JP7063745B2 - 電源システム - Google Patents

電源システム Download PDF

Info

Publication number
JP7063745B2
JP7063745B2 JP2018122365A JP2018122365A JP7063745B2 JP 7063745 B2 JP7063745 B2 JP 7063745B2 JP 2018122365 A JP2018122365 A JP 2018122365A JP 2018122365 A JP2018122365 A JP 2018122365A JP 7063745 B2 JP7063745 B2 JP 7063745B2
Authority
JP
Japan
Prior art keywords
inverter
potential side
relay
storage unit
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018122365A
Other languages
English (en)
Other versions
JP2020005394A (ja
Inventor
芳光 高橋
満孝 伊藤
哲也 山田
隆士 小俣
誠 中村
清隆 松原
大悟 野辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Toyota Motor Corp
Original Assignee
Denso Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Toyota Motor Corp filed Critical Denso Corp
Priority to JP2018122365A priority Critical patent/JP7063745B2/ja
Publication of JP2020005394A publication Critical patent/JP2020005394A/ja
Application granted granted Critical
Publication of JP7063745B2 publication Critical patent/JP7063745B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Landscapes

  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Description

本発明は、電源システムに関する。
従来、車両外部からの電力によって複数の電池を充電する充電装置が知られている。例えば特許文献1では、電圧が高い方の電池の電力エネルギを、外部コンデンサを介して電圧が低い方の電池に移動させ、電圧を均等化している。
特開2012-5173号公報
ところで、例えば、2つの電圧源がモータのオープン巻線の両端にインバータを介して接続されている「2電源2インバータ」の構成において、インバータに平滑コンデンサが接続されていることがある。当該構成において、特許文献1のように、外部コンデンサを用いて電圧を揃えようとすると、外部コンデンサと接続した瞬間に外部コンデンサと平滑コンデンサとの間に突入電流が流れ、外部コンデンサとの断接を切り替えるリレーやコンデンサが損傷する虞がある。
本発明は、上述の課題に鑑みてなされたものであり、その目的は、並列充電時の過電流を回避可能な電源システムを提供することにある。
本発明の電源システムは、多相巻線(81、82、83)を有する回転電機(80)に電力を供給可能であって、第1蓄電部(11)と、第2蓄電部(21)と、第1インバータ(60)と、第2インバータ(70)と、第1コンデンサ(69)と、第2コンデンサ(79)と、第1リレー(12、13)と、第2リレー(22、23)と、高電位側並列リレー(93)と、低電位側並列リレー(94)と、制御部(30)と、を備える。
第1蓄電部は、充電器(100)からの電力により充電可能である。第2蓄電部は、充電器からの電力により第1蓄電部と並列に充電可能である。第1インバータは、第1スイッチング素子(61~66)を有し、多相巻線の一端(811、821、831)および第1蓄電部と接続される。第2インバータは、第2スイッチング素子(71~76)を有し、多相巻線の他端(812、822、823)および第2蓄電部と接続される。第1コンデンサは、第1インバータと並列に接続される。第2コンデンサは、第2インバータと並列に接続される。
第1リレーは、第1蓄電部と、第1インバータおよび第1コンデンサと、の断接を切り替え可能である。第2リレーは、第2蓄電部と、第2インバータおよび第2コンデンサと、の断接を切り替え可能である。高電位側並列リレーは、第1インバータの高電位側と第2インバータの高電位側とを接続する高電位側接続線(91)に設けられる。低電位側並列リレーは、第1インバータの低電位側と第2インバータの低電位側とを接続する低電位側接続線(92)に設けられる。
制御部は、インバータ制御部(31)、リレー制御部(32)、および、充電制御部(33)を有する。インバータ制御部は、第1インバータおよび第2インバータを制御する。リレー制御部は、第1リレー、第2リレー、高電位側並列リレー、および、低電位側並列リレーの開閉を制御する。充電制御部は、第1蓄電部および第2蓄電部の充電を制御する。
高電位側並列リレーおよび低電位側並列リレーを閉とし、第1蓄電部と第2蓄電部とを並列接続して充電器により充電する並列充電の前段階において、制御部は、第1インバータおよび第2インバータを制御することで、第1コンデンサと第2コンデンサとの電圧差を低減する電圧差低減処理を行う。これにより、別途の部品を追加することなく、バッテリ11、21を並列接続したときの突入電流を低減することができる。
一実施形態による電源システムを示すブロック図である。 一実施形態による充電制御処理を説明するフローチャートである。 一実施形態によるディスチャージ処理を説明する説明図である。 一実施形態によるディスチャージ処理を説明するフローチャートである。 プリチャージ処理を行わない場合のコンデンサ電流を説明するタイムチャートである。 一実施形態によるプリチャージ処理を行う場合のコンデンサ電流を説明するタイムチャートである。 一実施形態によるプリチャージ処理を説明するタイムチャートである。
(一実施形態)
以下、電源システムを図面に基づいて説明する。図1に示すように、電源システム1は、車両98に搭載される。車両98は、例えば電気自動車やハイブリッド車両等の電動車両である。車両98には、インレット99が設けられる。インレット99は、充電器100の充電器コネクタ115と接続可能であり、インレット99と充電器コネクタ115とを接続することで、電源システム1には、充電器100から給電される。
充電器100は、例えば急速充電器であって、電力供給部101、リレー102、103、および、充電器コネクタ115を有する。電力供給部101は、図示しない商用電源等から供給される交流電力を直流電力に変換し、直流電力を、リレー102、103、ケーブル116および充電器コネクタ115を経由して、車両98に供給する。
電源システム1は、バッテリ11、21、メインリレー12、13、22、23、電圧検出部15、25、制御部30、第1インバータ60、第2インバータ70、コンデンサ69、79、回転電機としてのモータジェネレータ80、並列リレー93、94等を備える。以下適宜、モータジェネレータを「MG」と記載する。
第1バッテリ11は、第1インバータ60と接続され、第1インバータ60を経由してMG80と電力を授受可能に設けられる。第2バッテリ21は、第2インバータ70と接続され、第2インバータ70を経由してMG80と電力を授受可能に設けられる。バッテリ11、21は、充電器100にて充電可能に設けられる。バッテリ11、21の充電方法の詳細は、後述する。
メインリレー12は第1バッテリ11の高電位側に設けられ、メインリレー13は第1バッテリ11の低電位側に設けられる。メインリレー22は第2バッテリ21の高電位側に設けられ、メインリレー23は第2バッテリ21の低電位側に設けられる。
電圧検出部15は、第1バッテリ11の電圧である第1バッテリ電圧V1を検出する。電圧検出部25は、第2バッテリ21の電圧である第2バッテリ電圧V2を検出する。電圧検出部15、25の検出値は、制御部30に出力される。
MG80は、例えば永久磁石式同期型の3相交流モータであって、U相コイル81、V相コイル82、および、W相コイル83を有する。MG80は、図示しない駆動輪を駆動するためのトルクを発生する、いわゆる主機モータであり、駆動輪を駆動するための電動機としての機能、および、図示しないエンジンや駆動輪から伝わる運動エネルギによって駆動されて発電する発電機としての機能を有する。
MG80には、第1バッテリ11および第2バッテリ21から電力が供給される。第1バッテリ11と第2バッテリ21とは、絶縁されている。バッテリ11、21は、ニッケル水素電池、リチウムイオン電池等の充放電可能な蓄電装置である。二次電池に替えて、電気二重層キャパシタ等を用いてもよい。本実施形態では、バッテリ11、21は、同電圧、同容量であって同等の性能とするが、例えば一方に出力型のものを用い、他方に容量型のものを用いる、といった具合に、電池性能が異なっていてもよい。本実施形態では、バッテリ11、21の定格電圧が異なる場合、定格電圧が小さいものを第1バッテリ11とし、定格電圧が大きいものを第2バッテリ21とする。第1バッテリ11に流すことのできる最大電流を許容電流Ilim1、第2バッテリ21に流すことのできる最大電流を許容電流Ilim2とする。
第1インバータ60は、コイル81~83の通電を切り替える3相インバータであって、スイッチング素子61~66を有し、第1バッテリ11およびMG80に接続される。第2インバータ70は、コイル81~83の通電を切り替える3相インバータであって、スイッチング素子71~76を有し、第2バッテリ21およびMG80に接続される。
スイッチング素子61~66、71~76は、それぞれ、スイッチ部および還流ダイオードを有する。スイッチ部は、制御部30によりオンオフ作動が制御される。本実施形態では、スイッチ部はIGBTであるが、MOSFET等、他の素子を用いてもよい。また、第1スイッチング素子61~66と第2スイッチング素子71~76とで、用いる素子の種類が異なっていてもよい。
還流ダイオードは、各スイッチ部と並列に接続され、低電位側から高電位側への通電を許容する。還流ダイオードは、例えばMOSFETの寄生ダイオードのように内蔵されていてもよいし、外付けされたものであってもよい。また、還流できるように接続されたIGBTやMOSFET等のスイッチであってもよい。
第1インバータ60において、高電位側にスイッチング素子61~63が接続され、低電位側にスイッチング素子64~66が接続される。以下適宜、高電位側のスイッチング素子61~63を「第1上アーム素子」、低電位側のスイッチング素子64~66を「第1下アーム素子」とする。第1上アーム素子61~63の高電位側を接続する第1高電位側配線111が第1バッテリ11の正極と接続され、第1下アーム素子64~66の低電位側を接続する第1低電位側配線112が第1バッテリ11の負極と接続される。
U相のスイッチング素子61、64の接続点にはU相コイル81の一端811が接続され、V相のスイッチング素子62、65の接続点にはV相コイル82の一端821が接続され、W相のスイッチング素子63、66の接続点にはW相コイル83の一端831が接続される。
第2インバータ70において、高電位側にスイッチング素子71~73が接続され、低電位側にスイッチング素子74~76が接続される。以下適宜、高電位側のスイッチング素子71~73を「第2上アーム素子」、低電位側のスイッチング素子74~76を「第2下アーム素子」とする。第2上アーム素子71~73の高電位側を接続する第2高電位側配線121が第2バッテリ21の正極と接続され、第2下アーム素子74~76の低電位側を接続する第2低電位側配線122が第2バッテリ21の負極と接続される。
U相のスイッチング素子71、74の接続点にはU相コイル81の他端812が接続され、V相のスイッチング素子72、75の接続点にはV相コイル82の他端822が接続され、W相のスイッチング素子73、76の接続点にはW相コイル83の他端832が接続される。
このように、本実施形態では、MG80のコイル81~83は、オープン巻線化されており、第1インバータ60および第2インバータ70が、コイル81~83の両側に接続されてる「2電源2インバータ」の電動機駆動システムとなっている。
第1高電位側配線111と第2高電位側配線121とは、高電位側接続線91にて接続される。第1低電位側配線112と第2低電位側配線122とは、低電位側接続線92にて接続される。
第1コンデンサ69は、高電位側配線111と低電位側配線112とに接続され、第1インバータ60と並列に設けられる。第2コンデンサ79は、高電位側配線121と低電位側配線122とに接続され、第2インバータ70と並列に設けられる。コンデンサ69、79は、平滑コンデンサであって、インバータ60、70に印加される電圧を平滑化する。
本実施形態では、第1バッテリ11側に充電器100が設けられる。詳細には、第1高電位側配線111および第1低電位側配線112が、インレット99に接続されている。高電位側接続線91には高電位側並列リレー93が設けられ、低電位側接続線92には低電位側並列リレー94が設けられる。高電位側並列リレー93を閉とすることで高電位側配線111、121が接続され、低電位側並列リレー94を閉とすることで低電位側配線112、122が接続される。並列リレー93、94を閉とすることで、バッテリ11、21が並列接続され、充電器100からの電力を第2バッテリ21側へ供給可能となる。
以下適宜、並列リレー93、94を介さずに充電器100と接続される第1バッテリ11を「充電器100と直接的に接続されている」とし、並列リレー93、94を介して充電器100と接続される第2バッテリ21を「充電器100と間接的に接続されている」とする。
制御部30は、マイコン等を主体として構成され、内部にはいずれもCPU、ROM、RAM、I/O、及び、これらの構成を接続するバスライン等を備えている。制御部30における各処理は、ROM等の実体的なメモリ装置(すなわち、読み出し可能非一時的有形記録媒体)に予め記憶されたプログラムをCPUで実行することによるソフトウェア処理であってもよいし、例えばFPGA(field-programmable gate array)のような電子回路によるハードウェア処理であってもよい。
制御部30は、インバータ制御部31、リレー制御部32、および、充電量制御部33等を有する。インバータ制御部31、リレー制御部32、および、充電量制御部33は、1つのマイコンにて構成されていてもよいし、別途のマイコンにて構成されていてもよい。また、第1インバータ60を制御するマイコンと第2インバータ70を制御するマイコンとが別途に設けられていてもよい。
インバータ制御部31は、スイッチング素子61~66、71~76のオンオフ作動を制御する。第1インバータ60の駆動制御に係る制御信号は、ドライブ回路36を経由して第1インバータ60に出力される。第2インバータ70の駆動制御に係る制御信号は、ドライブ回路37を経由して第2インバータ70に出力される。リレー制御部32は、メインリレー12、13、22、23、および、並列リレー93、94の開閉作動を制御する。なお、メインリレー12、13、22、23は、例えば、車両98の全体の制御を司る上位制御部を構成するマイコンにより開閉が制御されるようにしてもよい。
充電量制御部33は、バッテリ11、21の充電に係る充電電流指令値Ic*を演算し、バッテリ11、21の充電を制御する。充電電流指令値Ic*は、通信等にて、充電器100に送信される。これにより、充電電流指令値Ic*に応じた電力が充電器100から電源システム1に供給される。
インバータ制御部31は、例えば第1基本波F1とキャリア波とに基づいて第1インバータ60を制御し、第2基本波F2とキャリア波とに基づいて第2インバータ70を制御する。基本波F1、F2に応じた制御には、基本波F1、F2の振幅がキャリア波の振幅以下である、すなわち変調率が1以下である正弦波PWM制御や、基本波F1、F2の振幅がキャリア波の振幅より大きい、すなわち変調率が1より大きい過変調PWM制御が含まれる。また、基本波F1、F2の振幅を無限大とみなし、基本波F1、F2の半周期ごとに各素子のオンオフが切り替えられる矩形波制御としてもよい。矩形波制御は、電気角の180°ごとに各素子のオンオフを切り替える180°通電制御と捉えることもできる。また、矩形波制御において、例えば120°通電等、通電位相は180°以外であってもよい。
ここで、MG80の駆動モードを説明する。本実施形態では、MG80の駆動に、第1バッテリ11または第2バッテリ21の電力を用いる「片側駆動モード」、第1バッテリ11および第2バッテリ21の電力を用いる「両側駆動モード」が含まれる。ここでは、動作点に応じた駆動領域を、便宜上、「片側駆動領域」、「両側駆動領域」とするが、運転条件等に応じ、片側駆動領域において、両側駆動を行ってもよい。
片側駆動モードでは、第1バッテリ11の電力にてMG80を駆動する場合、第2インバータ70の上アーム素子71~73の全相、または、下アーム素子74~76の全相の一方をオン、他方をオフとし、第2インバータ70を中性点化する。また、MG80の駆動要求に応じ、PWM制御や矩形波制御等により、第1インバータ60を制御する。
また、第2バッテリ21の電力にてMG80を駆動する場合、第1インバータ60の上アーム素子61~63の全相、または、下アーム素子64~66の全相の一方をオン、他方をオフとし、第1インバータ60を中性点化する。また、MG80の駆動要求に応じ、PWM制御や矩形波制御等により、第2インバータ70を制御する。
両側駆動モードでは、第1基本波F1と第2基本波F2の位相が反転される。換言すると、第1基本波F1と第2基本波F2とは、位相が略180[°]ずれている。第1基本波F1と第2基本波F2との位相差を180[°]とすることで、第1バッテリ11と第2バッテリ21とが電気的に直列接続されている状態とみなすことができ、第1バッテリ11の電圧と第2バッテリ21の電圧との和に相当する電圧をMG80に印加可能である。なお、第1基本波F1と第2基本波F2との位相差は、180[°]とするが、第1バッテリ11の電圧および第2バッテリ21の電圧の和に相当する電圧をMG80に印加可能な程度のずれは許容されるものとする。
ところで、本実施形態では、バッテリ11、21を、1つの充電器100により充電する。絶縁された2つのバッテリ11、21を並列充電する場合、電圧差があると、電圧差に応じた電流がバッテリ11、21間で流れるため、充電器100から投入できる電流が減少し、充電時間が長くなる。参考例として、外部コンデンサを用いて電圧の高い方から低い方へと電力を受け渡すことで、電圧差を解消することが考えられる。
しかしながら、本実施形態のように、2電源2インバータの構成の場合、電源システム1と外部コンデンサとを接続した瞬間に、インバータ60、70に接続されているコンデンサ69、79と、外部コンデンサとの間で大きなパルス電流が流れるため、開閉器やコンデンサ69、79が損傷する虞がある。一般に、コンデンサ69、79の内部インピーダンスは、バッテリ11、21の内部インピーダンスよりも小さいため、バッテリ11、21と外部コンデンサとの間のパルス電流よりも、コンデンサ69、79と外部コンデンサとの間のパルス電流の方が大きくなる蓋然性が高い。そのため、参考例のように、外部コンデンサを用いてバッテリ11、21の電圧を揃える場合、コンデンサ69、79と外部コンデンサとを切り離すための開閉器を追加で設ける必要があり、部品点数が増大する。
そこで本実施形態では、外部コンデンサを用いずに、充電器100からバッテリ11、21の並列充電を実現する。具体的には、並列リレー93、94を接続する前段階として、インバータ60、70およびMG80を用いた電圧差低減処理を行うことで、別途の部品を追加することなく、並列リレー93、94接続時の突入電流を抑制する。
本実施形態の充電制御処理を図2のフローチャートに基づいて説明する。この処理は、インレット99と充電器コネクタ115とが接続されているときに、制御部30にて実行される。以下、ステップS101の「ステップ」を省略し、単に記号「S」と記す。他のステップも同様である。
S101では、制御部30は、バッテリ電圧V1、V2を取得する。S102では、制御部30は、バッテリ11、21の並列充電が可能か否かを判断する。本実施形態では、バッテリ電圧V1、V2の差が第1電圧判定閾値Vth1より小さい場合、並列充電が可能であると判断する。以下、バッテリ電圧V1、V2の差の絶対値を電圧差ΔVとする。並列充電が可能であると判断された場合(S102:YES)、すなわちΔV<Vthの場合、S104へ移行する。並列充電ができないと判断された場合(S102:NO)、すなわちΔV≧Vthの場合、S103へ移行する。
式(1)に示すように、電池間電流Ibは、バッテリ11、21の内部インピーダンスによって決まる。式中のZ1は第1バッテリ11のインピーダンスであり、Z2はバッテリ21のインピーダンスである。すなわち、電池間電流Ibは、バッテリ11、21の電圧差を、バッテリ11、21の直列インピーダンスで除した値として求められる。
Ib=|V1-V2|/(Z1+Z2)
=ΔV/(Z1+Z2) ・・・(1)
本実施形態の電源システム1では、電池間電流Ibが、バッテリ11、21の許容電流Ilimより小さい場合、並列充電が可能である。許容電流Ilimは、バッテリ11、21の性能が異なっている場合、第1バッテリ11の許容電流Ilim1、または、第2バッテリ21の許容電流Ilim2の小さい方の値とする。Z1+Z2を所定値とすれば、Ib<Ilimとなる電圧判定閾値Vthを予め設定可能である。S102では、電圧差ΔVが電圧判定閾値Vthより小さい場合、並列充電が可能であるとして肯定判断し、電圧判定閾値Vth以上の場合、並列充電ができないとして否定判断する。なお、電池間電流Ibを都度演算して、並列充電の可否を判定するようにしてもよい。
並列充電不可であるS103では、制御部30は、電圧が低い側のバッテリを充電する低電圧側片側充電制御とする。低電圧側片側充電制御において、V1<V2の場合、リレー制御部32は、リレー12、13を閉、リレー22、23を開とし、第1バッテリ11を充電する。また、充電量制御部33は、第1バッテリ11の許容電流Ilim1を、充電電流指令値Ic*とする。
V1>V2の場合、リレー制御部32は、リレー12、13を開、リレー22、23、93、94を閉とし、第2バッテリ21を充電する。また、充電量制御部33は、第2バッテリ21の許容電流Ilim2を充電電流指令値Ic*とする。そして、S101へ戻り、充電制御を継続する。
S104では、制御部30は、電圧差ΔVが、第2電圧判定閾値Vth2以上、第1電圧判定閾値Vth1以下か否かを判断する。第2電圧判定閾値Vth2は、メインリレー12、13、22、23が閉の状態にて、並列リレー93、94を閉としたときのコンデンサ電流Iconが許容値Ixを超えないような値に設定される。電圧差ΔVが第2電圧判定閾値Vth2以上、第1電圧判定閾値Vth1以下であると判断された場合(S104:YES)、S105へ移行し、ディスチャージ処理を行う。電圧差ΔVが第2電圧判定閾値Vth2より小さいと判断された場合(S104:NO)、S106へ移行し、プリチャージ処理を行う。
S105およびS106に続いて移行するS107では、制御部30は、充電電流指令値Ic*を演算し、充電器100に送信する。充電電流指令値Ic*は、電圧差ΔVに応じた電池間電流Ibに基づき、バッテリ電流I1、I2が許容電流Ilim1、Ilim2を超えない値に設定される。
S108では、制御部30は、バッテリ電圧V1、V2が目標電圧Vtに到達したか否かを判断する。バッテリ電圧V1、V2が目標電圧Vtに到達していないと判断された場合(S108:NO)、S108へ移行し、並列充電を継続する。バッテリ電圧V1、V2が目標電圧Vtに到達したと判断された場合(S108:YES)、充電制御処理を終了する。
ディスチャージ処理を図3および図4に基づいて説明する。ディスチャージ処理では、メインリレー12、13、22、23および並列リレー93、94を開の状態にて、MG80に無効電流を流し、導通損を利用し、コンデンサ69、79の充電量を所定値以下にする。ここでは、トルクがゼロとなるように、インバータ60、70を制御する。図3では、実線で示したスイッチング素子61、65、66、72、73、74がオン、破線で示したスイッチング素子62、63、64、71、75、76がオフされている状態を示し、通電経路を二点鎖線で示した。
そして、電圧差ΔVが十分に低減した状態にて、並列リレー93、94を閉とし、その後、メインリレー12、13、22、23を閉とする。電圧差ΔVが十分に小さくなったか否かは、コンデンサ電圧に基づいて判断してもよい。また、ディスチャージ処理開始からの経過時間が、電圧差ΔVの低減に要する時間に応じたて設定される判定時間Tth1を超えた場合、電圧差ΔVが十分に小さくなったとみなしてもよい。
ディスチャージ処理を図4のフローチャートに基づいて説明する。図2中のS104にて否定判断されて移行するS151では、インバータ制御部31は、図3にて説明したように、MG80に無効電流が流れるように、インバータ60、70を制御する。
S152では、制御部30は、コンデンサ69、79のディスチャージが完了したか否かを判断する。ディスチャージが完了していないと判断された場合(S152:NO)、S151へ移行する。ディスチャージが完了したと判断された場合(S152:YES)、S153へ移行する。
S153では、リレー制御部32は、並列リレー93、94を閉とする。S154では、リレー制御部32は、メインリレー12、13を閉とする。S155では、リレー制御部32は、メインリレー22、23を閉とする。ディスチャージ処理完了後は、図2中のS107へ移行し、バッテリ11、21の並列充電を行う。
プリチャージ処理を図5~図7に基づいて説明する。図5および図6は、共通時間軸を横軸とし、上段にバッテリ電圧V1、V2、下段に電池間電流Ibおよびコンデンサ電流Iconを示す。なお説明のため、タイムスケールは適宜変更している。また、線種がわかるよう、値が重なる箇所については、若干ずらして記載した。図5の参考例では、時刻t11以前は、メインリレー12、13、22、23が閉、並列リレー93、94が開の状態である。電圧差ΔVが比較的大きい状態にて、時刻t11にて、並列リレー93、94をオンにすると、コンデンサ69、79間に大きなパルス電流が流れ、コンデンサ69、79および並列リレー93、94が損傷する虞がある。
そこで本実施形態では、並列リレー93、94を接続する前に、プリチャージ処理を行う。図6では、時刻t21以前は、メインリレー12、13、22、23が閉、並列リレー93、94が開の状態である。時刻t21にて、低電位側の並列リレー94、および、インバータ60、70の上アーム素子61~63、71~73をオンにする。
低電位側の並列リレー94、および、インバータ60、70の上アーム素子61~63、71~73をオンにすることで、インバータ60、70およびMG80のインピーダンスを介して第1バッテリ11およびコンデンサ69と、第2バッテリ21およびコンデンサ79とを接続する。これにより、電圧差ΔVが低減する。なお、インバータ60、70およびMG80での電圧降下があるため、電圧差ΔVは理論上ゼロとはならず、電圧降下分の差ΔVdが残る。
インバータ60、70およびMG80のインピーダンスの時定数を考慮し、電圧差ΔVが低減するのに要する時間が経過した時刻t22にて、並列リレー93を閉とする。電圧差ΔVを低減させてから並列リレー93を閉とすることで、コンデンサ69、79間のパルス電流を低減することができる。また、並列リレー93を閉とした後、インバータ60、70の全スイッチング素子61~66、71~76をオフとする。
なお、時刻t21では、低電位側の並列リレー94および上アーム素子61~63、71~73を閉とすることに替えて、高電位側の並列リレー93および下アーム素子64~66、74~76を閉としてもよい。この場合、時刻t22では、並列リレー94を閉とする。プリチャージ処理において、上アーム素子61~63、71~73、または、下アーム素子64~66、74~76の全相をオンにする必要はなく、少なくとも1相をオンにすればよい。
プリチャージ処理を図7のフローチャートに基づいて説明する。S161では、リレー制御部32は、メインリレー12、13、22、23を閉にする。S162では、リレー制御部32は、低電位側の並列リレー94を閉にする。S163では、インバータ制御部31は、第1インバータ60の上アーム素子61~63、および、第2インバータ70の上アーム素子71~73をオンにする。
S164では、制御部30は、プリチャージが完了したか否かを判断する。ここでは、プリチャージ処理開始からの経過時間が、電圧差ΔVの低減に要する時間に応じて設定される判定時間Tth2を超えた場合、プリチャージが完了したと判定する。プリチャージが完了していないと判断された場合(S164:NO)、この判断処理を繰り返す。プリチャージが完了したと判断された場合(S164:YES)、S165へ移行する。
S165では、リレー制御部32は、高電位側の並列リレー93を閉にする。S166では、インバータ制御部31は、第1インバータ60の上アーム素子61~63および第2インバータ70の上アーム素子71~73をオフにする。プリチャージ処理完了後は、図2中のS107へ移行し、バッテリ11、21の並列充電を行う。
本実施形態では、並列リレー93、94を閉にしてのバッテリ11、21の並列充電の前段階とし、インバータ60、70およびモータ80を用いたディスチャージ処理またはプリチャージ処理を行って電圧差ΔVを低減し、その後、並列充電に移行する。これにより、別途の部品を追加することなく、並列接続時の突入電流を低減することができる。
以上説明したように、本実施形態の電源システム1は、コイル81~83を有するMG80に電力を供給可能であって、第1バッテリ11と、第2バッテリ21と、第1インバータ60と、第2インバータ70と、第1コンデンサ69と、第2コンデンサ79と、第1メインリレー12、13と、第2メインリレー22、23と、高電位側並列リレー93と、低電位側並列リレー94と、制御部30と、を備える。
第1バッテリ11は、充電器100からの電力により充電可能である。第2バッテリ21は、充電器100からの電力により、第1バッテリ11と並列に充電可能である。第1インバータ60は、スイッチング素子61~66を有し、コイル81、82、83の一端811、821、831、および、第1バッテリ11に接続される。第2インバータ70は、第2スイッチング素子71~76を有し、コイル81、82、83の他端812、822、832、および、第2バッテリ21に接続される。第1コンデンサ69は、第1インバータ60と並列に接続される。第2コンデンサ79は、第2インバータ70と並列に接続される。
第1メインリレー12、13は、第1バッテリ11と、第1インバータ60および第1コンデンサ69との断接を切り替え可能である。第2メインリレー22、23は、第2バッテリ21と、第2インバータ70および第2コンデンサ79との断接を切り替え可能である。
高電位側並列リレー93は、第1インバータ60の高電位側と第2インバータ70の高電位側とを接続する高電位側接続線91に設けられる。低電位側並列リレー94は、第1インバータ60の低電位側と第2インバータ70の低電位側とを接続する低電位側接続線92に設けられる。
制御部30は、インバータ制御部31、リレー制御部32、および、充電量制御部33を有する。インバータ制御部31は、第1インバータ60および第2インバータ70を制御する。リレー制御部32は、第1メインリレー12、13、第2メインリレー22、23、高電位側並列リレー93、および、低電位側並列リレー94の開閉を制御する。充電量制御部33は、第1バッテリ11および第2バッテリ21の充電を制御する。
高電位側並列リレー93および低電位側並列リレー94を閉とし、第1バッテリ11と第2バッテリ21とを並列接続して充電器100により充電する並列充電の前段階において、制御部30は、第1インバータ60および第2インバータ70を制御することで、第1コンデンサ69と第2コンデンサ79との電圧差を低減する電圧差低減処理を行う。これにより、別途の部品を追加することなく、バッテリ11、21を並列接続したときの突入電流を低減することができる。
電圧差低減処理として、ディスチャージ処理、および、プリチャージ処理の少なくとも一方を行う。ディスチャージ処理では、第1メインリレー12、13および第2メインリレー22、23を開にした状態にて、第1インバータ60および第2インバータ70を制御する。プリチャージ処理では、第1メインリレー12、13および第2メインリレー22、23を閉にした状態にて第1インバータ60および第2インバータ70を制御する。
第1スイッチング素子61~66には、高電位側に接続される第1上アーム素子61~63、および、低電位側に接続される第1下アーム素子64~66が含まれる。第2スイッチング素子71~76には、高電位側に接続される第2上アーム素子71~73、および、低電位側に接続される第2下アーム素子74~76が含まれる。
プリチャージ処理において、制御部30は、低電位側並列リレー94を閉、第1上アーム素子61~63および第2上アーム素子71~73の少なくとも1相をオンとし、第1コンデンサ69および第2コンデンサ79のプリチャージが完了した後、高電位側並列リレー93を閉とする。もしくは、制御部30は、高電位側並列リレー93を閉、第1下アーム素子64~66および第2下アーム素子74~76をオンとし、第1コンデンサ69および第2コンデンサ79のプリチャージが完了した後、低電位側並列リレー94を閉とする。
これにより、インバータ60、70およびMG80のインピーダンスを利用して2つのバッテリ11、21および2つのコンデンサ69、79を接続することで、電圧差ΔVが低減される。プリチャージによる電圧差ΔVを低減させた後、並列リレー93、94を接続してバッテリ11、21を並列接続することで、並列リレー93、94接続時の突入電流を低減することができる。
ディスチャージ処理において、インバータ制御部31は、コイル81~83に無効電流が通電されるように、第1インバータ60および第2インバータ70を制御する。リレー制御部32は、第1コンデンサ69および第2コンデンサ79のディスチャージが完了した後、高電位側並列リレー93および低電位側並列リレー94を閉とする。
導通損を利用して、コンデンサ69、79の充電量を減らし、コンデンサ69、79の電圧差が低減した後、並列リレー93、94を接続してバッテリ11、21を並列接続することで、並列リレー93、94接続時の突入電流を低減することができる。
第1バッテリ11の電圧である第1バッテリ電圧V1と、第2バッテリ21の電圧である第2バッテリ電圧V2との差である電圧差ΔVが、第2電圧判定閾値Vth2以上、第1電圧判定閾値Vth1以下の場合、ディスチャージ処理を行い、電圧差ΔVが第2電圧判定閾値Vth2より小さい場合、プリチャージ処理を行う。これにより、電圧差ΔVに応じて、適切な電圧低減処理を行うことができる。
電圧差ΔVが第1電圧判定閾値Vth1より大きい場合、第1バッテリ11または第2バッテリ21の一方を充電する片側充電とする。電圧差ΔVが大きい状態にてバッテリ11、21を並列接続したとき、電池間電流Ibがバッテリ11、21の許容電流Lim1、Ilim2を超えると、バッテリ11、21が劣化する虞がある。本実施形態では、電圧差ΔVが第1電圧判定閾値Vth1より大きい場合、片側充電とすることで、バッテリ11、21の劣化を抑制し、適切に充電することができる。
本実施形態では、第1バッテリ11が「第1蓄電部」、第2バッテリ21が「第2蓄電部」、第1メインリレー12、13が「第1リレー」、第2メインリレー22、23が「第2リレー」、充電量制御部33が「充電制御部」、MG80が「回転電機」、コイル81~83が「多相巻線」に対応する。また、第1バッテリ電圧V1が「第1蓄電部電圧」、第2バッテリ電圧V2が「第2蓄電部電圧」、電圧差ΔVが「蓄電部電圧差」に対応する。
(他の実施形態)
上記実施形態の回転電機は3相である。他の実施形態では、回転電機は4相以上としてもよい。上記実施形態では、回転電機は電動車両の主機モータとして用いられている。他の実施形態では、回転電機は、主機モータに限らず、例えばスタータ機能とオルタネータ機能とを併せ持つ、所謂ISG(Integrated Starter Generator)や、補機モータであってもよい。また、電源システムを車両以外の装置に適用してもよい。以上、本発明は、上記実施形態になんら限定されるものではなく、発明の趣旨を逸脱しない範囲において種々の形態で実施可能である。
1・・・電源システム
11・・・第1バッテリ(第1蓄電部) 21・・・第2バッテリ(第2蓄電部)
12、13・・・第1メインリレー(第1リレー)
22、23・・・第2メインリレー(第2リレー)
30・・・制御部 31・・・インバータ制御部
32・・・リレー制御部 33・・・充電制御部
60・・・第1インバータ 70・・・第2インバータ
69・・・第1コンデンサ 79・・・第2コンデンサ
80・・・MG(回転電機)
93・・・高電位側並列リレー 94・・・低電位側並列リレー
100・・・充電器

Claims (6)

  1. 多相巻線(81、82、83)を有する回転電機(80)に電力を供給可能な電源システムであって、
    充電器(100)からの電力により充電可能な第1蓄電部(11)と、
    前記充電器からの電力により前記第1蓄電部と並列に充電可能である第2蓄電部(21)と、
    第1スイッチング素子(61~66)を有し、前記多相巻線の一端(811、821、831)および前記第1蓄電部(11)と接続される第1インバータ(60)と、
    第2スイッチング素子(71~76)を有し、前記多相巻線の他端(812、822、832)および前記第2蓄電部(21)と接続される第2インバータ(70)と、
    前記第1インバータと並列に接続される第1コンデンサ(69)と、
    前記第2インバータと並列に接続される第2コンデンサ(79)と、
    前記第1蓄電部と、前記第1インバータおよび前記第1コンデンサとの断接を切り替え可能な第1リレー(12、13)と、
    前記第2蓄電部と、前記第2インバータおよび前記第2コンデンサとの断接を切り替え可能な第2リレー(22、23)と、
    前記第1インバータの高電位側と前記第2インバータの高電位側とを接続する高電位側接続線(91)に設けられる高電位側並列リレー(93)と、
    前記第1インバータの低電位側と前記第2インバータの低電位側とを接続する低電位側接続線(92)に設けられる低電位側並列リレー(94)と、
    前記第1インバータおよび前記第2インバータを制御するインバータ制御部(31)、前記第1リレー、前記第2リレー、前記高電位側並列リレーおよび前記低電位側並列リレーの開閉を制御するリレー制御部(32)、ならびに、前記第1蓄電部および前記第2蓄電部の充電を制御する充電制御部(33)を有する制御部(30)と、
    を備え、
    前記高電位側並列リレーおよび前記低電位側並列リレーを閉とし、前記第1蓄電部と前記第2蓄電部とを並列接続して前記充電器により充電する並列充電の前段階において、
    前記制御部は、前記第1インバータおよび前記第2インバータを制御することで、前記第1コンデンサと前記第2コンデンサとの電圧差を低減する電圧差低減処理を行う電源システム。
  2. 前記電圧差低減処理として、
    前記第1リレーおよび前記第2リレーを開にした状態にて前記第1インバータおよび前記第2インバータを制御するディスチャージ処理、および、
    前記第1リレーおよび前記第2リレーを閉にした状態にて前記第1インバータおよび前記第2インバータを制御するプリチャージ処理の少なくとも一方を行う請求項1に記載の電源システム。
  3. 前記第1スイッチング素子には、高電位側に接続される第1上アーム素子(61~63)、および、低電位側に接続される第1下アーム素子(64~66)が含まれ、
    前記第2スイッチング素子には、高電位側に接続される第2上アーム素子(71~73)、および、低電位側に接続される第2下アーム素子(74~76)が含まれ、
    前記プリチャージ処理において、
    前記制御部は、
    前記低電位側並列リレーを閉、前記第1上アーム素子および前記第2上アーム素子の少なくとも1相をオンとし、前記第1コンデンサおよび前記第2コンデンサのプリチャージが完了した後、前記高電位側並列リレーを閉とする、
    または、
    前記高電位側並列リレーを閉、前記第1下アーム素子および前記第2下アーム素子の少なくとも1相をオンとし、前記第1コンデンサおよび前記第2コンデンサのプリチャージが完了した後、前記低電位側並列リレーを閉とする請求項2に記載の電源システム。
  4. 前記ディスチャージ処理において、
    前記インバータ制御部は、前記多相巻線に無効電流が通電されるように前記第1インバータおよび前記第2インバータを制御し、
    前記リレー制御部は、前記第1コンデンサおよび前記第2コンデンサのディスチャージが完了した後、前記高電位側並列リレーおよび前記低電位側並列リレーを閉とする請求項2または3に記載の電源システム。
  5. 前記第1蓄電部の電圧である第1蓄電部電圧と前記第2蓄電部の電圧である第2蓄電部電圧との差である蓄電部電圧差が第2電圧判定閾値以上、第1電圧判定閾値以下の場合、前記ディスチャージ処理を行い、
    前記蓄電部電圧差が前記第2電圧判定閾値より小さい場合、前記プリチャージ処理を行う請求項2~4のいずれか一項に記載の電源システム。
  6. 前記蓄電部電圧差が、前記第1電圧判定閾値より大きい場合、前記第1蓄電部または前記第2蓄電部の一方を充電する片側充電とする請求項5に記載の電源システム。
JP2018122365A 2018-06-27 2018-06-27 電源システム Active JP7063745B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018122365A JP7063745B2 (ja) 2018-06-27 2018-06-27 電源システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018122365A JP7063745B2 (ja) 2018-06-27 2018-06-27 電源システム

Publications (2)

Publication Number Publication Date
JP2020005394A JP2020005394A (ja) 2020-01-09
JP7063745B2 true JP7063745B2 (ja) 2022-05-09

Family

ID=69100805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018122365A Active JP7063745B2 (ja) 2018-06-27 2018-06-27 電源システム

Country Status (1)

Country Link
JP (1) JP7063745B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7222687B2 (ja) * 2018-12-11 2023-02-15 株式会社Soken 充電システム、および、充電システムのプログラム
JP7413052B2 (ja) * 2020-02-03 2024-01-15 株式会社Soken 回転電機システム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015019447A (ja) 2013-07-09 2015-01-29 富士電機株式会社 電池の並列接続方法
JP2016082619A (ja) 2014-10-10 2016-05-16 株式会社デンソー 電動機駆動装置
JP2016181948A (ja) 2015-03-23 2016-10-13 株式会社日本自動車部品総合研究所 電力変換装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015019447A (ja) 2013-07-09 2015-01-29 富士電機株式会社 電池の並列接続方法
JP2016082619A (ja) 2014-10-10 2016-05-16 株式会社デンソー 電動機駆動装置
JP2016181948A (ja) 2015-03-23 2016-10-13 株式会社日本自動車部品総合研究所 電力変換装置

Also Published As

Publication number Publication date
JP2020005394A (ja) 2020-01-09

Similar Documents

Publication Publication Date Title
CN110771000B (zh) 用双逆变器驱动经dc电网对电动车辆的恒定电流快速充电
JP7032249B2 (ja) 電源システム
JP6426426B2 (ja) 電動機駆動装置
JP6174498B2 (ja) 電力変換装置
JP2023184574A (ja) 電力変換装置、プログラム、及び電力変換装置の制御方法
US20210336472A1 (en) Charging system and method using motor driving system
US11303145B2 (en) Charging system
JP6773365B2 (ja) 電力変換装置
CN110949154B (zh) 充电装置
JP6348424B2 (ja) 電力変換装置
JP6423264B2 (ja) 電力変換装置
CN116615849A (zh) 电力转换装置
CN110789345B (zh) 车辆用电力控制装置
JP2015073352A (ja) 電力変換装置および電力変換システム
CN111301197B (zh) 充电系统
JP7063745B2 (ja) 電源システム
JP2015198463A (ja) インバータ制御装置
JP7490768B2 (ja) 電源システム及び電源システムの制御方法
JP7244075B2 (ja) 充電システム
JP6389103B2 (ja) 電力変換装置
JP5774525B2 (ja) バッテリ充電装置
US11916502B2 (en) Electric power conversion apparatus
WO2024053422A1 (ja) 電力変換装置、プログラム
JP2024115455A (ja) 車載充電装置
JP2023056274A (ja) 充電装置

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20200826

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200826

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210415

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220421

R150 Certificate of patent or registration of utility model

Ref document number: 7063745

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150