膜対象物12に対して成膜材料が気化した蒸気を遮断するためのシャッター機構13とを備える。また、真空蒸着装置1は、成膜制御装置として、水晶発振式の成膜制御装置2を備える。   The crystal resonator in this embodiment is applied to a vacuum vapor deposition apparatus 1 as shown in FIG. The vacuum evaporation apparatus 1 is used for forming a film on a semiconductor, a metal film for an electrode, an organic EL film, or the like. The vacuum deposition apparatus 1 is configured such that an evaporation source 11 for evaporating a film forming material, a film forming target 12, and a film forming material are vaporized with respect to the film forming target 12 before the film forming process. And a shutter mechanism 13 for blocking steam. The vacuum deposition apparatus 1 also includes a crystal oscillation type film formation control apparatus 2 as a film formation control apparatus.

成膜制御装置2は、センサヘッド14と、発振器15と、膜厚計16と、を備える。センサヘッド14(膜厚測定器)は、ホルダに保持されたSC−Cut水晶振動子を有する。この水晶振動子は、水晶板と、水晶板に設けられ電圧を印加する電極とを備える。電極には、例えば金、銀など種々の金属材料を適用することができる。水晶振動子は、表面に付着した成膜材料の膜厚に応じて振動することにより、膜厚を検出する。水晶振動子は、例えば2M〜30MHzの共振周波数を有する。発振器15は、水晶振動子の共振周波数で発振し、測定した水晶振動子の発振周波数変化を電気信号として膜厚計16へ出力する。膜厚計16は、発振器15からの電気信号に基づいて成膜対象物12の膜厚、現状の蒸着レートなどを計算し、蒸発源用電源17に適正な電力指示値を出力し、設定された蒸着レートになるようにフィードバック信号を出力する。蒸発源用電源17は、成膜制御装置2の出力に基づいて蒸発源11へ所要の電力を出力する。   The film formation control device 2 includes a sensor head 14, an oscillator 15, and a film thickness meter 16. The sensor head 14 (film thickness measuring device) has an SC-Cut crystal resonator held by a holder. The crystal resonator includes a crystal plate and an electrode that is provided on the crystal plate and applies a voltage. Various metal materials such as gold and silver can be applied to the electrodes. The crystal resonator detects the film thickness by vibrating according to the film thickness of the film forming material attached to the surface. The crystal resonator has a resonance frequency of 2 M to 30 MHz, for example. The oscillator 15 oscillates at the resonance frequency of the crystal resonator, and outputs the measured oscillation frequency change of the crystal resonator to the film thickness meter 16 as an electrical signal. The film thickness meter 16 calculates the film thickness of the film formation target 12 and the current vapor deposition rate based on the electrical signal from the oscillator 15, and outputs an appropriate power instruction value to the evaporation source power source 17 to be set. A feedback signal is output so that the deposition rate becomes high. The evaporation source power supply 17 outputs required power to the evaporation source 11 based on the output of the film formation control device 2.

以下、センサヘッド14の詳細について説明する。本実施形態におけるセンサヘッド14は、従来用いられているAT−Cut水晶振動子を備えたセンサヘッドに比べ、高温環境下での温度による周波数変動を抑えた成膜制御(膜厚測定)を実現することができる。まず、比較のため、AT−Cut水晶振動子を用いたセンサヘッド(成膜制御装置)の課題について説明する。以下の比較のために用いたAT−Cut水晶振動子は、水晶結晶軸の直交座標系X軸、Y軸、Z軸のうちZ軸周りの回転角度θが3°05′となるようにカットされたものである。   Details of the sensor head 14 will be described below. The sensor head 14 in the present embodiment realizes film formation control (film thickness measurement) that suppresses frequency fluctuation due to temperature in a high temperature environment, compared to a sensor head having a conventionally used AT-Cut crystal resonator. can do. First, for comparison, a problem of a sensor head (deposition control device) using an AT-Cut crystal resonator will be described. The AT-Cut crystal resonator used for the following comparison was cut so that the rotation angle θ around the Z axis of the Cartesian coordinate system X-axis, Y-axis, and Z-axis is 3 ° 05 ′. It has been done.

図2は、AT−Cut水晶振動子の周波数−温度特性を示すグラフである。   FIG. 2 is a graph showing frequency-temperature characteristics of the AT-Cut crystal resonator.

AT−Cut水晶振動子は、25℃を変曲点として、20℃から70℃において良好な周波数−温度特性を有する。しかし、成膜工程において繰り返し使用されることにより水晶振動子に薄膜が形成されると、周波数−温度特性は変化してしまう。   The AT-Cut crystal resonator has a good frequency-temperature characteristic from 20 ° C. to 70 ° C. with an inflection point of 25 ° C. However, when a thin film is formed on the quartz resonator by being repeatedly used in the film forming process, the frequency-temperature characteristics change.

ここで、図3は、AT−Cut水晶振動子の周波数−温度特性を、形成されたAl薄膜の膜厚(発振周波数)で比較したグラフである。図3においては、薄膜が形成されていない場合(new)と、薄膜が形成された結果発振周波数が段階的に変化した場合の周波数−温度特性を示す。また、図3においては、各線は膜厚に依存して減少する発振器の出力周波数毎(5.00MHz(new、薄膜なし)、4.903MHz、4.804MHz、4.694MHz)に表され、グラフのY軸は温度ドリフト周波数(Hz)を示す。なお、このように蒸着膜が形成された場合の水晶振動子の周波数−温度特性が大きく変化する現象については、本発明者が度重なる実験により発見した事実である。   Here, FIG. 3 is a graph comparing the frequency-temperature characteristics of the AT-Cut crystal resonator with the film thickness (oscillation frequency) of the formed Al thin film. FIG. 3 shows frequency-temperature characteristics when the thin film is not formed (new) and when the oscillation frequency changes stepwise as a result of forming the thin film. Further, in FIG. 3, each line is represented for each output frequency (5.00 MHz (new, no thin film), 4.903 MHz, 4.804 MHz, 4.694 MHz) of the oscillator which decreases depending on the film thickness, and is a graph. The Y axis of shows the temperature drift frequency (Hz). Note that the phenomenon in which the frequency-temperature characteristics of the quartz crystal resonator greatly change when the deposited film is formed in this way is a fact discovered by repeated experiments by the present inventors.

水晶振動子に成膜材料のAlの薄膜が付着すると、水晶振動子の発振周波数が変化する。すなわち、薄膜の形成量に応じて周波数−温度特性が右下がりの勾配を持つ。従来、AT−Cut水晶振動子を用いたセンサヘッドの温度に応じて周波数−温度特性を補正することにより測定結果の精度を上げる例が開示されている。しかし、このように水晶振動子に薄膜が付着し周波数−温度特性が大きくなると、もはや温度に応じて補正を行ったとしても、周波数の補正範囲から外れてしまい、適切な測定を行うことができない。このため、従来の膜厚制御装置では十分な測定が行えなかった。   When an Al thin film, which is a film forming material, adheres to the crystal unit, the oscillation frequency of the crystal unit changes. That is, the frequency-temperature characteristic has a downward slope according to the amount of thin film formed. Conventionally, an example has been disclosed in which the accuracy of the measurement result is improved by correcting the frequency-temperature characteristic according to the temperature of the sensor head using the AT-Cut crystal resonator. However, if the thin film adheres to the quartz resonator and the frequency-temperature characteristic becomes large in this way, even if correction is made according to the temperature, it will be out of the frequency correction range and appropriate measurement cannot be performed. . For this reason, the conventional film thickness control device cannot perform sufficient measurement.

図4は、AT−Cut水晶振動子の表面に所定温度になるように熱衝撃を与えた場合の周波数の時間変化を示すグラフである。グラフのY軸は温度ドリフト周波数(Hz)を示す(図5〜7においても同様)。なお、AT−Cut水晶振動子に与えた熱衝撃は、30Wのハロゲンランプによる輻射熱とした(図5、図7においても同様)。電子ビーム式蒸着装置では、AT−CUT水晶振動子3°05′を用いた場合のシャッター開放時の輻射熱による周波数変化は、最大200Hz程度、水晶振動子の表面温度は50℃程度であることが実験的にわかった。このため、200Hzの変化、すなわち表面温度50℃に相当する状況を、出力30Wのハロゲンランプを用いて作った。   FIG. 4 is a graph showing a time change in frequency when a thermal shock is applied to the surface of the AT-Cut crystal resonator so as to reach a predetermined temperature. The Y axis of the graph indicates the temperature drift frequency (Hz) (the same applies to FIGS. 5 to 7). The thermal shock applied to the AT-Cut crystal resonator was radiant heat from a 30 W halogen lamp (the same applies to FIGS. 5 and 7). In the electron beam evaporation apparatus, when the AT-CUT quartz resonator 3 ° 05 ′ is used, the frequency change due to radiant heat when the shutter is opened may be about 200 Hz at the maximum, and the surface temperature of the quartz resonator may be about 50 ° C. I found it experimentally. For this reason, a change corresponding to 200 Hz, that is, a situation corresponding to a surface temperature of 50 ° C. was made using a halogen lamp with an output of 30 W.

AT−Cut水晶振動子を使用したセンサヘッドと発振器とを組み合わせた場合、シャッター機構によりシャッターが開かれると蒸発源の輻射熱によりセンサヘッドに熱衝撃が急激に付加される。これにより、発振器からの出力周波数は、周波数−温度特性に従わず急激に上昇する。なお、「熱衝撃」の発生は、二酸化ケイ素でできている水晶振動子と、金や銀などの電極用金属材料の熱膨張率差による水晶振動子への内部応力が原因であることが、実験によりわかった。   When a sensor head using an AT-Cut crystal resonator is combined with an oscillator, a thermal shock is suddenly applied to the sensor head by the radiant heat of the evaporation source when the shutter is opened by the shutter mechanism. As a result, the output frequency from the oscillator rapidly increases without following the frequency-temperature characteristics. The occurrence of "thermal shock" is caused by internal stress on the crystal unit due to the difference in thermal expansion coefficient between the crystal unit made of silicon dioxide and the metal material for electrodes such as gold and silver. I found out through experiments.

図5は、AT−Cut水晶振動子の表面に所定温度になるように熱衝撃を与えた場合の周波数の時間変化を、形成された薄膜の膜厚(発振周波数)で比較したグラフである。図5においては、各線は膜厚に依存して減少する発振器の出力周波数毎(5.00MHz(new、薄膜なし)、4.970MHz、4.900MHz、4.845MHz、4.804MHz、4.743MHz、4.695MHz)に表される。   FIG. 5 is a graph comparing the time variation of the frequency when the thermal shock is applied to the surface of the AT-Cut crystal resonator so as to reach a predetermined temperature by the film thickness (oscillation frequency) of the formed thin film. In FIG. 5, each line indicates an oscillator output frequency that decreases depending on the film thickness (5.00 MHz (new, no thin film), 4.970 MHz, 4.900 MHz, 4.845 MHz, 4.804 MHz, 4.743 MHz. 4.695 MHz).

水晶振動子に薄膜が形成されると、図5に示すようにAT−Cut水晶振動子の発振周波数に応じて周波数変化がばらつくことがわかる。これにより、周波数−温度特性同様、補正が困難であり、成膜速度である蒸着レートの制御性や膜厚測定の精度の低下が発生ししまう。このため、周波数−温度特性同様、薄膜が形成されていない状態で補正を行った場合であっても、薄膜が形成されるにつれてばらつきが発生し、正確な測定、制御ができない。   When a thin film is formed on the crystal resonator, it can be seen that the frequency variation varies according to the oscillation frequency of the AT-Cut crystal resonator as shown in FIG. As a result, correction is difficult as in the frequency-temperature characteristics, and the controllability of the deposition rate, which is the film formation rate, and the accuracy of film thickness measurement are reduced. For this reason, as with the frequency-temperature characteristics, even when correction is performed in a state where no thin film is formed, variation occurs as the thin film is formed, and accurate measurement and control cannot be performed.

これに対し、SC−Cut水晶振動子を用いたセンサヘッドは、表面に薄膜が形成された場合であっても、周波数−温度特性および熱衝撃による周波数の変化は影響を受けることなく、安定した膜厚測定、蒸着速度の制御を行うことができる。   On the other hand, the sensor head using the SC-Cut crystal resonator is stable without being affected by frequency-temperature characteristics and frequency changes due to thermal shock even when a thin film is formed on the surface. Film thickness measurement and deposition rate control can be performed.

図6は、SC−Cut水晶振動子の周波数−温度特性を、形成されたAl薄膜の膜厚(発振周波数)で比較したグラフである。図6においては、各線は膜厚に依存して減少する発振器の出力周波数毎(5.00MHz(new、薄膜なし)、4.90MHz、4.80MHz、4.70MHz)に表される。   FIG. 6 is a graph comparing the frequency-temperature characteristics of the SC-Cut crystal resonator with the film thickness (oscillation frequency) of the formed Al thin film. In FIG. 6, each line is represented for each output frequency (5.00 MHz (new, no thin film), 4.90 MHz, 4.80 MHz, 4.70 MHz) of the oscillator that decreases depending on the film thickness.

図7は、SC−Cut水晶振動子の表面に所定温度になるように熱衝撃を与えた場合の周波数の時間変化を、形成された薄膜の膜厚(発振周波数)で比較したグラフである。図7においては、各線は膜厚に依存して減少する発振器の出力周波数毎(5.00MHz(new、薄膜なし)、4.97MHz、4.90MHz、4.80MHz、4.70MHz)に表される。   FIG. 7 is a graph comparing the time variation of the frequency when the thermal shock is applied to the surface of the SC-Cut crystal resonator so as to reach a predetermined temperature by the film thickness (oscillation frequency) of the formed thin film. In FIG. 7, each line is represented for each output frequency of the oscillator (5.00 MHz (new, no thin film), 4.97 MHz, 4.90 MHz, 4.80 MHz, 4.70 MHz) that decreases depending on the film thickness. The

説明のために用いたSC−Cut水晶振動子は、水晶結晶軸X軸、Y軸、Z軸のうちZ軸周りの回転角度θが34°、X軸周りの回転角度φが22°30′となるようにカットされたものである。   The SC-Cut crystal resonator used for the description has a rotation angle θ around the Z axis of the crystal crystal axes X, Y, and Z of 34 ° and a rotation angle φ around the X axis of 22 ° 30 ′. It was cut to become.

SC−Cut水晶振動子は、図6に示すように、薄膜が形成されていない場合(5.00MHz)と、薄膜が最も形成された場合(4.70MHz)とを比較すると、最大でも40Hz程度しか変化しない。これは、AT−Cut水晶振動子の周波数の変化に比べて1/10程度であり、膜厚が大きくなっても、すなわち成膜工程を複数回繰り返したとしても、水晶振動子の周波数−温度特性が変化しないことを示す。   As shown in FIG. 6, in the SC-Cut crystal resonator, when a thin film is not formed (5.00 MHz) and a thin film is formed most (4.70 MHz), the maximum is about 40 Hz. Only changes. This is about 1/10 of the change in the frequency of the AT-Cut crystal resonator, and even if the film thickness is increased, that is, even if the film forming process is repeated a plurality of times, the frequency-temperature of the crystal resonator. Indicates that the characteristic does not change.

また、図7に示す熱衝撃に対する周波数の時間変化も同様に、最大でも40Hz程度しか変化せず、AT−Cut水晶振動子と比べて変化が小さい。すなわち、SC−Cut水晶振動子は周波数−温度特性、熱衝撃による周波数変化共に膜厚によらずに変化が少なく、成膜工程が複数回繰り返された場合であっても、誤差の小さい測定を維持することができる。この結果、SC−Cut水晶振動子をセンサヘッドに用いた成膜制御装置は、好適な蒸着レート制御が可能である。   Similarly, the time change of the frequency with respect to the thermal shock shown in FIG. 7 also changes only about 40 Hz at the maximum, and the change is small as compared with the AT-Cut crystal resonator. That is, the SC-Cut crystal resonator has little change in both frequency-temperature characteristics and frequency change due to thermal shock regardless of the film thickness, and even when the film forming process is repeated a plurality of times, measurement with a small error can be performed. Can be maintained. As a result, the film formation control apparatus using the SC-Cut crystal resonator as the sensor head can perform suitable vapor deposition rate control.

次に、SC−Cut水晶振動子のカット角の決定方法、すなわち成膜制御装置の製造方法について説明する。   Next, a method for determining the cut angle of the SC-Cut crystal resonator, that is, a method for manufacturing the film formation control apparatus will be described.

SC−Cut水晶振動子は上述した通り、膜厚に応じた周波数−温度特性の変化および熱衝撃に対する周波数の変化が、AT−Cut水晶振動子に比べて、膜厚に応じて変化しない。このため、成膜工程が繰り返され水晶振動子に薄膜が形成されたることにより、膜厚が徐々に大きくなった場合に、周波数−温度特性および熱衝撃による周波数変化を最少にするためには、薄膜が形成されていない場合の周波数−温度特性および熱衝撃による周波数変化を最少にすればよい。   As described above, in the SC-Cut crystal resonator, the change in the frequency-temperature characteristic according to the film thickness and the change in the frequency with respect to the thermal shock do not change according to the film thickness as compared with the AT-Cut crystal resonator. For this reason, in order to minimize the frequency change due to the frequency-temperature characteristics and thermal shock when the film thickness is gradually increased by repeating the film forming process and forming a thin film on the crystal resonator, What is necessary is to minimize the frequency change due to the frequency-temperature characteristics and thermal shock when the thin film is not formed.

本実施形態においては、薄膜が形成されていない場合の周波数−温度特性および熱衝撃による周波数変化を最少にすることのできるSC−Cut水晶振動子のθおよびφを求めることにより、成膜制御装置に適したSC−Cut水晶振動子の構成を決定した。   In the present embodiment, a film formation control device is obtained by obtaining θ and φ of an SC-Cut crystal resonator capable of minimizing frequency changes due to frequency-temperature characteristics and thermal shock when no thin film is formed. The configuration of the SC-Cut crystal resonator suitable for the above was determined.

具体的には、水晶振動子の温度が20〜65℃における周波数−温度特性が±10ppm以下となるθおよびφを有するSC−Cut水晶振動子とする(条件1)。または、水晶振動子表面に50℃以下の熱衝撃が加えられる前の周波数に対する、熱衝撃水晶振動子の表面に加えられた場合における周波数の変化が、±10ppm以下となるθおよびφを有するSC−Cut水晶振動子とする(条件2)。なお、水晶振動子は、水晶結晶軸である直交座標系X軸、Y軸、Z軸においてZ軸周りにθ回転し、X軸周りにφ回転したものとする。なお、水晶振動子は、上記条件1および2のいずれかを満たすものであっても、双方を満たすものであってもよい。   Specifically, an SC-Cut crystal resonator having θ and φ that has a frequency-temperature characteristic of ± 10 ppm or less when the temperature of the crystal resonator is 20 to 65 ° C. (condition 1). Alternatively, the SC having θ and φ in which the change in frequency when applied to the surface of the thermal shock crystal resonator with respect to the frequency before the thermal shock of 50 ° C. or less is applied to the surface of the crystal resonator is ± 10 ppm or less. -Cut crystal resonator (condition 2). It is assumed that the crystal resonator rotates θ around the Z axis and rotates φ around the X axis in the orthogonal coordinate system X-axis, Y-axis, and Z-axis that are crystal crystal axes. The crystal resonator may satisfy either one of the above conditions 1 and 2, or may satisfy both.

具体的には、Z軸周りの回転角度θおよびX軸周りの回転角度φをそれぞれθおよびφと定義する。また、周波数−温度特性に関し、水晶振動子がθおよびφを有する場合の基準温度と比較温度との周波数の差をΔFと定義する。次に、3組の(θ,φ,ΔF)を決定する。さらに、3組の(θ,φ,ΔF)を通る平面の式である第1式θx+φy+ΔFz=0を求める。 Specifically, the rotation angle θ around the Z axis and the rotation angle φ around the X axis are defined as θ 1 and φ 1 , respectively. The frequency - relates temperature characteristics, the frequency difference between the reference temperature and compared temperature when crystal oscillator having a theta 1 and phi 1 is defined as [Delta] F 1. Next, three sets of (θ 1 , φ 1 , ΔF 1 ) are determined. Further, a first equation θ 1 x + φ 1 y + ΔF 1 z = 0, which is a plane equation passing through three sets of (θ 1 , φ 1 , ΔF 1 ), is obtained.

また、θおよびφをθおよびφと定義する。かつ、θおよびφを有する水晶振動子の表面に所定温度の熱衝撃が加えられる前と加えられている間とにおける周波数の差の最大値をΔFと定義する。次に、3組の(θ、φ、ΔF)を決定する。さらに、3組の(θ、φ、ΔF)を通る平面の式である第2式θx+φy+ΔFz=0を求める。 Also, θ and φ are defined as θ 2 and φ 2 . And, the maximum value of the difference of frequency in a while on the surface of the crystal oscillator having a theta 2 and phi 2 thermal shock at a predetermined temperature is added to the previous applied is defined as [Delta] F 2. Next, three sets of (θ 2 , φ 2 , ΔF 2 ) are determined. Further, a second equation θ 2 x + φ 2 y + ΔF 2 z = 0, which is a plane equation passing through three sets of (θ 2 , φ 2 , ΔF 2 ), is obtained.

次に、第1式と第2式とにおいて、z=0として連立させてxおよびyを求める。すなわち、周波数−温度特性および熱衝撃による周波数変化ΔF、ΔFが0である場合のθおよびφを求める。そして、求められたxおよびyに基づいてZ軸周りの回転角度θおよびX軸周りの回転角度φを有するSC−Cut水晶振動子をセンサヘッドに組み込むことにより、成膜制御装置を製造する。 Next, in the first expression and the second expression, x and y are obtained by setting z = 0 simultaneously. That is, θ and φ when the frequency changes ΔF 1 and ΔF 2 due to frequency-temperature characteristics and thermal shock are 0 are obtained. Then, an SC-Cut crystal resonator having a rotation angle θ around the Z axis and a rotation angle φ around the X axis based on the obtained x and y is incorporated into the sensor head, thereby manufacturing the film formation control apparatus.

さらに、周波数−温度特性および熱衝撃による周波数の変化が±10ppm以下となるようなθおよびφの範囲についても、第1式と第2式とに基づいて求める。これにより、周波数−温度特性および熱衝撃による周波数変化が好適となるθおよびφを求めることができ、高温環境下での温度による周波数変動を抑え測定精度に優れた水晶振動子を有するセンサヘッドを備えた成膜制御装置を製造することができる。   Furthermore, the range of θ and φ in which the change in frequency due to the frequency-temperature characteristics and the thermal shock is ± 10 ppm or less is also obtained based on the first and second expressions. This makes it possible to obtain θ and φ that are suitable for frequency change due to frequency-temperature characteristics and thermal shock, and to provide a sensor head having a crystal resonator with excellent measurement accuracy by suppressing frequency fluctuation due to temperature in a high temperature environment. The film formation control apparatus provided can be manufactured.

以下、具体例を用いて説明する。SC−Cut水晶振動子の発振周波数は5MHzとする。   Hereinafter, a specific example will be described. The oscillation frequency of the SC-Cut crystal resonator is 5 MHz.

上記第1式θx+φy+ΔFz=0を求めるため、以下の通り3組の(θ,φ,ΔF)を得た。θおよびφについては、基準としたθ=34°、φ=22°30′を中心に任意に数値を選択した。ΔFについては、各θおよびφを有するSC−Cut水晶振動子を用いて測定することにより得た。ΔFは、基準温度20℃に対する比較温度65℃の周波数変化(20〜65℃における周波数変化)とした。 In order to obtain the first equation θ 1 x + φ 1 y + ΔF 1 z = 0, three sets of (θ 1 , φ 1 , ΔF 1 ) were obtained as follows. For θ 1 and φ 1 , numerical values were arbitrarily selected with reference to θ = 34 ° and φ = 22 ° 30 ′ as a reference. ΔF 1 was obtained by measuring using an SC-Cut crystal resonator having each θ 1 and φ 1 . ΔF 1 was a frequency change at a comparative temperature of 65 ° C. with respect to a reference temperature of 20 ° C. (frequency change at 20 to 65 ° C.).

(θ,φ,ΔF)=(33°40′、23°20′,−75)、
(33°40′,24°00‘,−82)、
(33°50′,24°00′,−147)
1 , φ 1 , ΔF 1 ) = (33 ° 40 ′, 23 ° 20 ′, −75),
(33 ° 40 ', 24 ° 00', -82),
(33 ° 50 ', 24 ° 00', -147)

上記3点を通る平面の式は、以下の通りとなった。
[数1]
−108.55x−1.12y−0.2672z−3659.85=0 (1)
The formula of the plane passing through the three points was as follows.
[Equation 1]
−108.55x−1.12y−0.2672z−3659.85 = 0 (1)

また、上記第2式θx+φy+ΔFz=0を求めるため、以下の通り3組の(θ,φ,ΔF)を得た。θおよびφは、θおよびφと同一の値とした。ΔFについては、各θおよびφからなるSC−Cut水晶振動子を用いて測定することにより得た。熱衝撃は、30Wのハロゲンランプを用いることにより、水晶振動子の表面温度が50℃となるように設定された。すなわち、ΔFは、50℃以下の熱衝撃が加えられる前の周波数に対する、熱衝撃が水晶振動子の表面に加えられた場合における周波数変化である。 Further, in order to obtain the second equation θ 2 x + φ 2 y + ΔF 2 z = 0, three sets (θ 2 , φ 2 , ΔF 2 ) were obtained as follows. θ 2 and φ 2 were set to the same values as θ 1 and φ 1 . ΔF 2 was obtained by measuring using an SC-Cut crystal resonator composed of θ 2 and φ 2 . The thermal shock was set so that the surface temperature of the crystal unit was 50 ° C. by using a 30 W halogen lamp. That is, ΔF 2 is a frequency change when a thermal shock is applied to the surface of the crystal resonator with respect to a frequency before the thermal shock of 50 ° C. or less is applied.

(θ,φ,ΔF)=(33°40′,23°20′,−33)、
(33°40′,24°00′,−51)、
(33°50′,24°00′,−63)
2 , φ 2 , ΔF 2 ) = (33 ° 40 ′, 23 ° 20 ′, −33),
(33 ° 40 ', 24 ° 00', -51),
(33 ° 50 ', 24 ° 00', -63)

上記3点を通る平面の式は、以下の通りとなった。
[数2]
−20.04x−2.88y−0.2672z+730.24=0(2)
The formula of the plane passing through the three points was as follows.
[Equation 2]
-20.04x-2.88y-0.2672z + 730.24 = 0 (2)

次に、z=0である場合のxおよびyを求める。すなわち、周波数変化ΔF、ΔFが0となる場合のθおよびφを求める。この結果、(θ,φ)=(33°30′、20°25′)が得られた。 Next, x and y when z = 0 are obtained. That is, θ and φ when the frequency changes ΔF 1 and ΔF 2 are 0 are obtained. As a result, (θ, φ) = (33 ° 30 ′, 20 ° 25 ′) was obtained.

次に、周波数−温度特性が±10ppm、熱衝撃による周波数変化が±10ppmとなるθおよびφの範囲を求める。5MHzの水晶振動子の場合、±10ppmとするためには、ΔFおよびΔFが±50Hzであればよい。このため、ΔFおよびΔFが以下の組み合わせとなる場合のθおよびφを、上記式(1)および式(2)で求める。結果は以下の通りである。 Next, the range of θ and φ in which the frequency-temperature characteristic is ± 10 ppm and the frequency change due to thermal shock is ± 10 ppm is obtained. In the case of a 5 MHz crystal resonator, ΔF 1 and ΔF 2 may be ± 50 Hz in order to obtain ± 10 ppm. Therefore, θ and φ when ΔF 1 and ΔF 2 are the following combinations are obtained by the above formulas (1) and (2). The results are as follows.

(ΔF,ΔF)=(50,50)の場合、(θ、φ)=(33°26′、16°20′)
(ΔF,ΔF)=(50,−50)の場合、(θ、φ)=(33°19′、26°20′)
(ΔF,ΔF)=(−50,50)の場合、(θ、φ)=(33°41′、14°29′)
(ΔF,ΔF)=(−50,−50)の場合、(θ、φ)=(33°35′、24°29′)
In the case of (ΔF 1 , ΔF 2 ) = (50, 50), (θ, φ) = (33 ° 26 ′, 16 ° 20 ′)
In the case of (ΔF 1 , ΔF 2 ) = (50, −50), (θ, φ) = (33 ° 19 ′, 26 ° 20 ′)
In the case of (ΔF 1 , ΔF 2 ) = (− 50, 50), (θ, φ) = (33 ° 41 ′, 14 ° 29 ′)
When (ΔF 1 , ΔF 2 ) = (− 50, −50), (θ, φ) = (33 ° 35 ′, 24 ° 29 ′)

これにより、周波数変化が±10ppm以下となるθおよびφの範囲は
(θ,φ)=(33°30′±11′、20°25′±6°)
となる。また、(θ、φ)=(33°30′、20°25′)の場合、SC−Cut水晶振動子の温度ドリフト周波数を最小値にすることができる。
As a result, the range of θ and φ where the frequency change is ± 10 ppm or less is (θ, φ) = (33 ° 30 ′ ± 11 ′, 20 ° 25 ′ ± 6 °)
It becomes. When (θ, φ) = (33 ° 30 ′, 20 ° 25 ′), the temperature drift frequency of the SC-Cut crystal resonator can be minimized.

このように、本実施形態における水晶振動子、この水晶振動子を有するセンサヘッド、成膜制御装置、成膜制御装置の製造方法により製造された成膜制御装置は、薄膜が形成されても周波数−温度特性の変化および熱衝撃による周波数変化が小さいというSC−Cut水晶振動子の性質を利用したことにより、高温環境下での温度による周波数変動を抑え精度の高い膜厚測定および蒸発レート制御が可能となる。   As described above, the crystal resonator according to the present embodiment, the sensor head having the crystal resonator, the film formation control device, and the film formation control device manufactured by the method for manufacturing the film formation control device have a frequency even if a thin film is formed. -By utilizing the characteristics of the SC-Cut crystal resonator that changes in temperature characteristics and frequency changes due to thermal shock are small, it is possible to measure the film thickness and control the evaporation rate with high accuracy while suppressing frequency fluctuations due to temperature in high temperature environments It becomes possible.

また、本実施形態における成膜制御装置の製造方法においては、薄膜が形成されていないSC−Cut水晶振動子において周波数−温度特性および熱衝撃による周波数変化に優れたθおよびφを近似して求めた。これにより、薄膜が形成された場合においても、形成されていない場合と同様に精度の高い膜厚測定および蒸発レート制御を実現することができる。   Further, in the method of manufacturing the film formation control apparatus according to the present embodiment, in an SC-Cut crystal resonator in which no thin film is formed, θ and φ excellent in frequency-temperature characteristics and frequency change due to thermal shock are approximated and obtained. It was. Thereby, even when a thin film is formed, highly accurate film thickness measurement and evaporation rate control can be realized as in the case where a thin film is not formed.

また、以下の図8〜図10に示すように、SC−Cut水晶振動子を用いたセンサヘッドを備える成膜制御装置は、AT−Cut水晶振動子を用いたセンサヘッドを備える成膜制御装置に比べて精度よく制御が可能である。   Further, as shown in FIGS. 8 to 10 below, the film formation control device including the sensor head using the SC-Cut crystal resonator is the film formation control device including the sensor head using the AT-Cut crystal resonator. Control is possible with higher accuracy than

図8は、AT−Cut水晶振動子を用いたセンサヘッドを備える成膜装置と、SC−Cut水晶振動子を用いたセンサヘッドを備える成膜装置とで、水晶振動子の発振周波数の時間変化を比較したグラフである。   FIG. 8 shows a temporal change in the oscillation frequency of a crystal resonator between a film forming apparatus having a sensor head using an AT-Cut crystal resonator and a film forming apparatus having a sensor head using an SC-Cut crystal resonator. It is the graph which compared.

図9は、AT−Cut水晶振動子を用いたセンサヘッドを備える成膜装置と、SC−Cut水晶振動子を用いたセンサヘッドを備える成膜装置とで、蒸着レートの時間変化を比較したグラフである。   FIG. 9 is a graph comparing the time variation of the deposition rate between a film forming apparatus having a sensor head using an AT-Cut crystal resonator and a film forming apparatus having a sensor head using an SC-Cut crystal resonator. It is.

図10は、AT−Cut水晶振動子を用いたセンサヘッドを備える成膜装置と、SC−Cut水晶振動子を用いたセンサヘッドを備える成膜装置とで、電源出力の時間変化を比較したグラフである。   FIG. 10 is a graph comparing power output changes over time in a film forming apparatus including a sensor head using an AT-Cut crystal resonator and a film forming apparatus including a sensor head using an SC-Cut crystal resonator. It is.

図8〜10は閉状態のシャッターを250s経過した時点で開状態にして低レート成膜を行った例である。AT−Cut水晶振動子を使ったセンサヘッドの場合、電源の出力が徐々に増加することにより、シャッターが閉状態の場合であっても水晶振動子およびセンサヘッドが輻射熱により温度ドリフトし、さらにシャッターが開状態となると熱衝撃により水晶振動子の発振周波数が高い方にシフトしている。一方、SC−Cut水晶振動子を使ったセンサヘッドの場合、同じ条件であっても温度ドリフト、熱衝撃の影響はほとんどないことがわかる。   8 to 10 show an example in which a low-rate film is formed by opening the closed shutter when 250 seconds have elapsed. In the case of a sensor head using an AT-Cut crystal resonator, the output of the power supply gradually increases, so that the crystal resonator and the sensor head drift due to radiant heat even when the shutter is closed. When is opened, the oscillation frequency of the crystal resonator is shifted to the higher side due to thermal shock. On the other hand, in the case of a sensor head using an SC-Cut crystal resonator, it can be seen that there is almost no influence of temperature drift and thermal shock even under the same conditions.

このように、SC−Cut水晶振動子を用いたセンサヘッドを備える成膜装置は、周波数変化、蒸着レート変化、電源出力変化において、AT−Cut水晶振動子を用いたセンサヘッドを備える成膜装置より高温環境下での温度による影響などを受けることなく成膜工程の制御が可能である。   Thus, the film forming apparatus including the sensor head using the SC-Cut crystal resonator includes the sensor head using the AT-Cut crystal resonator in the frequency change, the deposition rate change, and the power output change. The film forming process can be controlled without being affected by the temperature in a higher temperature environment.

なお、本実施形態における成膜制御装置などは、真空蒸着装置を例に説明したが、スパッタリング装置や、CVD装置に適用してもよい。   In addition, although the film-forming control apparatus in this embodiment demonstrated the vacuum evaporation system as an example, you may apply to a sputtering device or a CVD apparatus.

図11は、本実施形態における成膜制御装置を適用したスパッタ装置の概略的な構成図である。   FIG. 11 is a schematic configuration diagram of a sputtering apparatus to which the film formation control apparatus according to this embodiment is applied.

スパッタ装置21は、真空槽31内に基板32と、成膜材料の組成に応じて形成されたターゲット電極33とを対向配置する。真空槽31内においては、高周波電源34により所定電力を投入させてグロー放電させることにより、プラズマ雰囲気35が形成される。スパッタ装置21は、プラズマ雰囲気35中で電離した希ガスのイオンをターゲットに向けて加速させて衝突させ、これにより生じたスパッタ粒子(ターゲット原子)を飛散させて基板表面に付着、堆積させる。これにより、スパッタ装置21は薄膜を形成する。   The sputtering apparatus 21 arranges a substrate 32 and a target electrode 33 formed in accordance with the composition of the film forming material in a vacuum chamber 31 so as to face each other. In the vacuum chamber 31, a plasma atmosphere 35 is formed by applying a predetermined power from a high-frequency power supply 34 to cause glow discharge. The sputtering apparatus 21 accelerates and collides ions of a rare gas ionized in the plasma atmosphere 35 toward the target, and sputters particles (target atoms) generated thereby are deposited and deposited on the substrate surface. Thereby, the sputtering apparatus 21 forms a thin film.

このようなスパッタ装置21は、図1に示す真空蒸着装置と同様、センサヘッド36、発振器37、および膜厚計38を備えた成膜制御装置22を備える。また、高周波電源34とターゲット電極33との間のインピーダンスの整合を図るためのインピーダンス整合器39を備える。   Such a sputtering apparatus 21 includes a film formation control apparatus 22 including a sensor head 36, an oscillator 37, and a film thickness meter 38, as in the vacuum vapor deposition apparatus illustrated in FIG. 1. In addition, an impedance matching unit 39 for matching impedance between the high frequency power supply 34 and the target electrode 33 is provided.

このようなスパッタ装置21や、CVD装置は、プラズマに曝されるため高温であり、水冷が必要となる。しかし、本実施形態におけるSC−Cut水晶振動子を備えたセンサヘッドは、AT−Cut水晶振動子に比べて温度ドリフトが少ない。このため、本実施形態におけるセンサヘッドは、スパッタ装置21やCVD装置にも好適に用いることができる。   Such a sputtering apparatus 21 and a CVD apparatus are exposed to plasma and thus have a high temperature and require water cooling. However, the sensor head provided with the SC-Cut crystal resonator in this embodiment has less temperature drift than the AT-Cut crystal resonator. For this reason, the sensor head in the present embodiment can be suitably used for the sputtering apparatus 21 and the CVD apparatus.

なお、SC−Cut水晶振動子は、成膜工程において用いられた後に、形成された薄膜および電極が剥がされ、再度電極が成膜されることにより再利用することができる。   Note that the SC-Cut crystal resonator can be reused by being used in the film forming process, and then removing the formed thin film and electrode and forming the electrode again.

1 真空蒸着装置
2 成膜制御装置
10 真空槽
11 蒸発源
12 成膜対象物
13 シャッター機構
14 センサヘッド
15 発振器
16 膜厚計
17 蒸発源用電源
21 スパッタ装置
22 成膜制御装置
31 真空槽
32 基板
33 ターゲット電極
34 高周波電源
35 プラズマ雰囲気
36 センサヘッド
37 発振器
38 膜厚計
39 インピーダンス整合器
DESCRIPTION OF SYMBOLS 1 Vacuum evaporation apparatus 2 Film formation control apparatus 10 Vacuum tank 11 Evaporation source 12 Film formation target 13 Shutter mechanism 14 Sensor head 15 Oscillator 16 Film thickness meter 17 Evaporation source power source 21 Sputtering apparatus 22 Film formation control apparatus 31 Vacuum tank 32 Substrate 33 Target electrode 34 High frequency power source 35 Plasma atmosphere 36 Sensor head 37 Oscillator 38 Film thickness meter 39 Impedance matching device

Claims (5)

成膜制御装置用センサに用いられるSC−Cutの水晶振動子であって、
前記水晶振動子は、水晶結晶軸である直交座標系X軸、Y軸、Z軸においてZ軸周りにθ回転し、X軸周りにφ回転したものであり、前記θが33°30′、前記φが20°25′である水晶振動子。
An SC-Cut crystal resonator used in a sensor for a film formation control device,
The crystal resonator is a crystal crystal axis that is rotated by θ around the Z axis in the Cartesian coordinate system X-axis, Y-axis, and Z-axis and φ-rotated around the X-axis, and the θ is 33 ° 30 ′, A crystal resonator in which the φ is 20 ° 25 ′ .
前記請求項に記載の水晶振動子と、
前記水晶振動子を保持するホルダと、を備えたセンサヘッド。
The crystal resonator according to claim 1 ;
And a holder for holding the crystal unit.
蒸着装置、スパッタリング装置またはCVD(化学蒸着)装置のセンサヘッドに、前記請求項記載のセンサヘッドを備えた成膜制御装置。 A film formation control apparatus comprising the sensor head according to claim 2 on a sensor head of a vapor deposition apparatus, a sputtering apparatus, or a CVD (chemical vapor deposition) apparatus. 水晶結晶軸である直交座標軸系X軸、Y軸、Z軸においてZ軸周りの回転角度θとX軸周りの回転角度φとで決定されるSC−Cutの水晶板を用いる水晶振動子を有するセンサヘッドを備えた成膜制御装置の製造方法において、
前記θおよび前記φをθおよびφとし、かつ前記水晶板が前記θおよびφを有する場合の基準温度と比較温度との周波数の差をΔFと定義して、3組の(θ,φ,ΔF)を決定し、3組の前記(θ,φ,ΔF)を通る平面の式である第1式θx+φy+ΔFz=0を求める工程と、
前記θおよび前記φをθおよびφとし、かつ前記水晶板が前記θおよびφを有する場合の前記水晶振動子の表面に所定温度の熱衝撃が加えられる前と加えられている間とにおける周波数の差の最大値をΔFと定義して3組の(θ、φ、ΔF)を決定し、3組の前記(θ、φ、ΔF)を通る平面の式である第2式θx+φy+ΔFz=0を求める工程と、
前記第1式と前記第2式とにおいてz=0として連立させてxおよびyを求める工程と、
求められた前記xおよびyをそれぞれθおよびφとした水晶板を有する水晶振動子を前記センサヘッドに組み込む工程と、を備える成膜制御装置の製造方法。
It has a crystal resonator using an SC-Cut crystal plate determined by a rotation angle θ around the Z axis and a rotation angle φ around the X axis in the orthogonal coordinate system X axis, Y axis, and Z axis that are crystal crystal axes. In the manufacturing method of the film formation control apparatus provided with the sensor head,
When θ and φ are θ 1 and φ 1 and the crystal plate has θ 1 and φ 1 , the frequency difference between the reference temperature and the comparison temperature is defined as ΔF 1, and three sets of ( theta 1, phi 1, [Delta] F 1) to determine the three sets of the (theta 1, phi 1, and obtaining a first expression θ 1 x + φ 1 y + ΔF 1 z = 0 is the equation of a plane passing through the [Delta] F 1) ,
When θ and φ are θ 2 and φ 2 and the quartz plate has θ 2 and φ 2 and before the thermal shock of a predetermined temperature is applied to the surface of the crystal resonator, 3 pairs of the maximum value of the difference in frequency is defined as [Delta] F 2 in the (θ 2, φ 2, ΔF 2) determining the three sets of the (θ 2, φ 2, ΔF 2) of a plane passing through the Obtaining a second equation θ 2 x + φ 2 y + ΔF 2 z = 0, which is an equation;
Obtaining x and y by simultaneously setting z = 0 in the first formula and the second formula;
And a step of incorporating a crystal resonator having a crystal plate in which the obtained x and y are respectively θ and φ into the sensor head.
周波数−温度特性および熱衝撃による周波数変化が±10ppm以下となるような前記θおよびφの範囲を前記第1式と第2式とに基づいて求める工程と、
求められた前記θおよびφの範囲内の前記θおよびφを有する水晶板を有する水晶振動子を前記センサヘッドに組み込む工程と、をさらに備えた請求項記載の成膜制御装置の製造方法。
Obtaining the range of θ and φ based on the first and second formulas such that the frequency change due to frequency-temperature characteristics and thermal shock is ± 10 ppm or less;
The method of manufacturing a film forming control apparatus according to claim 4 , further comprising a step of incorporating a crystal resonator having a crystal plate having the θ and φ within the determined range of θ and φ into the sensor head.
JP2014194686A 2014-09-25 2014-09-25 Quartz crystal resonator, sensor head having the crystal resonator, film formation control device, and method for manufacturing film formation control device Active JP6412384B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014194686A JP6412384B2 (en) 2014-09-25 2014-09-25 Quartz crystal resonator, sensor head having the crystal resonator, film formation control device, and method for manufacturing film formation control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014194686A JP6412384B2 (en) 2014-09-25 2014-09-25 Quartz crystal resonator, sensor head having the crystal resonator, film formation control device, and method for manufacturing film formation control device

Publications (2)

Publication Number Publication Date
JP2016066909A JP2016066909A (en) 2016-04-28
JP6412384B2 true JP6412384B2 (en) 2018-10-24

Family

ID=55805873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014194686A Active JP6412384B2 (en) 2014-09-25 2014-09-25 Quartz crystal resonator, sensor head having the crystal resonator, film formation control device, and method for manufacturing film formation control device

Country Status (1)

Country Link
JP (1) JP6412384B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102072414B1 (en) * 2017-06-28 2020-02-03 가부시키가이샤 알박 Sensor head for crystal oscillation film thickness monitor
CN111486802B (en) * 2020-04-07 2021-04-06 东南大学 Rotating shaft calibration method based on self-adaptive distance weighting

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57129012A (en) * 1980-11-05 1982-08-10 Schlumberger Overseas Stress compensation type crystal vibrator
US7705524B2 (en) * 2003-07-18 2010-04-27 Nihon Dempa Kogyo Co., Ltd. SC cut crystal resonator
JP4388443B2 (en) * 2004-09-09 2009-12-24 株式会社アルバック Film thickness monitoring method and film thickness monitoring apparatus
JP2006292733A (en) * 2005-03-15 2006-10-26 Yoshinori Kanno Quartz crystal microbalance sensor
JP4864114B2 (en) * 2009-04-14 2012-02-01 日本電波工業株式会社 Crystal oscillator

Also Published As

Publication number Publication date
JP2016066909A (en) 2016-04-28

Similar Documents

Publication Publication Date Title
JP6328253B2 (en) Film thickness monitor and film thickness measuring method
JP4818073B2 (en) Film thickness measurement method
JP6078694B2 (en) Film forming apparatus, organic film thickness measuring method, and organic film thickness sensor
TWI485281B (en) Film formation apparatus
CN106574833B (en) Method for diagnosing film thickness sensor and film thickness monitor
JP6263441B2 (en) Thickness control method by crystal oscillation type film thickness monitor
JP2007335875A (en) Method for calculating plasma characteristics
CN112074941A (en) Virtual sensor for spatially resolved wafer temperature control
JP2012112035A (en) Vacuum vapor deposition system
WO2016140321A1 (en) Sensor for film thickness monitoring device, film thickness monitoring device provided with same, and method for manufacturing sensor for film thickness monitoring device
JP6412384B2 (en) Quartz crystal resonator, sensor head having the crystal resonator, film formation control device, and method for manufacturing film formation control device
US4579639A (en) Method of sensing the amount of a thin film deposited during an ion plating process
KR102341835B1 (en) Film thickness sensor
WO2016009626A1 (en) Film thickness control device, film thickness control method, and film formation device
US11175323B2 (en) Process monitoring using crystal with reactance sensor
JP7217822B1 (en) Film thickness monitoring method and film thickness monitoring device
CN115698374A (en) Quartz crystal microbalance concentration monitoring
JP2011061867A (en) Method for stack deposition of layer, method of forming resonator, and method for deposition of piezoelectric layer
JP4817237B2 (en) Piezoelectric element frequency adjusting device and frequency adjusting method
JP7348873B2 (en) Sensor element and gas sensor
TW202249136A (en) System and method for deconvolution of real-time mass from the influence of temperature and pressure on crystal microbalance
CN111435636A (en) Processing method and plasma processing apparatus
KR20190083219A (en) Depostion method and device for thin film layer
JP2006261745A (en) Method of manufacturing piezoelectric vibrator and method of measuring frequency temperature characteristic

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170710

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180911

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180928

R150 Certificate of patent or registration of utility model

Ref document number: 6412384

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250