I.定義
用語は、以下に他の意味であると定義されていない限り、当該技術分野で一般的に使用されるように本明細書で使用される。
本明細書で使用される場合、抗原結合ドメインなどに関する用語「第1の」、「第2の」、及び「第3の」とは、それぞれの種類の部分が2つ以上存在する場合に、区別を簡便にするために使用される。これらの用語の使用は、そのように明示的に示されていない限り、抗体の特定の順序又は配向を与えることを意図していない。
用語「抗CD3抗体」及び「CD3に結合する抗体」とは、抗体がCD3の標的化において診断剤及び/又は治療薬剤として有用であるような充分な親和性を有して、CD3に結合可能である抗体を指す。一態様では、無関係な非CD3タンパク質に対する抗CD3抗体の結合度は、例えば、表面プラズモン共鳴(SPR)によって測定されるように、CD3に対する抗体の結合の約10%未満である。特定の態様では、CD3に結合する抗体は、≦1μM、≦500nM、≦200nM、又は≦100nMの平衡解離定数(KD)を有する。例えば、SPRにより測定して、抗体が1μM以下のKDを有する場合、抗体は、CD3に「特異的に結合する」と称する。特定の態様では、抗CD3抗体は、異なる種由来のCD3の間で保存されているCD3のエピトープに結合する。
用語「抗体」とは、本明細書では最も広い意味で使用され、それらが所望の抗原結合活性を呈する限り、モノクローナル抗体、ポリクローナル抗体、多重特異性抗体(例えば、二重特異性抗体)、及び抗体断片が挙げられるが、これらに限定されない、様々な抗体構造を包含する。
「抗体断片」とは、インタクト抗体が結合する抗原に結合する、インタクト抗体の一部分を含むインタクト抗体以外の分子を指す。抗体断片の例として、Fv、Fab、Fab’、Fab’-SH、F(ab’)2、ダイアボディ、線状抗体、一本鎖抗体分子(例えば、scFv及びscFab)、単一ドメイン抗体、及び抗体断片から形成される多重特異性抗体が挙げられるが、これらに限定されない。特定の抗体断片の総説としては、Holliger and Hudson、Nature Biotechnology 23:1126-1136(2005)を参照されたい。
用語「完全長抗体」、「インタクト抗体」、及び「全抗体」とは、ネイティブ抗体構造に実質的に類似した構造を有する抗体を指すために、本明細書で相互に置き換え可能に用いられる。
用語「モノクローナル抗体」とは、本明細書で使用される場合、実質的に均一な抗体の集合から得られる抗体を指す。すなわち、集合に含まれる個々の抗体が、同一である、及び/又は同じエピトープに結合するが、但し、例えば、天然に存在する変異又はモノクローナル抗体製剤の製造中に生じる変異を含む、可能なバリアント抗体は除く。このようなバリアントは、一般的に、少量存在する。典型的には異なる決定基(エピトープ)に対して指向する異なる抗体を含むポリクローナル抗体製剤とは対照的に、モノクローナル抗体製剤のそれぞれのモノクローナル抗体は、1つの抗原上の単一の決定基に対して指向する。したがって、修飾詞「モノクローナル」は、抗体の実質的に均一な集合から得られる抗体の特徴を示し、任意の特定の方法による抗体の産生を必要とするように解釈すべきではない。例えば、モノクローナル抗体は、ハイブリドーマ法、組換えDNA法、ファージディスプレイ法、及びヒト免疫グロブリン遺伝子座の全て又は一部を含有するトランスジェニック動物を利用する方法、例えば、本明細書に記載のモノクローナル抗体を作製するためのそのような方法及び他の例示的な方法を含むが、これらに限定されない、多様な技法によって作製されてもよい。
「単離抗体」は、その天然環境の成分から分離された抗体である。いくつかの態様では、抗体は、例えば、電気泳動(例えば、SDS-PAGE、等電点電気泳動(IEF)、キャピラリー電気泳動)又はクロマトグラフィー(例えば、イオン交換又は逆相のHPLC、親和性クロマトグラフィー、サイズ排除クロマトグラフィー)方法によって決定される場合、純度が95%より高くなるまで、又は99%より高くなるまで精製される。抗体精製の試験方法の総説としては、例えば、Flatman et al.,J.Chromatogr.B 848:79-87(2007)を参照されたい。いくつかの態様では、本発明により提供される抗体は、単離抗体である。
用語「キメラ」抗体とは、重鎖及び/又は軽鎖の一部が特定の源又は種に由来し、重鎖及び/又は軽鎖の残りが異なる源又は種に由来する抗体を指す。
「ヒト化」抗体とは、非ヒトCDRからのアミノ酸残基及びヒトFRからのアミノ酸残基を含むキメラ抗体を指す。特定の態様では、ヒト化抗体は、非ヒト抗体の可変ドメインに対応する全て又はほぼ全てのCDR、及びヒト抗体の可変ドメインに対応する全て又はほぼ全てのFRにおける、ほぼ全ての少なくとも1つ、通常2つの可変ドメインを含む。このような可変ドメインは、本明細書では「ヒト化可変領域」と呼ばれる。ヒト化抗体は、任意選択で、ヒト抗体に由来する抗体定常領域の少なくとも一部を含んでいてもよい。いくつかの態様では、ヒト化抗体中のいくつかのFR残基は、例えば、抗体特異性又は親和性を回復又は改善するために、非ヒト抗体(例えば、CDR残基が由来する抗体)からの対応する残基で置換される。ある抗体、例えば、非ヒト抗体の「ヒト化形態」は、ヒト化を受けた抗体を指す。
「ヒト抗体」は、ヒト若しくはヒト細胞によって産生された抗体、又はヒト抗体レパートリー若しくは他のヒト抗体コード配列を利用する非ヒト源に由来する抗体のアミノ酸配列に対応するアミノ酸配列を保有するものである。このヒト抗体の定義は、非ヒト抗原結合残基を含むヒト化抗体を特定的に除外する。特定の態様では、ヒト抗体は、非ヒトトランスジェニック哺乳動物、例えば、マウス、ラット、又はウサギに由来する。特定の態様では、ヒト抗体は、ハイブリドーマ細胞株に由来する。ヒト抗体ライブラリから単離された抗体又は抗体断片もまた、本発明のヒト抗体又はヒト抗体断片であると考えられる。
用語「抗原結合ドメイン」とは、ある抗原の一部又は全てに結合し、ある抗原の一部又は全てに対して相補的な領域を含む抗体の一部を指す。抗原結合ドメインは、例えば、1つ又は複数の抗体可変ドメイン(抗体可変領域とも呼ばれる)によって与えられてもよい。好ましい態様では、抗原結合ドメインは、抗体軽鎖可変ドメイン(VL)と、抗体重鎖可変ドメイン(VH)と、を含む。
用語「可変領域」又は「可変ドメイン」とは、抗原に対する抗体の結合に関与する抗体重鎖又は抗体軽鎖のドメインを指す。ネイティブ抗体の重鎖及び軽鎖の可変ドメイン(それぞれVH及びVL)は、一般的に、同様の構造を有し、それぞれのドメインは、4つの保存されたフレームワーク領域(FR)と、相補性決定領域(CDR)と、を含む。例えば、Kindt et al.,Kuby Immunology,6th ed.,W.H.Freeman & Co.,page 91(2007)を参照されたい。抗原結合特異性を与えるために、単一のVHドメイン又はVLドメインで十分な場合がある。さらに、特定の抗原に結合する抗体は、抗原に結合する抗体のVHドメイン又はVLドメインを使用し、それぞれ、相補的なVLドメイン又はVHドメインのライブラリをスクリーニングして、単離してもよい。例えば、Portolano et al.,J.Immunol. 150:880-887(1993);Clarkson et al.,Nature 352:624-628(1991)を参照されたい。可変領域配列と組み合わせて本明細書で使用される場合、「Kabatナンバリング」は、Kabat et al.,Sequences of Proteins of Immunological Interest,5th Ed.Public Health Service,National Institutes of Health,Bethesda,MD(1991)によって記載されるナンバリングシステムを指す。
本明細書で使用される場合、重鎖及び軽鎖の全ての定常領域及びドメインのアミノ酸位置は、Kabat,et al.,Sequences of Proteins of Immunological Interest,5th ed.,Public Health Service,National Institutes of Health,Bethesda,MD(1991)に記載されるKabatナンバリングシステムに従ってナンバリングされ、本明細書では「Kabatによるナンバリング」又は「Kabatナンバリング」と呼ばれる。特定的には、Kabatナンバリングシステム(Kabat、et al.,Sequences of Proteins of Immunological Interest、5th ed.,Public Health Service、National Institutes of Health、Bethesda,MD(1991)の647-660ページを参照)を、カッパ及びラムダアイソタイプの軽鎖定常ドメインCLに使用し、Kabat EUインデックスナンバリングシステム(661-723ページを参照)を、重鎖定常ドメイン(CH1、ヒンジ、CH2及びCH3)に使用し、この場合には、「Kabat EUインデックスによるナンバリング」又は「Kabat EUインデックスナンバリング」と言及することによってさらに明確にしている。
本明細書で使用する場合、用語「超可変領域」又は「HVR」とは、配列内で超可変可能であり、抗原結合特異性を決定する、抗体可変ドメインの領域、例えば、「相補性決定領域」(「CDR」)のそれぞれを意味する。一般に、抗体は、6つのCDRを含み、3つがVH(HCDR1、HCDR2、HCDR3)にあり、3つがVL(LCDR1、LCDR2、LCDR3)にある。本明細書における例示的なCDRには、
(a)アミノ酸残基26-32(L1)、50-52(L2)、91-96(L3)、26-32(H1)、53-55(H2)及び96-101(H3)で生じる超可変ループ(Chothia and Lesk,J.Mol.Biol.196:901-917(1987));
(b)アミノ酸残基24-34(L1)、50-56(L2)、89-97(L3)、31-35b(H1)、50-65(H2)及び95-102(H3)に存在するCDR(Kabat et al.,Sequences of Proteins of Immunological Interest,5th Ed.Public Health Service,National Institutes of Health,Bethesda,MD(1991));並びに
(c)アミノ酸残基27c-36(L1)、46-55(L2)、89-96(L3)、30-35b(H1)、47-58(H2)及び93-101(H3)で生じる抗原接触(MacCallum et al.J.Mol.Biol.262:732-745(1996))が挙げられる。
別途指示されない限り、CDRは、上記のKabatらに従い決定される。当業者は、CDRの表記は、上記Chothia、上記McCallum、又は、任意の他の、科学的に認可された命名システムに従い決定することができることを理解するであろう。
「フレームワーク」又は「FR」とは、相補性決定領域(CDR)以外の可変ドメイン残基を指す。可変ドメインのFRは、一般的に、FR1、FR2、FR3及びFR4の4つのFRドメインからなる。したがって、HVR配列及びFR配列は、一般的に、VH(又はVL)中で以下の順序で現れる。すなわち、FR1-HCDR1(LCDR1)-FR2-HCDR2(LCDR2)-FR3-HCDR3(LCDR3)-FR4である。
本明細書で別途指示されない限り、可変ドメイン中のCDR残基及び他の残基(例えば、FR残基)は、Kabat et al.(上記参照)に従って本明細書においてナンバリングされる。
本明細書の目的のための「アクセプター(acceptor)ヒトフレームワーク」は、以下に定義される、ヒト免疫グロブリンフレームワーク又はヒトコンセンサスフレームワークに由来する、軽鎖可変ドメイン(VL)フレームワーク又は重鎖可変ドメイン(VH)フレームワークのアミノ酸配列を含むフレームワークである。ヒト免疫グロブリンフレームワーク又はヒトコンセンサスフレームワーク「由来の」アクセプターヒトフレームワークは、その同じアミノ酸配列を含んでいてもよいか、又はアミノ酸配列の変更を含んでいてもよい。いくつかの態様では、アミノ酸変更の数は、10以下、9以下、8以下、7以下、6以下、5以下、4以下、3以下、又は2以下である。いくつかの態様では、VLアクセプターヒトフレームワークは、VLヒト免疫グロブリンフレームワーク配列又はヒトコンセンサスフレームワーク配列に対して、配列が同一である。
「ヒトコンセンサスフレームワーク」は、ヒト免疫グロブリンVL又はVHフレームワーク配列の選択において最も一般的に生じるアミノ酸残基を表すフレームワークである。一般に、ヒト免疫グロブリンVL又はVH配列の選択は、可変ドメイン配列のサブグループからである。一般に、配列のサブグループは、Kabat et al,Sequences of Proteins of Immunological Interest,Fifth Edition,NIH Publication 91-3242,Bethesda MD(1991),vols.1-3に記載のようなサブグループである。
用語「免疫グロブリン分子」とは、天然に存在する抗体の構造を有するタンパク質を指す。例えば、IgGクラスの免疫グロブリンは、約150,000ダルトンのヘテロテトラマー糖タンパク質であり、ジスルフィド結合した2つの軽鎖と2つの重鎖から構成される。N末端からC末端に向かって、それぞれの重鎖は、可変重鎖ドメイン又は重鎖可変領域とも呼ばれる可変ドメイン(VH)と、その後に重鎖定常領域とも呼ばれる3つの定常ドメイン(CH1、CH2及びCH3)と、を有する。同様に、N末端からC末端に向かって、それぞれの軽鎖は、可変軽鎖ドメイン又は軽鎖可変領域とも呼ばれる可変ドメイン(VL)と、その後に軽鎖定常領域とも呼ばれる定常軽鎖(CL)ドメインと、を有する。免疫グロブリンの重鎖は、α(IgA)、δ(IgD)、ε(IgE)、γ(IgG)又はμ(IgM)と呼ばれる5種類の1つに割り当てられてもよく、このいくつかは、例えば、γ1(IgG1)、γ2(IgG2)、γ3(IgG3)、γ4(IgG4)、α1(IgA1)及びα2(IgA2)などのさらなるサブタイプに分けられてもよい。免疫グロブリンの軽鎖は、その定常ドメインのアミノ酸配列に基づき、カッパ(κ)及びラムダ(λ)と呼ばれる2種類のうちの1つに割り当てられてもよい。免疫グロブリンは、免疫グロブリンヒンジ領域を介して接続する、2つのFab分子とFcドメインとから実質的になる。
抗体又は免疫グロブリンの「クラス」は、抗体又は免疫グロブリンの重鎖が保有する定常ドメイン又は定常領域の種類を指す。抗体の5種類の主要なクラスがあり、すなわち、IgA、IgD、IgE、IgG、及びIgMであり、これらのうちのいくつかは、下位クラス(アイソタイプ)、例えば、IgG1、IgG2、IgG3、IgG4、IgA1、及びIgA2にさらに分けることができる。免疫グロブリンの異なるクラスに対応する重鎖定常ドメインは、それぞれα、δ、ε、γ、及びμと呼ばれる。
「Fab分子」とは、免疫グロブリンの重鎖(「Fab重鎖」)のVHドメイン及びCH1ドメインと、免疫グロブリンの軽鎖(「Fab軽鎖」)のVLドメイン及びCLドメインと、からなるタンパク質を指す。
「クロスオーバー」Fab分子(「Crossfab」とも呼ばれる)とは、Fab重鎖及び軽鎖の可変ドメイン及び定常ドメインが交換された(すなわち、互いに置き換えられた)Fab分子を意味する。すなわち、クロスオーバーFab分子は、軽鎖可変ドメインVL及び重鎖定常ドメイン1 CH1(VL-CH1、N末端からC末端方向に)で構成されるペプチド鎖と、重鎖可変ドメインVH及び軽鎖定常ドメインCL(VH-CL、N末端からC末端方向に)で構成されるペプチド鎖と、を含む。明確性のために、Fab軽鎖及びFab重鎖の可変ドメインが交換されているクロスオーバーFab分子において、重鎖定常ドメイン1 CH1を含むペプチド鎖は、本明細書では、(クロスオーバー)Fab分子の「重鎖」と呼ばれる。逆に、Fab軽鎖及びFab重鎖の定常ドメインが交換されているクロスオーバーFab分子において、重鎖可変ドメインVHを含むペプチド鎖は、本明細書では、(クロスオーバー)Fab分子の「重鎖」と呼ばれる。
これとは対照的に、「従来の」Fab分子は、その天然のフォーマットでのFab分子を意味し、すなわち、重鎖可変ドメイン及び定常ドメインで構成される重鎖(VH-CH1、N末端からC末端方向に)と、軽鎖可変ドメイン及び定常ドメインで構成される軽鎖(VL-CL、N末端からC末端方向に)と、を含む。
「Fcドメイン」又は「Fc領域」という用語は、本明細書において、定常領域の少なくとも一部を含有する免疫グロブリン重鎖のC末端領域を規定するために使用される。本用語は、ネイティブ配列Fc領域と可変Fc領域とを含む。一態様では、ヒトIgG重鎖Fc領域は、Cys226から、又はPro230から、重鎖のカルボキシル末端までに及ぶ。しかし、宿主細胞によって産生される抗体は、重鎖のC末端から1つ又は複数、特に1つ又は2つのアミノ酸の翻訳後開裂を受けてもよい。したがって、完全長重鎖をコードする特定の核酸分子の発現によって、宿主細胞によって産生する抗体は、完全長重鎖を含んでいてもよい、又は完全長重鎖の開裂したバリアントを含んでいてもよい。これは、重鎖の最終的な2つのC末端アミノ酸がグリシン(G446)及びリジン(K447、Kabat EUインデックスによるナンバリング)である場合であってもよい。したがって、Fc領域のC末端リジン(Lys447)、又はC末端グリシン(Gly446)及びリジン(Lys447)が存在してもよい、又は存在していなくてもよい。Fc領域(又は本明細書に定義されるFcドメインのサブユニット)を含む重鎖のアミノ酸配列は、特に示されていない場合には、本明細書では、C末端グリシン-リジンジペプチドを含まずに示される。一態様では、本発明による抗体に含まれる、本明細書で明記したFc領域(サブユニット)を含む重鎖は、さらなるC末端グリシン-リジンジペプチド(G446及びK447、Kabat EUインデックスによるナンバリング)を含む。一態様では、本発明による抗体に含まれる、本明細書で明記したFc領域(サブユニット)を含む重鎖は、さらなるC末端グリシン残基(G446、Kabat EUインデックスによるナンバリング)を含む。本明細書で特に明記されない限り、Fc領域又は定常領域におけるアミノ酸残基のナンバリングは、Kabat et al.,Sequences of Proteins of Immunological Interest,5th Ed. Public Health Service,National Institutes of Health,Bethesda,MD,1991(上も参照)に記載されるような、EUナンバリングシステム(EUインデックスとも呼ばれる)に従う。本明細書で使用される場合、Fcドメインの「サブユニット」とは、二量体のFcドメインを形成する2つのポリペプチドの1つ、すなわち、免疫グロブリン重鎖のC末端定常領域を含み、安定した自己会合が可能なポリペプチドを意味する。例えば、IgG Fcドメインのサブユニットは、IgG CH2及びIgG CH3定常ドメインを含む。
「融合した」が意味するのは、構成要素(例えば、Fab分子及びFcドメインサブユニット)が、ペプチド結合によって直接的に又は1つ又は複数のペプチドリンカーを介してのいずれかにより連結されていることである。
「多重特異性」という用語は、抗体が、少なくとも2つの別個の抗原決定基に特異的に結合することができることを意味する。多重特異性抗体は、例えば、二重特異性抗体であり得る。典型的には、二重特異性抗体は、2つの抗原結合部位を含み、それぞれが異なる抗原決定基に対して特異的である。特定の態様では、多重特異性(例えば、二重特異性)抗体は、2つの抗原決定基、特に、2つの別個の細胞で発現する2つの抗原決定基に同時に結合することができる。
「価数」という用語は、本明細書で使用される場合、抗原結合分子内の特定数の抗原結合部位の存在を示す。この場合、「抗原に対する一価の結合」という用語は、抗原結合分子内の抗原に特異的な1つの(かつ1つを超えない)抗原結合部位の存在を示す。
「抗原結合部位」は、抗原との相互作用を与える抗原結合分子の部位、すなわち、1つ又は複数のアミノ酸残基を指す。例えば、抗体の抗原結合部位は、相補性決定領域(CDR)からのアミノ酸残基を含む。ネイティブ免疫グロブリン分子は、典型的には、2つの抗原結合部位を含み、Fab分子は、典型的には、1つの抗原結合部位を有する。
本明細書で使用される場合、「抗原決定基」又は「抗原」という用語は、抗原結合ドメイン-抗原複合体を形成する、抗原結合ドメインが結合するポリペプチド高分子上の部位(例えば、アミノ酸の連続伸長部又は異なる領域の非連続アミノ酸から構成される配座構成)を指す。有用な抗原決定基は、例えば、腫瘍細胞の表面上に、ウイルス感染した細胞の表面上に、他の罹患した細胞の表面上に、免疫細胞の表面上に、血清中で遊離して、及び/又は細胞外マトリックス(ECM)内に認めることができる。好ましい態様では、抗原は、ヒトタンパク質である。
「CD3」は、別途指示されない限り、霊長類(例えば、ヒト)、非ヒト霊長類(例えば、カニクイザル)、及び齧歯類(例えば、マウス及びラット)などの哺乳動物を含む、任意の脊椎動物源由来の任意のネイティブCD3を指す。この用語は、「全長」のプロセシングされていないCD3、及び細胞におけるプロセシングから生じるCD3の任意の形態を包含する。この用語は、CD3の天然に存在するバリアント、例えば、スプライスバリアント又はアレルバリアントも包含する。一態様では、CD3は、ヒトCD3、特にヒトCD3のイプシロンサブユニット(CD3ε)である。ヒトCD3εのアミノ酸配列は、配列番号112(シグナルペプチドを有しない)に示される。また、UniProt(www.uniprot.org)寄託番号P07766(バージョン189)、又はNCBI(www.ncbi.nlm.nih.gov/)RefSeq NP_000724.1を参照されたい。別の態様では、CD3は、カニクイザル(Macaca fascicularis)CD3、特にカニクイザルCD3εである。カニクイザルCD3εのアミノ酸配列は、配列番号113(シグナルペプチドを有しない)に示される。また、NCBI GenBank番号BAB71849.1を参照されたい。ある特定の態様では、本発明の抗体は、異なる種由来のCD3抗原、特にヒトCD3及びカニクイザルCD3の中に保存されているCD3のエピトープに結合する。好ましい態様では、抗体は、ヒトCD3に結合する。
「標的細胞抗原」とは、本明細書で使用される場合、標的細胞、例えば、がん細胞又は(「腫瘍細胞抗原」の場合)腫瘍間質細胞などの腫瘍内の細胞の表面に提示された抗原決定基を意味する。好ましくは、標的細胞抗原は、CD3ではない、及び/又は異なる細胞上に発現されたCD3以外である。好ましい態様では、標的細胞抗原は、TYRP-1、特にヒトTYRP-1である。別の態様では、標的細胞抗原は、EGFRvIII、特にヒトEGFRvIIIである。
「TYRP1」又は「TYRP-1」は、メラニン合成において関与する酵素であるチロシン関連タンパク質1の略である。当初はgp75とも称したTYRP1の成熟形態は、75kDaの膜貫通糖タンパク質である。ヒトTYRP1の配列は、配列番号114(シグナルペプチドを有しない)に示される。また、UniProtエントリー番号P17643(バージョン185)を参照されたい。「TYRP1」とは、本明細書で用いる場合、別途指示されない限り、霊長類(例えば、ヒト)、非ヒト霊長類(例えば、カニクイザル)、及び齧歯類(例えば、マウス及びラット)などの哺乳動物を含む、任意の脊椎動物源由来の任意のネイティブTYRP1を指す。この用語は、「全長」のプロセシングされていないTYRP1、及び細胞におけるプロセシングから生じるTYRP1の任意の形態を包含する。この用語は、TYRP1の天然に存在するバリアント、例えば、スプライスバリアント又はアレルバリアントも包含する。一態様では、TYRP1は、ヒトTYRP1である。
「EGFRvIII」は、上皮内成長因子受容体バリアントIII(Epidermal Growth Factor Receptor Variant III)の略であり、ジャンクションにおけるグリシン置換を有する267個のアミノ酸の欠失をもたらす、エクソン2~7のインフレームの欠失によって形成された、EGFRの変異体である。ヒトEGFRvIIIの配列は、配列番号115(シグナルペプチドを有しない)に示される。野生型ヒトEGFRの配列は、配列番号116(シグナルペプチドを有しない)に示される。また、UniProtエントリー番号P00533(バージョン258)を参照されたい。「EGFRvIII」とは、本明細書で用いる場合、別途指示されない限り、霊長類(例えば、ヒト)、非ヒト霊長類(例えば、カニクイザル)、及び齧歯類(例えば、マウス及びラット)などの哺乳動物を含む、任意の脊椎動物源由来の任意のネイティブEGFRvIIIを指す。この用語は、「全長」のプロセシングされていないEGFRvIII(ただし野生型EGFRではない)、及び細胞におけるプロセシングから生じるEGFRvIII(例えば、シグナルペプチドを有しないEGFRvIII)の任意の形態を包含する。一態様では、EGFRvIIIは、ヒトEGFRvIIIである。
「親和性」は、分子(例えば、抗体)の単一の結合部位とその結合相手(例えば、抗原)との間の、合計の非共有性相互作用の強度を指す。特に明記しない限り、本明細書で使用される場合、「結合親和性」は、結合対(例えば、抗体と抗原)のメンバー間の1:1相互作用を反映する特異的結合親和性を指す。分子Xの、その相手Yに対する親和性は一般に、解離定数(KD)によって表すことができる。親和性は、本明細書に説明するものを含め、当技術分野で公知の十分に確立された方法によって測定することができる。親和性を測定するための好ましい方法は、表面プラズモン共鳴(SPR)である。
「親和性成熟」抗体とは、変化を有しない親抗体と比較して、1つ又は複数の相補性決定領域(CDR)において1つ又は複数の変化を有し、かかる改変によって抗原に対する抗体の親和性を改善する、抗体を指す。
「結合の低減」、例えば、Fc受容体に対する結合の低減は、例えば、SPRによって測定される場合、それぞれの相互作用についての親和性の低下を指す。明確性のために、この用語は、親和性がゼロまで低下する(又は分析方法の検出限界未満になる)こと、すなわち、相互作用が完全に失われることも含む。逆に、「結合上昇」は、個々の相互作用に対する結合親和性における上昇を指す。
本明細書で使用する場合の「T細胞活性化」は、増殖、分化、サイトカイン分泌、細胞傷害性エフェクター分子の放出、細胞傷害性活性、及び活性化マーカーの発現から選択される、Tリンパ球、特に細胞傷害性Tリンパ球の1つ又は複数の細胞応答を指す。T細胞活性化を判定するのに適したアッセイは、当技術分野で公知であり、本明細書で説明されている。
「Fcドメインの第1及び第2のサブユニットの会合を促進する改変」は、ホモ二量体を形成するためのFcドメインサブユニットを含むペプチドと同一のポリペプチドとの会合を減らすか又は防ぐ、ペプチド骨格の操作又はFcドメインサブユニットの翻訳後修飾である。会合を促進する改変は、本明細書で使用される場合、好ましくは、会合することが望ましい2つのFcドメインサブユニット(すなわち、Fcドメインの第1及び第2のサブユニット)それぞれに対し、別個の改変を含み、改変は、2つのFcドメインサブユニットの会合を促進するように、互いに相補性である。例えば、会合を促進する改変は、それぞれ立体的又は静電的に望ましい会合を行うように、Fcドメインサブユニットの片方又は両方の構造又は電荷を変えてもよい。したがって、(ヘテロ)二量化は、第1のFcドメインサブユニットを含むポリペプチドと、第2のFcドメインサブユニットを含むポリペプチドとの間で起こり、それぞれのサブユニットに融合するさらなる構成要素(例えば、抗原結合ドメイン)が同じではないという意味で、同一ではなくてもよい。いくつかの態様では、Fcドメインの第1及び第2のサブユニットの会合を促進する改変は、Fcドメイン内のアミノ酸変異、具体的にはアミノ酸置換を含む。好ましい態様では、Fcドメインの第1及び第2のサブユニットの会合を促進する改変は、Fcドメインの2つのサブユニットのそれぞれにおける別個のアミノ酸変異、具体的にはアミノ酸置換を含む。
「エフェクター機能」という用語は、抗体のFc領域に起因する生物活性を指し、抗体のアイソタイプによって変わる。抗体エフェクター機能の例としては、以下のものが挙げられる。C1q結合及び補体依存性細胞傷害(CDC)、Fc受容体結合、抗体依存性細胞傷害(ADCC)、抗体依存性細胞食作用(ADCP)、サイトカイン分泌、抗原提示細胞による免疫複合体媒介性抗原取り込み、細胞表面受容体(例えば、B細胞受容体)のダウンレギュレーション、及びB細胞活性化。
「活性化Fc受容体」は、抗体のFcドメインによる会合の後に、エフェクター機能を発揮するために受容体を含む細胞を刺激するシグナル伝達事象を誘発するFc受容体である。ヒト活性化Fc受容体としては、FcγRIIIa(CD16a)、FcγRI(CD64)、FcγRIIa(CD32)及びFcαRI(CD89)が挙げられる。
抗体依存性細胞傷害(ADCC)は、免疫エフェクター細胞による、抗体で被覆された標的細胞の溶解を引き起こす免疫機構である。標的細胞は、Fc領域を含む抗体又はその誘導体が、一般的にFc領域に対してN末端であるタンパク質部分を介して、特異的に結合する細胞である。本明細書で使用される場合、「ADCCの低減」という用語は、所与の時間で、標的細胞の周囲の培地中、所与の抗体濃度で溶解する標的細胞の数の減少、上に定義されるADCCの機構によって、及び/又は所与の時間に、ADCCの機構によって所与の数の標的細胞の溶解を達成するのに必要な、標的細胞の周囲にある培地中の抗体濃度の増加として定義される。ADCCの低下は、同じ標準的な産生、精製、配合及び保存方法を用い(当業者には既知)、同じ種類の宿主細胞によって作られるが、操作されない同じ抗体が媒介するADCCに対するものである。例えば、そのFcドメインを含む抗体によって媒介されるADCCの低下である、ADCCを低下させるアミノ酸置換は、Fcドメイン中にこのアミノ酸置換を含まない同じ抗体によって媒介されるADCCに対するものである。ADCCを測定するのに適したアッセイは、当該技術分野で周知である(例えば、PCT出願国際公開第2006/082515号又は同第2012/130831号を参照されたい)。
本明細書で使用される場合、「操作する、操作される、操作すること」という用語は、天然に存在するか、又は組換えポリペプチド又はこれらの断片のペプチド骨格の任意の操作又は翻訳後修飾を含むと考えられる。操作することは、アミノ酸配列の改変、グリコシル化パターンの改変、又は個々のアミノ酸の側鎖基の修飾、及びこれらのアプローチの組合せを含む。
「アミノ酸変異」という用語は、本明細書で使用される場合、アミノ酸の置換、欠失、挿入、及び改変を包含することを意図している。置換、欠失、挿入及び改変の任意の組み合わせは、最終構築物が、所望の特徴、例えば、Fc受容体に対する結合の低減、又は別のペプチドとの会合の増加を有する限り、最終構築物に到達するように行うことができる。アミノ酸配列の欠失及び挿入は、アミノ末端及び/又はカルボキシ末端のアミノ酸の欠失及び挿入を含む。好ましいアミノ酸変異は、アミノ酸置換である。例えば、Fc領域の結合特徴を変える目的のために、非保存的アミノ酸置換(すなわち、1つのアミノ酸を、構造特性及び/又は化学特性が異なる別のアミノ酸と置き換えること)が特に好ましい。アミノ酸置換として、天然に存在しないアミノ酸による置き換え、又は20種類の標準的なアミノ酸(例えば、4-ヒドロキシプロリン、3-メチルヒスチジン、オルニチン、ホモセリン、5-ヒドロキシリジン)の天然に存在するアミノ酸誘導体による置き換えが挙げられる。アミノ酸変異は、当技術分野で周知の遺伝的方法又は化学的方法を用いて生じさせることができる。遺伝学的手法には、特定部位の変異誘発、PCR、遺伝子合成などを挙げることができる。遺伝子工学以外の方法によってアミノ酸の側鎖基を変える方法、例えば、化学修飾も有用な場合があることが想定される。同じアミノ酸変異を示すために、本明細書で様々な名称を使用してもよい。例えば、Fcドメインの位置329のプロリンからグリシンへの置換は、329G、G329、G329、P329G又はPro329Glyとして示すことができる。
参照ポリペプチド配列に対する「アミノ酸配列の同一性率(%)」は、配列をアラインメントし、最大の配列同一性率を達成するために、必要ならばギャップを導入した後、配列同一性の一部として任意の保存的置換を考慮せずに、参照ポリペプチド配列中のアミノ酸残基と同一である、候補配列におけるアミノ酸残基の割合であると定義される。アミノ酸配列同一性率を決定するためのアラインメントは、当該技術分野の技術の範囲内にある種々の様式で、例えば、公的に入手可能なコンピュータソフトウェア、例えば、BLAST、BLAST-2、Clustal W、Megalign(DNASTAR)ソフトウェア又はFASTAプログラムパッケージを用いて達成することができる。当業者は、比較される配列の全長にわたって最大整列度を達成するのに必要とされる任意のアルゴリズムを含め、配列をアラインメントさせるのに適切なパラメータを決定することができる。あるいは、同一性率の値は、配列比較コンピュータプログラムALIGN-2を使用して生成することができる。ALIGN-2配列比較コンピュータプログラムは、Genentech,Inc.によって作成されており、ソースコードは、U.S.Copyright Office(Washington D.C.,20559)のユーザドキュメンテーションにファイルされており、U.S.Copyright Registration No.TXU510087の下に登録されており、かつ、国際公開第2001/007611号に記載されている。
しかしながら、本明細書での目的のために、アミノ酸配列同一性%の値は、FASTAパッケージバージョン36.3.8cのggsearchプログラムを使用するか、又はその後にBLOSUM50比較マトリックスを用いて生成される。FASTAプログラムパッケージは、W.R.Pearson及びD.J.Lipman(“Improved Tools for Biological Sequence Analysis”,PNAS 85(1988):2444-2448)、W.R.Pearson (“Effective protein sequence comparison” Meth.Enzymol.266(1996):227-258)、及びPearson et. al.(Genomics 46(1997)24-36)により作成され、www.fasta.bioch.virginia.edu/fasta_www2/fasta_down.shtml又はwww.ebi.ac.uk/Tools/sss/fastaから公開されて利用可能である。これに代えて、fasta.bioch.virginia.edu/fasta_www2/index.cgiでアクセス可能な公的なサーバーを使用して、ggsearch(global protein:protein)プログラム及びデフォルトオプション(BLOSUM50;オープン:-10;ext:-2;Ktup=2)を用い、ローカルではなくグローバルのアラインメントを確実に行い、配列を比較することができる。アミノ酸同一性率は、アウトプットアラインメントヘッダーで与えられる。
「ポリヌクレオチド」又は「核酸分子」という用語は、ヌクレオチドのポリマーを含む任意の化合物及び/又は物質を含む。それぞれのヌクレオチドは、塩基で構成され、具体的には、プリン塩基又はピリミジン塩基(すなわち、シトシン(C)、グアニン(G)、アデニン(A)、チミン(T)又はウラシル(U))、糖(すなわち、デオキシリボース又はリボース)、及びリン酸基で構成される。多くは、核酸分子は、塩基配列によって記述され、ここで、当該塩基は、核酸分子の一次構造(線形構造)を表す。塩基の配列は、典型的には、5’から3’へと表される。本明細書において、核酸分子という用語は、デオキシリボ核酸(DNA)、例えば、相補性DNA(cDNA)及びゲノムDNA、リボ核酸(RNA)、特に、メッセンジャーRNA(mRNA)、DNA又はRNAの合成形態、及びこれらの分子の2つ以上を含む混合ポリマーを包含する。核酸分子は、線形又は環状であってもよい。これに加え、核酸分子という用語は、センス鎖及びアンチセンス鎖、並びに一本鎖形態及び二本鎖形態の両方を含む。さらに、本明細書で記載される核酸分子は、天然に存在するヌクレオチド又は天然に存在しないヌクレオチドを含んでいてもよい。誘導体化された糖又はリン酸骨格結合又は化学修飾された残基を含む、天然に存在しないヌクレオチドの例としては、改変されたヌクレオチド塩基が挙げられる。核酸分子はまた、例えば、宿主又は患者において、インビトロ及び/又はインビボで本発明の抗体の直接的な発現のためのベクターとして好適なDNA分子及びRNA分子も包含する。このようなDNAベクター(例えば、cDNA)又はRNAベクター(例えば、mRNA)は、改変されていなくてもよく、又は改変されていてもよい。例えば、mRNAは、インビボで抗体を産生するために対象にmRNAを注入することができるように、RNAベクターの安定性及び/又はコードされた分子の発現を高めるように化学修飾されてもよい(例えば、Stadler et al.(2017)Nature Medicine 23:815-817又は欧州特許第2101823(B1)号を参照されたい)。
「単離された」核酸分子とは、核酸分子がその自然環境の構成要素から分離されたものを指す。単離核酸分子には、通常核酸分子を含む細胞内に含まれる核酸分子が、染色体外に存在するか、又はその本来の染色体位置とは異なる染色体位置に存在する核酸分子が含まれる。
「抗体をコードする単離ポリヌクレオチド(又は核酸)」は、抗体の重鎖及び軽鎖(又はその断片)をコードする1つ又は複数のポリヌクレオチド分子を指し、単一のベクター又は別個のベクターにおいて、このようなポリヌクレオチド分子(複数可)が宿主細胞の1つ又は複数の位置に存在するこのようなポリヌクレオチド分子(複数可)を含む。
本明細書で使用される場合、「ベクター」という用語は、それが連結された別の核酸を伝播することができる核酸分子を指す。本用語は、自己複製する核酸構造としてのベクター、及びベクターが導入された宿主細胞のゲノム内へと組み込まれたベクターを含む。特定のベクターは、それらが機能的に連結されている核酸の発現を指示することができる。そのようなベクターは、本明細書では「発現ベクター」と呼ばれる。
「宿主細胞」、「宿主細胞株」及び「宿主細胞培養物」という用語は、相互に置き換え可能に使用され、外因性核酸が導入された細胞を指し、かかる細胞の子孫を含む。宿主細胞は、「形質転換体」及び「形質転換された細胞」を含み、これらは、継代数にかかわらず、初代の形質転換された細胞、及び初代の形質転換された細胞から誘導された子孫を含む。子孫は、核酸含有量が親細胞と完全に同一でなくてもよいが、変異を含有していてもよい。元々の形質転換された細胞についてスクリーニングされるか又は選択されるのと同じ機能又は生物活性を有する変異体の子孫は、本発明に含まれる。宿主細胞は、本発明の抗体を生成するために使用可能な任意の種類の細胞系である。宿主細胞としては、培養細胞、例えば、哺乳動物培養細胞、例えば、ほんの数例を挙げると、HEK細胞、CHO細胞、BHK細胞、NS0細胞、SP2/0細胞、YO骨髄腫細胞、P3X63マウス骨髄腫細胞、PER細胞、PER.C6細胞又はハイブリドーマ細胞、酵母細胞、昆虫細胞及び植物細胞が挙げられるが、トランスジェニック動物、トランスジェニック植物又は培養植物又は動物組織に含まれる細胞も含まれる。一態様では、本発明の宿主細胞は、真核細胞、特に哺乳動物細胞である。一態様では、宿主細胞は、ヒト身体中の細胞ではない。
「医薬組成物」又は「薬学的製剤」という用語は、調製物の中に含有される有効成分の生物活性が有効になるような形態であり、組成物が投与されるであろう対象にとって許容できないほど有毒である追加の成分を何ら含有しない、調製物を指す。
「医薬的に許容される担体」は、有効成分以外の医薬組成物又は製剤中の成分であって、対象にとって非毒性である成分を指す。医薬的に許容される担体としては、緩衝剤、賦形剤、安定化剤、又は防腐剤が挙げられるが、これらに限定されない。
本明細書で使用される場合、「治療(treatment)」(及びその文法的な変化形、例えば、「治療(treat)する」又は「治療(treating)すること」)は、治療される個体において疾患の本来の経過を変える試行における臨床的介入を指し、予防のために、又は臨床病理の経過の間に行うことができる。治療の所望の効果としては、疾患の発症又は再発を予防すること、症状の軽減、疾患の任意の直接的又は間接的な病理学的結果の減弱、転移を予防すること、疾患進行率を低下させること、病状の寛解又は緩和、及び回復又は改良された予後が挙げられる。いくつかの態様では、本発明の抗体は、疾患の発症を遅延させるために、又は疾患の進行を遅らせるために使用される。
「個体」又は「対象」は、哺乳動物である。哺乳動物には、家畜動物(例えば、ウシ、ヒツジ、ネコ、イヌ及びウマ)、霊長類(例えば、ヒト及びサルなどの非ヒト霊長類)、ウサギ、げっ歯類(例えば、マウス及びラット)が挙げられるが、これらに限定されない。ある特定の態様では、個体又は対象は、ヒトである。
薬剤、例えば、医薬組成物の「有効量」は、所望の治療結果又は予防結果を達成するために必要な投薬量及び所要期間で有効な量を指す。
用語「パッケージ添付文書」とは、そのような治療製品の適応症、使用法、投薬量、投与、併用療法、禁忌症、及び/又はその使用に関する警告についての情報を含有する、治療製品の商業用パッケージに通例含まれる指示書を指すために使用される。
II.組成物及び方法
本発明は、CD3及び第2の抗原に結合する多重特異性抗体を含む、CD3に結合する抗体を提供する。抗体は、例えば、有効性及び安全性、薬物動態、並びに再現性に関連する治療用途に有益な他の特性と組み合わせて、優れた安定性を示す。本発明の抗体は、例えば、がんなどの疾患の治療に有用である。
A.抗CD3抗体
一態様では、本発明は、CD3に結合する抗体を提供する。一態様では、CD3に結合する単離抗体が提供される。一態様では、本発明は、CD3に特異的に結合する抗体を提供する。ある特定の態様では、抗CD3抗体は、表面プラズモン共鳴(SPR)によって決定されるように、pH6、-80°Cで2週間後の結合活性と比較して、pH7.4、37°Cで2週間後にCD3への結合活性を約90%超維持する。
一態様では、本発明は、CD3に結合する抗体であって、当該抗体が、配列番号2の重鎖相補性決定領域(HCDR)1、配列番号3のHCDR2、及び配列番号5のHCDR3を含む重鎖可変領域(VH)と、配列番号8の軽鎖相補性決定領域(LCDR)1、配列番号9のLCDR2、及び配列番号10のLCDR3を含む軽鎖可変領域(VL)と、を含む第1の抗原結合ドメインを含む、抗体、を提供する。
一態様では、抗体は、ヒト化抗体である。一態様では、抗原結合ドメインは、ヒト化抗原結合ドメイン(すなわち、ヒト化抗体の抗原結合ドメイン)である。一態様では、VH及び/又はVLは、ヒト化可変領域である。
一態様では、VH及び/又はVLは、アクセプターヒトフレームワーク、例えば、ヒト免疫グロブリンフレームワーク又はヒトコンセンサスフレームワークを含む。
一態様では、VHは、配列番号7の重鎖可変領域配列の1つ又は複数の重鎖フレームワーク配列(すなわち、FR1、FR2、FR3及び/又はFR4配列)を含む。一態様では、VHは、配列番号7のアミノ酸配列と少なくとも約95%、96%、97%、98%、又は99%同一であるアミノ酸配列を含む。一態様では、VHは、配列番号7のアミノ酸配列と少なくとも約95%同一であるアミノ酸配列を含む。一態様では、VHは、配列番号7のアミノ酸配列と少なくとも約98%同一であるアミノ酸配列を含む。ある特定の態様では、少なくとも95%、96%、97%、98%、又は99%の同一性を有するVH配列は、基準配列と比較して、置換(例えば、保存的置換)、挿入、又は欠失を含有するが、その配列を含む抗体は、CD3に結合する能力を保持する。ある特定の態様では、合計で1~10個のアミノ酸が、配列番号7のアミノ酸配列において、置換されている、挿入されている、及び/又は欠失している。ある特定の態様では、置換、挿入、又は欠失は、CDRの外側の領域で(すなわち、FRで)生じる。一態様では、VHは、配列番号7のアミノ酸配列を含む。任意選択で、VHは、配列番号7のアミノ酸配列を含み、その配列の翻訳後修飾を含む。
一態様では、VLは、配列番号11の軽鎖可変領域配列の1つ又は複数の軽鎖フレームワーク配列(すなわち、FR1、FR2、FR3及び/又はFR4配列)を含む。一態様では、VLは、配列番号11のアミノ酸配列と少なくとも約95%、96%、97%、98%、又は99%同一であるアミノ酸配列を含む。一態様では、VLは、配列番号11のアミノ酸配列と少なくとも約95%同一であるアミノ酸配列を含む。一態様では、VLは、配列番号11のアミノ酸配列と少なくとも約98%同一であるアミノ酸配列を含む。ある特定の態様では、少なくとも95%、96%、97%、98%、又は99%の同一性を有するVL配列は、基準配列と比較して、置換(例えば、保存的置換)、挿入、又は欠失を含有するが、その配列を含む抗体は、CD3に結合する能力を保持する。ある特定の態様では、合計で1~10個のアミノ酸が、配列番号11のアミノ酸配列において、置換されている、挿入されている、及び/又は欠失している。ある特定の態様では、置換、挿入、又は欠失は、CDRの外側の領域で(すなわち、FRで)生じる。一態様では、VLは、配列番号11のアミノ酸配列を含む。任意選択で、VLは、配列番号11のアミノ酸配列を含み、その配列の翻訳後修飾を含む。
一態様では、VHは、配列番号7のアミノ酸配列に対して少なくとも約95%、96%、97%、98%、又は99%同一のアミノ酸配列を含み、VLは、配列番号11のアミノ酸配列に対して少なくとも約95%、96%、97%、98%、又は99%同一のアミノ酸配列を含む。一態様では、VHは、配列番号7のアミノ酸配列を含み、VLは、配列番号11のアミノ酸配列を含む。
さらなる態様では、本発明は、CD3に結合する抗体であって、配列番号7のアミノ酸配列を含むVH及び配列番号11のアミノ酸配列を含むVLを含む第1の抗原結合ドメインを含む、抗体、を提供する。
さらなる態様では、本発明は、CD3に結合する抗体であって、配列番号7のVH配列及び配列番号11のVL配列を含む第1の抗原結合ドメインを含む、抗体、を提供する。
別の態様では、本発明は、CD3に結合する抗体であって、配列番号7のVHの重鎖CDR配列を含むVH及び配列番号11のVLの軽鎖CDR配列を含むVLを含む第1の抗原結合ドメインを含む、抗体、を提供する。
さらなる態様では、第1の抗原結合ドメインは、配列番号7のVHのHCDR1、HCDR2及びHCDR3アミノ酸配列と、配列番号11のVLのLCDR1、LCDR2及びLCDR3アミノ酸配列と、を含む。
一態様では、VHは、配列番号7のVHの重鎖CDR配列と、配列番号7のVHのフレームワーク配列に対して少なくとも95%、96%、97%、98%又は99%の配列同一性のあるフレームワークと、を含む。一態様では、VHは、配列番号7のVHの重鎖CDR配列と、配列番号7のVHのフレームワーク配列に対して少なくとも95%の配列同一性のあるフレームワークと、を含む。一態様では、VHは、配列番号7のVHの重鎖CDR配列と、配列番号7のVHのフレームワーク配列に対して少なくとも98%の配列同一性のあるフレームワークと、を含む。
一態様では、VLは、配列番号11のVLの軽鎖CDR配列と、配列番号11のVLのフレームワーク配列に対して少なくとも95%、96%、97%、98%又は99%の配列同一性のあるフレームワークと、を含む。一態様では、VLは、配列番号11のVLの軽鎖CDR配列と、配列番号11のVLのフレームワーク配列に対して少なくとも95%の配列同一性のあるフレームワークと、を含む。一態様では、VLは、配列番号11のVLの軽鎖CDR配列と、配列番号11のVLのフレームワーク配列に対して少なくとも98%の配列同一性のあるフレームワークと、を含む。
一態様では、本発明は、CD3に結合する抗体であって、上記に提供した態様のいずれかのVH配列及び上記に提供した態様のいずれかのVL配列を含む第1の抗原結合ドメインを含む、抗体、を提供する。
一態様では、抗体は、ヒト定常領域を含む。一態様では、抗体は、ヒト定常領域を含む免疫グロブリン分子、特にヒトCH1、CH2、CH3及び/又はCLドメインを含むIgGクラス免疫グロブリン分子である。ヒト定常ドメインの例示的な配列は、配列番号120及び121(それぞれ、ヒトカッパ及びラムダCLドメイン)、並びに配列番号122(ヒトIgG1重鎖定常ドメインCH1-CH2-CH3)で与えられる。一態様では、抗体は、配列番号120又は配列番号121のアミノ酸配列、特に配列番号120のアミノ酸配列に対して少なくとも約95%、96%、97%、98%、99%又は100%同一のアミノ酸配列を含む軽鎖定常領域を含む。一態様では、抗体は、配列番号122のアミノ酸配列に対して少なくとも約95%、96%、97%、98%、99%又は100%同一のアミノ酸配列を含む重鎖定常領域を含む。特に、重鎖定常領域は、本明細書に記載されたようなFcドメインにおけるアミノ酸変異を含んでもよい。
一態様では、第1の抗原結合ドメインは、ヒト定常領域を含む。一態様では、第1の抗原結合部分は、ヒト定常領域、特に、ヒトCH1及び/又はCLドメインを含むFab分子である。一態様では、第1の抗原結合ドメインは、配列番号120又は配列番号121のアミノ酸配列、特に配列番号120のアミノ酸配列に対して少なくとも約95%、96%、97%、98%、99%又は100%同一のアミノ酸配列を含む軽鎖定常領域を含む。特に、軽鎖定常領域は、「電荷改変」の状態で本明細書に記載するアミノ酸変異を含んでいてもよい、及び/又は、クロスオーバーFab分子での場合、1つ又は複数の(特に2つの)N末端アミノ酸の欠失又は置換を含んでいてもよい。一態様では、第1の抗原結合ドメインは、配列番号122のアミノ酸配列に含まれるCH1ドメイン配列に対して少なくとも約95%、96%、97%、98%、99%又は100%同一のアミノ酸配列を含む重鎖定常領域を含む。特に、重鎖定常領域(具体的にはCH1ドメイン)は、「電荷改変」状態で本明細書に記載のアミノ酸変異を含んでもよい。
一態様では、抗体は、モノクローナル抗体である。
一態様では、抗体は、IgG、特に、IgG1抗体である。一態様では、抗体は、完全長抗体である。
別の態様では、抗体は、Fv分子、scFv分子、Fab分子、F(ab’)2分子の群から選択される抗体断片、特に、Fab分子である。別の態様では、抗体断片は、ダイアボディ、トリアボディ、又はテトラボディである。
一態様では、第1の抗原結合ドメインは、Fab分子である。好ましい態様では、第1の抗原結合部分は、Fab軽鎖及びFab重鎖の、可変ドメインVL及びVH又は定常ドメインCL及びCH1、特に可変ドメインVL及びVHが、互いに置き換わっているFab分子である(すなわち、第1の抗原結合ドメインは、クロスオーバーFab分子である)。
さらなる態様では、上記態様のうちのいずれかによる抗体は、以下のセクションII.A.1.~8.に記載される特徴のうちのいずれかを単独で、又は組み合わせて、組み込んでもよい。
好ましい態様では、抗体は、Fcドメイン、特に、IgG Fcドメイン、より好ましくは、IgG1 Fcドメインを含む。一態様では、Fcドメインは、ヒトFcドメインである。一態様では、Fcドメインは、IgG1 Fcドメインである。Fcドメインは、第1及び第2のサブユニットからなり、Fcドメインバリアントに関連して本明細書の以下に記載される特徴のうちのいずれかを単独で、又は組み合わせて、組み込んでもよい(セクションII.A.8.)。
別の好ましい態様では、抗体は、第2の抗原結合ドメインと、任意選択で、第2の抗原に結合する第3の抗原結合ドメインを含む(すなわち、抗体は、本明細書の以下にさらに記載される多重特異性抗体である(セクションII.A.7.)。
1.抗体断片
ある特定の態様では、本明細書に提供される抗体は、抗体断片である。
一態様では、抗体断片は、Fab分子、Fab’分子、Fab’-SH分子、又はF(ab’)2分子であり、特に、本明細書に記載のFab分子である。「Fab’分子」は、抗体ヒンジ領域から1つ又は複数のシステインを含むCH1ドメインのカルボキシ末端における残基の付加だけ、Fab分子とは異なる。Fab’-SHとは、定常ドメインのシステイン残基(複数可)が遊離チオール基を保持するFab’分子である。ペプシン処理により、2つの抗原結合部位(2つのFab分子)と、Fc領域の一部とを有するF(ab’)2分子が得られる。
別の態様では、抗体断片は、ダイアボディ、トリアボディ、又はテトラボディである。「ダイアボディ」は、二価又は二重特異性であり得る2つの抗原結合部位を有する抗体断片である。例えば、欧州特許第404,097号、国際公開第1993/01161号、Hudson et al.,Nat.Med.9:129-134(2003)、及びHollinger et al.,Proc.Natl.Acad.Sci.USA 90:6444-6448(1993)を参照されたい。トリアボディ及びテトラボディはまた、Hudson et al.,Nat.Med.9:129-134(2003)にも記載される。
さらなる態様では、抗体断片は、一本鎖Fab分子である。「一本鎖Fab分子」又は「scFab」とは、抗体重鎖可変ドメイン(VH)、抗体重鎖定常ドメイン1(CH1)、抗体軽鎖可変ドメイン(VL)、抗体軽鎖定常ドメイン(CL)、及びリンカーからなるポリペプチドであり、当該抗体ドメイン及び当該リンカーは、N末端からC末端への方向において、以下の順序:a)VH-CH1-リンカー-VL-CL、b)VL-CL-リンカー-VH-CH1、c)VH-CL-リンカー-VL-CH1、又はd)VL-CH1-リンカー-VH-CLのうちの1つを有する。特に、当該リンカーは、少なくとも30個のアミノ酸、好ましくは32~50個のアミノ酸のポリペプチドである。当該一本鎖Fab分子は、CLドメインとCH1ドメインとの間の天然ジスルフィド結合によって安定化される。加えて、これらの一本鎖Fab分子は、システイン残基の挿入(例えば、Kabatナンバリングによれば、可変重鎖の位置44及び可変軽鎖の位置100)による鎖間ジスルフィド結合の生成によって、さらに安定化されるだろう。
別の態様では、抗体断片は、一本鎖可変断片(scFv)である。「一本鎖可変断片」又は「scFv」は、リンカーにより接続された、抗体の重鎖(VH)及び軽鎖(VL)の可変ドメインの融合タンパク質である。特に、リンカーは、10~25個のアミノ酸の短いポリペプチドであり、通常、柔軟性のためにグリシンが豊富であり、かつ、溶解性のためにセリン又はスレオニンが豊富であり、VHのN末端をVLのC末端と、又はこの逆のいずれかで、接続させることができる。このタンパク質は、定常領域の除去及びリンカーの導入にも関わらず、元の抗体の特異性を保持する。scFv断片の総説としては、例えば、Pluckthun,The Pharmacology of Monoclonal Antibodies,vol.113,Rosenburg and Moore eds.,Springer-Verlag,New York,pp.269-315(1994)を参照されたく、また、国際公開第93/16185号並びに米国特許第5,571,894号及び第5,587,458号を参照されたい。
別の態様では、抗体断片は、単一ドメイン抗体である。「単一ドメイン抗体」とは、抗体の重鎖可変ドメインの全部若しくは一部、又は軽鎖可変ドメインの全部若しくは一部を含む抗体断片である。ある特定の態様では、単一ドメイン抗体は、ヒト単一ドメイン抗体である(Domantis,Inc.,Waltham,MA;例えば、米国特許第6,248,516(B1)号を参照されたい)。
抗体断片は、限定されないが、本明細書に記載されるように、インタクト抗体のタンパク質分解による消化、及び組換え宿主細胞(例えば、大腸菌)による組換え産生を含め、種々の技術によって作られてもよい。
2.ヒト化抗体
ある特定の実施形態では、本明細書に提供される抗体は、ヒト化抗体である。典型的には、非ヒト抗体は、ヒトに対する免疫原性を低減する一方で、親非ヒト抗体の特異性及び親和性は保持するようにヒト化される。通常、ヒト化抗体は、CDR(又はその一部)が非ヒト抗体に由来する1つ又は複数の可変ドメインを含み、FR(又はその一部)はヒト抗体配列に由来する。ヒト化抗体は、任意選択で、ヒト定常領域の少なくとも一部も含む。いくつかの態様では、ヒト化抗体中のいくつかのFR残基は、例えば、抗体特異性又は親和性を回復又は改善するために、非ヒト抗体(例えば、CDR残基が由来する抗体)からの対応する残基で置換される。
ヒト化された抗体及びその作製方法については、Almagro and Fransson,Front.Biosci.13:1619-1633(2008)でレビューされ、さらに以下に記載されている:Riechmann et al.,Nature 332:323-329(1988);Queen et al.,Proc.Nat’l Acad.Sci.USA 86:10029-10033(1989);米国特許第5,821,337号、同第7,527,791号、同第6,982,321号及び同第7,087,409号;Kashmiri et al.,Methods 36:25-34(2005)(特異性決定領域(SDR)グラフトの記述);Padlan,Mol.Immunol.28:489-498(1991)(リサーフェシングについての記述);Dall’Acqua et al.,Methods 36:43-60 (2005)(FRシャッフルについての記述);並びにOsbourn et al.,Methods 36:61-68(2005)及びKlimka et al.,Br.J.Cancer,83:252-260(2000)(FRシャッフルの「ガイド付き選択アプローチの記述)。
ヒト化に用い得るヒトフレームワーク領域としては、以下が挙げられるが、これらに限定されない:「ベストフィット」法を用いて選択したフレームワーク領域(例えば、Sims et al.J.Immunol.151:2296(1993)を参照されたい);重鎖又は軽鎖可変領域の特定の亜型のヒト抗体コンセンサス配列に由来するフレームワーク領域(例えば、Carter et al.Proc.Natl.Acad.Sci.USA,89:4285(1992);及びPresta et al.J.Immunol.,151:2623(1993)を参照されたい);ヒト成熟(体細胞変異)フレームワーク領域又はヒト生殖細胞系フレームワーク領域(例えば、Almagro and Fransson,Front.Biosci.13:1619-1633(2008)を参照されたい);並びにFRライブラリのスクリーニングに由来するフレームワーク領域(例えば、Baca et al.,J.Biol.Chem.272:10678-10684(1997)及びRosok et al.,J Biol.Chem.271:22611-22618(1996)を参照されたい)。
3.グリコシル化バリアント
ある特定の態様では、本明細書において提供する抗体を変えて、抗体のグリコシル化の程度を増減させる。抗体へのグリコシル化部位の付加又は欠失は、1つ又は複数のグリコシル化部位が作り出されるか、又は除去されるようにアミノ酸配列を改変させることにより好都合に達成され得る。
抗体がFc領域を含む場合、抗体に付着しているオリゴ糖を変化させてもよい。哺乳動物細胞によって産生されるネイティブ抗体は、典型的には、一般にN結合によってFc領域のCH2ドメインのAsn297に結合される分岐状の二分岐オリゴ糖を含む。例えば、Wright et al.TIBTECH 15:26-32(1997)を参照されたい。オリゴ糖には、様々な炭水化物、例えば、マンノース、N-アセチルグルコサミン(GlcNAc)、ガラクトース、及びシアル酸、並びに二分岐型オリゴ糖構造の「幹」のGlcNAcに結合したフコースが含まれ得る。いくつかの態様では、本発明の抗体中のオリゴ糖の改変は、ある特定の改良された特性を有する抗体バリアントを作成するために行われてもよい。
一態様では、非フコシル化オリゴ糖、すなわち、Fc領域へのフコース結合(直接又は間接)が欠落した、オリゴ糖構造を有する抗体バリアントを提供する。このような非フコシル化オリゴ糖(「アフコシル化」オリゴ糖とも呼ばれる)は特に、二分岐オリゴ糖構造の幹に第1のGlcNAcが結合したフコース残基を欠く、N結合オリゴ糖である。一態様では、ネイティブ抗体又は親抗体と比較して、Fc領域における非フコシル化オリゴ糖の比率が増加した抗体バリアントを提供する。例えば、非フコシル化オリゴ糖の比率は、少なくとも約20%、少なくとも約40%、少なくとも約60%、少なくとも約80%、又はさらに約100%(すなわち、フコシル化オリゴ糖が存在しない)であってもよい。非フコシル化オリゴ糖の割合は、例えば、国際公開第2006/082515号に記載のMALDI-TOF質量分析法により測定した、Asn297に結合した全てのオリゴ糖の合計(例えば、複合体、ハイブリッド、及びハイマンノース構造)に対する、フコース残基を欠くオリゴ糖の(平均)量である。Asn297は、Fc領域内の位置約297(Fc領域残基のEUナンバリング)に位置するアスパラギン残基を指す。しかし、Asn297はまた、抗体における小規模な配列変異に起因して、位置297から約±3アミノ酸の上流又は下流、すなわち、位置294~300の間に位置してもよい。Fc領域における非フコシル化オリゴ糖の比率が増加した、このような抗体は、改善されたFcγRIIIa受容体結合、及び/又は改善されたエフェクター機能、特に改善されたADCC機能を有することができる。例えば、米国特許出願公開第2003/0157108号;同第2004/0093621号を参照されたい。
フコシル化が低下した抗体を産生可能な細胞株の例としては、タンパク質フコシル化で欠失したLec13CHO細胞(Ripka et al.Arch.Biochem.Biophys.249:533-545(1986);米国特許出願公開第2003/0157108号;及び国際公開第2004/056312号、特に実施例11)、及び、ノックアウト細胞株、例えば、α-1,6-フコシルトランスフェラーゼ遺伝子のFUT8ノックアウトCHO細胞(例えば、Yamane-Ohnuki et al.Biotech.Bioeng.87:614-622(2004);Kanda,Y.et al.,Biotechnol.Bioeng.,94(4):680-688(2006);及び国際公開第2003/085107号を参照されたい)、又は、GDP-フコース合成若しくはトランスポータータンパク質の活性が低下した若しくは消滅した細胞(例えば、米国特許出願公開第2004259150号、同第2005031613号、同第2004132140号、同第2004110282号を参照されたい)が挙げられる。
さらなる態様では、抗体バリアントは、例えば、抗体のFc領域に結合した二分岐オリゴ糖がGlcNAcにより二分されているバイセクトオリゴ糖と共に提供される。そのような抗体バリアントは、上述のとおり、低下したフコシル化、及び/又は改善されたADCC機能を有してもよい。そのような抗体バリアントの例は、例えば、Umana et al.,Nat Biotechnol 17,176-180(1999);Ferrara et al.,Biotechn Bioeng 93,851-861(2006);国際公開第99/54342号;同第2004/065540号、同第2003/011878号に記載されている。
Fc領域に結合したオリゴ糖内に少なくとも1つのガラクトース残基を有する抗体バリアントも提供される。そのような抗体バリアントは、改善されたCDC機能を有し得る。そのような抗体バリアントは、例えば、国際公開第1997/30087号、同第1998/58964号、及び同第1999/22764号に記載されている。
4.システイン操作抗体バリアント
ある特定の態様では、抗体の1つ又は複数の残基がシステイン残基で置換されているシステイン操作抗体、例えば、THIOMAB(商標)を作成することが望ましい場合がある。好ましい態様では、置換された残基は、抗体のアクセス可能な部位で生じる。これらの残基をシステインで置換することによって、反応性のチオール基がそれにより抗体のアクセス可能な部位に位置付けられ、それを使用して、薬物部分又はリンカー-薬物部分などの他の部分に抗体を複合体化して、本明細書にさらに記載されるように、免疫複合体を作製することができる。システイン操作抗体は、例えば、米国特許第7,521,541号、同第8,30,930号、同第7,855,275号、同第9,000,130号、又は国際公開第2016040856号に記載されているとおりに作製することができる。
5.抗体誘導体
ある特定の態様では、本明細書で提供される抗体は、当該技術分野で既知であり、容易に入手可能な、さらなる非タンパク質性部分を含むようにさらに改変されてもよい。抗体の誘導体化に好適な部分としては、限定するものではないが、水溶性ポリマーが挙げられる。水溶性ポリマーの非限定的な例としては、ポリエチレングリコール(PEG)、エチレングリコール/プロピレングリコールのコポリマー、カルボキシメチルセルロース、デキストラン、ポリビニルアルコール、ポリビニルピロリドン、ポリ-1,3-ジオキソラン、ポリ-1,3,6-トリオキサン、エチレン/無水マレイン酸コポリマー、ポリアミノ酸(ホモポリマー又はランダムコポリマーのいずれか)、及びデキストラン又はポリ(n-ビニルピロリドン)ポリエチレングリコール、ポリプロピレングリコールホモポリマー、prolypropyleneオキシド/エチレンオキシドコポリマー、ポリオキシエチル化ポリオール(例えば、グリセロール)、ポリビニルアルコール、及びこれらの混合物が挙げられるが、これらに限定されない。ポリエチレングリコールプロピオンアルデヒドは、水中でのその安定性のため、製造時に有利であり得る。このポリマーは、任意の分子量を有していてもよい、分岐していてもよい、又は分岐していなくてもよい。抗体に結合したポリマーの数は異なってもよく、1つより多くのポリマーが結合している場合、それらのポリマーは、同じ分子又は異なる分子であり得る。一般に、誘導体化に使用されるポリマーの数及び/又は種類は、改善される抗体の具体的な特性又は機能、抗体の誘導体が規定の状態下である療法で使用されるかなどを含むが、これらに限定されない検討事項に基づいて決定され得る。
6.免疫複合体
本発明はまた、細胞傷害性薬剤、化学療法剤若しくは化学療法薬、成長阻害剤、毒素(例えば、タンパク質毒素、細菌真菌、植物、若しくは動物起源の酵素活性毒素、又はそれらの断片)、又は放射性同位体などの1つ又は複数の治療薬剤と複合された本明細書における抗CD3抗体を含む、免疫複合体を提供する。
一態様では、免疫複合体は、抗体が前述の治療薬剤の1つ又は複数に複合体化された、抗体薬物複合体(ADC)である。抗体は典型的には、リンカーを使用して、治療薬剤の1つ又は複数に接続される。治療薬剤及び薬物及びリンカーの例を含む、ADC技術の総説は、Pharmacol Review 68:3-19(2016)に記載されている。
別の態様では、免疫複合体は、酵素活性毒素又はこれらの断片に複合体化された本発明の抗体を含み、ジフテリアA鎖、ジフテリア毒素の非結合活性断片、エキソトキシンA鎖(緑膿菌からのもの)、リシンA鎖、アブリンA鎖、モデシンA鎖、αサルシン、シナアブラギリのタンパク質、ジアンチンタンパク質、ヨウシュヤマゴボウのタンパク質(PAPI、PAPII、及びPAP-S)、ツルレイシ阻害剤、クルシン、クロチン、サボンソウ阻害剤、ゲロニン、ミトゲリン、レストリクトシン、フェノマイシン、エノマイシン、並びにトリコテセンが挙げられるが、これらに限定されない。
別の態様では、免疫複合体は、放射性原子に複合体化されて放射性複合体を形成する、本発明の本明細書に記載される抗体を含む。放射性複合体の産生には、様々な放射性同位体が利用可能である。例としては、At211、I131、I125、Y90、Re186、Re188、Sm153、Bi212、P32、Pb212、及びLuの放射性同位元素が挙げられる。放射性複合体が検出のために使用される場合、シンチグラフィー研究のための放射性原子、例えば、Tc99m若しくはI123、又は核磁気共鳴(NMR)画像法(別名、磁気共鳴画像法、MRI)のための、I123、I131、In111、F19、C13、N15、O17、ガドリニウム、マンガン、若しくは鉄などのスピン標識を含んでもよい。
抗体及び細胞傷害性薬剤の複合体は、3-(2-ピリジルジチオ)プロピオン酸N-スクシンイミジル(SPDP)、4-(N-マレイミドメチル)シクロヘキサン-1-カルボン酸スクシンイミジル(SMCC)、イミノチオラン(IT)、イミドエステルの二官能性誘導体(アジプイミド酸ジメチルHClなど)、活性エステル(スベリン酸ジスクシンイミジルなど)、アルデヒド(グルタルアルデヒドなど)、ビス-アジド化合物(ビス(p-アジドベンゾイル)ヘキサンジアミンなど)、ビス-ジアゾニウム誘導体(ビス-(p-ジアゾニウムベンゾイル)-エチレンジアミンなど)、ジイソシアネート(例えば、トルエン2,6-ジイソシアネートなど)、及びビス-活性フッ素化合物(1,5-ジフルオロ-2,4-ジニトロベンゼンなど)などの多様な二官能性タンパク質結合剤を使用して作製され得る。 例えば、リシン免疫毒素は、Vitetta et al.,Science 238:1098(1987)に記載されているように調製することができる。炭素-14標識1-イソチオシアナトベンジル-3-メチルジエチレントリアミンペンタ酢酸(MX-DTPA)は、放射性ヌクレオチドを抗体に複合化するための例示的なキレート剤である。国際公開第94/11026号を参照されたい。リンカーは、細胞内において細胞毒性薬物の放出を容易にする「切断可能リンカー」であってもよい。例えば、酸に不安定なリンカー、ペプチダーゼ感受性リンカー、感光性リンカー、ジメチルリンカー、又はジスルフィド含有リンカー(Chari et al,Cancer Res.52:127-131(1992);米国特許第5,208,020号)を使用してもよい。
本明細書の免疫複合体又はADCは、BMPS、EMCS、GMBS、HBVS、LC-SMCC、MBS、MPBH、SBAP、SIA、SIAB、SMCC、SMPB、SMPH、スルホ-EMCS、スルホ-GMBS、スルホ-KMUS、スルホ-MBS、スルホ-SIAB、スルホ-SMCC、及びスルホ-SMPB、並びに(例えば、Pierce Biotechnology,Inc.,Rockford,IL.,U.S.Aから)市販されているSVSB((4-ビニルスルホン)安息香酸スクシンイミジル)を含むが、これらに限定されない架橋剤試薬で調製されるそのような複合体を明示的に企図するが、これらに限定されない。
7.多重特異性抗体
ある特定の態様において、本明細書に提供される抗体は多重特異性抗体、特に、二重特異性抗体である。多重特異性抗体は、少なくとも2つの異なる抗原決定基(例えば、2つの異なるタンパク質又は同じタンパク質における2つの異なるエピトープ)に結合特異性を有するモノクローナル抗体である。ある特定の態様において、多重特異性抗体は3つ以上の結合特異性を有する。ある特定の態様において、結合特異性の一方はCD3へのものであり、他方は任意の他の抗原へのものである。ある特定の態様において、多重特異性抗体は、CD3の2つ(またはそれ以上)の異なるエピトープに結合し得る。多重特異性(例えば、二重特異性)抗体は、細胞傷害性薬剤又は細胞を、CD3を発現する細胞に局在化するために使用することもできる。多重特異性抗体は、完全長抗体又は抗体断片として調製することができる。
多重特異性抗体を作製する技術には、異なる特異性を有する2つの免疫グロブリン重鎖-軽鎖対の組換え同時発現(Milstein and Cuello,Nature 305:537(1983)を参照されたい)及び「ノブ・イン・ホール(konb-in-hole)」操作(例えば、米国特許第5,731,168号及びAtwell et al.,J.Mol.Biol.270:26(1997)を参照されたい)が挙げられるが、これらに限定されない。多重特異性抗体は、また、抗体Fcヘテロ二量体分子を作製するための静電ステアリング効果の操作(例えば、国際公開第2009/089004号を参照されたい);2つ以上の抗体若しくは断片の架橋(例えば、米国特許第4,676,980号及びBrennan et al.,Science,229:81(1985)を参照されたい);ロイシンジッパーを使用した二重特異性抗体の産生(例えば、Kostelny et al.,J.Immunol.,148(5):1547-1553(1992)及び国際公開第2011/034605号を参照されたい);軽鎖の誤対合問題を回避するための一般的な軽鎖技術の使用(例えば、国際公開第98/50431号を参照されたい);二重特異性抗体断片を作製するための「ダイアボディ」技術の使用(例えば、Hollinger et al.,Proc.Natl.Acad.Sci.USA 90:6444-6448(1993)を参照されたい);及び一本鎖Fv(sFv)二量体の使用(例えば、Gruber et al.,J.Immunol.,152:5368(1994)を参照されたい);並びに例えばTutt et al.J.Immunol.147:60(1991)に記載されている三重特異性抗体の調製によって作製することができる。
例えば、「オクトパス(Octopus)抗体」を含む3つ以上の抗原結合部位を有する操作抗体、又はDVD-Igも本明細書に含まれる(例えば、国際公開第2001/77342号及び国際公開第2008/024715号を参照されたい)。3つ以上の抗原結合部位を有する多重特異性抗体の他の例は、国際公開第2010/115589号、国際公開第2010/112193号、国際公開第2010/136172号、国際公開第2010/145792号及び国際公開第2013/026831号に見出すことができる。多重特異性抗体又はその抗原結合断片は、CD3に、同様に別の異なる抗原に、又はCD3の2つの異なるエピトープに結合する抗原結合部位を含む「二重作用FAb」又は「DAF」も含む(例えば、米国特許出願公開第2008/0069820号及び国際公開第2015/095539号を参照されたい)。
多重特異性抗体は、同じ抗原特異性の1つ又は複数の結合アームにドメインクロスオーバーを持つ非対称形態により、すなわち、VH/VLドメイン(例えば、国際公開第2009/080252号及び国際公開第2015/150447号を参照されたい)、CH1/CLドメイン(例えば、国際公開第2009/080253号を参照されたい)又は完全なFabアーム(例えば、国際公開第2009/080251号、国際公開第2016/016299号を参照されたい、またSchaefer et al,PNAS,108(2011)1187-1191及びKlein at al.,MAbs 8(2016)1010-20も参照されたい)を交換すること(いわゆる、「クロスマブ(CrossMab)」技術)によっても提供され得る。非対称Fabアームは、荷電又は非荷電アミノ酸変異をドメイン界面に導入して、正しいFab対合を方向づけることによっても操作され得る。例えば、国際公開第2016/172485号を参照されたい。
多重特異性抗体の様々なさらなる分子フォーマットが当該技術分野に知られており、本明細書に含まれる(例えば、Spiess et al.,Mol Immunol 67(2015)95-106を参照されたい)。
本明細書に同様に含まれる特定のタイプの多重特異性抗体は、標的細胞、例えば腫瘍細胞の表面抗原と、T細胞受容体(TCR)複合体の活性化不変構成要素、例えば、T細胞を再標的化して標的細胞を殺すためのCD3に、同時に結合するように設計された二重特異性抗体である。したがって、好ましい態様において、本明細書に提供される抗体は、結合特異性のうちの一方がCD3へのものであり、他方が標的細胞抗原へのものである多重特異性抗体、特に二重特異性抗体である。
この目的に有用であり得る二重特異性抗体フォーマットの例には、2つのscFv分子が柔軟なリンカーによって融合されている、いわゆる「BiTE」(二重特異性T細胞エンゲージャー(engager))分子(例えば、国際公開第2004/106381号、国際公開第2005/061547号、国際公開第2007/042261号及び国際公開第2008/119567号、Nagorsen and Baeuerle,Exp Cell Res 317,1255-1260(2011)を参照されたい);ダイアボディ(Holliger et al.,Prot Eng 9,299-305(1996))及びその誘導体、例えば、タンデムダイアボディ(「TandAb」;Kipriyanov et al.,J Mol Biol 293,41-56(1999));ダイアボディフォーマットに基づくが、さらなる安定化のためのC末端ジスルフィド架橋を特徴とする「DART」(二重親和性再標的化)分子(Johnson et al.,J Mol Biol 399,436-449(2010))、並びに全ハイブリッドマウス/ラットIgG分子、いわゆるトリオマブ(triomab)(Seimetz et al.,Cancer Treat Rev 36,458-467(2010)に概説されている)が挙げられるが、これらに限定されない。本明細書に含まれる特定のT細胞二重特異性抗体フォーマットは、国際公開第2013/026833号、国際公開第2013/026839号、国際公開第2016/020309号;Bacac et al.,Oncoimmunology 5(8)(2016)e1203498に記載されている。
本発明の多重特異性抗体の好ましい態様が以下に記載される。
一態様において、本発明は、本明細書に記載されているCD3に結合する第1の抗原結合ドメインを含み、かつ第2の抗原に結合する第2及び任意選択で第3の抗原結合ドメインを含む、CD3に結合する抗体を提供する。
本発明の好ましい態様によると、抗体に含まれる抗原結合ドメインはFab分子である(すなわち、重鎖及び軽鎖から構成される抗原結合ドメインであり、それぞれ可変ドメイン及び定常ドメインを含む)。一態様において、第1、第2及び/又は存在する場合は第3の抗原結合ドメインは、Fab分子である。一態様において、前記Fab分子は、ヒトのものである。好ましい態様において、前記Fab分子はヒト化されている。なお別の態様において、前記Fab分子は、ヒト重鎖及び軽鎖定常ドメインを含む。
好ましくは、抗原結合ドメインの少なくとも1つは、クロスオーバーFab分子である。このような改変は、異なるFab分子の重鎖と軽鎖の誤対合を低減し、それによって、組換え産生における本発明の(多重特異性)抗体の収率及び純度を改善する。本発明の(多重特異性)抗体に有用な好ましいクロスオーバーFab分子では、Fab軽鎖及びFab重鎖の可変ドメイン(それぞれ、VL及びVH)が交換されている。しかし、このドメイン交換によっても、(多重特異性)抗体の調製は、誤対合重鎖及び軽鎖の間の、いわゆる、ベンス・ジョーンズ型相互作用に起因して、ある特定の副生成物を含むことがある(Schaefer et al,PNAS,108(2011)11187-11191を参照されたい)。異なるFab分子の重鎖及び軽鎖の誤対合をさらに減少し、これにより望ましい(多重特異性)抗体の純度及び収率を増加するため、反対の電荷を有する荷電アミノ酸を、第1の抗原(CD3)に結合するFab分子又は第2の抗原(例えば、標的細胞抗原、例えばTYRP-1若しくはEGFRvIII)に結合するFab分子のいずれかのCH1及びCLドメインにおける特定のアミノ酸位置に導入することができ、本明細書にさらに記載される。電荷改変は、(多重特異性)抗体に含まれる従来のFab分子(例えば、図1A~C、G~Jに示されている)、又は(多重特異性)抗体に含まれるVH/VLクロスオーバーFab分子(例えば、図1D~F、K~Nに示されている)のいずれかにおいて行われる(しかし、両方ではない)。好ましい態様において、電荷改変は、(多重特異性)抗体に含まれる(好ましい態様では、第2の抗原、例えば標的細胞抗原、例えばTYRP-1又はEGFRvIIIに結合する)従来のFab分子において行われる。
本発明による好ましい態様において、(多重特異性)抗体は、第1の抗原(すなわち、CD3)及び第2の抗原(例えば、標的抗原、例えば、TYRP-1又はEGFRvIII)に同時に結合することができる。一態様において、(多重特異性)抗体は、CD3及び標的細胞抗原に同時に結合することにより、T細胞及び標的細胞を架橋することができる。さらにより好ましい態様において、そのような同時結合は、標的細胞、特に標的細胞抗原(例えば、TYRP-1又はEGFRvIII)発現腫瘍細胞の溶解を生じる。一態様において、そのような同時結合はT細胞の活性化を生じる。別の態様において、そのような同時結合は、増殖、分化、サイトカイン分泌、細胞傷害性エフェクター分子の放出、細胞傷害活性及び活性化マーカーの発現の群から選択されるTリンパ球、特に細胞傷害性Tリンパ球の細胞応答を生じる。一態様において、標的細胞抗原への同時結合を伴わないCD3への(多重特異性)抗体の結合は、T細胞活性化を生じない。
一態様において、(多重特異性)抗体は、T細胞の細胞傷害活性を標的細胞に向け直すことができる。好ましい態様において、この向け直しは、標的細胞によるMHC媒介ペプチド抗原提示及び/又はT細胞の特異性と無関係である。
好ましくは、本発明のいずれかの態様によるT細胞は細胞傷害性T細胞である。一部の態様において、T細胞は、CD4+又はCD8+T細胞、特にCD8+T細胞である。
a)第1の抗原結合ドメイン
本発明の(多重特異性)抗体は、CD3に結合する少なくとも1つの抗原結合ドメイン(第1の抗原結合ドメイン)を含む。好ましい態様において、CD3はヒトCD3(配列番号112)又はカニクイザルCD3(配列番号113)、とりわけヒトCD3である。一態様において、第1の抗原結合ドメインは、ヒト及びカニクイザルCD3と交差反応性がある(すなわち、それらに特異的に結合する)。一部の態様において、CD3はCD3のイプシロンサブユニット(CD3イプシロン)である。
好ましい態様において、(多重特異性)抗体は、CD3に結合する1つを超えない抗原結合ドメインを含む。一態様において、(多重特異性)抗体は、CD3に対する一価の結合を提供する。
一態様において、CD3に結合する抗原結合ドメインは、Fv分子、scFv分子、Fab分子及びF(ab’)2分子の群から選択される抗体断片である。好ましい態様において、CD3に結合する抗原結合ドメインはFab分子である。
好ましい態様において、CD3に結合する抗原結合ドメインは、本明細書に記載されるクロスオーバーFab分子、すなわち、Fab重鎖及び軽鎖の可変ドメインVH及びVL又は定常ドメインCH1及びCLが互いに交換されている/置き換わっているFab分子である。そのような態様において、第2の抗原(例えば、標的細胞抗原、例えば、TYRP-1又はEGFRvIII)に結合する抗原結合ドメインは、好ましくは従来のFab分子である。(多重特異性)抗体に含まれる第2の抗原に結合する1を超える抗原結合ドメイン、特にFab分子がある態様において、CD3に結合する抗原結合ドメインは、好ましくはクロスオーバーFab分子であり、第2の抗原に結合する抗原結合ドメインは、従来のFab分子である。
代替的な態様において、CD3に結合する抗原結合ドメインは、従来のFab分子である。そのような態様において、第2の抗原(例えば、標的細胞抗原、例えば、TYRP-1又はEGFRvIII)に結合する抗原結合ドメインは、本明細書に記載されるクロスオーバーFab分子、すなわち、Fab重鎖及び軽鎖の可変ドメインVH及びVL又は定常ドメインCH1及びCLが互いに交換されている/置き換わっているFab分子である。(多重特異性)抗体に含まれるCD3に結合する1つを超える抗原結合ドメイン、特にFab分子がある態様において、第2の抗原に結合する抗原結合ドメインは、好ましくはクロスオーバーFab分子であり、CD3に結合する抗原結合ドメインは、従来のFab分子である。
好ましい態様において、第1の抗原結合ドメインは、Fab軽鎖及びFab重鎖の可変ドメインVL及びVH又は定常ドメインCL及びCH1、特に可変ドメインVL及びVHは、互いに置き換わっているFab分子である(すなわち、そのような態様によると、第1の抗原結合ドメインは、Fab軽鎖及びFab重鎖の可変ドメイン又は定常ドメインが交換されているクロスオーバーFab分子である)。1つのそのような態様において、第2の(及び存在する場合、第3)の抗原結合ドメインは、従来のFab分子である。
一態様において、CD3に結合する1つを超えない抗原結合ドメインは、(多重特異性)抗体に存在する(すなわち、この抗体はCD3に対する一価の結合を提供する)。
b)第2(及び第3)の抗原結合ドメイン
ある特定の態様において、本発明の(多重特異性)抗体は、第2の抗原に結合する少なくとも1つの抗原結合ドメイン、特にFab分子を含む。第2の抗原は、好ましくはCD3でなく、すなわち、CD3と異なっている。一態様において、第2の抗原は、CD3と異なる細胞に発現する(例えば、T細胞以外の細胞に発現する)抗原である。一態様では、第2の抗原は、標的細胞抗原、特に腫瘍細胞抗原である。具体的な態様において、第2の抗原はTYRP-1である。別の具体的な態様において、第2の抗原はEGFRvIIIである。第2の抗原結合ドメインは、(多重特異性)抗体を標的部位へ、例えば、第2の抗原を発現する特定のタイプの腫瘍細胞へ向かわせることができる。
一態様において、第2の抗原に結合する抗原結合ドメインは、Fv分子、scFv分子、Fab分子及びF(ab’)2分子の群から選択される抗体断片である。好ましい態様において、第2の抗原に結合する抗原結合ドメインはFab分子である。
ある特定の態様において、(多重特異性)抗体は、第2の抗原に結合する2つの抗原結合ドメイン、特にFab分子を含む。好ましいそのような態様において、これらの抗原結合ドメインのそれぞれは、同じ抗原決定基に結合する。さらにより好ましい態様において、これらの抗原結合ドメインの全ては、同一であり、すなわち、同じ分子フォーマット(例えば、従来又はクロスオーバーFab分子)を有し、(存在する場合)本明細書に記載されるCH1及びCLドメインに同じアミノ酸置換を含むアミノ酸配列を含む。一態様において、(多重特異性)抗体は、第2の抗原に結合する2つを超えない抗原結合ドメイン、特にFab分子を含む。
好ましい態様において、第2の抗原に結合する抗原結合ドメインは、従来のFab分子である。そのような態様において、CD3に結合する抗原結合ドメインは、本明細書に記載されるクロスオーバーFab分子、すなわち、Fab重鎖及び軽鎖の可変ドメインVH及びVL又は定常ドメインCH1及びCLが互いに交換されている/置き換わっているFab分子である。
代替的な態様において、第2の抗原に結合する抗原結合ドメインは、本明細書に記載されるクロスオーバーFab分子、すなわち、Fab重鎖及び軽鎖の可変ドメインVH及びVL又は定常ドメインCH1及びCLが互いに交換されている/置き換わっているFab分子である。そのような態様において、CD3に結合する抗原結合ドメインは、従来のFab分子である。
一態様において、第2(及び存在する場合、第3)の抗原結合ドメインは、ヒト定常領域を含む。一態様において、第2(及び存在する場合、第3)の抗原結合ドメインは、ヒト定常領域、特にヒトCH1及び/又はCLドメインを含むFab分子である。ヒト定常ドメインの例示的な配列は、配列番号120及び121(それぞれ、ヒトカッパ及びラムダCLドメイン)、並びに配列番号122(ヒトIgG1重鎖定常ドメインCH1-CH2-CH3)で与えられる。一態様において、第2(及び存在する場合、第3)の抗原結合ドメインは、配列番号120又は配列番号121のアミノ酸配列、特に配列番号120のアミノ酸配列に少なくとも約95%、96%、97%、98%、99%又は100%同一のアミノ酸配列を含む軽鎖定常領域を含む。特に、軽鎖定常領域は、「電荷改変」の状態で本明細書に記載するアミノ酸変異を含んでいてもよい、及び/又は、クロスオーバーFab分子での場合、1つ又は複数の(特に2つの)N末端アミノ酸の欠失又は置換を含んでいてもよい。一部の態様において、第2(及び存在する場合、第3)の抗原結合ドメインは、配列番号122のアミノ酸配列に含まれるCH1ドメイン配列に少なくとも約95%、96%、97%、98%、99%又は100%同一のアミノ酸配列を含む重鎖定常領域を含む。特に、重鎖定常領域(具体的にはCH1ドメイン)は、「電荷改変」状態において本明細書に記載されるアミノ酸変異を含んでいてもよい。
TYRP-1
好ましい態様において、第2の抗原はTYRP-1、特にヒトTYRP-1(配列番号114)である。
一態様において、第2(及び存在する場合、第3)の抗原結合ドメインは、配列番号15の重鎖相補性決定領域(HCDR)1、配列番号16のHCDR2及び配列番号17のHCDR3を含む重鎖可変領域(VH)、並びに配列番号19の軽鎖相補性決定領域(LCDR)1、配列番号20のLCDR2及び配列番号21のLCDR3を含む軽鎖可変領域(VL)を含む。
一態様において、第2(及び存在する場合、第3)の抗原結合ドメインは、ヒト化抗体である(に由来する)。一態様において、第2(及び存在する場合、第3)の抗原結合ドメインは、ヒト化抗原結合ドメイン(すなわち、ヒト化抗体の抗原結合ドメイン)である。一態様において、第2(及び存在する場合、第3)の抗原結合ドメインのVH及び/又はVLは、ヒト化可変領域である。
一態様において、第2(及び存在する場合、第3)の抗原結合ドメインのVH及び/又はVLは、アクセプターヒトフレームワーク、例えば、ヒト免疫グロブリンフレームワーク又はヒトコンセンサスフレームワークを含む。
一態様において、第2(及び存在する場合、第3)の抗原結合ドメインのVHは、配列番号18の1つ又は複数の重鎖フレームワーク配列(すなわち、FR1、FR2、FR3及び/又はFR4配列)を含む。一態様において、VHは、配列番号18のアミノ酸配列に少なくとも約95%、約96%、約97%、約98%又は約99%同一のアミノ酸配列を含む。一態様において、VHは、配列番号18のアミノ酸配列に少なくとも約95%同一のアミノ酸配列を含む。一態様において、VHは、配列番号18のアミノ酸配列に少なくとも約98%同一のアミノ酸配列を含む。ある特定の態様において、少なくとも約95%、約96%、約97%、約98%又は約99%の同一性を有するVH配列は、基準配列と比べて、置換(例えば、保存的置換)、挿入又は欠失を含有するが、その配列を含む抗体はTYRP-1に結合する能力を保持する。ある特定の態様では、合計で1~10個のアミノ酸が、配列番号18のアミノ酸配列において置換、挿入及び/又は欠失されている。ある特定の態様では、置換、挿入、又は欠失は、CDRの外側の領域で(すなわち、FRで)生じる。一態様において、VHは、配列番号18のアミノ酸配列を含む。任意選択で、VHは、配列番号18のアミノ酸配列を含み、その配列の翻訳後修飾を含む。
一態様において、第2(及び存在する場合、第3)の抗原結合ドメインのVLは、配列番号22の1つ又は複数の軽鎖フレームワーク配列(すなわち、FR1、FR2、FR3及び/又はFR4配列)を含む。一態様において、VLは、配列番号22のアミノ酸配列に少なくとも約95%、約96%、約97%、約98%又は約99%同一のアミノ酸配列を含む。一態様において、VLは、配列番号22のアミノ酸配列に少なくとも約95%同一のアミノ酸配列を含む。一態様において、VLは、配列番号22のアミノ酸配列に少なくとも約98%同一のアミノ酸配列を含む。ある特定の態様において、少なくとも約95%、約96%、約97%、約98%又は約99%の同一性を有するVL配列は、基準配列と比べて、置換(例えば、保存的置換)、挿入又は欠失を含有するが、その配列を含む抗体はTYRP-1に結合する能力を保持する。ある特定の態様では、合計で1~10個のアミノ酸が、配列番号22のアミノ酸配列において置換、挿入及び/又は欠失されている。ある特定の態様では、置換、挿入、又は欠失は、CDRの外側の領域で(すなわち、FRで)生じる。一態様において、VLは、配列番号22のアミノ酸配列を含む。任意選択で、VLは、配列番号22のアミノ酸配列を含み、その配列の翻訳後修飾を含む。
一態様において、第2(及び存在する場合、第3)の抗原結合ドメインのVHは、配列番号18のアミノ酸配列に少なくとも約95%、96%、97%、98%、又は99%同一のアミノ酸配列を含み、第2(及び存在する場合、第3)の抗原結合ドメインのVLは、配列番号22のアミノ酸配列に少なくとも約95%、96%、97%、98%、又は99%同一のアミノ酸配列を含む。一態様において、VHは配列番号18のアミノ酸配列を含み、VLは配列番号22のアミノ酸配列を含む。
さらなる態様において、第2(及び存在する場合、第3)の抗原結合ドメインは、配列番号18の配列を含むVH及び配列番号22の配列を含むVLを含む。
さらなる態様において、第2(及び存在する場合、第3)の抗原結合ドメインは、配列番号18のVH配列及び配列番号22のVL配列を含む。
別の態様において、第2(及び存在する場合、第3)の抗原結合ドメインは、配列番号18のVHの重鎖CDR配列を含むVH及び配列番号22のVLの軽鎖CDR配列を含むVLを含む。
さらなる態様において、第2(及び存在する場合、第3)の抗原結合ドメインは、配列番号18のVHのHCDR1、HCDR2及びHCDR3のアミノ酸配列、並びに配列番号22のVLのLCDR1、LCDR2及びLCDR3のアミノ酸配列を含む。
一態様において、第2(及び存在する場合、第3)の抗原結合ドメインのVHは、配列番号18のVHの重鎖CDR配列、及び配列番号18のVHのフレームワーク配列に少なくとも95%、96%、97%、98%又は99%の配列同一性のあるフレームワークを含む。一態様において、VHは、配列番号18のVHの重鎖CDR配列、及び配列番号18のVHのフレームワーク配列に少なくとも95%の配列同一性のあるフレームワークを含む。別の態様において、VHは、配列番号18のVHの重鎖CDR配列、及び配列番号18のVHのフレームワーク配列に少なくとも98%の配列同一性のあるフレームワークを含む。
一態様において、第2(及び存在する場合、第3)の抗原結合ドメインのVLは、配列番号22のVLの軽鎖CDR配列、及び配列番号22のVLのフレームワーク配列に少なくとも95%、96%、97%、98%又は99%の配列同一性のあるフレームワークを含む。一態様において、VLは、配列番号22のVLの軽鎖CDR配列、及び配列番号22のVLのフレームワーク配列に少なくとも95%の配列同一性のあるフレームワークを含む。別の態様において、VLは、配列番号22のVLの軽鎖CDR配列、及び配列番号22のVLのフレームワーク配列に少なくとも98%の配列同一性のあるフレームワークを含む。
EGFRvIII
好ましい態様において、第2の抗原はEGFRvIII、特にヒトEGFRvIII(配列番号115)である。
一態様において、第2(及び存在する場合、第3)の抗原結合ドメインは、配列番号85の重鎖相補性決定領域(HCDR)1、配列番号86のHCDR2及び配列番号87のHCDR3を含む重鎖可変領域(VH)、並びに配列番号89の軽鎖相補性決定領域(LCDR)1、配列番号90のLCDR2及び配列番号91のLCDR3を含む軽鎖可変領域(VL)を含む。
一態様において、第2(及び存在する場合、第3)の抗原結合ドメインは、ヒト化抗体である(に由来する)。一態様において、第2(及び存在する場合、第3)の抗原結合ドメインは、ヒト化抗原結合ドメイン(すなわち、ヒト化抗体の抗原結合ドメイン)である。一態様において、第2(及び存在する場合、第3)の抗原結合ドメインのVH及び/又はVLは、ヒト化可変領域である。
一態様において、第2(及び存在する場合、第3)の抗原結合ドメインのVH及び/又はVLは、アクセプターヒトフレームワーク、例えば、ヒト免疫グロブリンフレームワーク又はヒトコンセンサスフレームワークを含む。
一態様において、第2(及び存在する場合、第3)の抗原結合ドメインのVHは、配列番号88の1つ又は複数の重鎖フレームワーク配列(すなわち、FR1、FR2、FR3及び/又はFR4配列)を含む。一態様において、VHは、配列番号88のアミノ酸配列に少なくとも約95%、約96%、約97%、約98%又は約99%同一のアミノ酸配列を含む。一態様において、VHは、配列番号88のアミノ酸配列に少なくとも約95%同一のアミノ酸配列を含む。一態様において、VHは、配列番号88のアミノ酸配列に少なくとも約98%同一のアミノ酸配列を含む。ある特定の態様において、少なくとも約95%、約96%、約97%、約98%又は約99%の同一性を有するVH配列は、基準配列と比べて、置換(例えば、保存的置換)、挿入又は欠失を含むが、その配列を含む抗体はEGFRvIIIに結合する能力を保持する。ある特定の態様では、合計で1~10個のアミノ酸が、配列番号88のアミノ酸配列において置換、挿入及び/又は欠失されている。ある特定の態様では、置換、挿入、又は欠失は、CDRの外側の領域で(すなわち、FRで)生じる。一態様において、VHは、配列番号88のアミノ酸配列を含む。任意選択で、VHは、配列番号88のアミノ酸配列を含み、その配列の翻訳後修飾を含む。
一態様において、第2(及び存在する場合、第3)の抗原結合ドメインのVLは、配列番号92の1つ又は複数の軽鎖フレームワーク配列(すなわち、FR1、FR2、FR3及び/又はFR4配列)を含む。一態様において、VLは、配列番号92のアミノ酸配列に少なくとも約95%、約96%、約97%、約98%又は約99%同一のアミノ酸配列を含む。一態様において、VLは、配列番号92のアミノ酸配列に少なくとも約95%同一のアミノ酸配列を含む。一態様において、VLは、配列番号92のアミノ酸配列に少なくとも約98%同一のアミノ酸配列を含む。ある特定の態様において、少なくとも約95%、約96%、約97%、約98%又は約99%の同一性を有するVL配列は、基準配列と比べて、置換(例えば、保存的置換)、挿入又は欠失を含むが、その配列を含む抗体はEGFRvIIIに結合する能力を保持する。ある特定の態様では、合計で1~10個のアミノ酸が、配列番号92のアミノ酸配列において置換、挿入及び/又は欠失されている。ある特定の態様では、置換、挿入、又は欠失は、CDRの外側の領域で(すなわち、FRで)生じる。一態様において、VLは、配列番号92のアミノ酸配列を含む。任意選択で、VLは、配列番号92のアミノ酸配列を含み、その配列の翻訳後修飾を含む。
一態様において、第2(及び存在する場合、第3)の抗原結合ドメインのVHは、配列番号88のアミノ酸配列に少なくとも約95%、96%、97%、98%、又は99%同一のアミノ酸配列を含み、第2(及び存在する場合、第3)の抗原結合ドメインのVLは、配列番号92のアミノ酸配列に少なくとも約95%、96%、97%、98%、又は99%同一のアミノ酸配列を含む。一態様において、VHは配列番号88のアミノ酸配列を含み、VLは配列番号92のアミノ酸配列を含む。
さらなる態様において、第2(及び存在する場合、第3)の抗原結合ドメインは、配列番88の配列を含むVH及び配列番号92の配列を含むVLを含む。
さらなる態様において、第2(及び存在する場合、第3)の抗原結合ドメインは、配列番号88のVH配列及び配列番号92のVL配列を含む。
別の態様において、第2(及び存在する場合、第3)の抗原結合ドメインは、配列番号88のVHの重鎖CDR配列を含むVH及び配列番号92のVLの軽鎖CDR配列を含むVLを含む。
さらなる態様において、第2(及び存在する場合、第3)の抗原結合ドメインは、配列番号88のVHのHCDR1、HCDR2及びHCDR3のアミノ酸配列、並びに配列番号92のVLのLCDR1、LCDR2及びLCDR3のアミノ酸配列を含む。
一態様において、第2(及び存在する場合、第3)の抗原結合ドメインのVHは、配列番号88のVHの重鎖CDR配列、及び配列番号88のVHのフレームワーク配列に少なくとも95%、96%、97%、98%又は99%の配列同一性のあるフレームワークを含む。一態様において、VHは、配列番号88のVHの重鎖CDR配列、及び配列番号88のVHのフレームワーク配列に少なくとも95%の配列同一性のあるフレームワークを含む。別の態様において、VHは、配列番号88のVHの重鎖CDR配列、及び配列番号88のVHのフレームワーク配列に少なくとも98%の配列同一性のあるフレームワークを含む。
一態様において、第2(及び存在する場合、第3)の抗原結合ドメインのVLは、配列番号92のVLの軽鎖CDR配列、及び配列番号92のVLのフレームワーク配列に少なくとも95%、96%、97%、98%又は99%の配列同一性のあるフレームワークを含む。一態様において、VLは、配列番号92のVLの軽鎖CDR配列、及び配列番号92のVLのフレームワーク配列に少なくとも95%の配列同一性のあるフレームワークを含む。別の態様において、VLは、配列番号92のVLの軽鎖CDR配列、及び配列番号92のVLのフレームワーク配列に少なくとも98%の配列同一性のあるフレームワークを含む。
代替的な態様において、第2(及び存在する場合、第3)の抗原結合ドメインは、EGFRvIIIに関して、このセクション上記に提供された態様のいずれかのVH配列、及びEGFRvIIIに関して、このセクション上記に提供された態様のいずれかのVLの配列を含むが、配列番号85(HCDR1)、86(HCDR2)、87(HCDR3)、88(VH)、89(LCDR1)、90(LCDR2)、91(LCDR3)及び92(VL)の代わりに、以下の配列(列の順)に基づいている。
一態様において、第2(及び存在する場合、第3)抗原結合ドメインは、このセクション上記に提供された態様のいずれかのVH配列及びこのセクション上記に提供された態様のいずれかのVL配列を含む。
抗TYRP-1及び抗EGFRvIII抗体
本発明は、また、TYRP-1に関して、このセクション上記に提供された態様のいずれかのVH配列、及びTYRP-1に関して、このセクション上記に提供された態様のいずれかのVL配列を含む、TYRP-1に結合する抗体(例えば、配列番号15の重鎖相補性決定領域(HCDR)1、配列番号16のHCDR2及び配列番号17のHCDR3を含む重鎖可変領域(VH)、並びに配列番号19の軽鎖相補性決定領域(LCDR)1、配列番号20のLCDR2及び配列番号21のLCDR3を含む軽鎖可変領域(VL)を含む、TYRP-1に結合する抗体、又は配列番号18の配列を含むVH及び配列番号22の配列を含むVLを含む、TYRP-1に結合する抗体)も提供する。
本発明は、また、EGFRvIIIに関して、このセクション上記に提供された態様のいずれかのVH配列、及びEGFRvIIIに関して、このセクション上記に提供された態様のいずれかのVL配列を含む、EGFRvIIIに結合する抗体(例えば、配列番号85の重鎖相補性決定領域(HCDR)1、配列番号86のHCDR2及び配列番号87のHCDR3を含む重鎖可変領域(VH)、並びに配列番号89の軽鎖相補性決定領域(LCDR)1、配列番号90のLCDR2及び配列番号91のLCDR3を含む軽鎖可変領域(VL)を含む、EGFRvIIIに結合する抗体、又は配列番号88の配列を含むVH及び配列番号92の配列を含むVLを含む、TYRP-1に結合する抗体)も提供する。
さらなる態様において、上記の態様のいずれかによるTYRP-1又はEGFRvIIIに結合する抗体は、CD3に結合する抗体に関して記載された特徴のいずれかを、単特で又は組み合わせて組み込むことができる(抗CD3抗体、例えば、結合配列を明確に特定しない限り)。
c)電荷改変
本発明の(多重特異性)抗体は、それに含まれるFab分子に、1つ(又は2つより多い抗原結合Fab分子を含む分子の場合には、さらに多くの)結合アーム中にVH/VL交換を有するFabベース多重特異性抗体の産生により生じ得る、適合しない重鎖との軽鎖の誤対合(ベンス・ジョーンズ型副生成物)を低減するのに特に効率的であるアミノ酸置換を含んでいてもよい(その全体が本明細書に参照により組み込まれるPCT出願国際公開第2015/150447号、特にその中の実施例も参照されたい)。所望ではない副生成物、特に、結合アームの1つの中にVH/VLドメインの交換を有する多重特異性抗体に生じるベンス・ジョーンズ型副生成物と比較した所望の(多重特異性)抗体の比を、CH1及びCLドメインの特定のアミノ酸位置に反対の電荷を有する荷電アミノ酸を導入することによって改善することができる(本明細書において、「電荷改変」と呼ばれることがある)。
したがって、(多重特異性)抗体の第1及び第2の(及び存在する場合、第3の)抗原結合ドメインが両方ともFab分子であり、抗原結合ドメインの1つ(特に、第1の抗原結合ドメイン)において、Fab軽鎖及びFab重鎖の可変ドメインVL及びVHが互いに置き換わっている、一部の態様では、
i)第2(及び存在する場合、第3)の抗原結合ドメインの定常ドメインCLにおいて、位置124のアミノ酸は、正に帯電したアミノ酸で置換されており(Kabatによるナンバリング)、第2(及び存在する場合、第3)の抗原結合ドメインの定常ドメインCH1において、位置147のアミノ酸又は位置213のアミノ酸は、負に帯電したアミノ酸で置換されている(Kabat EUインデックスによるナンバリング)、あるいは
ii)第1の抗原結合ドメインの定常ドメインCLにおいて、位置124のアミノ酸は、正に帯電したアミノ酸で置換されており(Kabatによるナンバリング)、第1の抗原結合ドメインの定常ドメインCH1において、位置147のアミノ酸又は位置213のアミノ酸は、負に帯電したアミノ酸で置換されている(Kabat EUインデックスによるナンバリング)。
(多重特異性)抗体は、i)及びii)に記述されている改変を両方とも含むことはない。VH/VL交換を有する抗原結合ドメインの定常ドメインCL及びCH1は、互いに置き換えられていない(すなわち、交換されていないままである)。
より具体的な態様では、
i)第2(及び存在する場合、第3)の抗原結合ドメインの定常ドメインCLにおいて、位置124のアミノ酸は、リジン(K)、アルギニン(R)又はヒスチジン(H)により独立して置換されており(Kabatによるナンバリング)、第2(及び存在する場合、第3)の抗原結合ドメインの定常ドメインCH1において、位置147のアミノ酸又は位置213のアミノ酸は、グルタミン酸(E)又はアスパラギン酸(D)により独立して置換されている(Kabat EUインデックスによるナンバリング)、あるいは
ii)第1の抗原結合ドメインの定常ドメインCLにおいて、位置124のアミノ酸は、リジン(K)、アルギニン(R)又はヒスチジン(H)により独立して置換されており(Kabatによるナンバリング)、第1の抗原結合ドメインの定常ドメインCH1において、位置147のアミノ酸又は位置213のアミノ酸は、グルタミン酸(E)又はアスパラギン酸(D)により独立して置換されている(Kabat EUインデックスによるナンバリング)。
1つのこのような態様では、第2(及び存在する場合、第3)の抗原結合ドメインの定常ドメインCLにおいて、位置124のアミノ酸は、リジン(K)、アルギニン(R)又はヒスチジン(H)により独立して置換されており(Kabatによるナンバリング)、第2(及び存在する場合、第3)の抗原結合ドメインの定常ドメインCH1において、位置147のアミノ酸又は位置213のアミノ酸は、グルタミン酸(E)又はアスパラギン酸(D)により独立して置換されている(Kabat EUインデックスによるナンバリング)。
さらなる態様では、第2(及び存在する場合、第3)の抗原結合ドメインの定常ドメインCLにおいて、位置124のアミノ酸は、リジン(K)、アルギニン(R)又はヒスチジン(H)により独立して置換されており(Kabatによるナンバリング)、第2(及び存在する場合、第3)の抗原結合ドメインの定常ドメインCH1において、位置147のアミノ酸は、グルタミン酸(E)又はアスパラギン酸(D)により独立して置換されている(Kabat EUインデックスによるナンバリング)。
好ましい態様では、第2(及び存在する場合、第3)の抗原結合ドメインの定常ドメインCLにおいて、位置124のアミノ酸は、リジン(K)、アルギニン(R)又はヒスチジン(H)により独立して置換されており(Kabatによるナンバリング)、位置123のアミノ酸は、リジン(K)、アルギニン(R)又はヒスチジン(H)により独立して置換されており(Kabatによるナンバリング)、第2(及び存在する場合、第3)の抗原結合ドメインの定常ドメインCH1において、位置147のアミノ酸は、グルタミン酸(E)又はアスパラギン酸(D)により独立して置換されており(Kabat EUインデックスによるナンバリング)、位置213のアミノ酸は、グルタミン酸(E)又はアスパラギン酸(D)により独立して置換されている(Kabat EUインデックスによるナンバリング)。
より好ましい態様では、第2(及び存在する場合、第3)の抗原結合ドメインの定常ドメインCLにおいて、位置124のアミノ酸はリジン(K)により置換されており(Kabatによるナンバリング)、位置123のアミノ酸はリジン(K)により置換されており(Kabatによるナンバリング)、第2(及び存在する場合、第3)の抗原結合ドメインの定常ドメインCH1において、位置147のアミノ酸はグルタミン酸(E)により置換されており(Kabat EUインデックスによるナンバリング)、位置213のアミノ酸はグルタミン酸(E)により置換されている(Kabat EUインデックスによるナンバリング)。
さらにより好ましい態様では、第2(及び存在する場合、第3)の抗原結合ドメインの定常ドメインCLにおいて、位置124のアミノ酸はリジン(K)によって置換されており(Kabatによるナンバリング)、位置123のアミノ酸はアルギニン(R)によって置換されており(Kabatによるナンバリング)、第2(及び存在する場合、第3)の抗原結合ドメインの定常ドメインCH1において、位置147のアミノ酸はグルタミン酸(E)により置換されており(Kabat EUインデックスによるナンバリング)、位置213のアミノ酸はグルタミン酸(E)により置換されている(Kabat EUインデックスによるナンバリング)。
好ましい態様において、上記の態様によるアミノ酸置換が、第2(及び存在する場合、第3)の抗原結合ドメインの定常ドメインCL及び定常ドメインCH1に行われる場合、第2(及び存在する場合、第3)の抗原結合ドメインの定常ドメインCLは、カッパアイソタイプである。
あるいは、上記の態様によるアミノ酸置換は、第2(及び存在する場合、第3)の抗原結合ドメインの定常ドメインCL及び定常ドメインCH1の代わりに、第1の抗原結合ドメインの定常ドメインCL及び定常ドメインCH1において行われる。好ましいこのような態様において、第1の抗原結合ドメインの定常ドメインCLは、カッパアイソタイプである。
したがって、一態様では、第1の抗原結合ドメインの定常ドメインCLにおいて、位置124のアミノ酸は、リジン(K)、アルギニン(R)又はヒスチジン(H)により独立して置換されており(Kabatによるナンバリング)、第1の抗原結合ドメインの定常ドメインCH1において、位置147のアミノ酸又は位置213のアミノ酸は、グルタミン酸(E)又はアスパラギン酸(D)により独立して置換されている(Kabat EUインデックスによるナンバリング)。
さらなる態様では、第1の抗原結合ドメインの定常ドメインCLにおいて、位置124のアミノ酸は、リジン(K)、アルギニン(R)又はヒスチジン(H)により独立して置換されており(Kabatによるナンバリング)、第1の抗原結合ドメインの定常ドメインCH1において、位置147のアミノ酸は、グルタミン酸(E)又はアスパラギン酸(D)により独立して置換されている(Kabat EUインデックスによるナンバリング)。
なお別の態様では、第1の抗原結合ドメインの定常ドメインCLにおいて、位置124のアミノ酸は、リジン(K)、アルギニン(R)又はヒスチジン(H)により独立して置換されており(Kabatによるナンバリング)、位置123のアミノ酸は、リジン(K)、アルギニン(R)又はヒスチジン(H)により独立して置換されており(Kabatによるナンバリング)、第1の抗原結合ドメインの定常ドメインCH1において、位置147のアミノ酸は、グルタミン酸(E)又はアスパラギン酸(D)により独立して置換されており(Kabat EUインデックスによるナンバリング)、位置213のアミノ酸は、グルタミン酸(E)又はアスパラギン酸(D)により独立して置換されている(Kabat EUインデックスによるナンバリング)。
一態様では、第1の抗原結合ドメインの定常ドメインCLにおいて、位置124のアミノ酸はリジン(K)により置換されており(Kabatによるナンバリング)、位置123のアミノ酸はリジン(K)によって置換されており(Kabatによるナンバリング)、第1の抗原結合ドメインの定常ドメインCH1において、位置147のアミノ酸はグルタミン酸(E)によって置換されており(Kabat EUインデックスによるナンバリング)、位置213のアミノ酸はグルタミン酸(E)によって置換されている(Kabat EUインデックスによるナンバリング)。
別の態様では、第1の抗原結合ドメインの定常ドメインCLにおいて、位置124のアミノ酸はリジン(K)により置換されており(Kabatによるナンバリング)、位置123のアミノ酸はアルギニン(R)により置換されており(Kabatによるナンバリング)、第1の抗原結合ドメインの定常ドメインCH1において、位置147のアミノ酸はグルタミン酸(E)により置換されており(Kabat EUインデックスによるナンバリング)、位置213のアミノ酸はグルタミン酸(E)により置換されている(Kabat EUインデックスによるナンバリング)。
好ましい態様において、本発明の(多重特異性)抗体は、
(a)CD3に結合する第1の抗原結合ドメインであって、この第1の抗原結合ドメインは、Fab軽鎖及びFab重鎖の可変ドメインVL及びVHが互いに置き換えられており、かつ配列番号2の重鎖相補性決定領域(HCDR)1、配列番号3のHCDR2及び配列番号5のHCDR3を含む重鎖可変領域(VH)、並びに配列番号8の軽鎖相補性決定領域(LCDR)1、配列番号9のLCDR2及び配列番号10のLCDR3を含む軽鎖可変領域(VL)を含む、Fab分子である、第1の抗原結合ドメインと、
(b)第2の抗原に結合する第2及び任意選択的な第3の抗原結合ドメインであって、第2(及び存在する場合、第3)の抗原結合ドメインの定常ドメインCLにおいて、位置124のアミノ酸が、リジン(K)、アルギニン(R)又はヒスチジン(H)により独立して(好ましい態様では、リジン(K)又はアルギニン(R)により独立して)置換されており(Kabatによるナンバリング)、位置123のアミノ酸が、リジン(K)、アルギニン(R)又はヒスチジン(H)により独立して(好ましい態様では、リジン(K)又はアルギニン(R)により独立して)置換されており(Kabatによるナンバリング)、第2(及び存在する場合、第3)の抗原結合ドメインの定常ドメインCH1において、位置147のアミノ酸が、グルタミン酸(E)又はアスパラギン酸(D)により独立して置換されており(Kabat EUインデックスによるナンバリング)、位置213のアミノ酸が、グルタミン酸(E)又はアスパラギン酸(D)により独立して置換されている(Kabat EUインデックスによるナンバリング)、第2の抗原結合ドメイン及び第3の抗原結合ドメインと、を含む。
d)多重特異性抗体フォーマット
本発明による(多重特異性)抗体は、様々な構造を有することができる。例示的な構造が図1に描写されている。
好ましい態様において、(多重特異性)抗体に含まれる抗原結合ドメインは、Fab分子である。このような態様において、第1、第2、第3などの抗原結合ドメインは、それぞれ本明細書において第1、第2、第3などのFab分子と呼ばれることがある。
一態様において、(多重特異性)抗体の第1及び第2の抗原結合ドメインは、任意選択でペプチドリンカーを介して互いに融合している。好ましい態様において、第1及び第2の抗原結合ドメインは、それぞれFab分子である。1つのそのような態様において、第1の抗原結合ドメインは、Fab重鎖のC末端で第2の抗原結合ドメインのFab重鎖のN末端に融合している。別のそのような態様において、第2の抗原結合ドメインは、Fab重鎖のC末端で第1の抗原結合ドメインのFab重鎖のN末端に融合している。(i)第1の抗原結合ドメインがFab重鎖のC末端で第2の抗原結合ドメインのFab重鎖のN末端に融合している、又は(ii)第2の抗原結合ドメインがFab重鎖のC末端で第1の抗原結合ドメインのFab重鎖のN末端に融合している態様において、追加的に、第1の抗原結合ドメインのFab軽鎖及び第2の抗原結合ドメインのFab軽鎖は、任意選択でペプチドリンカーを介して互いに融合していてもよい。
第2の抗原、例えば、標的細胞抗原、例えばTYRP-1又はEGFRvIIIに特異的に結合することができる単一の抗原結合ドメイン(例えば、Fab分子)を有する(多重特異性)抗体(例えば、図1A、D、G、H、K、Lに示されている)は、第2の抗原の内部移行が高親和性抗原結合ドメインの結合の後で予測される場合に特に有用である。そのような場合、第2の抗原に特異的な1つを超える抗原結合ドメインの存在は、第2の抗原の内部移行を増強し、それによって第2の抗原の利用能を低減し得る。
しかし他の場合において、第2の抗原、例えば、標的細胞抗原に特異的な2つ以上の抗原結合ドメイン(例えば、Fab分子)を、例えば、標的部位への標的化を最適化するため又は標的細胞抗原の架橋を可能にするために含む(多重特異性)抗体(例えば、図1B、1C、1E、1F、1I、1J,1M又は1Nに示されているものを参照されたい)を有することが有利である。
したがって、好ましい態様において、本発明の(多重特異性)抗体は第3の抗原結合ドメインを含む。
一態様において、第3の抗原結合ドメインは第2の抗原、例えば、標的細胞抗原、例えばTYRP-1又はEGFRvIIIに結合する。一態様において、第3の抗原結合ドメインはFab分子である。
一態様において、第3の抗原結合ドメインは、第2の抗原結合ドメインと同一である。
一部の態様において、第3及び第2の抗原結合ドメインは、それぞれFab分子であり、第3の抗原結合ドメインは、第2の抗原結合ドメインと同一である。故に、これらの態様において、第2及び第3の抗原結合ドメインは、同じ重鎖及び軽鎖アミノ酸配列を含み、同じドメイン配置(すなわち、従来又はクロスオーバー)を有する。さらに、これらの態様において、第3の抗原結合ドメインは、存在する場合、第2の抗原結合ドメインと同じアミノ酸置換を含む。例えば、本明細書において「電荷改変」と記載されるアミノ酸置換は、第2の抗原結合ドメイン及び第3の抗原結合ドメインのそれぞれの定常ドメインCL及び定常ドメインCH1において行われる。あるいは、前記アミノ酸置換は、第1の抗原結合ドメイン(好ましい態様において、これはFab分子でもある)の定常ドメインCL及び定常ドメインCH1において行われ得るが、第2の抗原結合ドメイン及び第3の抗原結合ドメインの定常ドメインCL及び定常ドメインCH1では行われない。
第2の抗原結合ドメインと同様に、第3の抗原結合ドメインは、好ましくは従来のFab分子である。しかし、第2及び第3の抗原結合ドメインがクロスオーバーFab分子である(並びに、第1の抗原結合ドメインが従来のFab分子である)態様も考慮される。故に、好ましい態様において、第2及び第3の抗原結合ドメインは、それぞれ従来のFab分子であり、第1の抗原結合ドメインは、本明細書に記載されるクロスオーバーFab分子、すなわち、Fab重鎖及び軽鎖の可変ドメインVH及びVL又は定常ドメインCL及びCH1が互いに交換されている/置き換わっているFab分子である。他の態様において、第2及び第3の抗原結合ドメインは、それぞれクロスオーバーFab分子であり、第1の抗原結合ドメインは従来のFab分子である。
第3の抗原結合ドメインが存在する場合、好ましい態様において、第1の抗原結合ドメインはCD3に結合し、第2及び第3の抗原結合ドメインは、第2の抗原、特に標的細胞抗原、例えばTYRP-1又はEGFRvIIIに結合する。
好ましい態様において、本発明の(多重特異性)抗体は、第1及び第2のサブユニットからなるFcドメインを含む。Fcドメインの第1及び第2のサブユニットは、安定な会合が可能である。
本発明の(多重特異性)抗体は、異なる構造を有することができ、すなわち、第1、第2(及び任意選択で、第3)の抗原結合ドメインは互いに、また異なる様式でFcドメインに融合していてもよい。構成要素は、直接的に又は好ましくは1つ又は複数の適切なペプチドリンカーを介して互いに融合していてもよい。Fab分子の融合が、FcドメインのサブユニットのN末端へのものである場合、それは典型的には免疫グロブリンヒンジ領域を介するものである。
一部の態様において、第1及び第2の抗原結合ドメインは、それぞれFab分子であり、第1の抗原結合ドメインは、Fab重鎖のC末端でFcドメインの第1又は第2のサブユニットのN末端に融合している。そのような態様において、第2の抗原結合ドメインは、Fab重鎖のC末端で第1の抗原結合ドメインのFab重鎖のN末端又はFcドメインの他方のサブユニットのN末端に融合していてもよい。好ましいそのような態様において、第2の抗原結合ドメインは従来のFab分子であり、第1の抗原結合ドメインは本明細書に記載されるクロスオーバーFab分子、すなわち、Fab重鎖及び軽鎖の可変ドメインVH及びVL又は定常ドメインCL及びCH1が互いに交換されている/置き換わっているFab分子である。他のそのような態様において、第2の抗原結合ドメインはクロスオーバーFab分子であり、第1の抗原結合ドメインは従来のFab分子である。
一態様において、第1及び第2の抗原結合ドメインは、それぞれFab分子であり、第1の抗原結合ドメインは、Fab重鎖のC末端でFcドメインの第1又は第2のサブユニットのN末端に融合しており、第2の抗原結合ドメインは、Fab重鎖のC末端で第1の抗原結合ドメインのFab重鎖のN末端に融合している。具体的な態様において、(多重特異性)抗体は、第1及び第2のFab分子、第1及び第2のサブユニットからなるFcドメイン、並びに任意選択で1つ又は複数のペプチドリンカーから実質的になり、第2のFab分子は、Fab重鎖のC末端で第1のFab分子のFab重鎖のN末端に融合しており、第1のFab分子は、Fab重鎖のC末端でFcドメインの第1又は第2のサブユニットのN末端に融合している。そのような構造は、図1G及び1Kに概略的に描写されている(これらの例における第1の抗原結合ドメインは、VH/VLクロスオーバーFab分子である)。任意選択で、第1のFab分子のFab軽鎖及び第2のFab分子のFab軽鎖は、追加的に互いに融合していてもよい。
別の態様において、第1及び第2の抗原結合ドメインは、それぞれFab分子であり、第1及び第2の抗原結合ドメインは、それぞれFab重鎖のC末端でFcドメインのサブユニットの1つのN末端に融合している。具体的な態様において、(多重特異性)抗体は、第1及び第2のFab分子、第1及び第2のサブユニットからなるFcドメイン、並びに任意選択で1つ又は複数のペプチドリンカーから実質的になり、第1及び第2のFab分子は、それぞれFab重鎖のC末端でFcドメインのサブユニットの1つのN末端に融合している。そのような構造は、図1A及び1Dに概略的に描写されている(これらの例において、第1の抗原結合ドメインはVH/VLクロスオーバーFab分子であり、第2の抗原結合ドメインは従来のFab分子である)。第1及び第2のFab分子は、Fcドメインに直接的に又はペプチドリンカーを介して融合していてもよい。好ましい態様において、第1及び第2のFab分子は、免疫グロブリンヒンジ領域を介して、それぞれFcドメインに融合している。具体的な態様において、免疫グロブリンヒンジ領域はヒトIgG1ヒンジ領域であり、特に、FcドメインはIgG1 Fcドメインである。
一部の態様において、第1及び第2の抗原結合ドメインは、それぞれFab分子であり、第2の抗原結合ドメインは、Fab重鎖のC末端でFcドメインの第1又は第2のサブユニットのN末端に融合している。そのような態様において、第1の抗原結合ドメインは、Fab重鎖のC末端で第1の抗原結合ドメインのFab重鎖のN末端又は(上記に記載されたように)Fcドメインの他方のサブユニットのN末端に融合していてもよい。好ましいそのような態様において、前記第2の抗原結合ドメインは従来のFab分子であり、第1の抗原結合ドメインは本明細書に記載されるクロスオーバーFab分子、すなわち、Fab重鎖及び軽鎖の可変ドメインVH及びVL又は定常ドメインCL及びCH1が互いに交換されている/置き換わっているFab分子である。他のそのような態様において、前記第2の抗原結合ドメインはクロスオーバーFab分子であり、第1の抗原結合ドメインは従来のFab分子である。
一態様において、第1及び第2の抗原結合ドメインは、それぞれFab分子であり、第2の抗原結合ドメインは、Fab重鎖のC末端でFcドメインの第1又は第2のサブユニットのN末端に融合しており、第1の抗原結合ドメインは、Fab重鎖のC末端で第2の抗原結合ドメインのFab重鎖のN末端に融合している。具体的な態様において、(多重特異性)抗体は、第1及び第2のFab分子、第1及び第2のサブユニットからなるFcドメイン、並びに任意選択で1つ又は複数のペプチドリンカーから実質的になり、第1のFab分子は、Fab重鎖のC末端で第2のFab分子のFab重鎖のN末端に融合しており、第2のFab分子は、Fab重鎖のC末端でFcドメインの第1又は第2のサブユニットのN末端に融合している。そのような構造は、図1H及び1Lに概略的に描写されている(これらの例において、第1の抗原結合ドメインはVH/VLクロスオーバーFab分子であり、第2の抗原結合ドメインは従来のFab分子である)。任意選択で、第1のFab分子のFab軽鎖及び第2のFab分子のFab軽鎖は、追加的に互いに融合していてもよい。
一部の態様において、第3の抗原結合ドメイン、特に第3のFab分子は、Fab重鎖のC末端でFcドメインの第1又は第2のサブユニットのN末端に融合している。好ましいそのような態様において、前記第2及び第3の抗原結合ドメインは、それぞれ従来のFab分子であり、第1の抗原結合ドメインは本明細書に記載されるクロスオーバーFab分子、すなわち、Fab重鎖及び軽鎖の可変ドメインVH及びVL又は定常ドメインCL及びCH1が互いに交換されている/置き換わっているFab分子である。他のそのような態様において、前記第2及び第3の抗原結合ドメインは、それぞれクロスオーバーFab分子であり、第1の抗原結合ドメインは従来のFab分子である。
好ましいそのような態様において、第1及び第3の抗原結合ドメインは、それぞれFab重鎖のC末端でFcドメインのサブユニットの1つのN末端に融合しており、第2の抗原結合ドメインは、Fab重鎖のC末端で第1のFab分子のFab重鎖のN末端に融合している。具体的な態様において、(多重特異性)抗体は、第1、第2及び第3のFab分子、第1及び第2のサブユニットからなるFcドメイン、並びに任意選択で1つ又は複数のペプチドリンカーから実質的になり、第2のFab分子は、Fab重鎖のC末端で第1のFab分子のFab重鎖のN末端に融合しており、第1のFab分子は、Fab重鎖のC末端でFcドメインの第1のサブユニットのN末端に融合しており、第3のFab分子は、Fab重鎖のC末端でFcドメインの第2のサブユニットのN末端に融合している。そのような構造は、図1B及び1E(これらの例において、第1の抗原結合ドメインはVH/VLクロスオーバーFab分子であり、第2及び第3の抗原結合ドメインは従来のFab分子である)、並びに図1J及び1N(これらの例において、第1の抗原結合ドメインは従来のFab分子であり、第2及び第3の抗原結合ドメインはVH/VLクロスオーバーFab分子である)に概略的に描写されている。第1及び第3のFab分子は、Fcドメインに直接的に又はペプチドリンカーを介して融合していてもよい。好ましい態様において、第1及び第3のFab分子は、免疫グロブリンヒンジ領域を介して、それぞれFcドメインに融合している。具体的な態様において、免疫グロブリンヒンジ領域はヒトIgG1ヒンジ領域であり、特に、FcドメインはIgG1 Fcドメインである。任意選択で、第1のFab分子のFab軽鎖及び第2のFab分子のFab軽鎖は、追加的に互いに融合していてもよい。
別のそのような態様において、第2及び第3の抗原結合ドメインは、それぞれFab重鎖のC末端でFcドメインのサブユニットの1つのN末端に融合しており、第1の抗原結合ドメインは、Fab重鎖のC末端で第2の抗原結合ドメインのFab重鎖のN末端に融合している。具体的な態様において、(多重特異性)抗体は、第1、第2及び第3のFab分子、第1及び第2のサブユニットからなるFcドメイン、並びに任意選択で1つ又は複数のペプチドリンカーから実質的になり、第1のFab分子は、Fab重鎖のC末端で第2のFab分子のFab重鎖のN末端に融合しており、第2のFab分子は、Fab重鎖のC末端でFcドメインの第1のサブユニットのN末端に融合しており、第3のFab分子は、Fab重鎖のC末端でFcドメインの第2のサブユニットのN末端に融合している。そのような構造は、図1C及び1F(これらの例において、第1の抗原結合ドメインはVH/VLクロスオーバーFab分子であり、第2及び第3の抗原結合ドメインは従来のFab分子である)、並びに図1I及び1M(これらの例において、第1の抗原結合ドメインは従来のFab分子であり、第2及び第3の抗原結合ドメインはVH/VLクロスオーバーFab分子である)に概略的に描写されている。第2及び第3のFab分子は、Fcドメインに直接的に又はペプチドリンカーを介して融合していてもよい。好ましい態様において、第2及び第3のFab分子は、免疫グロブリンヒンジ領域を介して、それぞれFcドメインに融合している。具体的な態様において、免疫グロブリンヒンジ領域はヒトIgG1ヒンジ領域であり、特に、FcドメインはIgG1 Fcドメインである。任意選択で、第1のFab分子のFab軽鎖及び第2のFab分子のFab軽鎖は、追加的に互いに融合していてもよい。
Fab分子が、免疫グロブリンヒンジ領域を介してFab重鎖のC末端でFcドメインのそれぞれのサブユニットのN末端に融合している(多重特異性)抗体の構造において、2つのFab分子、ヒンジ領域及びFcドメインは、免疫グロブリン分子を実質的に形成する。好ましい態様において、免疫グロブリン分子は、IgGクラス免疫グロブリンである。さらにより好ましい形態において、免疫グロブリンは、IgG1サブクラス免疫グロブリンである。別の態様において、免疫グロブリンは、IgG4サブクラス免疫グロブリンである。さらに好ましい態様において、免疫グロブリンは、ヒト免疫グロブリンである。他の態様において、免疫グロブリンは、キメラ免疫グロブリン又はヒト化免疫グロブリンである。一態様において、免疫グロブリンは、ヒト定常領域、特にヒトFc領域を含む。
本発明の(多重特異性)抗体の一部において、第1のFab分子のFab軽鎖及び第2のFab分子のFab軽鎖は、任意選択でペプチドリンカーを介して互いに融合している。第1及び第2のFab分子の構造に応じて、第1のFab分子のFab軽鎖は、C末端で第2のFab分子のFab軽鎖のN末端に融合していてもよく、又は第2のFab分子のFab軽鎖は、C末端で第1のFab分子のFab軽鎖のN末端に融合していてもよい。第1及び第2のFab分子のFab軽鎖の融合は、適合しないFab重鎖及び軽鎖の誤対合をさらに低減し、一部の本発明の(多重特異性)抗体の発現に必要なプラスミドの数も低減する。
抗原結合ドメインは、Fcドメインに又は互いに、直接的に又は1個又は複数個のアミノ酸、典型的には約2~20個のアミノ酸を含むペプチドリンカーを介して融合していてもよい。ペプチドリンカーは、当技術分野に知られており、本明細書に説明されている。適切な非免疫原性ペプチドリンカーには、例えば、(G4S)n、(SG4)n、(G4S)n又はG4(SG4)nペプチドリンカーが挙げられる。「n」は、一般的に、1~10、典型的には2~4の整数である。一態様において、前記ペプチドリンカーは、少なくとも5個のアミノ酸長さ、一態様において5~100個、さらなる態様において10~50個のアミノ酸長さを有する。一態様において、前記ペプチドリンカーは、(GxS)n又は(GxS)nGmであり、G=グリシン、S=セリン及び(x=3、n=3、4、5又は6、m=0、1、2又は3)又は(x=4、n=2、3、4又は5、m=0、1、2又は3)であり、一態様において、x=4及びn=2又は3であり、さらなる態様において、x=4及びn=2である。一態様において、前記ペプチドリンカーは(G4S)2である。第1及び第2のFab分子のFab軽鎖を互いに融合するのに特に適したペプチドリンカーは、(G4S)2である。第1及び第2のFab断片のFab重鎖を接続するのに適した例示的なペプチドリンカーは、配列(D)-(G4S)2(配列番号118及び119)を含む。別の適切なそのようなリンカーは、配列(G4S)4を含む。加えて、リンカーは、免疫グロブリンヒンジ領域(の一部)を含んでいてもよい。特に、Fab分子がFcドメインサブユニットのN末端に融合する場合、免疫グロブリンヒンジ領域又はその一部を介して、さらなるペプチドリンカーを伴い又は伴うことなく融合していてもよい。
ある特定の態様において、本発明の(多重特異性)抗体は、第1のFab分子のFab軽鎖可変領域が、カルボキシ末端ペプチド結合を第1のFab分子のFab重鎖定常領域と共有し(すなわち、第1のFab分子が、クロスオーバーFab重鎖を含み、重鎖可変領域が軽鎖可変領域と置き換わっている)、第1のFab分子のFab重鎖定常領域が、カルボキシ末端ペプチド結合をFcドメインサブユニットと共有する(VL(1)-CH1(1)-CH2-CH3(-CH4))ポリペプチド、並びに第2のFab分子のFab重鎖が、カルボキシ末端ペプチド結合をFcドメインサブユニットと共有する(VH(2)-CH1(2)-CH2-CH3(-CH4))ポリペプチドを含む。一部の態様において、(多重特異性)抗体は、第1のFab分子のFab重鎖可変領域が、カルボキシ末端ペプチド結合を第1のFab分子のFab軽鎖定常領域と共有するポリペプチド(VH(1)-CL(1))及び第2のFab分子のFab軽鎖ポリペプチド(VL(2)-CL(2))をさらに含む。ある特定の態様において、ポリペプチドは、例えばジスルフィド結合によって共有結合的に連結している。
ある特定の形態において、本発明の(多重特異性)抗体は、第1のFab分子のFab重鎖可変領域が、カルボキシ末端ペプチド結合を第1のFab分子のFab軽鎖定常領域と共有し(すなわち、第1のFab分子が、クロスオーバーFab重鎖を含み、重鎖定常領域が軽鎖定常領域と置き換わっている)、第1のFab分子のFab軽鎖定常領域が、カルボキシ末端ペプチド結合をFcドメインサブユニットと共有する(VH(1)-CL(1)-CH2-CH3(-CH4))ポリペプチド、並びに第2のFab分子のFab重鎖が、カルボキシ末端ペプチド結合をFcドメインサブユニットと共有する(VH(2)-CH1(2)-CH2-CH3(-CH4))ポリペプチドを含む。一部の態様において、(多重特異性)抗体は、第1のFab分子のFab軽鎖可変領域が、カルボキシ末端ペプチド結合を第1のFab分子のFab重鎖定常領域と共有するポリペプチド(VL(1)-CH1(1))及び第2のFab分子のFab軽鎖ポリペプチド(VL(2)-CL(2))をさらに含む。ある特定の態様において、ポリペプチドは、例えばジスルフィド結合によって共有結合的に連結している。
一部の態様において、(多重特異性)抗体は、第1のFab分子のFab軽鎖可変領域が、カルボキシ末端ペプチド結合を第1のFab分子のFab重鎖定常領域と共有し(すなわち、第1のFab分子が、クロスオーバーFab重鎖を含み、重鎖可変領域が軽鎖可変領域と置き換わっている)、第1のFab分子のFab重鎖定常領域が、カルボキシ末端ペプチド結合を第2のFab分子のFab重鎖と共有し、第2のFab分子のFab重鎖が、カルボキシ末端ペプチド結合をFcドメインサブユニットと共有する(VL(1)-CH1(1)-VH(2)-CH1(2)-CH2-CH3(-CH4))ポリペプチドを含む。他の態様において、(多重特異性)抗体は、第2のFab分子のFab重鎖が、カルボキシ末端ペプチド結合を第1のFab分子のFab軽鎖可変領域と共有し、第1のFab分子のFab軽鎖可変領域が、カルボキシ末端ペプチド結合を第1のFab分子のFab重鎖定常領域と共有し(すなわち、第1のFab分子が、クロスオーバーFab重鎖を含み、重鎖可変領域が軽鎖可変領域と置き換わっている)、第1のFab分子のFab重鎖定常領域が、カルボキシ末端ペプチド結合をFcドメインサブユニットと共有する(VH(2)-CH1(2)-VL(1)-CH1(1)-CH2-CH3(-CH4))ポリペプチドを含む。これらの態様の一部において、(多重特異性)抗体は、第1のFab分子のFab重鎖可変領域が、カルボキシ末端ペプチド結合を第1のFab分子のFab軽鎖定常領域と共有する第1のFab分子のクロスオーバーFab軽鎖ポリペプチド(VH(1)-CL(1))及び第2のFab分子のFab軽鎖ポリペプチド(VL(2)-CL(2))をさらに含む。これらの態様の他において、適切であれば、(多重特異性)抗体は、第1のFab分子のFab重鎖可変領域が、カルボキシ末端ペプチド結合を第1のFab分子のFab軽鎖定常領域と共有し、第1のFab分子のFab軽鎖定常領域が、カルボキシ末端ペプチド結合を第2のFab分子のFab軽鎖ポリペプチドと共有する(VH(1)-CL(1)-VL(2)-CL(2))ポリペプチド、又は第2のFab分子のFab軽鎖ポリペプチドが、カルボキシ末端ペプチド結合を第1のFab分子のFab重鎖可変領域と共有し、第1のFab分子のFab重鎖可変領域が、カルボキシ末端ペプチド結合を第1のFab分子のFab軽鎖定常領域と共有する(VL(2)-CL(2)-VH(1)-CL(1))ポリペプチドをさらに含む。これらの態様による(多重特異性)抗体は、(i)Fcドメインサブユニットポリペプチド(CH2-CH3(-CH4))、又は(ii)第3のFab分子のFab重鎖がカルボキシ末端ペプチド結合をFcドメインサブユニットと共有するポリペプチド(VH(3)-CH1(3)-CH2-CH3(-CH4))及び第3のFab分子のFab軽鎖ポリペプチド(VL(3)-CL(3))をさらに含むことができる。ある特定の態様において、ポリペプチドは、例えばジスルフィド結合によって共有結合的に連結している。
一部の態様において、(多重特異性)抗体は、第1のFab分子のFab重鎖可変領域が、カルボキシ末端ペプチド結合を第1のFab分子のFab軽鎖定常領域と共有し(すなわち、第1のFab分子が、クロスオーバーFab重鎖を含み、重鎖定常領域が軽鎖定常領域と置き換わっている)、第1のFab分子のFab軽鎖定常領域が、カルボキシ末端ペプチド結合を第2のFab分子のFab重鎖と共有し、第2のFab分子のFab重鎖が、カルボキシ末端ペプチド結合をFcドメインサブユニットと共有する(VH(1)-CL(1)-VH(2)-CH1(2)-CH2-CH3(-CH4))ポリペプチドを含む。他の態様において、(多重特異性)抗体は、第2のFab分子のFab重鎖が、カルボキシ末端ペプチド結合を第1のFab分子のFab重鎖可変領域と共有し、第1のFab分子のFab重鎖可変領域が、カルボキシ末端ペプチド結合を第1のFab分子のFab軽鎖定常領域と共有し(すなわち、第1のFab分子が、クロスオーバーFab重鎖を含み、重鎖定常領域が軽鎖定常領域と置き換わっている)、第1のFab分子のFab軽鎖定常領域が、カルボキシ末端ペプチド結合をFcドメインサブユニット(VH(2)-CH1(2)-VH(1)-CL(1)-CH2-CH3(-CH4))と共有するポリペプチドを含む。これらの態様の一部において、(多重特異性)抗体は、第1のFab分子のFab軽鎖可変領域が、カルボキシ末端ペプチド結合を第1のFab分子のFab重鎖定常領域と共有する第1のFab分子のクロスオーバーFab軽鎖ポリペプチド(VL(1)-CH1(1))及び第2のFab分子のFab軽鎖ポリペプチド(VL(2)-CL(2))をさらに含む。これらの態様の他において、適切であれば、(多重特異性)抗体は、第1のFab分子のFab軽鎖可変領域が、カルボキシ末端ペプチド結合を第1のFab分子のFab重鎖定常領域と共有し、第1のFab分子のFab重鎖定常領域が、カルボキシ末端ペプチド結合を第2のFab分子のFab軽鎖ポリペプチドと共有する(VL(1)-CH1(1)-VL(2)-CL(2))ポリペプチド、又は第2のFab分子のFab軽鎖ポリペプチドが、カルボキシ末端ペプチド結合を第1のFab分子のFab重鎖可変領域と共有し、第1のFab分子のFab重鎖可変領域が、カルボキシ末端ペプチド結合を第1のFab分子のFab軽鎖定常領域と共有する(VL(2)-CL(2)-VH(1)-CL(1))ポリペプチドをさらに含む。これらの態様による(多重特異性)抗体は、(i)Fcドメインサブユニットポリペプチド(CH2-CH3(-CH4))、又は(ii)第3のFab分子のFab重鎖がカルボキシ末端ペプチド結合をFcドメインサブユニットと共有するポリペプチド(VH(3)-CH1(3)-CH2-CH3(-CH4))及び第3のFab分子のFab軽鎖ポリペプチド(VL(3)-CL(3))をさらに含むことができる。ある特定の態様において、ポリペプチドは、例えばジスルフィド結合によって共有結合的に連結している。
ある特定の態様において、(多重特異性)抗体はFcドメインを含まない。好ましいそのような態様において、前記第2及び存在する場合、第3の抗原結合ドメインは、それぞれ従来のFab分子であり、第1の抗原結合ドメインは本明細書に記載されるクロスオーバーFab分子、すなわち、Fab重鎖及び軽鎖の可変ドメインVH及びVL又は定常ドメインCL及びCH1が互いに交換されている/置き換わっているFab分子である。他のそのような態様において、前記第2及び存在する場合、第3の抗原結合ドメインは、それぞれクロスオーバーFab分子であり、第1の抗原結合ドメインは従来のFab分子である。
1つのそのような態様において、(多重特異性)抗体は、第1及び第2の抗原結合ドメイン、並びに任意選択で1つ又は複数のペプチドリンカーから実質的になり、第1及び第2の抗原結合ドメインは、両方ともFab分子であり、第2の抗原結合ドメインは、Fab重鎖のC末端で第1の抗原結合ドメインのFab重鎖のN末端に融合している。そのような構造は、図1O及び1Sに概略的に描写されている(これらの例において、第1の抗原結合ドメインはVH/VLクロスオーバーFab分子であり、第2の抗原結合ドメインは従来のFab分子である)。
別のそのような態様において、(多重特異性)抗体は、第1及び第2の抗原結合ドメイン、並びに任意選択で1つ又は複数のペプチドリンカーから実質的になり、第1及び第2の抗原結合ドメインは、両方ともFab分子であり、第1の抗原結合ドメインは、Fab重鎖のC末端で第2の抗原結合ドメインのFab重鎖のN末端に融合している。そのような構造は、図1P及び1Tに概略的に描写されている(これらの例において、モミ抗原結合ドメインはVH/VLクロスオーバーFab分子であり、第2の抗原結合ドメインは従来のFab分子である)。
一部の態様において、第2のFab分子は、Fab重鎖のC末端で第1のFab分子のFab重鎖のN末端に融合しており、(多重特異性)抗体は、第3の抗原結合ドメイン、特に第3のFab分子をさらに含み、前記第3のFab分子は、Fab重鎖のC末端で第2のFab分子のFab重鎖のN末端に融合している。ある特定のそのような態様において、(多重特異性)抗体は、第1、第2及び第3のFab分子、並びに任意選択で1つ又は複数のペプチドリンカーから実質的になり、第2のFab分子は、Fab重鎖のC末端で第1のFab分子のFab重鎖のN末端に融合しており、第3のFab分子は、Fab重鎖のC末端で第2のFab分子のFab重鎖のN末端に融合している。そのような構造は、図1Q及び1U(これらの例において、第1の抗原結合ドメインはVH/VLクロスオーバーFab分子であり、第2及び第3の抗原結合ドメインはそれぞれ従来のFab分子である)、又は図1X及び1Z(これらの例において、第1の抗原結合ドメインは従来のFab分子であり、第2及び第3の抗原結合ドメインはそれぞれVH/VLクロスオーバーFab分子である)に概略的に描写されている。
一部の態様において、第1のFab分子は、Fab重鎖のC末端で第2のFab分子のFab重鎖のN末端に融合しており、(多重特異性)抗体は、第3の抗原結合ドメイン、特に第3のFab分子をさらに含み、前記第3のFab分子は、Fab重鎖のN末端で第2のFab分子のFab重鎖のC末端に融合している。ある特定のそのような態様において、(多重特異性)抗体は、第1、第2及び第3のFab分子、並びに任意選択で1つ又は複数のペプチドリンカーから実質的になり、第1のFab分子は、Fab重鎖のC末端で第2のFab分子のFab重鎖のN末端に融合しており、第3のFab分子は、Fab重鎖のN末端で第2のFab分子のFab重鎖のC末端に融合している。そのような構造は、図1R及び1V(これらの例において、第1の抗原結合ドメインはVH/VLクロスオーバーFab分子であり、第2及び第3の抗原結合ドメインはそれぞれ従来のFab分子である)、又は図1W及び1Y(これらの例において、第1の抗原結合ドメインは従来のFab分子であり、第2及び第3の抗原結合ドメインはそれぞれVH/VLクロスオーバーFab分子である)に概略的に描写されている。
ある特定の態様において、本発明による(多重特異性)抗体は、第2のFab分子のFab重鎖が、カルボキシ末端ペプチド結合を第1のFab分子のFab軽鎖可変領域と共有し、第1のFab分子のFab軽鎖可変領域が、カルボキシ末端ペプチド結合を第1のFab分子のFab重鎖定常領域と共有する(すなわち、第1のFab分子がクロスオーバーFab重鎖を含み、重鎖可変領域が軽鎖可変領域に置き換えられている)(VH(2)-CH1(2)-VL(1)-CH1(1))ポリペプチドを含む。一部の態様において、(多重特異性)抗体は、第1のFab分子のFab重鎖可変領域が、カルボキシ末端ペプチド結合を第1のFab分子のFab軽鎖定常領域と共有するポリペプチド(VH(1)-CL(1))及び第2のFab分子のFab軽鎖ポリペプチド(VL(2)-CL(2))をさらに含む。
ある特定の態様において、本発明による(多重特異性)抗体は、第1のFab分子のFab軽鎖可変領域が、カルボキシ末端ペプチド結合を第1のFab分子のFab重鎖定常領域と共有し(すなわち、第1のFab分子がクロスオーバーFab重鎖を含み、重鎖可変領域が軽鎖可変領域に置き換えられている)、第1のFab分子のFab重鎖定常領域が、カルボキシ末端ペプチド結合を第2のFab分子のFab重鎖と共有する(VL(1)-CH1(1)-VH(2)-CH1(2))ポリペプチドを含む。一部の態様において、(多重特異性)抗体は、第1のFab分子のFab重鎖可変領域が、カルボキシ末端ペプチド結合を第1のFab分子のFab軽鎖定常領域と共有するポリペプチド(VH(1)-CL(1))及び第2のFab分子のFab軽鎖ポリペプチド(VL(2)-CL(2))をさらに含む。
ある特定の態様において、本発明による(多重特異性)抗体は、第2のFab分子のFab重鎖が、カルボキシ末端ペプチド結合を第1のFab分子のFab重鎖可変領域と共有し、第1のFab分子のFab重鎖可変領域が、カルボキシ末端ペプチド結合を第1のFab分子のFab軽鎖定常領域と共有する(すなわち、第1のFab分子がクロスオーバーFab重鎖を含み、重鎖定常領域が軽鎖定常領域に置き換えられている)(VH(2)-CH1(2)-VH(1)-CL(1))ポリペプチドを含む。一部の態様において、(多重特異性)抗体は、第1のFab分子のFab軽鎖可変領域が、カルボキシ末端ペプチド結合を第1のFab分子のFab重鎖定常領域と共有するポリペプチド(VL(1)-CH1(1))及び第2のFab分子のFab軽鎖ポリペプチド(VL(2)-CL(2))をさらに含む。
ある特定の態様において、本発明による(多重特異性)抗体は、第1のFab分子のFab重鎖可変領域が、カルボキシ末端ペプチド結合を第1のFab分子のFab軽鎖定常領域と共有し(すなわち、第1のFab分子がクロスオーバーFab重鎖を含み、重鎖定常領域が軽鎖定常領域に置き換えられている)、第1のFab分子のFab軽鎖定常領域が、カルボキシ末端ペプチド結合を第2のFab分子のFab重鎖と共有する(VH(1)-CL(1)-VH(2)-CH1(2))ポリペプチドを含む。一部の態様において、(多重特異性)抗体は、第1のFab分子のFab軽鎖可変領域が、カルボキシ末端ペプチド結合を第1のFab分子のFab重鎖定常領域と共有するポリペプチド(VL(1)-CH1(1))及び第2のFab分子のFab軽鎖ポリペプチド(VL(2)-CL(2))をさらに含む。
ある特定の態様において、本発明による(多重特異性)抗体は、第3のFab分子のFab重鎖が、カルボキシ末端ペプチド結合を第2のFab分子のFab重鎖と共有し、第2のFab分子のFab重鎖が、カルボキシ末端ペプチド結合を第1のFab分子のFab軽鎖可変領域と共有し、第1のFab分子のFab軽鎖可変領域が、カルボキシ末端ペプチド結合を第1のFab分子のFab重鎖定常領域と共有する(すなわち、第1のFab分子がクロスオーバーFab重鎖を含み、重鎖可変領域が軽鎖可変領域に置き換えられている)(VH(3)-CH1(3)-VH(2)-CH1(2)-VL(1)-CH1(1))ポリペプチドを含む。一部の態様において、(多重特異性)抗体は、第1のFab分子のFab重鎖可変領域が、カルボキシ末端ペプチド結合を第1のFab分子のFab軽鎖定常領域と共有するポリペプチド(VH(1)-CL(1))及び第2のFab分子のFab軽鎖ポリペプチド(VL(2)-CL(2))をさらに含む。一部の態様において、(多重特異性)抗体は、第3のFab分子のFab軽鎖ポリペプチド(VL(3)-CL(3))をさらに含む。
ある特定の態様において、本発明による(多重特異性)抗体は、第3のFab分子のFab重鎖が、カルボキシ末端ペプチド結合を第2のFab分子のFab重鎖と共有し、第2のFab分子のFab重鎖が、カルボキシ末端ペプチド結合を第1のFab分子のFab重鎖可変領域と共有し、第1のFab分子のFab重鎖可変領域が、カルボキシ末端ペプチド結合を第1のFab分子のFab軽鎖定常領域と共有する(すなわち、第1のFab分子がクロスオーバーFab重鎖を含み、重鎖定常領域が軽鎖定常領域に置き換えられている)(VH(3)-CH1(3)-VH(2)-CH1(2)-VH(1)-CL(1))ポリペプチドを含む。一部の態様において、(多重特異性)抗体は、第1のFab分子のFab軽鎖可変領域が、カルボキシ末端ペプチド結合を第1のFab分子のFab重鎖定常領域と共有するポリペプチド(VL(1)-CH1(1))及び第2のFab分子のFab軽鎖ポリペプチド(VL(2)-CL(2))をさらに含む。一部の態様において、(多重特異性)抗体は、第3のFab分子のFab軽鎖ポリペプチド(VL(3)-CL(3))をさらに含む。
ある特定の態様において、本発明による(多重特異性)抗体は、第1のFab分子のFab軽鎖可変領域が、カルボキシ末端ペプチド結合を第1のFab分子のFab重鎖定常領域と共有し(すなわち、第1のFab分子が、クロスオーバーFab重鎖を含み、重鎖可変領域が軽鎖可変領域と置き換わっている)、第1のFab分子のFab重鎖定常領域が、カルボキシ末端ペプチド結合を第2のFab分子のFab重鎖と共有し、第2のFab分子のFab重鎖が、カルボキシ末端ペプチド結合を第3のFab分子のFab重鎖と共有する(VL(1)-CH1(1)-VH(2)-CH1(2)-VH(3)-CH1(3))ポリペプチドを含む。一部の態様において、(多重特異性)抗体は、第1のFab分子のFab重鎖可変領域が、カルボキシ末端ペプチド結合を第1のFab分子のFab軽鎖定常領域と共有するポリペプチド(VH(1)-CL(1))及び第2のFab分子のFab軽鎖ポリペプチド(VL(2)-CL(2))をさらに含む。一部の態様において、(多重特異性)抗体は、第3のFab分子のFab軽鎖ポリペプチド(VL(3)-CL(3))をさらに含む。
ある特定の態様において、本発明による(多重特異性)抗体は、第1のFab分子のFab重鎖可変領域が、カルボキシ末端ペプチド結合を第1のFab分子のFab軽鎖定常領域と共有し(すなわち、第1のFab分子が、クロスオーバーFab重鎖を含み、重鎖定常領域が軽鎖定常領域と置き換わっている)、第1のFab分子のFab軽鎖定常領域が、カルボキシ末端ペプチド結合を第2のFab分子のFab重鎖と共有し、第2のFab分子のFab重鎖が、カルボキシ末端ペプチド結合を第3のFab分子のFab重鎖と共有する(VH(1)-CL(1)-VH(2)-CH1(2)-VH(3)-CH1(3))ポリペプチドを含む。一部の態様において、(多重特異性)抗体は、第1のFab分子のFab軽鎖可変領域が、カルボキシ末端ペプチド結合を第1のFab分子のFab重鎖定常領域と共有するポリペプチド(VL(1)-CH1(1))及び第2のFab分子のFab軽鎖ポリペプチド(VL(2)-CL(2))をさらに含む。一部の態様において、(多重特異性)抗体は、第3のFab分子のFab軽鎖ポリペプチド(VL(3)-CL(3))をさらに含む。
ある特定の態様において、本発明による(多重特異性)抗体は、第1のFab分子のFab重鎖が、カルボキシ末端ペプチド結合を第2のFab分子のFab軽鎖可変領域と共有し、第2のFab分子のFab軽鎖可変領域が、カルボキシ末端ペプチド結合を第2のFab分子のFab重鎖定常領域と共有し(すなわち、第2のFab分子が、クロスオーバーFab重鎖を含み、重鎖可変領域が軽鎖可変領域と置き換わっている)、第2のFab分子のFab重鎖定常領域が、カルボキシ末端ペプチド結合を第3のFab分子のFab軽鎖可変領域と共有し、第3のFab分子のFab軽鎖可変領域が、カルボキシ末端ペプチド結合を第3のFab分子のFab重鎖定常領域と共有する(すなわち、第3のFab分子がクロスオーバーFab重鎖を含み、重鎖可変領域が軽鎖可変領域に置き換えられている)(VH(1)-CH1(1)-VL(2)-CH1(2)-VL(3)-CH1(3))ポリペプチドを含む。一部の態様において、(多重特異性)抗体は、第2のFab分子のFab重鎖可変領域が、カルボキシ末端ペプチド結合を第2のFab分子のFab軽鎖定常領域と共有するポリペプチド(VH(2)-CL(2))及び第1のFab分子のFab軽鎖ポリペプチド(VL(1)-CL(1))をさらに含む。一部の態様において、(多重特異性)抗体は、第3のFab分子のFab重鎖可変領域が、カルボキシ末端ペプチド結合を第3のFab分子のFab軽鎖定常領域と共有するポリペプチド(VH(3)-CL(3))をさらに含む。
ある特定の態様において、本発明による(多重特異性)抗体は、第1のFab分子のFab重鎖が、カルボキシ末端ペプチド結合を第2のFab分子のFab重鎖可変領域と共有し、第2のFab分子のFab重鎖可変領域が、カルボキシ末端ペプチド結合を第2のFab分子のFab軽鎖定常領域と共有し(すなわち、第2のFab分子が、クロスオーバーFab重鎖を含み、重鎖定常領域が軽定常領域と置き換わっている)、第2のFab分子のFab軽鎖定常領域が、カルボキシ末端ペプチド結合を第3のFab分子のFab重鎖可変領域と共有し、第3のFab分子のFab重鎖可変領域が、カルボキシ末端ペプチド結合を第3のFab分子のFab軽鎖定常領域と共有する(すなわち、第3のFab分子がクロスオーバーFab重鎖を含み、重鎖定常領域が軽鎖定常領域に置き換えられている)(VH(1)-CH1(1)-VH(2)-CL(2)-VH(3)-CL(3))ポリペプチドを含む。一部の態様において、(多重特異性)抗体は、第2のFab分子のFab軽鎖可変領域が、カルボキシ末端ペプチド結合を第2のFab分子のFab重鎖定常領域と共有するポリペプチド(VL(2)-CH1(2))及び第1のFab分子のFab軽鎖ポリペプチド(VL(1)-CL(1))をさらに含む。一部の態様において、(多重特異性)抗体は、第3のFab分子のFab軽鎖可変領域が、カルボキシ末端ペプチド結合を第3のFab分子のFab重鎖定常領域と共有するポリペプチド(VL(3)-CH1(3))をさらに含む。
ある特定の態様において、本発明による(多重特異性)抗体は、第3のFab分子のFab軽鎖可変領域が、カルボキシ末端ペプチド結合を第3のFab分子のFab重鎖定常領域と共有し(すなわち、第3のFab分子が、クロスオーバーFab重鎖を含み、重鎖可変領域が軽鎖可変領域と置き換わっている)、第3のFab分子のFab重鎖定常領域が、カルボキシ末端ペプチド結合を第2のFab分子のFab軽鎖可変領域と共有し、第2のFab分子のFab軽鎖可変領域が、カルボキシ末端ペプチド結合を第2のFab分子のFab重鎖定常領域と共有し(すなわち、第2のFab分子がクロスオーバーFab重鎖を含み、重鎖可変領域が軽鎖可変領域に置き換えられている)、第2のFab分子のFab重鎖定常領域が、カルボキシ末端ペプチド結合を第1のFab分子のFab重鎖と共有する(VL(3)-CH1(3)-VL(2)-CH1(2)-VH(1)-CH1(1))ポリペプチドを含む。一部の態様において、(多重特異性)抗体は、第2のFab分子のFab重鎖可変領域が、カルボキシ末端ペプチド結合を第2のFab分子のFab軽鎖定常領域と共有するポリペプチド(VH(2)-CL(2))及び第1のFab分子のFab軽鎖ポリペプチド(VL(1)-CL(1))をさらに含む。一部の態様において、(多重特異性)抗体は、第3のFab分子のFab重鎖可変領域が、カルボキシ末端ペプチド結合を第3のFab分子のFab軽鎖定常領域と共有するポリペプチド(VH(3)-CL(3))をさらに含む。
ある特定の態様において、本発明による(多重特異性)抗体は、第3のFab分子のFab重鎖可変領域が、カルボキシ末端ペプチド結合を第3のFab分子のFab軽鎖定常領域と共有し(すなわち、第3のFab分子が、クロスオーバーFab重鎖を含み、重鎖定常領域が軽鎖定常領域と置き換わっている)、第3のFab分子のFab軽鎖定常領域が、カルボキシ末端ペプチド結合を第2のFab分子のFab重鎖可変領域と共有し、第2のFab分子のFab重鎖可変領域が、カルボキシ末端ペプチド結合を第2のFab分子のFab軽鎖定常領域と共有し(すなわち、第2のFab分子がクロスオーバーFab重鎖を含み、重鎖定常領域が軽鎖定常領域に置き換えられている)、第2のFab分子のFab軽鎖定常領域が、カルボキシ末端ペプチド結合を第1のFab分子のFab重鎖と共有する(VH(3)-CL(3)-VH(2)-CL(2)-VH(1)-CH1(1))ポリペプチドを含む。一部の態様において、(多重特異性)抗体は、第2のFab分子のFab軽鎖可変領域が、カルボキシ末端ペプチド結合を第2のFab分子のFab重鎖定常領域と共有するポリペプチド(VL(2)-CH1(2))及び第1のFab分子のFab軽鎖ポリペプチド(VL(1)-CL(1))をさらに含む。一部の態様において、(多重特異性)抗体は、第3のFab分子のFab軽鎖可変領域が、カルボキシ末端ペプチド結合を第3のFab分子のFab重鎖定常領域と共有するポリペプチド(VL(3)-CH1(3))をさらに含む。
一態様において、本発明は、
a)CD3に結合する第1の抗原結合ドメインであって、第1の抗原結合ドメインは、Fab軽鎖及びFab重鎖の可変ドメインVL及びVH又は定常ドメインCL及びCH1が互いに置き換わっているFab分子であり、配列番号2の重鎖相補性決定領域(HCDR)1、配列番号3のHCDR2及び配列番号5のHCDR3を含む重鎖可変領域(VH)、並びに配列番号8の軽鎖相補性決定領域(LCDR)1、配列番号9のLCDR2及び配列番号10のLCDR3を含む軽鎖可変領域(VL)を含む、第1の抗原結合ドメインと、
b)第2の抗原、特に標的細胞抗原、より具体的にはTYRP-1又はEGFRvIIIに結合する第2の抗原結合ドメインであって、第2の抗原結合ドメインは(従来の)Fab分子である、第2の抗原結合ドメインと、
c)第1及び第2のサブユニットからなるFcドメインと、を含む(多重特異性)抗体であって、
ここで、
(i)a)の第1の抗原結合ドメインが、Fab重鎖のC末端でb)の第2の抗原結合ドメインのFab重鎖のN末端に融合し、b)の第2の抗原結合ドメインが、Fab重鎖のC末端でc)のFcドメインのサブユニットの1つのN末端に融合している、又は
(ii)b)の第2の抗原結合ドメインが、Fab重鎖のC末端でa)の第1の抗原結合ドメインのFab重鎖のN末端に融合し、a)の第1の抗原結合ドメインが、Fab重鎖のC末端でc)のFcドメインのサブユニットの1つのN末端に融合している、(多重特異性)抗体を提供する。
好ましい態様において、本発明は、
a)CD3に結合する第1の抗原結合ドメインであって、第1の抗原結合ドメインは、Fab軽鎖及びFab重鎖の可変ドメインVL及びVH又は定常ドメインCL及びCH1が互いに置き換わっているFab分子であり、配列番号2の重鎖相補性決定領域(HCDR)1、配列番号3のHCDR2及び配列番号5のHCDR3を含む重鎖可変領域(VH)、並びに配列番号8の軽鎖相補性決定領域(LCDR)1、配列番号9のLCDR2及び配列番号10のLCDR3を含む軽鎖可変領域(VL)を含む、第1の抗原結合ドメインと、
b)第2の抗原、特に標的細胞抗原、より具体的にはTYRP-1又はEGFRvIIIに結合する第2及び第3の抗原結合ドメインであって、第2及び第3の抗原結合ドメインはそれぞれ(従来の)Fab分子である、第2及び第3の抗原結合ドメインと、
c)第1及び第2のサブユニットからなるFcドメインと、を含む(多重特異性)抗体であって、
ここで、
(i)a)の第1の抗原結合ドメインが、Fab重鎖のC末端でb)の第2の抗原結合ドメインのFab重鎖のN末端に融合し、b)の第2の抗原結合ドメイン及びb)の第3の抗原結合ドメインが、それぞれFab重鎖のC末端でc)のFcドメインのサブユニットの1つのN末端に融合している、又は
(ii)b)の第2の抗原結合ドメインが、Fab重鎖のC末端でa)の第1の抗原結合ドメインのFab重鎖のN末端に融合し、a)の第1の抗原結合ドメイン及びb)の第3の抗原結合ドメインが、それぞれFab重鎖のC末端でc)のFcドメインのサブユニットの1つのN末端に融合している、(多重特異性)抗体を提供する。
別の態様において、本発明は、
a)CD3に結合する第1の抗原結合ドメインであって、第1の抗原結合ドメインは、Fab軽鎖及びFab重鎖の可変ドメインVL及びVH又は定常ドメインCL及びCH1が互いに置き換わっているFab分子であり、配列番号2の重鎖相補性決定領域(HCDR)1、配列番号3のHCDR2及び配列番号5のHCDR3を含む重鎖可変領域(VH)、並びに配列番号8の軽鎖相補性決定領域(LCDR)1、配列番号9のLCDR2及び配列番号10のLCDR3を含む軽鎖可変領域(VL)を含む、第1の抗原結合ドメインと、
b)第2の抗原、特に標的細胞抗原、より具体的にはTYRP-1又はEGFRvIIIに結合する第2の抗原結合ドメインであって、第2の抗原結合ドメインは(従来の)Fab分子である、第2の抗原結合ドメインと、
c)第1及び第2のサブユニットからなるFcドメインと、を含む(多重特異性)抗体であって、
ここで、
(i)a)の第1の抗原結合ドメイン及びb)の第2の抗原結合ドメインが、それぞれFab重鎖のC末端でc)のFcドメインのサブユニットの1つのN末端に融合している、(多重特異性)抗体を提供する。
本発明による(多重特異性)抗体の異なる構造の全てにおいて、本明細書に記載されるアミノ酸置換(「電荷改変」)は、存在する場合、第2及び(存在する場合)第3の抗原結合ドメイン/Fab分子のCH1及びCLドメイン、又は第1の抗原結合ドメイン/Fab分子のCH1又はCLドメインのいずれかにおけるものであってもよい。好ましくは、これらは第2及び(存在する場合)第3の抗原結合ドメイン/Fab分子のCH1ドメイン及びCLドメインにおけるものである。本発明の概念によると、本明細書に記載されるアミノ酸置換が、第2(及び存在する場合、第3)の抗原結合ドメイン/Fab分子において行われる場合、このようなアミノ酸置換は、第1の抗原結合ドメイン/Fab分子において行われない。逆に、本明細書に記載されるアミノ酸置換が、第1の抗原結合ドメイン/Fab分子において行われる場合、このようなアミノ酸置換は、第2(及び存在する場合、第3)の抗原結合ドメイン/Fab分子において行われない。アミノ酸置換は、好ましくは、Fab軽鎖及びFab重鎖の可変ドメインVL及びVH1が互いに置き換わっているFab分子を含む(多重特異性)抗体において行われる。
本発明による(多重特異性)抗体の好ましい態様において、特に、本明細書に記載されるアミノ酸置換が第2(及び存在する場合、第3)の抗原結合ドメイン/Fab分子において行われる場合、第2(及び存在する場合、第3)のFab分子の定常ドメインCLは、カッパアイソタイプのものである。本発明による(多重特異性)抗体の他の態様において、特に、本明細書に記載されるアミノ酸置換が、第1の抗原結合ドメイン/Fab分子において行われる場合、第1の抗原結合ドメイン/Fab分子の定常ドメインCLは、カッパアイソタイプのものである。一部の態様において、第2(及び存在する場合、第3)の抗原結合ドメイン/Fab分子の定常ドメインCL、並びに第1の抗原結合ドメイン/Fab分子の定常ドメインCLは、カッパアイソタイプのものである。
一態様において、本発明は、
a)CD3に結合する第1の抗原結合ドメインであって、第1の抗原結合ドメインは、Fab軽鎖及びFab重鎖の可変ドメインVL及びVHが互いに置き換わっているFab分子であり、配列番号2の重鎖相補性決定領域(HCDR)1、配列番号3のHCDR2及び配列番号5のHCDR3を含む重鎖可変領域(VH)、並びに配列番号8の軽鎖相補性決定領域(LCDR)1、配列番号9のLCDR2及び配列番号10のLCDR3を含む軽鎖可変領域(VL)を含む、第1の抗原結合ドメインと、
b)第2の抗原、特に標的細胞抗原、より具体的にはTYRP-1又はEGFRvIIIに結合する第2の抗原結合ドメインであって、第2の抗原結合ドメインは(従来の)Fab分子である、第2の抗原結合ドメインと、
c)第1及び第2のサブユニットからなるFcドメインと、を含む(多重特異性)抗体であって、
ここで、b)の第2の抗原結合ドメインの定常ドメインCLにおいて、位置124のアミノ酸がリジン(K)によって置換されており(Kabatによるナンバリング)、位置123のアミノ酸が、リジン(K)又はアルギニン(R)によって(最も好ましくはアルギニン(R)によって)置換されており(Kabatによるナンバリング)、b)の第2の抗原結合ドメインの定常ドメインCH1において、位置147のアミノ酸がグルタミン酸(E)によって置換されており(Kabat EUインデックスによるナンバリング)、位置213のアミノ酸がグルタミン酸(E)によって置換されており(Kabat EUインデックスによるナンバリング)、
ここで、
(i)a)の第1の抗原結合ドメインが、Fab重鎖のC末端でb)の第2の抗原結合ドメインのFab重鎖のN末端に融合し、b)の第2の抗原結合ドメインが、Fab重鎖のC末端でc)のFcドメインのサブユニットの1つのN末端に融合している、又は
(ii)b)の第2の抗原結合ドメインが、Fab重鎖のC末端でa)の第1の抗原結合ドメインのFab重鎖のN末端に融合し、a)の第1の抗原結合ドメインが、Fab重鎖のC末端でc)のFcドメインのサブユニットの1つのN末端に融合している、(多重特異性)抗体を提供する。
好ましい態様において、本発明は、
a)CD3に結合する第1の抗原結合ドメインであって、第1の抗原結合ドメインは、Fab軽鎖及びFab重鎖の可変ドメインVL及びVHが互いに置き換わっているFab分子であり、配列番号2の重鎖相補性決定領域(HCDR)1、配列番号3のHCDR2及び配列番号5のHCDR3を含む重鎖可変領域(VH)、並びに配列番号8の軽鎖相補性決定領域(LCDR)1、配列番号9のLCDR2及び配列番号10のLCDR3を含む軽鎖可変領域(VL)を含む、第1の抗原結合ドメインと、
b)第2の抗原、特に標的細胞抗原、より具体的にはTYRP-1又はEGFRvIIIに結合する第2及び第3の抗原結合ドメインであって、第2及び第3の抗原結合ドメインはそれぞれ(従来の)Fab分子である、第2及び第3の抗原結合ドメインと、
c)第1及び第2のサブユニットからなるFcドメインと、を含む(多重特異性)抗体であって、
ここで、b)の第2の抗原結合ドメイン及びb)の第3の抗原結合ドメインの定常ドメインCLにおいて、位置124のアミノ酸がリジン(K)によって置換されており(Kabatによるナンバリング)、位置123のアミノ酸がリジン(K)又はアルギニン(R)によって(最も好ましくはアルギニン(R)によって)置換されており(Kabatによるナンバリング)、b)の第2の抗原結合ドメイン及びb)の第3の抗原結合ドメインの定常ドメインCH1において、位置147のアミノ酸がグルタミン酸(E)によって置換されており(Kabat EUインデックスによるナンバリング)、位置213のアミノ酸がグルタミン酸(E)によって置換されており(Kabat EUインデックスによるナンバリング)、
ここで、
(i)a)の第1の抗原結合ドメインが、Fab重鎖のC末端でb)の第2の抗原結合ドメインのFab重鎖のN末端に融合し、b)の第2の抗原結合ドメイン及びb)の第3の抗原結合ドメインが、それぞれFab重鎖のC末端でc)のFcドメインのサブユニットの1つのN末端に融合している、又は
(ii)b)の第2の抗原結合ドメインが、Fab重鎖のC末端でa)の第1の抗原結合ドメインのFab重鎖のN末端に融合し、a)の第1の抗原結合ドメイン及びb)の第3の抗原結合ドメインが、それぞれFab重鎖のC末端でc)のFcドメインのサブユニットの1つのN末端に融合している、(多重特異性)抗体を提供する。
別の態様において、本発明は、
a)CD3に結合する第1の抗原結合ドメインであって、第1の抗原結合ドメインは、Fab軽鎖及びFab重鎖の可変ドメインVL及びVHが互いに置き換わっているFab分子であり、配列番号2の重鎖相補性決定領域(HCDR)1、配列番号3のHCDR2及び配列番号5のHCDR3を含む重鎖可変領域(VH)、並びに配列番号8の軽鎖相補性決定領域(LCDR)1、配列番号9のLCDR2及び配列番号10のLCDR3を含む軽鎖可変領域(VL)を含む、第1の抗原結合ドメインと、
b)第2の抗原、特に標的細胞抗原、より具体的にはTYRP-1又はEGFRvIIIに結合する第2の抗原結合ドメインであって、第2の抗原結合ドメインは(従来の)Fab分子である、第2の抗原結合ドメインと、
c)第1及び第2のサブユニットからなるFcドメインと、を含む(多重特異性)抗体であって、
ここで、b)の第2の抗原結合ドメインの定常ドメインCLにおいて、位置124のアミノ酸がリジン(K)によって置換されており(Kabatによるナンバリング)、位置123のアミノ酸が、リジン(K)又はアルギニン(R)によって(最も好ましくはアルギニン(R)によって)置換されており(Kabatによるナンバリング)、b)の第2の抗原結合ドメインの定常ドメインCH1において、位置147のアミノ酸がグルタミン酸(E)によって置換されており(Kabat EUインデックスによるナンバリング)、位置213のアミノ酸がグルタミン酸(E)によって置換されており(Kabat EUインデックスによるナンバリング)、
a)の第1の抗原結合ドメイン及びb)の第2の抗原結合ドメインが、それぞれFab重鎖のC末端でc)のFcドメインのサブユニットの1つのN末端に融合している、(多重特異性)抗体を提供する。
上記の態様のいずれかによると、(多重特異性)抗体の構成要素(例えば、Fab分子、Fcドメイン)は、直接的に又は様々なリンカーを介して、特に本明細書に記載される又は当該技術において知られている、1個又は複数個のアミノ酸、典型的には約2~20個のアミノ酸を含むペプチドリンカーを介して融合されていてもよい。適切な非免疫原性ペプチドリンカーには、例えば、(G4S)n、(SG4)n、(G4S)n又はG4(SG4)nペプチドリンカーが挙げられ、「n」は一般に1~10、典型的には2~4の整数である。
好ましい態様において、本発明は、
a)CD3に結合する第1の抗原結合ドメインであって、第1の抗原結合ドメインは、Fab軽鎖及びFab重鎖の可変ドメインVL及びVHが互いに置き換わっているFab分子であり、配列番号2の重鎖相補性決定領域(HCDR)1、配列番号3のHCDR2及び配列番号5のHCDR3を含む重鎖可変領域(VH)、並びに配列番号8の軽鎖相補性決定領域(LCDR)1、配列番号9のLCDR2及び配列番号10のLCDR3を含む軽鎖可変領域(VL)を含む、第1の抗原結合ドメインと、
b)TYRP-1に結合する第2及び第3の抗原結合ドメインであって、第2及び第3の抗原結合ドメインはそれぞれ(従来の)Fab分子であり、配列番号15の重鎖相補性決定領域(HCDR)1、配列番号16のHCDR2及び配列番号17のHCDR3を含む重鎖可変領域(VH)、並びに配列番号19の軽鎖相補性決定領域(LCDR)1、配列番号20のLCDR2及び配列番号21のLCDR3を含む軽鎖可変領域(VL)を含む、第2及び第3の抗原結合ドメインと、
c)第1及び第2のサブユニットからなるFcドメインと、を含む(多重特異性)抗体であって、
ここで、
b)の第2及び第3の抗原結合ドメインの定常ドメインCLにおいて、位置124のアミノ酸がリジン(K)によって置換されており(Kabatによるナンバリング)、位置123のアミノ酸がリジン(K)又はアルギニン(R)によって(最も好ましくはアルギニン(R)によって)置換されており(Kabatによるナンバリング)、b)の第2及び第3の抗原結合ドメインの定常ドメインCH1において、位置147のアミノ酸がグルタミン酸(E)によって置換されており(Kabat EUインデックスによるナンバリング)、位置213のアミノ酸がグルタミン酸(E)によって置換されており(Kabat EUインデックスによるナンバリング)、
さらに、
b)の第2の抗原結合ドメインが、Fab重鎖のC末端でa)の第1の抗原結合ドメインのFab重鎖のN末端に融合し、a)の第1の抗原結合ドメイン及びb)の第3の抗原結合ドメインが、それぞれFab重鎖のC末端でc)のFcドメインのサブユニットの1つのN末端に融合している、(多重特異性)抗体を提供する。
さらに好ましい態様において、本発明は、
a)CD3に結合する第1の抗原結合ドメインであって、第1の抗原結合ドメインは、Fab軽鎖及びFab重鎖の可変ドメインVL及びVHが互いに置き換わっているFab分子であり、配列番号7のアミノ酸配列を含む重鎖可変領域及び配列番号11のアミノ酸配列を含む軽鎖可変領域を含む、第1の抗原結合ドメインと、
b)TYRP-1に結合する第2及び第3の抗原結合ドメインであって、第2及び第3の抗原結合ドメインはそれぞれ(従来の)Fab分子であり、配列番号18のアミノ酸配列を含む重鎖可変領域及び配列番号22のアミノ酸配列を含む軽鎖可変領域を含む、第2及び第3の抗原結合ドメインと、
c)第1及び第2のサブユニットからなるFcドメインと、を含む(多重特異性)抗体であって、
ここで、
b)の第2及び第3の抗原結合ドメインの定常ドメインCLにおいて、位置124のアミノ酸がリジン(K)によって置換されており(Kabatによるナンバリング)、位置123のアミノ酸がリジン(K)又はアルギニン(R)によって(最も好ましくはアルギニン(R)によって)置換されており(Kabatによるナンバリング)、b)の第2及び第3の抗原結合ドメインの定常ドメインCH1において、位置147のアミノ酸がグルタミン酸(E)によって置換されており(Kabat EUインデックスによるナンバリング)、位置213のアミノ酸がグルタミン酸(E)によって置換されており(Kabat EUインデックスによるナンバリング)、
さらに、
b)の第2の抗原結合ドメインが、Fab重鎖のC末端でa)の第1の抗原結合ドメインのFab重鎖のN末端に融合し、a)の第1の抗原結合ドメイン及びb)の第3の抗原結合ドメインが、それぞれFab重鎖のC末端でc)のFcドメインのサブユニットの1つのN末端に融合している、(多重特異性)抗体を提供する。
好ましい態様において、本発明は、
a)CD3に結合する第1の抗原結合ドメインであって、第1の抗原結合ドメインは、Fab軽鎖及びFab重鎖の可変ドメインVL及びVHが互いに置き換わっているFab分子であり、配列番号2の重鎖相補性決定領域(HCDR)1、配列番号3のHCDR2及び配列番号5のHCDR3を含む重鎖可変領域(VH)、並びに配列番号8の軽鎖相補性決定領域(LCDR)1、配列番号9のLCDR2及び配列番号10のLCDR3を含む軽鎖可変領域(VL)を含む、第1の抗原結合ドメインと、
b)EGFRvIIIに結合する第2及び第3の抗原結合ドメインであって、第2及び第3の抗原結合ドメインはそれぞれ(従来の)Fab分子であり、配列番号85の重鎖相補性決定領域(HCDR)1、配列番号86のHCDR2及び配列番号87のHCDR3を含む重鎖可変領域(VH)、並びに配列番号89の軽鎖相補性決定領域(LCDR)1、配列番号90のLCDR2及び配列番号91のLCDR3を含む軽鎖可変領域(VL)を含む、第2及び第3の抗原結合ドメインと、
c)第1及び第2のサブユニットからなるFcドメインと、を含む(多重特異性)抗体であって、
ここで、
b)の第2及び第3の抗原結合ドメインの定常ドメインCLにおいて、位置124のアミノ酸がリジン(K)によって置換されており(Kabatによるナンバリング)、位置123のアミノ酸がリジン(K)又はアルギニン(R)によって(最も好ましくはアルギニン(R)によって)置換されており(Kabatによるナンバリング)、b)の第2及び第3の抗原結合ドメインの定常ドメインCH1において、位置147のアミノ酸がグルタミン酸(E)によって置換されており(Kabat EUインデックスによるナンバリング)、位置213のアミノ酸がグルタミン酸(E)によって置換されており(Kabat EUインデックスによるナンバリング)、
さらに、
b)の第2の抗原結合ドメインが、Fab重鎖のC末端でa)の第1の抗原結合ドメインのFab重鎖のN末端に融合し、a)の第1の抗原結合ドメイン及びb)の第3の抗原結合ドメインが、それぞれFab重鎖のC末端でc)のFcドメインのサブユニットの1つのN末端に融合している、(多重特異性)抗体を提供する。
さらに好ましい態様において、本発明は、
a)CD3に結合する第1の抗原結合ドメインであって、第1の抗原結合ドメインは、Fab軽鎖及びFab重鎖の可変ドメインVL及びVHが互いに置き換わっているFab分子であり、配列番号7のアミノ酸配列を含む重鎖可変領域及び配列番号11のアミノ酸配列を含む軽鎖可変領域を含む、第1の抗原結合ドメインと、
b)EGFRvIIIに結合する第2及び第3の抗原結合ドメインであって、第2及び第3の抗原結合ドメインはそれぞれ(従来の)Fab分子であり、配列番号88のアミノ酸配列を含む重鎖可変領域及び配列番号92のアミノ酸配列を含む軽鎖可変領域を含む、第2及び第3の抗原結合ドメインと、
c)第1及び第2のサブユニットからなるFcドメインと、を含む(多重特異性)抗体であって、
ここで、
b)の第2及び第3の抗原結合ドメインの定常ドメインCLにおいて、位置124のアミノ酸がリジン(K)によって置換されており(Kabatによるナンバリング)、位置123のアミノ酸がリジン(K)又はアルギニン(R)によって(最も好ましくはアルギニン(R)によって)置換されており(Kabatによるナンバリング)、b)の第2及び第3の抗原結合ドメインの定常ドメインCH1において、位置147のアミノ酸がグルタミン酸(E)によって置換されており(Kabat EUインデックスによるナンバリング)、位置213のアミノ酸がグルタミン酸(E)によって置換されており(Kabat EUインデックスによるナンバリング)、
さらに、
b)の第2の抗原結合ドメインが、Fab重鎖のC末端でa)の第1の抗原結合ドメインのFab重鎖のN末端に融合し、a)の第1の抗原結合ドメイン及びb)の第3の抗原結合ドメインが、それぞれFab重鎖のC末端でc)のFcドメインのサブユニットの1つのN末端に融合している、(多重特異性)抗体を提供する。
本発明のこれらの態様の一態様では、Fcドメインの第1のサブユニットにおいて、位置366のトレオニン残基がトリプトファン残基と置き換わっており(T366W)、Fcドメインの第2のサブユニットにおいて、位置407のチロシン残基がバリン残基と置き換わっており(Y407V)、任意選択で位置366のトレオニン残基がセリン残基と置き換わっており(T366S)、位置368のロイシン残基がアラニン残基と置き換わっている(L368A)(Kabat EUインデックスによるナンバリング)。
本発明のこれらの態様のさらなる態様では、Fcドメインの第1のサブユニットにおいて、追加的に、位置354のセリン残基がシステイン残基と置き換わっている(S354C)又は位置356のグルタミン酸残基がシステイン残基と置き換わっており(E356C)(特に、位置354のセリン残基がシステイン残基と置き換わっており)、Fcドメインの第2のサブユニットにおいて、追加的に、位置349のチロシン残基がシステイン残基と置き換わっている(Y349C)(Kabat EUインデックスによるナンバリング)。
本発明のこれらの態様のなおさらなる態様では、Fcドメインの第1及び第2のサブユニットのそれぞれにおいて、位置234のロイシン残基がアラニン残基(L234A)と置き換わっており、位置235のロイシン残基がアラニン残基と置き換わっており(L235A)、位置329のプロリン残基がグリシン残基と置き換わっている(P329G)(Kabat EUインデックスによるナンバリング)。
本発明のこれらの態様のなおさらなる態様では、Fcドメインは、ヒトIgG1 Fcドメインである。
好ましい具体的な態様において、(多重特異性)抗体は、配列番号23の配列に少なくとも95%、96%、97%、98%又は99%同一のアミノ酸配列を含むポリペプチド、配列番号24の配列に少なくとも95%、96%、97%、98%又は99%同一のアミノ酸配列を含むポリペプチド、配列番号25の配列に少なくとも95%、96%、97%、98%又は99%同一のアミノ酸配列を含むポリペプチド(特に、2つのポリペプチド)、及び配列番号27の配列に少なくとも95%、96%、97%、98%又は99%同一のアミノ酸配列を含むポリペプチド、を含む。さらに好ましい具体的な態様において、(多重特異性)抗体は、配列番号23のアミノ酸配列を含むポリペプチド、配列番号24のアミノ酸配列を含むポリペプチド、配列番号25のアミノ酸配列を含むポリペプチド(特に、2つのポリペプチド)、及び配列番号27のアミノ酸配列を含むポリペプチドを含む。
一態様において、本発明は、配列番号23の配列に少なくとも95%、96%、97%、98%又は99%同一のアミノ酸配列を含むポリペプチド、配列番号24の配列に少なくとも95%、96%、97%、98%又は99%同一のアミノ酸配列を含むポリペプチド、配列番号25の配列に少なくとも95%、96%、97%、98%又は99%同一のアミノ酸配列を含むポリペプチド(特に、2つのポリペプチド)、及び配列番号27の配列に少なくとも95%、96%、97%、98%又は99%同一のアミノ酸配列を含むポリペプチドを含む、CD3及びTYRP-1に結合する(多重特異性)抗体を提供する。一態様において、本発明は、配列番号23のアミノ酸配列を含むポリペプチド、配列番号24のアミノ酸配列を含むポリペプチド、配列番号25のアミノ酸配列を含むポリペプチド(特に、2つのポリペプチド)、及び配列番号27のアミノ酸配列を含むポリペプチドを含む、CD3及びTYRP-1に結合する(多重特異性)抗体を提供する。
さらなる好ましい具体的な態様において、(多重特異性)抗体は、配列番号109の配列に少なくとも95%、96%、97%、98%又は99%同一のアミノ酸配列を含むポリペプチド、配列番号110の配列に少なくとも95%、96%、97%、98%又は99%同一のアミノ酸配列を含むポリペプチド、配列番号111の配列に少なくとも95%、96%、97%、98%又は99%同一のアミノ酸配列を含むポリペプチド(特に、2つのポリペプチド)、及び配列番号27の配列に少なくとも95%、96%、97%、98%又は99%同一のアミノ酸配列を含むポリペプチド、を含む。さらに特定の具体的な態様において、(多重特異性)抗体は、配列番号109のアミノ酸配列を含むポリペプチド、配列番号110のアミノ酸配列を含むポリペプチド、配列番号111のアミノ酸配列を含むポリペプチド(特に、2つのポリペプチド)、及び配列番号27のアミノ酸配列を含むポリペプチドを含む。
一態様において、本発明は、配列番号109の配列に少なくとも95%、96%、97%、98%又は99%同一のアミノ酸配列を含むポリペプチド、配列番号110の配列に少なくとも95%、96%、97%、98%又は99%同一のアミノ酸配列を含むポリペプチド、配列番号111の配列に少なくとも95%、96%、97%、98%又は99%同一のアミノ酸配列を含むポリペプチド(特に、2つのポリペプチド)、及び配列番号27の配列に少なくとも95%、96%、97%、98%又は99%同一のアミノ酸配列を含むポリペプチドを含む、CD3及びEGFRvIIIに結合する(多重特異性)抗体を提供する。一態様において、本発明は、配列番号109のアミノ酸配列を含むポリペプチド、配列番号110のアミノ酸配列を含むポリペプチド、配列番号111のアミノ酸配列を含むポリペプチド(特に、2つのポリペプチド)、及び配列番号27のアミノ酸配列を含むポリペプチドを含む、CD3及びEGFRvIIIに結合する(多重特異性)抗体を提供する。
8.Fcドメインバリアント
好ましい態様において、本発明の(多重特異性)抗体は、第1及び第2のサブユニットからなるFcドメインを含む。
(多重特異性)抗体のFcドメインは、免疫グロブリン分子の重鎖ドメインを含む一対のポリペプチド鎖からなる。例えば、免疫グロブリンG(IgG)分子のFcドメインは、二量体であり、それぞれのサブユニットは、CH2及びCH3 IgG重鎖定常ドメインを含む。Fcドメインの2つのサブユニットは、互いに安定な会合が可能である。一態様において、本発明の(多重特異性)抗体は1つを超えるFcドメインを含まない。
一態様において、(多重特異性)抗体のFcドメインは、IgG Fcドメインである。好ましい態様において、FcドメインはIgG1 Fcドメインである。別の態様において、Fcドメインは、IgG4 Fcドメインである。より具体的な態様において、Fcドメインは、位置S228にアミノ酸置換、特にアミノ酸置換S228Pを含むIgG4 Fcドメインである(Kabat EUインデックスナンバリング)。このアミノ酸置換は、インビボでのIgG4抗体のFabアーム交換を低減する(Stubenrauch et al.,Drug Metabolism and Disposition 38,84-91(2010)を参照されたい)。さらに好ましい態様において、Fcドメインは、ヒトFcドメインである。さらにより好ましい態様において、Fcドメインは、ヒトIgG1 Fcドメインである。ヒトIgG1 Fc領域の例示的な配列は、配列番号117で与えられる。
a)ヘテロ二量体化を促進するFcドメイン改変
本発明の(多重特異性)抗体は、Fcドメインの2つのサブユニットの一方又はもう一方に融合し得る異なる抗原結合ドメインを含み、故にFcドメインの2つのサブユニットは、典型的には2つの非同一ポリペプチド鎖に含まれる。これらのポリペプチドの組換え同時発現及びその後の二量体化が、2つのポリペプチドのいくつかの可能な組み合わせをもたらす。組換え産生における(多重特異性)抗体の収率及び純度を改善するため、(多重特異性)抗体のFcドメインに、所望のポリペプチドの会合を促進する改変を導入することが有利である。
したがって、好ましい態様において、本発明による(多重特異性)抗体のFcドメインは、Fcドメインの第1及び第2のサブユニットの会合を促進する改変を含む。ヒトIgG Fcドメインの2つのサブユニット間の最も長いタンパク質-タンパク質相互作用の部位は、FcドメインのCH3ドメインの中にある。故に、一態様において前記改変はFcドメインのCH3ドメインの中にある。
ヘテロ二量体化を強化するために、FcドメインのCH3ドメイン中の改変にいくつかの手法が存在し、例えば、国際公開第96/27011号、国際公開第98/050431号、欧州特許第1870459号、国際公開第2007/110205号、国際公開第2007/147901号、国際公開第2009/089004号、国際公開第2010/129304号、国際公開第2011/90754号、国際公開第2011/143545号、国際公開第2012058768号、国際公開第2013157954号、国際公開第2013096291号に十分に記載されている。典型的には、全てのこのような手法において、Fcドメインの第1のサブユニットのCH3ドメイン及びFcドメインの第2のサブユニットのCH3ドメインは、両方とも、各CH3ドメイン(又はそれを含む重鎖)がそれ自体とホモ二量体化することがなく、相補的に操作された他のCH3ドメインとヘテロ二量体化するように仕向けられる相補的な様式で操作されている(それによって、第1及び第2のCH3ドメインがヘテロ二量体化し、2つの第1又は2つの第2のCH3ドメインの間にホモ二量体が形成されない)。改善された重鎖ヘテロ二量体化のためのこれらの異なる手法は、重鎖/軽鎖の誤対合及びベンス・ジョーンズ型副生成物を低減する、(多重特異性)抗体における重鎖-軽鎖改変との組み合わせにおける異なる代替例として考慮される(例えば、1つの結合アームにおけるVH及びVLの交換/置き換え、並びにCH1/CL界面における反対の電荷を有する荷電アミノ酸の置換の導入)。
具体的な態様において、Fcドメインの第1及び第2のサブユニットの会合を促進する改変は、いわゆる「ノブ・イントゥ・ホール(knob-into-hole)」改変であり、Fcドメインの2つのサブユニットの一方に「ノブ(knob)」改変及びFcドメインの2つのサブユニットの他方に「ホール(hole)」改変を含む。
ノブ・イントゥ・ホール技術は、例えば、米国特許第5,731,168号、米国特許第7,695,936号、Ridgway et al.,Prot Eng 9,617-621(1996)及びCarter,J Immunol Meth 248,7-15(2001)に記載されている。一般に、この方法は、第1のポリペプチドの界面にある突起(「ノブ」)及び第2のポリペプチドの界面にある対応する空洞(「ホール」)の導入を伴い、これにより突起が、ヘテロ二量体形成を促進し、ホモ二量体形成を妨害するように空洞内に位置することができる。突起は、第1のポリペプチドの界面の小さなアミノ酸側鎖を、より大きな側鎖(例えば、チロシン又はトリプトファン)と置き換えることによって構築される。突起と同一又は同様のサイズの代償的空洞が、大きなアミノ酸側鎖をより小さなアミノ酸側鎖(例えば、アラニン又はトレオニン)と置き換えることによって、第2のポリペプチドの界面に作られる。
したがって、好ましい態様では、(多重特異性)抗体のFcドメインの第1のサブユニットのCH3ドメインにおいて、アミノ酸残基は、より大きな側鎖体積を有するアミノ酸残基と置き換わり、それによって、第1のサブユニットのCH3ドメイン内に、第2のサブユニットのCH3ドメイン内の空洞に位置することが可能な突起を生成し、Fcドメインの第2のサブユニットのCH3ドメインにおいて、アミノ酸残基は、より小さな側鎖体積を有するアミノ酸残基と置き換わり、それによって、第2のサブユニットのCH3ドメイン内に空洞を生成し、その中に、第1のサブユニットのCH3ドメイン内の突起が位置することが可能である。
好ましくは、より大きな側鎖体積を有する前記アミノ酸残基は、アルギニン(R)、フェニルアラニン(F)、チロシン(Y)及びトリプトファン(W)からなる群から選択される。
好ましくは、より小さな側鎖体積を有する前記アミノ酸残基は、アラニン(A)、セリン(S)、トレオニン(T)及びバリン(V)からなる群から選択される。
突起及び空洞は、ポリペプチドをコードする核酸を変えることによって、例えば、部位特異的変異誘発によって又はペプチド合成によって作り出すことができる。
具体的な態様では、Fcドメインの第1のサブユニット(「ノブ」サブユニット)(のCH3ドメイン)において、位置366のトレオニン残基がトリプトファン残基と置き換わっており(T366W)、Fcドメインの第2のサブユニット(「ホール」サブユニット)(のCH3ドメイン)において、位置407のチロシン残基がバリン残基と置き換わっている(Y407V)。一態様では、Fcドメインの第2のサブユニットにおいて、追加的に、位置366のトレオニン残基がセリン残基と置き換わっており(T366S)、位置368のロイシン残基がアラニン残基と置き換わっている(L368A)(Kabat EUインデックスによるナンバリング)。
なおさらなる態様では、Fcドメインの第1のサブユニットにおいて、追加的に位置354のセリン残基がシステイン残基と置き換わっており(S354C)又は位置356のグルタミン酸残基がシステイン残基と置き換わっており(E356C)(特に、位置354のセリン残基がシステイン残基と置き換わっており)、Fcドメインの第2のサブユニットにおいて、追加的に位置349のチロシン残基がシステイン残基と置き換わっている(Y349C)(Kabat EUインデックスによるナンバリング)。これら2つのシステイン残基の導入によって、Fcドメインの2つのサブユニットの間にジスルフィド架橋の形成を生じ、二量体をさらに安定化する(Carter,J Immunol Methods 248,7-15(2001))。
好ましい態様において、Fcドメインの第1のサブユニットは、アミノ酸置換S354C及びT366Wを含み、Fcドメインの第2のサブユニットは、アミノ酸置換Y349C、T366S、L368A及びY407Vを含む(Kabat EUインデックスによるナンバリング)。
好ましい態様において、CD3に結合する抗原結合ドメインは、(任意選択で、第2の抗原に結合する第2の抗原結合ドメイン及び/又はペプチドリンカーを介して)Fcドメインの(「ノブ」改変を含む)第1のサブユニットに融合する。理論に束縛されるものではないが、CD3に結合する抗原結合ドメインの、Fcドメインのノブ含有サブユニットへの融合は、CD3に結合する2つの抗原結合ドメインを含む抗体の生成(2つのノブ含有ポリペプチドの立体的衝突(steric clash))を(さらに)最小化する。
ヘテロ二量体化を強化するCH3改変についての他の技術が本発明の代替例として考慮され、例えば、国際公開第96/27011号、国際公開第98/050431号、欧州特許第1870459号、国際公開第2007/110205号、国際公開第2007/147901号、国際公開第2009/089004号、国際公開第2010/129304号、国際公開第2011/90754号、国際公開第2011/143545号、国際公開第2012/058768号、国際公開第2013/157954号、国際公開第2013/096291号に記載されている。
一態様では、欧州特許第1870459号に記載されているヘテロ二量体化手法が代替的に使用される。この手法は、Fcドメインの2つのサブユニット間のCH3/CH3ドメイン界面における特定のアミノ酸位置への反対の電荷を有する荷電アミノ酸の導入に基づく。本発明の(多重特異性)抗体の特定の態様は、(Fcドメインの)2つのCH3ドメインの一方におけるアミノ酸変異R409D、K370E及びFcドメインのCH3ドメインの他方におけるアミノ酸変異D399K、E357Kである(Kabat EUインデックスによるナンバリング)。
別の態様において、本発明の(多重特異性)抗体は、Fcドメインの第1のサブユニットのCH3ドメインにアミノ酸変異T366W及びFcドメインの第2のサブユニットのCH3ドメインにアミノ酸変異T366S、L368A、Y407Vを含み、追加的に、Fcドメインの第1のサブユニットのCH3ドメインにアミノ酸変異R409D、K370E及びFcドメインの第2のサブユニットのCH3ドメインにアミノ酸変異D399K、E357Kを含む(Kabat EUインデックスによるナンバリング)。
別の態様において、本発明の(多重特異性)抗体は、Fcドメインの第1のサブユニットのCH3ドメインにアミノ酸変異S354C、T366W及びFcドメインの第2のサブユニットのCH3ドメインにアミノ酸変異Y349C、T366S、L368A、Y407Vを含む、又は前記(多重特異性)抗体は、Fcドメインの第1のサブユニットのCH3ドメインにアミノ酸変異Y349C、T366W及びFcドメインの第2のサブユニットのCH3ドメインにアミノ酸変異S354C、T366S、L368A、Y407Vを含み、追加的に、Fcドメインの第1のサブユニットのCH3ドメインにアミノ酸変異R409D、K370E及びFcドメインの第2のサブユニットのCH3ドメインにアミノ酸変異D399K、E357Kを含む(全てKabat EUインデックスによるナンバリング)。
一態様では、国際公開第2013/157953号に記載されているヘテロ二量体化手法が代替的に使用される。一態様において、第1のCH3ドメインはアミノ酸変異T366Kを含み、第2のCH3ドメインはアミノ酸変異L351Dを含む(Kabat EUインデックスによるナンバリング)。さらなる態様において、第1のCH3ドメインは、さらなるアミノ酸変異L351Kを含む。さらなる態様において、第2のCH3ドメインは、Y349E、Y349D及びL368E(特に、L368E)から選択されるアミノ酸変異をさらに含む(Kabat EUインデックスによるナンバリング)。
一態様では、国際公開第2012/058768号に記載されているヘテロ二量体化手法が代替的に使用される。一態様において、第1のCH3ドメインはアミノ酸変異L351Y、Y407Aを含み、第2のCH3ドメインはアミノ酸変異T366A、K409Fを含む。さらなる態様において、第2のCH3ドメインは、位置T411、D399、S400、F405、N390又はK392に、例えば、a)T411N、T411R、T411Q、T411K、T411D、T411E又はT411W、b)D399R、D399W、D399Y又はD399K、c)S400E、S400D、S400R又はS400K、d)F405I、F405M、F405T、F405S、F405V又はF405W、e)N390R、N390K又はN390D、f)K392V、K392M、K392R、K392L、K392F又はK392Eから選択されるさらなるアミノ酸変異を含む(Kabat EUインデックスによるナンバリング)。さらなる態様において、第1のCH3ドメインは、アミノ酸変異L351Y、Y407Aを含み、第2のCH3ドメインはアミノ酸変異T366V、K409Fを含む。さらなる態様において、第1のCH3ドメインはアミノ酸変異Y407Aを含み、第2のCH3ドメインはアミノ酸変異T366A、K409Fを含む。さらなる態様において、第2のCH3ドメインは、アミノ酸変異K392E、T411E、D399R及びS400Rをさらに含む(Kabat EUインデックスによるナンバリング)。
一態様では、国際公開第2011/143545号に記載されているヘテロ二量化手法が代替的に使用され、例えば、368及び409からなる群から選択される位置にアミノ酸改変を有する(Kabat EUインデックスによるナンバリング)。
一態様では、上記に記載されたノブ・イントゥ・ホール技術も使用する、国際公開第2011/090762号に記載されているヘテロ二量化手法が代替的に使用される。一態様において、第1のCH3ドメインはアミノ酸変異T366Wを含み、第2のCH3ドメインはアミノ酸変異Y407Aを含む。一態様において、第1のCH3ドメインはアミノ酸変異T366Yを含み、第2のCH3ドメインはアミノ酸変異Y407Tを含む(Kabat EUインデックスによるナンバリング)。
一態様において、(多重特異性)抗体又はそのFcドメインは、IgG2サブクラスのものであり、国際公開第2010/129304号に記載されているヘテロ二量体化手法が代替的に使用される。
代替的な態様において、Fcドメインの第1及び第2のサブユニットの会合を促進する改変は、例えば、PCT出願国際公開第2009/089004号に記載されている静電ステアリング効果を媒介する改変を含む。一般に、この方法は、ホモ二量体形成が静電的に望ましくないが、ヘテロ二量化が静電的に望ましくなるように、荷電アミノ酸残基による2つのFcドメインサブユニットの界面での1個又は複数個のアミノ酸残基の置き換えを伴う。1つのこのような態様において、第1のCH3ドメインは、負に帯電したアミノ酸によるK392又はN392のアミノ酸置換(例えば、グルタミン酸(E)又はアスパラギン酸(D)による、特にK392D又はN392D)を含み、第2のCH3ドメインは、正に帯電したアミノ酸によるD399、E356、D356又はE357のアミノ酸置換(例えば、リジン(K)又はアルギニン(R)による、特にD399K、E356K、D356K又はE357K、より具体的にはD399K及びE356K)を含む。さらなる態様において、第1のCH3ドメインは、負に帯電したアミノ酸によるK409又はR409のアミノ酸置換(例えば、グルタミン酸(E)又はアスパラギン酸(D)による、特にK409D又はR409D)をさらに含む。さらなる態様において、第1のCH3ドメインは、負に帯電したアミノ酸(例えば、グルタミン酸(E)又はアスパラギン酸(D))によるK439及び/又はK370のアミノ酸置換をさらに又は代替的に含む(全てKabat EUインデックスによるナンバリング)。
なおさらなる態様では、国際公開第2007/147901号に記載されているヘテロ二量体化手法が代替的に使用される。一態様において、第1のCH3ドメインは、アミノ酸変異K253E、D282K及びK322Dを含み、第2のCH3ドメインは、アミノ酸変異D239K、E240K及びK292Dを含む(Kabat EUインデックスによるナンバリング)。
なお別の態様では、国際公開第2007/110205号に記載されているヘテロ二量体化手法が代替的に使用され得る。
一態様において、Fcドメインの第1のサブユニットは、アミノ酸置換K392D及びK409Dを含み、Fcドメインの第2のサブユニットは、アミノ酸置換D356K及びD399Kを含む(Kabat EUインデックスによるナンバリング)。
b)Fc受容体結合及び/又はエフェクター機能を低減するFcドメイン改変
Fcドメインは、(多重特異性)抗体に、標的組織における良好な蓄積に寄与する長い血清半減期を含む好ましい薬物動態特性及び好ましい組織血液分布比を付与する。しかし同時に、好ましい抗原担持細胞ではなく、Fc受容体を発現する細胞への(多重特異性)抗体の望ましくない標的化をもたらすことがある。さらに、Fc受容体シグナル伝達経路の同時活性化はサイトカイン放出をもたらすことがあり、T細胞活性化特性及び(多重特異性)抗体の長い半減期と組み合わさって、全身投与するとサイトカイン受容体の過剰な活性化及び重篤な副作用を生じる。T細胞以外の(Fc受容体担持)免疫細胞の活性化は、例えば、NK細胞によるT細胞の破壊の可能性によって、(多重特異性)抗体の有効性さえも低減し得る。
したがって、好ましい態様において、本発明による(多重特異性)抗体のFcドメインは、ネイティブIgG1 Fcドメインと比較して、Fc受容体への結合親和性の低減及び/又はエフェクター機能の低減を示す。1つのこのような態様において、Fcドメイン(又は前記Fcドメインを含む(多重特異性)抗体)は、ネイティブIgG1 Fcドメイン(又はネイティブIgG1 Fcドメインを含む(多重特異性)抗体)と比較して、50%未満、特に20%未満、より具体的には10%未満、とりわけ5%未満の結合親和性をFc受容体に示す、及び/又はネイティブIgG1 Fcドメインドメイン(又はネイティブIgG1 Fcドメインを含む(多重特異性)抗体)と比較して、50%未満、特に20%未満、より具体的には10%未満、とりわけ5%未満のエフェクター機能を示す。一態様において、Fcドメインドメイン(又は前記Fcドメインを含む(多重特異性)抗体)は、Fc受容体に実質的に結合しない及び/又はエフェクター機能を誘導しない。好ましい態様において、Fc受容体はFcγ受容体である。一態様において、Fc受容体はヒトFc受容体である。一態様において、Fc受容体は活性化Fc受容体である。具体的な態様において、Fc受容体は、活性化ヒトFcγ受容体、より具体的にはヒトFcγRIIIa、FcγRI又はFcγRIIa、とりわけヒトFcγRIIIaである。一態様において、エフェクター機能は、CDC、ADCC、ADCP及びサイトカイン分泌の群から選択される1つ又は複数である。好ましい態様において、エフェクター機能はADCCである。一態様において、Fcドメインドメインは、ネイティブIgG1 Fcドメインドメインと比較して、新生児Fc受容体(FcRn)に実質的に同様の結合親和性を示す。FcRnへの実質的に同様の結合は、Fcドメイン(又は前記Fcドメインを含む(多重特異性)抗体)が、ネイティブIgG1 Fcドメイン(又はネイティブIgG1 Fcドメインを含む(多重特異性)抗体)の約70%超、特に約80%超、より具体的には約90%超の結合親和性をFcRnに示す場合に達成される。
ある特定の態様において、Fcドメインは、非操作Fcドメインと比較して、Fc受容体への結合親和性が低減される及び/又はエフェクター機能が低減されるように操作される。好ましい態様において、(多重特異性)抗体のFcドメインは、Fc受容体へのFcドメインの結合親和性及び/又はエフェクター機能を低減する1つ又は複数のアミノ酸変異を含む。典型的には、同じ1つ又は複数のアミノ酸変異が、Fcドメインの2つのサブユニットのそれぞれに存在する。一態様において、アミノ酸変異は、Fc受容体へのFcドメインの結合親和性を低減する。一態様において、アミノ酸変異は、Fc受容体へのFcドメインの結合親和性を、少なくとも2分の1、少なくとも5分の1又は少なくとも10分の1に低減する。Fc受容体へのFcドメインの結合親和性を低減する1つを超えるアミノ酸変異が存在する態様において、これらのアミノ酸変異の組み合わせは、Fc受容体へのFcドメインの結合親和性を少なくとも10分の1、少なくとも20分の1又はさらには少なくとも50分の1にまで低減し得る。一態様において、操作Fcドメインを含む(多重特異性)抗体は、非操作Fcドメインを含む(多重特異性)抗体と比較して、20%未満、特に10%未満、より具体的には5%未満の結合親和性をFc受容体に示す。好ましい態様において、Fc受容体はFcγ受容体である。一部の態様において、Fc受容体はヒトFc受容体である。一部の態様において、Fc受容体は活性化Fc受容体である。具体的な態様において、Fc受容体は、活性化ヒトFcγ受容体、より具体的にはヒトFcγRIIIa、FcγRI又はFcγRIIa、とりわけヒトFcγRIIIaである。好ましくは、これらの受容体のそれぞれへの結合が低減される。一部の態様において、補体構成要素への結合親和性、具体的にはC1qへの結合親和性も低減される。一態様において、新生児Fc受容体(FcRn)への結合親和性は低減されない。FcRnへの実質的に同様の結合、すなわち、前記受容体へのFcドメインの結合親和性の保存は、Fcドメイン(又は前記Fcドメインを含む(多重特異性)抗体)が、Fcドメインの非操作形態(又は前記Fcドメインの非操作形態を含む(多重特異性)抗体)の約70%超の結合親和性をFcRnに示す場合に達成される。Fcドメイン又は前記Fcドメインを含む本発明の(多重特異性)抗体は、そのような親和性の約80%超、さらには約90%超を示すことができる。ある特定の態様において、(多重特異性)抗体のFcドメインは、非操作Fcドメインと比較して、エフェクター機能が低減されるように操作される。エフェクター機能の低減には、補体依存性細胞傷害(CDC)の低減、抗体依存性細胞傷害(ADCC)の低減、抗体依存性細胞食作用(ADCP)の低減、サイトカイン分泌の低減、抗原提示細胞による免疫複合体媒介性抗原取り込みの低減、NK細胞への結合の低減、マクロファージへの結合の低減、単球への結合の低減、多形核細胞への結合の低減、直接的なシグナル伝達誘導性アポトーシスの低減、標的結合抗体との架橋の低減、樹状細胞成熟の低減、又はT細胞プライミングの低減の1つ又は複数が挙げられ得るが、これらに限定されない。一態様において、エフェクター機能の低減は、CDCの低減、ADCCの低減、ADCPの低減及びサイトカイン分泌の低減の群から選択される1つ又は複数である。好ましい態様において、エフェクター機能の低減は、ADCCの低減である。一態様において、ADCCの低減は、非操作Fcドメイン(又は非操作Fcドメインを含む(多重特異性)抗体)により誘導されるADCCの20%未満である。
一態様において、Fc受容体へのFcドメインの結合親和性及び/又はエフェクター機能を低減するアミノ酸変異は、アミノ酸置換である。一態様において、Fcドメインは、E233、L234、L235、N297、P331及びP329の群から選択される位置にアミノ酸置換を含む(Kabat EUインデックスによるナンバリング)。より具体的な態様において、Fcドメインは、L234、L235及びP329の群から選択される位置にアミノ酸置換を含む(Kabat EUインデックスによるナンバリング)。一部の態様において、Fcドメインは、アミノ酸置換L234A及びL235Aを含む(Kabat EUインデックスによるナンバリング)。1つのこのような態様において、Fcドメインは、IgG1 Fcドメイン、特にヒトIgG1 Fcドメインである。一態様において、Fcドメインは、位置P329にアミノ酸置換を含む。より具体的な態様において、アミノ酸置換は、P329A又はP329G、特にP329Gである(Kabat EUインデックスによるナンバリング)。一態様において、Fcドメインは、位置P329にアミノ酸置換を含み、E233、L234、L235、N297及びP331から選択される位置にさらなるアミノ酸置換を含む(Kabat EUインデックスによるナンバリング)。より具体的な態様において、さらなるアミノ酸置換は、E233P、L234A、L235A、L235E、N297A、N297D又はP331Sである。好ましい態様において、Fcドメインは、位置P329、L234及びL235にアミノ酸置換を含む(Kabat EUインデックスによるナンバリング)。より好ましい態様において、Fcドメインは、アミノ酸変異L234A、L235A及びP329G(「P329G LALA」、「PGLALA」又は「LALAPG」)を含む。具体的には、好ましい態様において、Fcドメインのそれぞれのサブユニットは、アミノ酸置換L234A、L235A及びP329Gを含み(Kabat EUインデックスナンバリング)、すなわち、Fcドメインの第1及び第2のサブユニットのそれぞれにおいて、位置234のロイシン残基はアラニン残基と置き換わっており(L234A)、位置235のロイシン残基はアラニン残基と置き換わっており(L235A)、位置329のプロリン残基はグリシン残基と置き換わっている(P329G)(Kabat EUインデックスによるナンバリング)。
1つのこのような態様において、Fcドメインは、IgG1 Fcドメイン、特にヒトIgG1 Fcドメインである。アミノ酸置換の「P329G LALA」の組み合わせは、その全体が参照により本明細書に組み込まれるPCT出願国際公開第2012/130831号に記載されているように、ヒトIgG1 FcドメインのFcγ受容体(同様に、補体)結合をほとんど完全に消滅させる。国際公開第2012/130831号は、このような変異Fcドメインの調製方法及びその特性、例えばFc受容体結合又はエフェクター機能の決定方法も記載する。
IgG4抗体は、IgG1抗体と比較して、Fc受容体への結合親和性の低減及びエフェクター機能の低減を示す。したがって、一部の態様において、本発明の(多重特異性)抗体のFcドメインは、IgG4 Fcドメイン、特にヒトIgG4 Fcドメインである。一態様において、IgG4 Fcドメインは、位置S228にアミノ酸置換を含み、具体的にはアミノ酸置換S228Pを含む(Kabat EUインデックスによるナンバリング)。Fc受容体への結合親和性及び/又はエフェクター機能をさらに低減させるため、一態様において、IgG4 Fcドメインは、位置L235にアミノ酸置換を含み、具体的にはアミノ酸置換L235Eを含む(Kabat EUインデックスによるナンバリング)。別の態様において、IgG4 Fcドメインは、位置P329にアミノ酸置換を含み、具体的にはアミノ酸置換P329Gを含む(Kabat EUインデックスによるナンバリング)。好ましい態様において、IgG4 Fcドメインは、位置S228、L235及びP329にアミノ酸置換を含み、具体的にはアミノ酸置換S228P、L235E及びP329Gを含む(Kabat EUインデックスによるナンバリング)。このようなIgG4 Fcドメイン変異体及びこれらのFcγ受容体結合特性は、その全体が参照により本明細書に組み込まれるPCT出願国際公開第2012/130831号に記載されている。
好ましい態様において、ネイティブIgG1 Fcドメインと比較して、Fc受容体への結合親和性の低減及び/又はエフェクター機能の低減を示すFcドメインは、アミノ酸置換L234A、L235A及び任意選択でP329Gを含むヒトIgG1 Fcドメイン、又はアミノ酸置換S228P、L235E及び任意選択でP329Gを含むヒトIgG4 Fcドメインである(Kabat EUインデックスによるナンバリング)。
ある特定の態様では、FcドメインのN-グリコシル化が排除されている。1つのこのような態様において、Fcドメインは、位置N297にアミノ酸変異を含み、特にアスパラギンをアラニンに置き換えるアミノ酸置換(N297A)又はアスパラギン酸に置き換えるアミノ酸置換(N297D)を含む(Kabat EUインデックスによるナンバリング)。
本明細書上記及びPCT出願国際公開第2012/130831号に記載されているFcドメインに加え、Fc受容体結合及び/又はエフェクター機能が低減されたFcドメインには、Fcドメイン残基238、265、269、270、297、327及び329の1つ又は複数の置換を有するものも挙げられる(米国特許第6,737,056号)(Kabat EUインデックスによるナンバリング)。そのようなFc変異体には、アミノ酸位置265、269、270、297及び327のうちの2つ以上に置換を有するFc変異体が挙げられ、残基265及び297がアラニンに置換されている、いわゆる「DANA」Fc変異体が含まれる(米国特許第7,332,581号)。
変異体Fcドメインは、当該技術分野に周知の遺伝子的又は化学的方法を使用して、アミノ酸の欠失、置換、挿入又は修飾によって調製され得る。遺伝子的方法には、コードDNA配列の部位特異的変異誘発、PCR、遺伝子合成などを挙げることができる。正確なヌクレオチド変化は、例えば配列決定により確証され得る。
Fc受容体への結合は、例えば、ELISAによって又は標準的な機器、例えばBIAcore機器(GE Healthcare)及び例えば組換え発現により得られ得るFc受容体を使用する表面プラズモン共鳴(SPR)によって、容易に決定することができる。あるいは、Fc受容体へのFcドメイン又はFcドメインを含む(多重特異性)抗体の結合親和性は、特定のFc受容体を発現することが知られている細胞株、例えば、FcγIIIa受容体を発現するヒトNK細胞を使用して評価してもよい。
Fcドメイン又はFcドメインを含む(多重特異性)抗体のエフェクター機能は、当該技術分野に既知の方法によって測定することができる。目的の分子のADCC活性を評価するためのインビトロアッセイの例は、米国特許第5,500,362号、Hellstrom et al.Proc Natl Acad Sci USA 83,7059-7063(1986)及びHellstrom et al.,Proc Natl Acad Sci USA 82,1499-1502(1985)、米国特許第5,821,337号、Bruggemann et al.,J Exp Med 166,1351-1361(1987)に記載されている。あるいは、非放射性アッセイを用いることができる(例えば、ACTI(商標)フローサイトメトリー用非放射性細胞傷害アッセイ(CellTechnology,Inc.Mountain View,CA)及びCytoTox96(登録商標)非放射性細胞傷害アッセイ(Promega,Madison,WI)を参照されたい)。そのようなアッセイに有用なエフェクター細胞には、末梢血単核球(PBMC)及びナチュラルキラー(NK)細胞が挙げられる。代替的又は追加的に、目的の分子のADCC活性は、例えば動物モデル、例えば、Clynes et al.,Proc Natl Acad Sci USA 95,652-656(1998)に開示されているものにおいてインビボで評価されてもよい。
一部の態様では、補体構成要素、具体的にはC1qへのFcドメインの結合が低減される。したがって、エフェクター機能が低下するようにFcドメインが操作されている一部の態様において、エフェクター機能の前記低減にはCDCの低減が挙げられる。Fcドメイン又はFcドメインを含む(多重特異性)抗体がC1qに結合することができ、したがってCDC活性を有するかを決定するために、C1q結合アッセイを実施することができる。例えば、国際公開第2006/029879号及び国際公開第2005/100402号におけるC1q及びC3c結合ELISAを参照されたい。補体活性化を評価するため、CDCアッセイを実施してもよい(例えば、Gazzano-Santoro et al.,J Immunol Methods 202,163(1996);Cragg et al.,Blood 101,1045-1052(2003);及びCragg and Glennie,Blood 103,2738-2743(2004)を参照されたい)。
FcRn結合及びインビボクリアランス/半減期の決定は、当該技術分野に既知の方法を使用して実施することもできる(例えば、Petkova,S.B.et al.,Int’l.Immunol.18(12):1759-1769(2006);国際公開第2013/120929号を参照されたい)。
B.ポリヌクレオチド
本発明は、本発明の抗体をコードする単離ポリヌクレオチドをさらに提供する。上記単離ポリヌクレオチドは、単一のポリヌクレオチドか複数のポリヌクレオチドであってもよい。
本発明の(多重特異性)抗体をコードするポリヌクレオチドは、完全な抗体をコードする単一のポリヌクレオチドとして発現されてもよく、又は同時発現される複数の(例えば、2つ以上の)ポリヌクレオチドとして発現されてもよい。同時発現されるポリヌクレオチドによってコードされるポリペプチドは、例えば、ジスルフィド結合又は他の手段を介して会合し、機能的な抗体を形成してもよい。例えば、抗体の軽鎖部分は、抗体の重鎖を含む抗体の一部に由来する別個のポリヌクレオチドによってコードされてもよい。同時発現する際、重鎖ポリペプチドは、軽鎖ポリペプチドと会合し、抗体を形成する。別の例では、2つのFcドメインサブユニットのうち1つと、任意選択的に1つ又は複数のFab分子(の一部)と、を含む抗体の一部は、2つのFcドメインサブユニットの他方と、任意選択的にFab分子(の一部)と、を含む抗体の一部に由来する別個のポリヌクレオチドによってコードされてもよい。同時発現する際、Fcドメインサブユニットが会合して、Fcドメインを形成する。
いくつかの態様では、単離ポリヌクレオチドは、本明細書に記載する本発明に係る抗体分子全体をコードする。他の態様では、単離ポリヌクレオチドは、本明細書に記載する本発明に係る抗体に含まれるポリペプチドをコードする。
特定の態様では、ポリヌクレオチド又は核酸は、DNAである。他の態様では、本発明のポリヌクレオチドは、RNAであり、例えば、メッセンジャーRNA(mRNA)の形態のRNAである。本発明のRNAは、一本鎖又は二本鎖であってもよい。
C.組換え方法
本発明の抗体は、例えば、固体状態ペプチド合成(例えば、Merrifield固相合成)又は組換え産生によって得られてもよい。組換え産生について、抗体をコードする1つ又は複数のポリヌクレオチド、例えば、上述のものは、さらなるクローニング及び/又は宿主細胞での発現のために、単離され、1つ又は複数のベクターに挿入される。このようなポリヌクレオチドは、従来の手順を用い、容易に単離され、配列決定されてもよい。一態様では、ベクター、特に本発明のポリヌクレオチド(とりわけ単一のポリヌクレオチド又は複数のポリヌクレオチド)を含む発現ベクターが、提供される。当業者に周知の方法を使用し、適切な転写/翻訳制御シグナルと共に、抗体のコード配列を含む発現ベクターを構築することができる。これらの方法としては、インビトロ組換えDNA技術、合成技術及びインビボ組換え/遺伝子組換えが挙げられる。例えば、Maniatis et al.,Molecular Cloning:A Laboratory Manual,Cold Spring Harbor Laboratory,N.Y.(1989);及びAusubel et al.,Current Protocols in Molecular Biology,Greene Publishing Associates and Wiley Interscience,N.Y(1989)に記載される技術を参照されたい。発現ベクターは、プラスミド、ウイルスの一部であることができ、又は核酸フラグメントであってもよい。発現ベクターは、抗体をコードするポリヌクレオチド(すなわちコード領域)が、プロモーター及び/又は他の転写要素又は翻訳制御要素と共に操作可能に会合してクローン化される発現カセットを含む。本明細書で使用される場合、「コード領域」は、アミノ酸に翻訳されるコドンからなる核酸の一部である。「停止コドン」(TAG、TGA又はTAA)は、アミノ酸に翻訳されないが、存在する場合、コード領域の一部であると考えられてもよいが、任意のフランキング配列、例えば、プロモーター、リボソーム結合部位、転写ターミネーター、イントロン、5’及び3’未翻訳領域などは、コード領域の一部ではない。2つ以上のコード領域が、単一のポリヌクレオチド構築物中に例えば、単一のベクター上に存在することができ、又は別個のポリヌクレオチド構築物中に例えば、別個の(異なる)ベクター上に存在することができる。さらに、任意のベクターは、単一のコード領域を含んでいてもよく、又は2つ以上のコード領域を含んでいてもよく、例えば本発明のベクターは、1つ又は複数のポリペプチドをコードしてもよく、翻訳後又は翻訳と同時に、タンパク質分解による開裂によって、最終的なタンパク質へと分離される。これに加え、本発明のベクター、ポリヌクレオチド又は核酸は、異種コード領域をコードし、本発明の抗体をコードするポリヌクレオチド、又はそのバリアント若しくは誘導体に融合するか、又は融合しなくてもよい。異種コード領域としては、限定されないが、特殊な要素又はモチーフ、例えば、分泌シグナルペプチド又は異種機能性ドメインが挙げられる。作動可能な会合は、ある遺伝子産物(例えばポリペプチド)のコード領域が、制御配列の影響下又は制御下で、遺伝子産物の発現を行うような様式で、1つ又は複数の制御配列と会合する。2つのDNA断片(例えば、ポリペプチドコード領域及びこれに関連するプロモーター)は、プロモーター機能の導入によって、所望の遺伝子産物をコードするmRNAの転写が起こる場合、2つのDNA断片間の結合の性質が、遺伝子産物の発現を指示する発現制御配列の能力を妨害せず、かつDNAテンプレートを転写する能力を妨害しない場合、「作動可能に会合する」。したがって、プロモーター領域は、プロモーターが核酸の転写を行うことが可能な場合、ポリペプチドをコードする核酸と作動可能に会合しているのであり得る。プロモーターは、所定の細胞内でのDNAの実質的な転写のみに指向する細胞特異的なプロモーターであってもよい。プロモーター以外の他の転写制御要素、例えば、エンハンサー、オペレーター、リプレッサー、転写停止シグナルは、細胞特異的な転写に指向するために、ポリヌクレオチドに作動可能に会合してもよい。適切なプロモーター及び他の転写制御領域は、本明細書に開示される。種々の転写制御領域が当業者に知られている。これらとしては、限定されないが、脊椎動物細胞内で機能する転写制御領域、例えば、限定されないが、サイトメガロウイルス由来のプロモーター及びエンハンサーセグメント(例えば最初期プロモーター、イントロン-Aと組み合わせる)、シミアンウイルス40(例えば初期プロモーター)及びレトロウイルス(例えばラウス肉腫ウイルス)が挙げられる。他の転写制御領域としては、脊椎動物遺伝子から誘導されるもの、例えば、アクチン、ヒートショックタンパク質、ウシ成長ホルモン及びウサギβ-グロビン、及び真核細胞において遺伝子発現を制御することが可能な他の配列が挙げられる。さらなる適切な転写制御領域としては、組織特異的なプロモーター及びエンハンサー、及び誘発性プロモーター(例えばテトラサイクリン誘発性プロモーター)が挙げられる。同様に、種々の翻訳制御要素は、当業者に知られている。これらとしては、限定されないが、リボソーム結合部位、翻訳開始及び停止コドン、ウイルス系から誘導される要素(特に、内部リボソーム侵入部位、すなわちIRES、CITE配列とも呼ばれる)が挙げられる。発現カセットは、例えば、複製の起源及び/又は染色体組み込み要素、例えば、レトロウイルスの長い末端反復(LTR)、又はアデノ随伴ウイルス(AAV)末端逆位配列(ITR)などの他の特徴も含んでいてもよい。
本発明のポリヌクレオチド及び核酸コード領域は、分泌又はシグナルペプチドをコードするさらなるコード領域と会合してもよく、本発明のポリヌクレオチドによってコードされるポリペプチドの分泌を指示する。例えば、抗体の分泌が望ましい場合、シグナル配列をコードするDNAは、本発明の抗体又はその断片をコードする核酸の上流に置かれていてもよい。シグナル仮説によれば、哺乳動物細胞によって分泌されるタンパク質は、シグナルペプチド又は分泌リーダー配列を有しており、これらは、粗い小胞体を通って成長したタンパク質鎖が外に出始めると、成熟タンパク質からは開裂する。当業者は、脊椎動物細胞によって分泌されるポリペプチドが、一般的に、ポリペプチドのN末端に融合するシグナルペプチドを有しており、ポリペプチドの分泌した形態又は「成熟」形態を生成するために、翻訳されたポリペプチドから開裂することを知っている。特定の態様では、ネイティブシグナルペプチド、例えば免疫グロブリン重鎖又は軽鎖シグナルペプチドが使用されるか、又は作動可能に会合するポリペプチドの分泌を指示する能力を保持する配列の機能性誘導体が使用される。あるいは、異種哺乳動物シグナルペプチド、又はその機能性誘導体を使用してもよい。例えば、野生型リーダー配列は、ヒト組織プラスミノーゲンアクティベーター(TPA)又はマウスβ-グルクロニダーゼのリーダー配列で置換されてもよい。
後の精製を容易にするために使用可能な(例えば、ヒスチジンタグ)、又は抗体を標識するのに役立つ短いタンパク質配列をコードするDNAは、ポリヌクレオチドをコードする抗体(フラグメント)の中に、又はその末端に含まれていてもよい。
さらなる態様では、本発明のポリヌクレオチド(すなわち、単一のポリヌクレオチド又は複数のポリヌクレオチド)を含む宿主細胞が、提供される。特定の態様において本発明のベクターを含む宿主細胞が提供される。ポリヌクレオチド及びベクターは、それぞれポリヌクレオチド及びベクターに関連して本明細書に記載する特徴のいずれかを単独で、又は組み合わせて組み込んでもよい。1つのこのような態様では、宿主細胞は、本発明の抗体(の一部)をコードする1つ又は複数のポリヌクレオチドを含む1つ又は複数のベクターを、含む(例えば、それらで形質転換されているか、又はトランスフェクトされている)。本明細書で使用される場合、「宿主細胞」という用語は、本発明の抗体又はその断片を生成するように操作することが可能な任意の種類の細胞系を指す。抗体を複製し、抗体の発現を補助するのに適した宿主細胞は、当該技術分野で周知である。このような細胞は、適切な場合、特定の発現ベクターを用いてトランスフェクトされるか、又は形質導入されてもよく、大規模発酵機に接種するために大量のベクターを含む細胞を成長させ、臨床用途に十分な量の抗体を得ることができる。適切な宿主細胞としては、原核微生物(例えば大腸菌)又は種々の真核生物細胞、例えば、チャイニーズハムスター卵巣細胞(CHO)、昆虫細胞などが挙げられる。例えば、ポリペプチドは、特にグリコシル化が必要とされない場合には、細菌内で産生されてもよい。発現後、ポリペプチドは、可溶性のフラクション中の細菌細胞ペーストから単離されてもよく、さらに精製されてもよい。原核生物に加え、真核生物の微生物、例えば、糸状菌又は酵母は、ポリペプチドをコードするベクターに適切なクローニング又は発現の宿主であり、グリコシル化経路が「ヒト化」された真菌株及び酵母株を含み、結果として、部分的又は完全にヒトグリコシル化パターンを有するポリペプチドを産生する。Gerngross,Nat Biotech 22,1409-1414(2004)及びLi et al.,Nat Biotech 24,210-215(2006)を参照されたい。また、(グリコシル化)ポリペプチドの発現に適した宿主細胞は、多細胞生物(無脊椎動物及び脊椎動物)から誘導される。無脊椎動物細胞の例としては、植物細胞及び昆虫細胞が挙げられる。数多くのバキュロウイルス株が同定されており、特に、Spodoptera frugiperda細胞のトランスフェクションのために、これを昆虫細胞と組み合わせて使用してもよい。植物細胞培養物も、宿主として利用することができる。例えば、米国特許第5,959,177号、同第6,040,498号、同第6,420,548号、同第7,125,978号、及び同第6,417,429号(トランスジェニック植物で抗体を産生するためのPLANTIBODIES(商標)技術を記載している)を参照されたい。脊椎動物細胞も、宿主として使用されてもよい。例えば、懸濁物中で成長するように適合した哺乳動物細胞株が有用な場合がある。有用な哺乳動物宿主細胞株の他の例は、SV40(COS-7)によって形質転換されたサル腎臓CV1株、ヒト胚腎臓株(例えばGraham et al.,J Gen Virol 36,59(1977)に、記載されるような293細胞又は293T細胞)、ベビーハムスター腎臓細胞(BHK)、マウスセルトリ細胞(例えばMather,Biol Reprod 23、243-251(1980)に、記載されるようなTM4細胞)、サル腎臓細胞(CV1)、アフリカミドリサル腎臓細胞(VERO-76)、ヒト頸部癌腫細胞(HELA)、イヌ腎臓細胞(MDCK)、バッファローラット肝臓細胞(BRL 3A)、ヒト肺細胞(W138)、ヒト肝臓細胞(Hep G2)、マウス乳房腫瘍細胞(MMT 060562)、TRI細胞(例えばMather et al.,Annals N.Y.Acad Sci 383,44-68(1982)に、記載されるもの)、MRC 5細胞、及びFS4細胞である。他の有用な哺乳動物宿主細胞株としては、dhfr-CHO細胞を含む、チャイニーズハムスター卵巣(CHO)細胞(Urlaub et al.,Proc Natl Acad Sci USA 77,4216(1980))、骨髄腫細胞株、例えば、YO、NS0、P3X63及びSp2/0が挙げられる。タンパク質産生に適した特定の哺乳動物宿主細胞株の総説については、例えば、Yazaki and Wu,Methods in Molecular Biology,Vol.248(B.K.C.Lo,ed.,Humana Press,Totowa,NJ),pp.255-268(2003)を参照されたい。宿主細胞としては、培養細胞、例えば、ほんの数例を挙げると、哺乳動物培養細胞、酵母細胞、昆虫細胞、細菌細胞及び植物細胞が挙げられるが、トランスジェニック動物、トランスジェニック植物又は培養植物若しくは動物組織に含まれる細胞も含まれる。一態様では、宿主細胞は、真核細胞であり、特に、哺乳動物細胞、例えば、チャイニーズハムスター卵巣(CHO)細胞、ヒト胚腎臓(HEK)細胞又はリンパ球細胞(例えば、Y0、NS0、Sp20細胞)である。一態様では、宿主細胞は、ヒト身体中の細胞ではない。
これらの系において外来遺伝子を発現させる標準的な技術は、当該技術分野で既知である。抗体などの抗原結合ドメインの重鎖又は軽鎖のいずれかを含むポリペプチドを発現する細胞を操作して、他方の抗体鎖も発現して、発現した生成物が、重鎖及び軽鎖の両方を有する抗体となるようにすることができる。
一態様では、本発明に係る抗体を産生する方法が提供され、この方法は、本明細書に提供されるように、抗体の発現に好適な条件下で、抗体をコードするポリヌクレオチドを含む宿主細胞を培養することと、任意選択的に、宿主細胞(又は宿主細胞培地)から抗体を回収することとを含む。
本発明の(多重特異性)抗体の構成要素は、遺伝学的に互いに融合されてもよい。(多重特異性)抗体は、その構成要素が、互いに直接、又はリンカー配列を通して間接的に融合されるように設計されることができる。リンカーの組成及び長さは、当該技術分野で周知の方法に従って決定されてもよく、有効性について試験されてもよい。(多重特異性)抗体の異なる構成要素の間のリンカー配列の例が、本明細書で提供される。また、望ましい場合、さらなる配列が、開裂部位を組み込み、融合の個々の構成要素を分離するために含まれていてもよい(例えば、エンドペプチダーゼ認識配列)。
本明細書で記載するように調製される抗体は、例えば、高速液体クロマトグラフィー、イオン交換クロマトグラフィー、ゲル電気泳動、親和性クロマトグラフィー、サイズ排除クロマトグラフィーなどの当該技術分野で既知の技術によって精製されてもよい。特定のタンパク質を精製するために使用される実際の条件は、一部には、正味の電荷、疎水性、親水性などの因子に依存し、当業者には明らかである。親和性クロマトグラフィー精製について、抗体が結合する抗体、リガンド、受容体又は抗原を使用してもよい。例えば、本発明の抗体の親和性クロマトグラフィー精製のために、プロテインA又はプロテインGを含むマトリックスを使用することができる。連続したプロテインA又はGの親和性クロマトグラフィー及びサイズ排除クロマトグラフィーを用いて、実施例にて本質的に記載しているように、抗体を単離することができる。抗体の純度は、ゲル電気泳動、高圧液体クロマトグラフィーなどの任意の種々の周知の分析方法によって決定することができる。
D.アッセイ
本明細書に提供される抗体は、それらの物理的/化学的特性及び/又は生物活性について、当該技術分野で既知の様々なアッセイによって、同定され、スクリーニングされ、または特徴付けられてもよい。
1.結合アッセイ
Fc受容体又は標的抗原に対する抗体の結合(親和性)は例えば、BIAcore機器(GE Healthcare)などの標準的な計装、及び、例えば組み換え発現により入手可能である、受容体又は標的タンパク質を使用する表面プラズモン共鳴(SPR)によって決定することができる。あるいは、異なる受容体又は標的抗原に対する抗体の結合が、特定の受容体又は標的抗原を発現する細胞株を用いて、例えばフローサイトメトリー(FACS)によって評価されてもよい。CD3に対する結合活性を測定するための特定の説明的かつ例示的な態様が、以下に記載される。
一態様では、CD3に対する結合活性は、以下のようにSPRによって決定される。
SPRは、Biacore T200機器(GE Healthcare)で行われる。抗Fab捕捉抗体(GE Healthcare,#28958325)は、標準的なアミンカップリングケミストリーを用いて、4000~6000共鳴単位(RU)の表面密度でSeries S Sensor Chip CM5(GE Healthcare)に固定化される。ランニング及び希釈緩衝液として、HBS-P+(10mM HEPES,150mM NaCl pH7.4,0.05%界面活性剤P20)を使用する。2μg/mlの濃度(20mM His,140mM NaCl中,pH6.0)のCD3抗体を、5μl/分の流量で約60秒間注入する。使用されるCD3抗原は、ノブ・イントゥ・ホール改変及びC末端Avi-tagを伴うヒトFcドメインに融合された、CD3デルタ及びCD3イプシロン外部ドメインのヘテロ二量体である(配列番号28及び29を参照されたい)。CD3抗原は、10μg/mlの濃度で120秒間注入され、解離は、5μl/分の流量で約120秒間監視される。チップ表面は、10mMグリシンpH2.1のそれぞれ約60秒間の2つの連続した注入によって再生される。容積屈折率の差は、ブランク注入を差し引くことによって、及びブランク制御フローセルから得られる応答を差し引くことによって訂正される。評価のために、結合反応は、注入終了から5秒後に取られる。結合シグナルを正規化するために、CD3結合は、抗Fab応答(固定化された抗Fab抗体上でのCD3抗体の捕捉の際に得られるシグナル(RU))によって分けられる。特定の処置の後の抗体のCD3に対する結合活性であって、異なる処置の後の抗体のCD3に対する結合活性に対して相対的なもの(相対活性濃度(RAC)とも呼ばれる)は、異なる処置の後の対応する抗体の試料の結合活性に対して、特定の処置の後の抗体のサンプルの結合活性を基準とすることにより計算される。
2.活性アッセイ
本発明の(多重特異性)抗体の生物活性は、実施例にて記載しているように、様々なアッセイによって測定されることができる。生物活性には、例えばT細胞の増殖の誘発、T細胞内のシグナル伝達の誘発、T細胞内の活性化マーカーの発現の誘発、T細胞によるサイトカイン分泌の誘発、腫瘍細胞などの標的細胞の溶解の誘発、並びに腫瘍退縮及び/又は生存の向上の誘発が含まれてもよい。
E.組成物、製剤及び投与経路
さらなる態様において、本発明は、例えば以下の治療方法のいずれかにおいて使用するための、本明細書に提供される抗体のうちのいずれかを含む、医薬組成物を提供する。一態様では、医薬組成物は、本発明に係る抗体と、医薬的に許容される担体とを含む。別の態様では、医薬組成物は、本発明に係る抗体と、少なくとも1つのさらなる治療薬剤(例えば、以下に記載するもの)とを含む。
さらに提供されるのは、インビボで投与に適した形態で本発明の抗体を産生する方法であって、方法は、(a)本発明に係る抗体を得ることと、(b)抗体と、少なくとも1つの医薬的に許容される担体とを配合し、それによって、抗体の製剤を、インビボでの投与のために配合することとを含む、方法である。
本発明の医薬組成物は、医薬的に許容される担体に溶解又は分散した有効量の抗体を含む。「医薬的に許容される」との句は、一般的に、使用する投薬量及び濃度でレシピエントに非毒性であり、すなわち、適切に、動物(例えばヒト)に投与したときに、有害な反応、アレルギー反応又は他の不都合な反応を引き起こさない分子要素及び組成物を指す。抗体と、任意選択的にさらなる有効成分とを含む医薬組成物の調製は、本明細書に参照により組み込まれるRemington’s Pharmaceutical Sciences,18th Ed.Mack Printing Company,1990に例示されるように、本開示の観点で、当業者に既知である。さらに、動物(例えば、ヒト)投与の場合、製剤が、FDA Office of Biological Standards又は他の国の対応する機関によって必要とされるような滅菌性、発熱原性、一般的安全性及び純度基準を満たすべきであることが理解されるであろう。好ましい組成物は、凍結乾燥された製剤又は水溶液である。本明細書で使用される場合、「医薬的に許容される担体」は、当業者には知られているように(例えば、本明細書に参照により組み込まれるRemington’s Pharmaceutical Sciences,18th Ed. Mack Printing Company,1990,pp.1289-1329を参照されたい)、任意及びすべての溶媒、緩衝液、分散媒体、コーティング、界面活性剤、酸化防止剤、防腐剤(例えば抗菌剤、抗真菌剤)、等張化剤、吸収遅延剤、塩、防腐剤、酸化防止剤、タンパク質、薬物、薬物安定化剤、ポリマー、ゲル、バインダ、賦形剤、崩壊剤、滑沢剤、甘味剤、香味剤、染料、このような類似の材料及びこれらの組み合わせを含む。いずれかの従来の担体が、有効成分と不適合である限りにおける場合を除き、医薬組成物における使用が想定される。
本発明の抗体(及び任意のさらなる治療薬剤)は、非経口、肺内、及び鼻腔内、並びに局所処置で所望の場合、病変内投与を含む、任意の好適な手段によって投与され得る。非経口注入としては、筋肉内、静脈内、動脈内、腹腔内、又は皮下投与が挙げられる。投薬は、投与が短時間であるか、又は慢性的であるかに部分的に応じて、例えば、任意の好適な経路によるもの、例えば、静脈内注射又は皮下注射などの注射によるものであり得る。
非経口組成物としては、注射による(例えば、皮下、皮内、病変内、静脈内、動脈内、筋肉内、髄腔内又は腹腔内注射による)投与のために設計されたものが挙げられる。注射のために、本発明の抗体は、水溶液中で配合されてもよく、特に、生理学的に適合する緩衝液、例えば、Hanks溶液、Ringer溶液又は生理食塩緩衝液中で配合されてもよい。溶液は、配合剤、例えば、懸濁剤、安定化剤及び/又は分散剤を含有していてもよい。あるいは、抗体は、適切なビヒクル、例えば、滅菌した発熱性物質除去水と共に使用前に構成するための、粉末形態であってもよい。滅菌注射可能溶液は、必要な場合には以下に列挙する種々の他の成分と共に、本発明の抗体を必要な量で、適切な溶媒に組み込むことによって調製される。滅菌性は、例えば、滅菌濾過膜を通した濾過によって容易に達成され得る。一般的に、分散物は、種々の滅菌した有効成分を、塩基性分散媒体及び/又は他の成分を含む滅菌ビヒクルに組み込むことによって調製される。滅菌注射可能溶液、懸濁物又はエマルションを調製するための滅菌粉末の場合、好ましい調製方法は、既に滅菌濾過した液体媒体から有効成分と任意のさらなる所望の成分の粉末が得られる、減圧乾燥又は凍結乾燥技術である。液体媒体は、必要な場合には適切に緩衝化されているべきであり、注射する前に、十分な食塩水又はグルコースで液体希釈剤をまず等張性にする。組成物は、製造条件及び保存条件下で安定でなければならず、細菌及び真菌などの微生物の混入作用から保護されなければならない。内毒素の混入は、安全なレベルで、例えば、0.5ng/mgタンパク質未満で最小限に維持されるべきであることが理解されるであろう。適切な医薬的に許容される担体としては、限定されないが、緩衝液、例えば、ホスフェート、シトレート及び他の有機酸;アスコルビン酸及びメチオニンを含む酸化防止剤;防腐剤(例えば、オクタデシルジメチルベンジルアンモニウムクロリド;ヘキサメトニウムクロリド;ベンザルコニウムクロリド;ベンゼトニウムクロリド;フェノール、ブチル又はベンジルアルコール;アルキルパラベン、例えば、メチルパラベン又はプロピルパラベン;カテコール;レゾルシノール;シクロヘキサノール;3-ペンタノール;及びm-クレゾール);低分子量(約10残基未満の)ポリペプチド;タンパク質、例えば、血清アルブミン、ゼラチン又は免疫グロブリン;親水性ポリマー、例えば、ポリビニルピロリドン;アミノ酸、例えば、グリシン、グルタミン、アスパラギン、ヒスチジン、アルギニン又はリジン;単糖類、二糖類及び他の炭水化物(グルコース、マンノース又はデキストリンを含む);キレート化剤、例えば、EDTA;糖類、例えば、ショ糖、マンニトール、トレハロース又はソルビトール;塩を形成する対イオン、例えば、ナトリウム;金属錯体(例えば、Zn-タンパク質錯体);及び/又は非イオン性界面活性剤、例えば、ポリエチレングリコール(PEG)が挙げられる。水性注射懸濁物は、懸濁物の粘度を高める化合物(例えば、ナトリウムカルボキシメチルセルロース、ソルビトール、デキストランなど)を含んでいてもよい。任意選択的に、懸濁物は、適切な安定化剤、又は高度に濃縮した溶液の調製を可能にするために、化合物の溶解度を高める薬剤も含んでいてもよい。さらに、活性化合物の懸濁物は、適切な油注射懸濁物として調製されてもよい。適切な親油性溶媒又はビヒクルとしては、脂肪油(例えば、ゴマ油)、又は合成脂肪酸エステル(例えば、エチルクリート(ethyl cleat)又はトリグリセリド)又はリポソームが挙げられる。
有効成分はまた、例えばコアセルベーション技術によって、又は界面重合によって調製されたマイクロカプセル、例えばそれぞれ、ヒドロキシメチルセルロース又はゼラチンマイクロカプセル及びポリ-(methylmethacylate)マイクロカプセル、コロイド薬物送達系(例えば、リポソーム、アルブミンマイクロスフェア、マイクロエマルション、ナノ粒子、及びナノカプセル)、又はマクロエマルションにも取り込まれ得る。このような技術は、Remington’s Pharmaceutical Sciences(18th Ed.Mack Printing Company,1990)に開示されている。徐放性製剤を調製してもよい。徐放性製剤の適切な例としては、ポリペプチドを含有する固体疎水性ポリマーの半透過性マトリックスが挙げられ、このマトリックスは、例えば、フィルム又はマイクロカプセルなどの成型物品の形態である。特定の態様では、注射可能組成物の持続性吸収は、吸収を遅らせる薬剤(例えば、モノステアリン酸アルミニウム、ゼラチン、又はこれらの組み合わせ)の組成物での使用によってもたらされてもよい。
既に記載した組成物に加え、抗体はまた、デポー製剤として配合されてもよい。このような長く作用する製剤は、植込み(例えば、皮下若しくは筋肉内)によって、又は筋肉内注射によって投与されてもよい。したがって、例えば、抗体は、適切なポリマー若しくは疎水性材料(例えば、許容される油中のエマルションとして)若しくはイオン交換樹脂を用いて、又はやや難溶性の誘導体として、例えばやや難溶性の塩として配合されてもよい。
本発明の抗体を含む医薬組成物は、従来の混合、溶解、乳化、カプセル化、封入又は凍結乾燥プロセスによって製造されてもよい。医薬組成物は、1つ又は複数の生理学的に許容される担体、希釈剤、賦形剤又はタンパク質を医薬として使用可能な製剤へと加工するのを容易にする補助剤を用い、従来の様式で配合されてもよい。適切な製剤は、選択する投与経路によって変わる。
抗体は、遊離酸若しくは遊離塩基、中性又は塩形態で組成物に配合されてもよい。医薬的に許容される塩は、遊離酸又は遊離塩基の生物活性を実質的に保持する塩である。これらには、酸付加塩、例えば、タンパク質組成物の遊離アミノ基と形成されるもの、又は例えば塩酸若しくはリン酸などの無機酸と形成されるか、又は酢酸、シュウ酸、酒石酸若しくはマンデル酸などの有機酸と形成されるものが挙げられる。遊離カルボキシル基と形成される塩も、例えばナトリウム、カリウム、アンモニウム、カルシウムの水酸化物又は水酸化第二鉄などの無機塩基から誘導されてもよく、又はイソプロピルアミン、トリメチルアミン、ヒスチジン又はプロカインなどの有機塩基から誘導されてもよい。医薬塩は、対応する遊離塩基形態よりも、水性及び他のプロトン性溶媒に溶けやすい傾向がある。
F.治療方法及び組成物
本明細書で提供されるいずれの抗体を治療方法に使用してもよい。本発明の抗体は、例えば、がんの治療において、免疫治療薬剤として使用されてもよい。
治療方法で使用するために、本発明の抗体は、良質の医療のための原則に一致した様式で配合され、用量に分けられ、投与される。本文脈で考慮すべき因子としては、治療される特定の障害、治療される特定の哺乳動物、個々の患者の臨床状態、障害の原因、薬剤の送達部位、投与方法、投与スケジュール、及び医療従事者に既知である他の因子が挙げられる。
一態様では、医薬として使用するための本発明の抗体が提供される。さらなる態様では、疾患の治療に使用するための本発明の抗体が提供される。特定の態様では、治療方法に使用するための本発明の抗体が提供される。一態様では、本発明は、疾患の治療を必要とする個体に、疾患の治療に使用するための本発明の抗体を提供する。特定の態様では、本発明は、個体に有効量の抗体を投与することを含む、疾患を有する個体を治療する方法で使用するための抗体を提供する。特定の態様では、治療される疾患は、増殖性障害である。好ましい態様では、疾患は、がんである。特定の態様では、この方法は、さらに、個体に、有効量の少なくとも1つのさらなる治療薬剤(例えば、治療される疾患ががんである場合、抗癌剤)を投与することを含む。さらなる態様では、本発明は、標的細胞、特に腫瘍細胞の溶解を誘発することに使用するための本発明の抗体を提供する。特定の態様では、本発明は、標的細胞の溶解を誘発するために個体に有効量の抗体を投与することを含む、個体において、標的細胞、特に腫瘍細胞の溶解を誘発する方法に使用するための本発明の抗体を提供する。上記のいずれかの態様に係る「個体」は、哺乳動物、好ましくはヒトである。
さらなる態様では、本発明は、医薬の製造又は調製における本発明の抗体の使用を提供する。一態様では、医薬は、疾患の治療を必要とする個体における、疾患の治療のためのものである。さらなる態様では、医薬は、疾患を有する個体に、有効量の医薬を投与することを含む、疾患を治療する方法で使用するためのものである。特定の態様では、治療される疾患は、増殖性障害である。好ましい態様では、疾患は、がんである。一態様では、この方法は、さらに、個体に、有効量の少なくとも1つのさらなる治療薬剤(例えば、治療される疾患ががんである場合、抗癌剤)を投与することを含む。さらなる態様では、医薬は、標的細胞、特に腫瘍細胞の溶解を誘発するためのものである。なおもさらなる態様では、医薬は、標的細胞の溶解を誘発するために個体に有効量の医薬を投与することを含む、個体において、標的細胞、特に腫瘍細胞の溶解を誘発する方法に使用するためのものである。上記のいずれかの態様に係る「個体」は、哺乳動物、好ましくはヒトであってもよい。
さらなる態様において、本発明は、疾患を治療するための方法を提供する。一態様では、この方法は、このような疾患を有する個体に、有効量の本発明の抗体を投与することを含む。一態様では、組成物は、上記個体に投与され、本発明の抗体を医薬的に許容される形態で含んでいる。特定の態様では、治療される疾患は、増殖性障害である。好ましい態様では、疾患は、がんである。特定の態様では、この方法は、さらに、個体に、有効量の少なくとも1つのさらなる治療薬剤(例えば、治療される疾患ががんである場合、抗癌剤)を投与することを含む。上記のいずれかの態様に係る「個体」は、哺乳動物、好ましくはヒトであってもよい。
さらなる態様では、本発明は、標的細胞、特に腫瘍細胞の溶解を誘発するための方法を提供する。一態様では、この方法は、T細胞、特に細胞傷害性T細胞の存在下にて、標的細胞を本発明の抗体と接触させることを含む。さらなる態様では、個体において、標的細胞、特に腫瘍細胞の溶解を誘発するための方法が、提供される。1つのこのような態様では、方法は、標的細胞の溶解を誘発するために個体に有効量の本発明の抗体を投与することを含む。一態様では、「個体」は、ヒトである。
特定の態様では、治療される疾患は、増殖性障害、特にがんである。がんの非限定的な例としては、膀胱癌、脳腫瘍、頭頸部癌、膵臓癌、肺癌、乳癌、卵巣癌、子宮癌、子宮頸癌、子宮内膜癌、食道癌、結腸癌、結腸直腸癌、直腸癌、胃癌、前立腺癌、血液癌、皮膚癌、扁平細胞癌腫、骨癌及び腎臓癌が挙げられる。本発明の抗体を用いて治療され得る他の細胞増殖障害としては、限定されないが、腹部、骨、乳房、消化器系、肝臓、膵臓、腹膜、内分泌腺(副腎、副甲状腺、脳下垂体、睾丸、卵巣、胸腺、甲状腺)、眼、頭頸部、神経系(中枢及び末梢)、リンパ系、骨盤、皮膚、軟組織、脾臓、胸部領域及び泌尿生殖器系に位置する新生物が挙げられる。前癌状態又は病変及び癌転移も含まれる。特定の態様では、がんは、腎臓癌、膀胱癌、皮膚癌、肺癌、結腸直腸癌、乳癌、脳腫瘍、頭頸部癌及び前立腺癌からなる群から選択される。特に抗体が、第2の抗原としてのTYRP-1に結合する多重特異性抗体である一態様では、がんは、TYRP-1を発現するがんである。特に抗体が、第2の抗原としてのTYRP-1に結合する多重特異性抗体である一態様では、がんは、皮膚癌、特に黒色腫である。特に抗体が、第2の抗原としてのEGFRvIIIに結合する多重特異性抗体である一態様では、がんは、EGFRvIIIを発現するがんである。特に抗体が、第2の抗原としてのEGFRvIIIに結合する多重特異性抗体である一態様では、がんは、脳腫瘍、特に膠芽腫である。当業者は、多くの場合に、抗体が、治癒を与えないが、部分的な利益のみを与える場合があることを容易に認識する。いくつかの態様では、いくらかの効果を有する生理学的変化もまた、治療上有益であるとみなされる。したがって、いくつかの態様では、生理学的変化を与える抗体の量は、「有効量」と考えられる。治療が必要な対象、患者又は個体は、典型的には、哺乳動物であり、より具体的には、ヒトである。
いくつかの態様では、有効量の本発明の抗体が、疾患を治療するために個体に投与される。
疾患の予防又は治療のために、本発明の抗体の適切な投薬量(単独で使用される場合、又は1つ又は複数の他のさらなる治療薬剤と組み合わせて使用される場合)は、治療される疾患の種類、投与経路、患者の体重、抗体の種類、疾患の重篤度及び経過、抗体が予防目的又は治療目的で投与されるかどうか、以前又は現在の治療介入、患者の病歴及び抗体に対する応答、並びに主治医の裁量に依存する。投与の責任を担う医師は、いずれにしても、組成物中の有効成分の濃度、個々の対象に適切な用量を決定する。単回又は様々な時点にわたる複数回投与、ボーラス投与、及びパルス注入を含むが、これらに限定されない様々な投薬スケジュールが、本明細書では企図される。
抗体は、一度に、又は一連の治療にわたって患者に好適に投与される。疾患の種類及び重篤度に応じて、約1μg/kg~15mg/kg(例えば、0.1mg/kg~10mg/kg)の抗体が、例えば、1回又は複数回の別個の投与によるか、又は連続的な注入によるかによらず、患者に投与するための初期の候補投薬量であってもよい。1つの典型的な日用量は、上で言及した因子に応じて、約1μg/kg~100mg/kg以上の範囲であってもよい。数日間又はそれ以上にわたる反復投与において、状態に応じ、治療は、概して、疾患症状の所望の抑制が生じるまで続けられる。抗体の1つの例示的な投薬量は、約0.005mg/kg~約10mg/kgの範囲内であろう。他の非限定的な例では、用量はまた、約1μg/kg体重、約5μg/kg体重、約10μg/kg体重、約50μg/kg体重、約100μg/kg体重、約200μg/kg体重、約350μg/kg体重、約500μg/kg体重、約1mg/kg体重、約5mg/kg体重、約10mg/kg体重、約50mg/kg体重、約100mg/kg体重、約200mg/kg体重、約350mg/kg体重、約500mg/kg体重から、約1000mg/kg体重までを含んでいてもよく、又は投与あたりさらに多くてもよく、これらから誘導される任意の範囲であってもよい。本明細書に列挙される数から誘導可能な範囲の非限定的な例では、約5mg/kg体重~約100mg/kg体重、約5μg/kg体重~約500mg/kg体重などの範囲が、上述の数に基づいて投与されてもよい。したがって、約0.5mg/kg、2.0mg/kg、5.0mg/kg若しくは10mg/kg(又はこれらの任意の組み合わせ)の1回又は複数回の用量を患者に投与してもよい。かかる用量は、断続的に、例えば毎週又は3週間毎(例えば、患者が約2~約20回、又は例えば約6回の用量の抗体を受容するように)投与されてもよい。初期の多めの用量、それに続く1回又は複数回の量の少ない用量を投与してよい。しかしながら、他の投薬レジメンが有用であり得る。この療法の進行は、従来の技術及びアッセイによって容易に監視される。
本発明の抗体は、一般的に、意図した目的を達成するために有効な量で使用される。疾患状態を治療又は予防するための使用のために、本発明の抗体、又はその医薬組成物が、有効量で投与されるか、又は塗布される。
全身投与の場合、有効な用量は、インビトロアッセイ、例えば、細胞培養アッセイから最初に概算することができる。次いで、細胞培養物で決定されるようなIC50を含む血中濃度範囲を達成するために、用量を動物モデルで配合してもよい。このような情報を使用し、ヒトにおける有用な用量をさらに正確に決定することができる。
初期投薬量も、インビボデータから、例えば、動物モデルから、当該技術分野で周知の技術を用いて概算することができる。
治療効果を維持するのに十分な抗体の血漿濃度を与えるように、投薬量及び投薬間隔は、個々に調節されてもよい。注射による投与のための通常の患者投薬量は、約0.1~50mg/kg/日、典型的には約0.5~1mg/kg/日の範囲である。治療に有効な血漿濃度は、各日に複数回用量を投与することによって達成されてもよい。血漿中の濃度は、例えば、HPLCによって測定されてもよい。
本発明の抗体の有効な用量は、実質的な毒性を引き起こすことなく、一般的に治療利益を与える。抗体の毒性及び治療有効性は、細胞培養物又は実験動物における標準的な医薬手順によって決定することができる。細胞培養アッセイ及び動物実験を使用し、LD50(集団の50%が致死に至る用量)及びED50(集団の50%が治療に有効である用量)を決定することができる。毒性と治療効果との間の用量比は、治療指数であり、比LD50/ED50として表すことができる。大きい治療指数を示す抗体が好ましい。一態様では、本発明に係る抗体は、高い治療指数を示す。細胞培養アッセイ及び動物実験から得られるデータを、ヒトでの使用に適した投薬範囲を決定する際に使用することができる。投薬量は、好ましくは、毒性がほとんどないか、全くない状態で、ED50を含む血中濃度の範囲内にある。投薬量は、例えば、使用される剤形、利用される投与経路、対象の状態などの種々の因子に依存して、この範囲内で変動してもよい。正確な製剤、投与経路及び投薬量は、患者の状態という観点で個々の医師によって選択されてもよい(例えば、その全体が本明細書に参照により組み込まれる、Fingl et al.,1975,in:The Pharmacological Basis of Therapeutics,Ch.1,p.1を参照されたい)。
本発明の抗体で治療される患者の主治医は、毒性、臓器不全などに起因して、どのように、いつ投与を中止するか、中断するか、又は調整するかを知っているであろう。逆に、主治医は、臨床応答が十分ではない場合(毒性を生じずに)、治療をもっと高レベルにするように調整することも知っているであろう。関心のある障害の管理において投与される用量の大きさは、治療される状態の重篤度、投与経路などに伴って変動する。状態の重篤度は、例えば、部分的には、標準的な予後評価方法によって評価されてもよい。さらに、用量と、おそらく投薬頻度は、個々の患者の年齢、体重及び応答によっても変わる。
本発明の抗体は、治療において、1つ又は複数の他の薬剤と組み合わせて投与されてもよい。例えば、本発明の抗体は、少なくとも1つの追加の治療薬剤と同時投与され得る。「治療薬剤」との用語は、このような治療が必要な個体において、症状又は疾患を治療するために投与される任意の薬剤を包含する。このようなさらなる治療薬剤は、治療される特定の疾患に適した任意の有効成分を含んでいてもよく、好ましくは、互いに有害な影響を与えない相補的な活性を有するものを含んでいてもよい。特定の態様では、さらなる治療薬剤は、免疫制御剤、細胞増殖抑制剤、細胞接着の阻害剤、細胞傷害性薬剤、細胞アポトーシスの活性化剤、又はアポトーシス誘発因子に対する細胞の感度を高める薬剤である。好ましい態様では、さらなる治療薬剤は、抗癌剤、例えば、微小管破壊剤、代謝拮抗物質、トポイソメラーゼ阻害剤、DNAインターカレーター、アルキル化剤、ホルモン治療、キナーゼ阻害剤、受容体アンタゴニスト、腫瘍細胞アポトーシスの活性化剤、又は抗血管形成剤である。
このような他の薬剤は、適切には、意図する目的にとって有効な量で組み合わされて存在する。このような他の薬剤の有効量は、使用される抗体の量、障害又は治療の種類、上述の他の因子に依存する。抗体は、一般的に、同じ投薬量で、本明細書に記載の投与経路で使用されるか、又は約1~99%の本明細書に記載の投薬量で、又は経験的/臨床的に適切であると決定される任意の投薬量及び任意の経路で使用される。
上述のこのような併用療法は、組み合わせた投与(2つ以上の治療薬剤が、同じ又は別個の組成物に含まれる)、及び別個の投与を包含し、この場合、本発明の抗体の投与は、さらなる治療薬剤及び/又はアジュバントの投与前、投与と同時及び/又は投与後に行われてもよい。本発明の抗体はまた、放射線療法と組み合わせて使用されてもよい。
G.製造物品
本発明の別の態様では、上述の障害の治療、予防、及び/又は診断に有用な材料を含有する製造物品が提供される。製造物品は、容器と、容器上の又は容器に付随するラベル又はパッケージ添付文書とを備えている。適切な容器としては、例えば、瓶、バイアル、シリンジ、静注溶液袋などが挙げられる。容器は、ガラス又はプラスチックなどの種々の材料から作られてもよい。容器は、それ自体で、又は別の組成物との組み合わせで、状態の治療、予防、及び/又は診断に有効である組成物を保持し、滅菌アクセスポートを有し得る(例えば、容器は、静注溶液袋又は皮下注射針によって穿孔可能な栓を有するバイアルであり得る)。組成物中の少なくとも1つの活性薬剤は、本発明の抗体である。ラベル又はパッケージ添付文書は、組成物が、選択される状態を治療するために使用されることを示す。さらに、製造物品は、(a)本発明の抗体を含む組成物を内部に収容した第1の容器と、(b)さらなる細胞傷害性薬剤、又はさもなければ治療薬剤を含む組成物を内部に収容した第2の容器とを含み得る。本発明のこの態様における製造物品は、組成物が特定の状態を治療するために使用され得ることを示すパッケージ添付文書をさらに含んでいてもよい。あるいは、又は加えて、製造物品は、薬学的に許容される緩衝液、例えば、注射用静菌水(BWFI)、リン酸緩衝化生理食塩水、リンゲル溶液及びデキストロース溶液を含む第2の(又は第3の)容器をさらに含んでいてもよい。他の緩衝液、希釈剤、フィルタ、ニードル、及びシリンジを含め、商業的及びユーザの観点から望ましい他の材料をさらに含んでいてもよい。
H.診断及び検出のための方法及び組成物
特定の態様において、本明細書に提供される抗体のいずれも、生体試料中のその標的(例えば、CD3、TYRP-1、EGFRvIII)の存在の検出に有用である。「検出する」との用語は、本明細書で使用される場合、定量的又は定性的な検出を包含する。特定の態様において、生体試料は、細胞又は組織、例えば前立腺組織を含む。
一態様において、診断又は検出方法において使用するための、本発明に係る抗体が提供される。さらなる態様において、生体試料中のCD3、TYRP-1又はEGFRvIIIの存在を検出する方法が提供される。特定の態様において、方法は、生体試料と、本発明の抗体とを、CD3、TYRP-1又はEGFRvIIIに抗体が結合することを許容する条件下で接触させることと、複合体が、抗体とCD3、TYRP-1又はEGFRvIIIとの間で形成されるかどうかを検出することと、を含む。このような方法は、インビトロ法又はインビボ法であってもよい。一態様において、本発明の抗体は、CD3、TYRP-1及び/又はEGFRvIIIに結合する抗体を用いた治療に適格な対象を選択するために使用され、例えば、CD3、TYRP-1及び/又はEGFRvIIIは、患者の選択のためのバイオマーカーとなる。
本発明の抗体を使用して診断され得る例示的な障害としては、がん、特に皮膚癌又は脳腫瘍が挙げられる。
特定の態様において、本発明に係る抗体であって、その抗体が標識されているものが提供される。標識としては、限定されないが、直接的に検出される標識又は部分(例えば、蛍光、色素体、電子密度の高い、化学発光及び放射性標識)、及び例えば酵素反応又は分子相互作用によって、間接的に検出される部分(例えば、酵素又はリガンド)が挙げられる。例示的な標識としては、限定されないが、放射性同位体32P、14C、125I、3H及び131I、フルオロフォア、例えば、希土類キレート又はフルオレセイン及びその誘導体、ローダミン及びその誘導体、ダンシル、ウンベリフェロン、ルセリフェラーゼ(luceriferases)、例えば、ホタルルシフェラーゼ及び細菌ルシフェラーゼ(米国特許第4,737,456号)、ルシフェリン、2,3-ジヒドロフタラジンジオン、セイヨウワサビペルオキシダーゼ(HRP)、アルカリ性ホスファターゼ、β-ガラクトシダーゼ、グルコアミラーゼ、リゾチーム、糖オキシダーゼ、例えば、グルコースオキシダーゼ、ガラクトースオキシダーゼ及びグルコース-6-ホスフェートデヒドロゲナーゼ、ヘテロ環オキシダーゼ、例えば、ウリカーゼ及び過酸化水素を使用する酵素と連結し、染料前駆体を酸化するキサンチンオキシダーゼ、例えば、HRP、ラクトペルオキシダーゼ、又はミクロペルオキシダーゼ、ビオチン/アビジン、スピン標識、バクテリオファージ標識、安定な遊離ラジカルなどが挙げられる。
III.配列
IV.
以下は、本発明の方法及び組成物の実施例である。先に与えた一般的な説明を考慮すると、種々の他の態様が実施されてもよいことが理解される。
実施例1-最適化CD3バインダの生成
既に記載した(例えば、本明細書に参照により組み込まれる、国際公開第2014/131712号を参照されたい)、本明細書で「CD3orig」と呼ばれ、かつそれぞれ配列番号6及び11のVH及びVL配列を含むCD3バインダから開始して、本発明者らは、重鎖CDR3のKabat位置97及び100における2つのアスパラギン脱アミド配列モチーフを除去することによって、このバインダの特性を最適化することを目指した。
この目標に対して、本発明者らは、ファージディスプレイに適した、Kabat位置97と100の両方のアスパラギンが除去された重鎖の抗体ライブラリを生成し、さらにAsn97及びAsn100を置き換えることによって引き起こされる親和性の喪失を親和性成熟プロセスを通して補償するためにランダム化されたCDR H1、H2及びH3を生成した。
このライブラリは、マイナーコートタンパク質p3への融合を介して線状ファージに置かれ(Marks et al.(1991)J Mol Biol 222,581-597)、組み換えCD3εへの結合のために選択された。
初期のスクリーニングにおいて10の候補クローンが特定され、SPRによってFab断片(大腸菌内で産生された)として測定された、組み換え抗原上の許容可能な結合を示した。
しかしながら、これらクローンのうち1つだけが、IgGフォーマットへの変換後、フローサイトメトリーによって測定された、CD3を発現する細胞への許容可能な結合活性を示した。
本明細書で「CD3opt」と呼ばれ、かつそれぞれ配列番号7及び11のVH及びVL配列を含む選択されたクローンは、以下で説明されるように、さらに評価され、二重特異性フォーマットに変換された。
実施例2-最適化CD3バインダのCD3への結合
組み換えCD3への結合
両方ともFc領域内のP329G L234A L235A(「PGLALA」、EUナンバリング)変異のヒトIgG1フォーマットである、最適化CD3バインダ「CD3opt」と元々のCD3バインダ「CD3orig」とについて(配列番号12及び14(CD3orig)並びに配列番号13及び14(CD3opt))、組み換えCD3への結合は、表面プラズモン共鳴(SPR)によって決定された。
脱アミド部位除去の効果と抗体の安定性へのその効果とを評価するために、元々のCD3バインダ及び最適化CD3バインダの組み換えCD3への結合を、37°C又は40°Cの14日間の温度ストレス後に試験した。-80°Cで保存された試料を基準として使用した。基準試料及び40°Cでストレスを加えられた試料は、20mM His、140mM NaCl中、pH6.0であり、37°Cでストレスを加えられた試料は、PBS中、pH7.4であり、すべて濃度1.2~1.3mg/mlであった。ストレス期間(14日間)後、さらなる分析のために、PBS中の試料を透析して20mM His、140mM NaCl、pH6.0に戻した。
試料の相対活性濃度(RAC)を、以下の通りSPRにより決定した。
SPRは、Biacore T200機器(GE Healthcare)で行われた。抗Fab捕捉抗体(GE Healthcare,#28958325)は、標準的なアミンカップリングケミストリーを用いて、結果として4000~6000共鳴単位(RU)の表面密度で、Series S Sensor Chip CM5(GE Healthcare)に固定化された。ランニング及び希釈緩衝液として、HBS-P+(10mM HEPES,150mM NaCl pH 7.4,0.05%界面活性剤P20)を使用した。2μg/mlの濃度のCD3抗体を、5μl/分の流量で60秒間注入した。CD3抗原(以下を参照されたい)は、10μg/mlの濃度で120秒間注入され、解離は、5μl/分の流量で120秒間監視された。チップ表面は、10mMグリシンpH2.1のそれぞれ60秒間の2つの連続した注入によって再生された。容積屈折率の差は、ブランク注入を差し引くことによって、及びブランク制御フローセルから得られる応答を差し引くことによって訂正された。評価のために、結合反応は、注入終了から5秒後に取られた。結合シグナルを正規化するために、CD3結合は、抗Fab応答(固定化された抗Fab抗体上でのCD3抗体の捕捉の際に得られるシグナル(RU))によって分けられた。相対活性濃度は、各温度ストレスを加えられた試料を、対応するストレスを加えられていない試料に対して参照することにより計算した。
使用された抗原は、ノブ・イントゥ・ホール改変及びC末端Avi-tagを伴うヒトFcドメインに融合された、CD3デルタ及びCD3イプシロン外部ドメインのヘテロ二量体であった(配列番号28及び29を参照されたい)。
この実験の結果を図2に示す。見ることができるように、最適化CD3バインダであるCD3optは、元々のCD3バインダであるCD3origと比較して、温度ストレス(37°C、pH7.4で2週間)後、CD3への強く改善された結合を示した。この結果は、インビボ半減期とともに中性pHでの抗体の製剤に関連して、脱アミド部位除去が成功であったことと、脱アミド部位除去によって優れた安定性特性を有する抗体が得られたことを示している。
Jurkat細胞上のCD3への結合
両方ともFc領域内のP329G L234A L235A(「PGLALA」、EUナンバリング)変異のヒトIgG1フォーマットである、最適化CD3バインダ「CD3opt」と元々のCD3バインダ「CD3orig」とについて(配列番号12及び14(CD3orig)並びに配列番号13及び14(CD3opt))、ヒトレポーターT細胞株Jurkat NFAT上のCD3への結合は、FACSによって決定された。
Jurkat-NFATレポーター細胞(GloResponse Jurkat NFAT-RE-luc2P;Promega #CS176501)は、NFATプロモーターを伴うヒト急性リンパ性白血病レポーター細胞株であり、ヒトCD3を発現する。細胞を、RPMI1640、2g/lグルコース、2g/l NaHCO3、10% FCS、25mM HEPES、2mM L-グルタミン、1x NEAA、1x ピルビン酸ナトリウム中、1mlあたり0.1~0.5mio細胞で培養した。最終濃度であるハイグロマイシンB 1mlあたり200μgを、細胞を継代するときにはいつでも添加した。
結合アッセイのために、Jurkat NFAT細胞を採取し、PBSで洗浄し、FACS緩衝液中で再懸濁した。抗体染色を、96ウェル丸底プレート内で行った。したがって、1ウェルあたり100,000~200,000細胞が、播種された。プレートを4分間400xgで遠心分離し、上清を取り除いた。試験抗体をFACS緩衝液で希釈し、抗体溶液20μlを4°Cで30分間、細胞に添加した。未結合の抗体を除去するため、希釈された二次抗体(PE-conjugated AffiniPure F(ab’)2 Fragment goat anti-human IgG Fcg Fragment Specific;Jackson ImmunoResearch#109-116-170)の添加前に細胞をFACS緩衝液で2回洗浄した。4°Cで30分のインキュベーションの後、未結合の二次抗体を洗い流した。測定の前に、細胞を200μl FACS緩衝液中で再懸濁し、次いでBD Canto II装置を使用してフローサイトメトリーによって分析した。
図3に示すように、最適化CD3バインダ「CD3opt」と元々のCD3バインダ「CD3orig」とは、Jurkat細胞上のCD3に比較的良く結合した。
実施例3-最適化CD3バインダの機能活性
最適化CD3バインダ「CD3opt」の機能活性を、Jurkatレポーター細胞アッセイで試験し、元々のCD3バインダ「CD3orig」の活性と比較した。IgGの機能活性を試験するために、抗PGLALA発現CHO細胞を、増加する濃度のCD3optヒトIgG1 PGLALA又はCD3origヒトIgG1 PGLALAの存在下で、Jurkat NFATレポーター細胞と共インキュベートした。T細胞架橋のJurkat NFATレポーター細胞上のCD3の活性化は、ルシフェラーゼの産生を誘発するのであり、活性化マーカーとして発光を測定することができる。CD3origヒトIgG1 wtが、抗PGLALA発現CHO細胞に結合できず、したがってJurkat NFAT細胞に架橋されることができない、陰性対照として含まれていた。アッセイの概略図を図4で提供する。
抗PGLALA発現CHO細胞は、ヒトIgG1 Fc(PGLALA)に特異的に結合する抗体を、その表面上に発現するように操作されているCHO-K1細胞である(本明細書に参照により組み込まれる、国際公開第2017/072210号を参照されたい)。これらの細胞は、5%FCS+1%GluMaxを含有するDMEM/F12培地で培養された。Jurkat NFATレポーター細胞は、実施例2で説明されている通りである。
CD3 huIgG1 PGLALAが、CHO上に発現された抗PGLALA及びJurkat NFATレポーター細胞上に発現されたCD3に同時に結合する際、NFATプロモーターが、活性化されて、活性ホタルルシフェラーゼの発現を引き起こす。(ルシフェラーゼ基質の添加の際に得られる)発光シグナルの強度は、CD3活性化及びシグナル伝達の強度に比例する。Jurkat-NFATレポーター細胞は、懸濁物中で成長するのであり、RPMI1640、2g/lグルコース、2g/l NaHCO3、10%FCS、25mM HEPES、2mM L-glutamin、1x NEAA、1x ピルビン酸ナトリウム中、1mlあたり0.1~0.5mio細胞、ハイグロマイシン1mlあたり200μgで培養された。アッセイのために、CHO細胞を採取し、ViCellを使用して生存度を決定した。平底、白壁の96ウェルプレート(Greiner bio-one#655098)内で、100μl培地に30000標的細胞/ウェルをプレートし、50μl/ウェルの希釈された抗体又は培地(対照のため)を、CHO細胞に添加した。続いて、Jurkat-NFATレポーター細胞を採取し、ViCellを使用して生存度を評価した。細胞を、1.2mio細胞/mlで細胞培地内でハイグロマイシンBなしで再懸濁し、60000細胞/ウェル(50μl/ウェル)でCHO細胞に添加し、最終エフェクター対標的(E:T)比2:1、及び1ウェルあたり最終体積200μlを得た。次いで、4μlのGloSensor(Promega #E1291)を、各ウェルに添加した(最終体積の2%)。細胞を、加湿したインキュベータ内において37°Cで24時間インキュベートした。インキュベーション時間の終わりに、TECAN Spark 10Mを使用して発光を検出した。
図5に示すように、最適化CD3バインダであるCD3optは、Jurkat NFAT細胞上で、CD3origとしての架橋の際に類似の活性を有していた。
実施例4-最適化CD3バインダを含むT細胞二重特異性抗体の生成
TYRP1 TCB
実施例1で同定された最適化CD3バインダ(「CD3opt」、配列番号7(VH)及び11(VL))を使用して、CD3及びTYRP1を標的とするT細胞二重特異性抗体(TCB)を生成した(「TYRP1 TCB」)。
このTCBに含まれるTYRP1バインダは、TYRP1バインダのヒト化「TA99」によって生成され(重鎖及び軽鎖について、それぞれGenBankエントリーAXQ57811及びAXQ57813を参照されたい)、それぞれ配列番号18及び22に示される重鎖及び軽鎖可変領域配列を含む。
TCB分子の概略図は、図6で提供され、その全配列は、配列番号23、24、25及び27で与えられる。
元々のCD3結合配列との類似分子も調製した(配列番号23、24、25及び26)。
二重特異性分子を、HEK293 EBNA細胞の一過性トランスフェクションによって生成した。細胞は、対応する発現ベクターによって1:2:1:1(「ベクター重鎖(VH-CH1-VL-CH1-CH2-CH3)」:「ベクター軽鎖(VL-CL)」:「ベクター重鎖(VH-CH1-CH2-CH3)」:「ベクター軽鎖(VH-CL)」)の比でトランスフェクトされた 細胞を遠心分離にかけて、培地を、予め暖めたCD CHO培地(Thermo Fisher,#10743029)に交換した。CD CHO培地中で発現ベクターを混合し、PEI(ポリエチレンイミン、Polysciences,#23966-1)を添加し、溶液をボルテックスして室温で10分間インキュベートした。その後、細胞(2mio/ml)をベクター/PEI溶液と混合して、フラスコに移し、5% CO2雰囲気の振盪インキュベータ内で、3時間37°Cでインキュベートした。インキュベーションの後、補充液(全体積の80%)を伴うExcell培地を添加した。トランスフェクションの1日後に、補充液(Feed、全体積の12%)を添加した。7日後、遠心分離及びその後の濾過(0.2μmフィルタ)によって細胞上清を採取した。
タンパク質は、標準的な方法によって、濾過した細胞培養物上清から精製した。手短に述べれば、Fc含有タンパク質は、プロテインA親和性クロマトグラフィーによって細胞培養物上清から精製した(MabSelect Sure,GE Healthcare:平衡化緩衝液:20mM クエン酸ナトリウム,20mM リン酸ナトリウム、pH7.5;溶出緩衝液:20mM クエン酸ナトリウム,100mM NaCl,100mM グリシン pH3.0)。溶出はpH3.0で達成され、続いて試料をすぐにpH中和した。遠心分離(Millipore Amicon(登録商標)ULTRA-15(#UFC903096))によりタンパク質を濃縮し、凝集したタンパク質を、20mMヒスチジン、140mM塩化ナトリウム、pH6.0のサイズ排除クロマトグラフィー(Superdex 200,GE Healthcare)により、単量体タンパク質から分離した。
Pace et al.(1995),Protein Science 4,2411-23に従ったアミノ酸配列に基づき計算した質量減衰係数を用いて、280nmにおける吸収を測定することにより、精製したタンパク質の濃度を決定した。LabChipGXII(Perkin Elmer)を使用して、還元剤の存在下、及び不存在下にて、CE-SDSにより、タンパク質の純度及び分子量を分析した(表1)。ランニング緩衝液(それぞれ、25mM K2HPO4,125mM NaCl,200mM L-アルギニンモノヒドロクロリド,pH6.7、又は200mM KH2PO4,250mM KCl,pH6.2)中で平衡化した、分析用サイズ排除カラム(TSKgel G3000 SW XL又はUP-SW3000)を使用して、HPLCクロマトグラフィーにより25°Cにて、凝集内容物の決定を行った(表2)。
実施例5-最適化CD3バインダを含むT細胞二重特異性抗体のCD3及びTYRP1への結合
組み換えCD3への結合
TYRP1 TCBの組み換えCD3への結合を、最適化された(TYRP1 TCB CD3opt)又は元々の(TYRP1 TCB CD3orig)CD3結合配列のいずれかを有するTCBを使用してSPRにより評価した。
SPR実験は、ランニング緩衝液としてHBS-EP(0.01M HEPES pH7.4,0.15M NaCl,0.05%(v/v)界面活性剤P20(GE Healthcare))を用いて、Biacore T200で行った。
TYRP1 TCBを、ヒトIgG1 Fc(PGLALA)(本明細書に参照により組み込まれる、国際公開第2017/072210号を参照されたい)を特異的に結合する固定化された抗体とともに、CM5センサーチップ表面上に捕捉した。捕捉抗体を、標準的なアミンカップリングキット(GE Healthcare)を用いて、pH5.0で約8700共鳴単位(RU)の直接固定化によりセンサーチップ表面にカップリングした。TCB分子を、30秒間、5nMで、10μl/分の流れで捕捉した。
ヒト及びカニクイザル抗原(以下を参照されたい)を、12.35~3000nMの濃度、30μl/分の流れで、フローセルを通して、240秒にわたって通した。解離相は、240秒間監視され、試料溶液からHBS-EPへのスイッチングによってトリガされた。チップ表面を、10mMグリシンpH2.0の30秒間の1回の注射を使用して、毎サイクル後に再生した。
使用された抗原は、ノブ・イントゥ・ホール改変及びC末端Avi-tagを伴うヒトFcドメインに融合された、ヒト又はカニクイザルのいずれかのCD3デルタ及びCD3イプシロン外部ドメインのヘテロ二量体であった(配列番号28及び29(ヒトCD3)及び配列番号30及び31(カニクイザルCD3)を参照されたい)。
容積屈折率の差は、基準フローセル(TCBは全く捕捉されなかった)から得られる応答を差し引くことによって訂正された。親和性定数を、BIAevalソフトウェア(GE Healthcare)を使用して、1:1ラングミュア結合へのフィッティングにより、動態速度定数から導出した。
ヒト及びカニクイザルCD3への結合についてのKD値は、TYRP1 TCB CD3optについてそれぞれ50nM及び20nMとして決定され、TYRP1 TCB CD3origのものに類似していた(それぞれ50nM及び40nM)。
これは、非ストレス条件下、CD3opt又はCD3origのいずれかを含むTCBの両方が、組み換えCD3に比較的良く結合されることを示している。
TYRP1 TCBの組み換えヒトCD3への結合はまた、最適化された又は元々のCD3結合配列のいずれかを有するTCBを使用して、37°C又は40°Cの14日間の温度ストレス後に評価された。実験は、IgG分子の代わりにTCBを使用して、上記実施例2で説明した通りに行われた。
この実験の結果を図7に示す。
図7で見ることができるように、最適化CD3バインダであるCD3optを含むTCBは、元々のCD3バインダであるCD3origを含むTCBと比較して、ストレス(37°C、pH7.4で2週間)後、CD3への強く改善された結合を示した。この結果は、最適化CD3バインダの改善された特性(実施例2を参照されたい)が、TCBレベルで維持されることを裏付ける。
組み換えTYRP1への結合
組み換えTYRP1への結合を、対応する抗体のプラスミン消化によって調製したTYRP1 Fab断片を使用して、SPRにより評価した。
SPR実験は、ランニング緩衝液としてHBS-EP(0.01M HEPES pH7.4,0.15M NaCl,0.05%(v/v)界面活性剤P20(GE Healthcare))を用いて、Biacore T200で行った。
ヒトIgG1 Fc(PGLALA)(本明細書に参照により組み込まれる、国際公開第2017/072210号を参照されたい)を特異的に結合する抗体を、pH5.0で、標準的なアミンカップリングキット(GE Healthcare)を用いて、CM5センサーチップ上に直接カップリングした。抗原(以下を参照されたい)を、10μl/分の流量で30秒間捕捉した。TYRP1 Fab断片の3倍希釈系列を、30μl/分で180秒間フローセルに通し、会合相を記録した。解離相は、180秒又は1200秒間監視され、試料溶液からHBS-EPへのスイッチングによってトリガされた。チップ表面を、10mMグリシンpH2の30秒間の30μl/分の1回の注射を使用して、毎サイクル後に再生した。
使用された抗原は、ノブ・イントゥ・ホール(及びPG LALA)改変並びにC末端Avi-tagを伴うヒトFcドメインへの、ヒト、カニクイザル又はマウスTYRP1細胞外ドメイン(ECD)の単量体融合であった(配列番号32及び35(ヒトTYRP1)、配列番号33及び35(カニクイザルTYRP1)、又は配列番号34及び35(マウスTYRP1)を参照されたい)。
容積屈折率の差は、基準フローセル(抗原は全く捕捉されなかった)から得られる応答を差し引くことによって訂正された。親和性定数(KD)を、BIAevalソフトウェア(GE Healthcare)を使用して、1:1ラングミュア結合へのフィッティングにより、動態速度定数から導出した。
ヒト、カニクイザル又はマウスTYRP1への結合についてのKD値は、それぞれ130pM、180pM及び530pMとして決定され、親TA99抗体のものに類似していた(それぞれ90pM、120pM及び310pM)。
TYRP1 TCBの組み換えTYRP1への結合はまた、最適化された又は元々のCD3結合配列のいずれかを有するTCBを使用して、37°C又は40°Cの14日間の温度ストレス後に評価された。
実験は、抗原として組み換えTYRP1(Sino Biologicals)を使用して、CD3への結合について上記で説明した通りに行われた。
この実験の結果を図8に示す。これらは、両方のTCBについて(さらにはIgGフォーマットの対応するTYRP1バインダについて)のヒトTYRP1への結合が、ストレス条件による影響を受けないことを裏付ける。
Jurkat細胞上のCD3への結合
上記実施例2で説明した通りの、最適化CD3バインダ「CD3opt」又は元々のCD3バインダ「CD3orig」を含むTYRP1 TCBについて、ヒトレポーターT細胞株Jurkat NFAT上のCD3への結合は、FACSによって決定された。
図9に示されるように、最適化CD3バインダ「CD3opt」を含むTCBは、Jurkat細胞上のCD3に、元々のCD3バインダである「CD3orig」を含むTCBに対して少なくとも比較的良く結合する。
実施例6-最適化CD3バインダを含むT細胞二重特異性抗体の機能活性
CD3活性化
最適化CD3バインダであるCD3opt又は元々のCD3バインダであるCD3origのいずれかを含むTYRP1 TCB(実施例4)を、TYRP1陽性黒色腫細胞M150543(原発性黒色腫細胞株、チューリッヒ大学のdermatology cell bankから入手した)の存在下で、Jurkat NFATレポーター細胞アッセイ(実施例3を参照されたい)で試験した。
TYRP1 TCBが、TYRP1陽性標的細胞及びCD3抗原(Jurkat-NFATレポーター細胞上に発現された)に同時に結合する際、NFATプロモーターが、活性化されて、活性ホタルルシフェラーゼの発現を引き起こす。(ルシフェラーゼ基質の添加の際に得られる)発光シグナルの強度は、CD3活性化及びシグナル伝達の強度に比例する。アッセイは、抗PGLALA発現CHO細胞の代わりにM150543を使用して、実施例3で説明した通りに行われた。
IgG(実施例3)の場合に見られるように、CD3opt又はCD3origのいずれかを含むTCBの両方が、Jurkat NFATレポーター細胞上で類似の機能活性を有しており、濃度に依存する態様でCD3活性化を誘発した(図10)。
標的細胞殺傷
次ステップで、両方のTCB分子を、ヒト黒色腫細胞株M150543と共に共インキュベートされた、3つの異なるドナーからの新たに単離したヒトPBMCを用いて、腫瘍細胞殺傷アッセイで試験した。腫瘍細胞溶解を、24時間及び48時間後のLDH放出により測定した。CD4及びCD8 T細胞の活性化を、48時間後の両方の細胞サブセット上のCD69及びCD25のアップレギュレーションにより分析した。
手短に述べれば、標的細胞を、トリプシン/EDTAを用いて採取し、洗浄し、30000細胞/ウェルの密度で平底96ウェルプレートを使用してプレートした。細胞を、一晩付着したままにしておいた。末梢血単核球(PBMC)を、健康なヒトドナーからの新鮮血のHistopaque密度遠心分離により調製した。新鮮血を、滅菌PBSで希釈し、Histopaque gradient(Sigma#H8889)上で積層した。遠心分離(450xg、30分、室温)後、PBMC含有界面相より上方の血漿を廃棄し、PBMCを新しいFalconチューブに移し、続いてPBS 50mlで満たした。混合物を遠心分離(400xg,10分,室温)し、上清を廃棄し、PBMCペレットを滅菌PBSで2回洗浄した(遠心分離ステップ350xg,10分)。結果として得られたPBMC集団を、自動的にカウントし(ViCell)、10%FCS及び1%L-アラニル-L-グルタミン(Biochrom#K0302)を含有するRPMI1640培地に37°C、5%CO2で、細胞インキュベータ内で、さらに使用するまで保存した(24時間より長くはない)。殺傷アッセイのために、抗体を、示される濃度で3連で添加した。PBMCを、最終エフェクター対標的(E:T)比10:1で標的細胞に添加した。標的細胞殺傷を、37°C、5%CO2での24時間のインキュベーション後に、アポトーシス/ネクローシス細胞によって細胞上清内に放出されたLDHの定量化により評価した(LDH検出キット,Roche Applied Science#11 644 793 001)。標的細胞の最大溶解(=100%)は、1%Triton X-100での標的細胞のインキュベーションによって達成された。最小溶解(=0%)は、二重特異性構築物を有しないエフェクター細胞と共インキュベートした標的細胞を基準とする。
TCBが媒介する標的細胞のT細胞殺傷の際のCD8及びCD4 T細胞の活性化を、T細胞活性化マーカーCD25(後期活性化マーカー)及びCD69(早期活性化マーカー)を認識する抗体を使用してフローサイトメトリーによって評価した。48時間のインキュベーション後、PBMCを丸底96ウェルプレートに移し、350xgで5分間遠心分離し、FACS緩衝液で2回洗浄した。CD4 APC(BioLegend#300514)、CD8 FITC(BioLegend#344704)、CD25 BV421(BioLegend#302630)及びCD69 PE(BioLegend#310906)についての表面染色を、供給元の指示に従って行った。細胞を、150μl/ウェルのFACS緩衝液で2回洗浄し、100μl/ウェルの固定緩衝液(BD#554655)を使用して4°Cで15分間固定した。遠心分離後、試料を200μl/ウェルのFACS緩衝液中で再懸濁した。試料を、BD FACS Fortessaで分析した。
3つのドナーすべてにおいて、最適化された又は元々のCD3バインダのいずれかを含むTCBの両方が、比較可能な態様でT細胞活性化及び腫瘍細胞溶解を誘導した(図11)。3つのドナーすべてについての48時間後の腫瘍細胞溶解のEC50値を、表3に要約する。
実施例7-マウスにおけるT細胞二重特異性抗体でのPK研究
それぞれ異なるCD3バインダ(CD3orig及びCD3opt)でのTYRP1 TCBの薬物動態(PK)を、ヒトFcRnトランスジェニック(line32,ホモ)及びFcRnノックアウトマウス(Jackson Laboratory strain number 003982及び014565)への1mg/kgでの静脈内ボーラス投与を追って研究した(n=3/株/試験化合物)。一連の血液マイクロサンプルを、ヒトFcRnトランスジェニック(tg)マウスから672時間まで(投薬後5分から672時間までマウス1匹あたり9つの試料)、FcRnノックアウト(ko)マウスにおいて96時間まで(投薬後5分から96時間までマウス1匹あたり8つの試料)取った。血清を調製し、分析まで冷凍保存した。マウス血清試料を、non-GLP条件の下で、cobas(登録商標)e411(Roche)機器を使用して、ヒトIg/Fab CH1/カッパドメインに対して特異的なgeneric ECLIA法で分析した。薬物動態評価を、標準的な非区画分析を使用して行った。
この研究の結果を表4に示す。これは、CDRの操作が、抗体クリアランスに影響するであろう、他の配列ライアビリティ(liability)を引き起こさなかったことを示している。CD3optは、血清半減期に関してCD3origにおけるのと同じように良好である一方、CDR安定性の増加というさらなる利点を有している。
実施例8-最適化CD3バインダを含むさらなるT細胞二重特異性抗体の生成
実施例1で同定された最適化CD3バインダ(「CD3opt」、配列番号7(VH)及び11(VL))を使用して、CD3及びEGFRvIIIを標的とするT細胞二重特異性抗体(TCB)を生成した(「EGFRvIII TCB」)。
このTCBに含まれるEGFRvIIIバインダ(P063.056)は、親和性成熟(以下を参照されたい)が後に続くファージディスプレイから、誘導されたのであり、それぞれ配列番号88及び92に示される重鎖及び軽鎖可変領域配列を含む。
TCB分子の概略図は、図6で提供され、その全配列は、配列番号109、110、111及び27で与えられる。
元々のCD3結合配列との類似分子も調製した(配列番号109、110、111及び26)。
二重特異性分子を、HEK293 EBNA細胞の一過性トランスフェクションによって生成し、上記実施例4で説明した通りに精製及び分析した。
さらに、ファージディスプレイ由来のEGFRvIII抗体は、以下で説明する使用のために、ヒトIgG1フォーマットで類似の態様(IgG重鎖及び軽鎖について、1:1比で、HEK EBNA細胞を発現ベクターでトランスフェクトする)で産生された。
すべてのIgG及びTCB構築物は、サイズ排除クロマトグラフィーによって測定されたモノマー含有量95%以上で、比較可能な品質で精製された。
EGFRvIII抗体の選択
EGFRvIII抗体は、ファージディスプレイ由来であり、かつ親和性成熟したものであった。EGFRvIII(P056.021(配列番号40及び44)、P056.052(配列番号48及び52)、P047.019(配列番号56及び60)、P057.012(配列番号64及び68)、P057.011(配列番号72及び76)、P056.027(配列番号80及び84))について高い親和性結合及び特異性を示す抗体は、EGFRvIIIを安定して発現するCHO細胞及びEGFRvIII陽性ヒト膠芽腫細胞株DK-MGを使用して、細胞表面に発現されるEGFRvIIIへの結合について試験された。特異性を裏付けるため、及び野生型EGFR(EGFRwt)に対する交差反応性を排除するため、選択された抗体を、EGFRwt陽性ヒト腫瘍細胞株MKN-45への結合について試験した(図12)。EGFRwtへの結合についてセツキシマブが陽性対照として、及び非標的DP47 IgGが陰性対照として含まれた。すべての選択された抗体は、EGFRwtへの交差反応性なしにEGFRvIIIに特異的に結合し、さらなる特徴付けが考慮された。
次ステップで、IgG1 PGLALA(Fc領域内のP329G L234A L235A(「PGLALA」、EUナンバリング)変異のヒトIgG1フォーマット)としてのこれらのEGFRvIII抗体の機能活性が、抗PGLALAキメラ抗原受容体(CAR)を発現するJurkat NFATレポーター細胞と共インキュベートしたDK-MG細胞上で、発光を測定する(CAR Jアッセイ、その全体が本明細書に参照により組み込まれる、国際出願PCT/EP2018/086038号を参照されたい)ことによって評価された。DP47 IgG1 PGLALAが、陰性対照として含まれた。すべての試験されたEGFRvIII抗体が、CAR発現Jurkat NFATレポーター細胞の強い活性化を誘導した(図13)。最も弱い結合及び活性化を示したP047.019を除く、すべての試験されたEGFRvIII抗体が、TCBフォーマットへの変換(CD3バインダとしてCDorigを伴う)のために選択された。
TCBフォーマットへの変換がEGFRvIII抗体の結合能力に影響しないことを裏付けるために、選択されてTCBフォーマットへ変換されたEGFRvIII抗体のCHO-EGFRvIII細胞への結合は、対応するIgGの結合と比較された(図14)。試験されたEGFRvIIIクローンのほとんどが、TCBフォーマットに変換した場合、EGFRvIIIに結合するというその能力を保持し、クローンP057.011だけが、TCBフォーマットにおいて対応するIgGの結合と比較してわずかに低減したEGFRvIIIへの結合を示した(表5)。
続いて、EGFRvIII TCBの機能活性を、EGFRvIII陽性DK-MG細胞のJurkat NFATレポーター細胞アッセイにおいて試験した(図15)。すべての試験されたEGFRvIII TCBが、Jurkat NFATレポーター細胞アッセイにおいて活性を有していたのであり、P056.021が最も有力なもので、類似の活性を有していたP056.027、P056.052及びP057.012、並びに最も低い活性を有していたP057.011が続いた。次に、EGFRwtに対するEGFRvIII TCBの交差反応性を排除するために、EGFRvIII TCBを、DK-MG又はMKN-45細胞のいずれかと共培養されたPBMCで、腫瘍細胞溶解アッセイにおいて試験した(図16)。このアッセイにおいて、腫瘍細胞溶解とは別に、追加の読み出しとしてT細胞活性化(図17)及びサイトカイン放出(図18)を測定した。レポーター細胞アッセイにおいて既に見られたように、EGFRvIII TCB P056.021は、EGFRwt陽性細胞上でいかなる活性も有することなく、EGFRvIII陽性細胞上で最も高い活性を有していた。EGFRvIII TCB P057.011は、EGFRwt細胞上で非特異的な活性を示し、したがって除外された。EGFRvIII TCB P056.027、P056.052及びP057.012は、比較可能な活性を有していた。これらの結果に基づき、EGFRvIIIバインダP056.021及びP057.012が、親和性成熟のさらなるラウンドのために選択された。
P057.012から良好なバインダを何も誘導することができなかった(結果を示していない)。P056.021から誘導された、選択されたEGFRvIIIバインダの、SPRにより測定されたEGFRvIIIに対する親和性及び特異性を、表6に示す。
親和性成熟されたEGFRvIIIバインダ(P063.056(配列番号88及び92)、P064.078(配列番号96及び100)、P065.036(配列番号104及び108))をまた、U87MG-EGFRvIII及びMKN-45細胞上のEGFRvIIIへの特異的結合について、親バインダと比較した(図19)。EGFRvIIIへの親和性及び特異性に関して最も良好なEGFRvIIIバインダ、P063.056が、CD3バインダとしてCD3orig又はCD3optのいずれかを伴うTCBフォーマットへの変換のために選択された。
EGFRvIII TCB P063.056(CD3opt又はCD3origを伴う)の機能活性を、U87MG-EGFRvIII、DK-MG及びMKN-45細胞のJurkat NFATレポーター細胞アッセイにおいて親EGFRvIII TCB P056.021と比較した(図20)。3つすべてのTCBが、EGFRvIII陽性細胞の存在下でのみ、特異的なJurkat NFAT活性化を誘導する。EGFRvIII TCB P063.056は、親EGFRvIII TCB P056.021よりもわずかに高い活性を有していた。
(方法)
表面プラズモン共鳴
EGFRvIII抗体のEGFRvIIIに対する親和性を、ランニング緩衝液としてHBS-EP(0.01M HEPES pH7.4,0.15M NaCl,0.005%(v/v)界面活性剤P20;GE Healthcare)を用いて、25°Cで、Biacore T200で表面プラズモン共鳴によって測定した。抗EGFRvIII PGLALA IgGを、CM5チップに固定化されたヒトIgG1 Fc(PGLALA)(本明細書に参照により組み込まれる、国際公開第2017/072210号を参照されたい)を特異的に結合する抗体で、25nMで30秒間捕捉した。EGFRvIII-ECD avi his抗原(以下の実施例9を参照されたい)を、12.4~1000nMの濃度、30μl/分の流れで、すべてのフローセルを通して200秒にわたって通した。解離相は、300秒間監視され、試料溶液からHBS-EPへのスイッチングによってトリガされた。チップ表面を、10mMグリシンpH2.0の30秒間の2回の注射を使用して、毎サイクル後に再生した。容積屈折率の差は、基準フローセルから得られる応答を差し引くことによって訂正された。親和性定数を、BIAevalソフトウェア(GE Healthcare)を使用して、1:1ラングミュア結合へのフィッティングにより、動態速度定数から導出した。
特異性の決定のために、EGFRvIII及びEGFRwt ECD抗原を、CM5チップに固定化された抗his(Penta His,Qiagen)を用いて、100nMで40秒間捕捉した。60秒間の10mMグリシンpH2.0での再生の前に、抗EGFRvIII抗体の500nMの60秒間の単回注射を行った。50を超える反応単位が、EGFRvIII結合について観察された。5反応単位(RU)を超える反応が、EGFRwt結合について陽性と考えられ、IgGは、EGFRwtについて5RU未満の反応で特異的と分類された。
細胞株
Jurkat-NFATレポーター細胞(GloResponse Jurkat NFAT-RE-luc2P;Promega #CS176501)は、NFATプロモーターを伴うヒト急性リンパ性白血病レポーター細胞株であり、ヒトCD3を発現する。細胞を、RPMI1640、2g/l グルコース、2g/l NaHCO3、10%FCS、25mM HEPES、1% GlutaMAX、1x NEAA、1x ピルビン酸ナトリウム中、1mlあたり0.1~0.5mio細胞で培養した。最終濃度であるハイグロマイシンB 1mlあたり200μgを、細胞を継代するときにはいつでも添加した。
PGLALA CARを有するJurkat NFAT細胞を、インハウスで生成した。元々の細胞株(Jurkat NFAT,Signosis)は、NFATプロモーターを伴うヒト急性リンパ性白血病レポーター細胞株であり、ヒトCD3を介した活性化の際にルシフェラーゼ発現を引き起こす。それらは、P293G LALA変異を認識することができるキメラ抗原受容体を発現するように操作されていた。培養される時、細胞は、10%FCS及び1%グルタミンが補充されかつ1mlあたり0.4~1.5mio細胞で維持されるRPMI1640中で、懸濁物中で成長する。
CHO-EGFRvIII細胞を、インハウスで生成した。CHO-K1細胞は、EGFRvIIIで安定して形質導入された。細胞を、5%FCS、1%GlutaMAX及び6μg/ml ピューロマイシンを含有するDMEM/F12培地で培養した。
DK-MG(DSMZ#ACC 277)は、ヒト膠芽腫細胞株である。DK-MG細胞は、EGFRvIII発現のために細胞ソーティングによって富まされた。細胞を、RPMI1860、10%FCS及び1%GlutaMAXで培養した。
U87MG-EGFRvIII(ATCC HTB-14)は、EGFRvIIIで安定して形質導入されたヒト膠芽腫細胞株である。細胞を、DMEM、10%FCS及び1%GlutaMAXで培養した。
MKN-45(DSMZ ACC 409)は、高レベルのEGFRwtを発現する、ヒト胃腺癌細胞である。細胞を、2%FCS及び1%GlutaMAXを含有する高度RPMI1640で培養した。
フローサイトメトリーによる標的結合
結合実験に使用した細胞を採取し、PBSで洗浄し、FACS緩衝液中で再懸濁した。抗体染色を、96ウェル丸底プレート内で行った。細胞を採取し、カウントし、1ウェルあたり100000~200000細胞を播種した。プレートを4分間400xgで遠心分離し、上清を取り除いた。試験抗体をFACS緩衝液で希釈し、抗体溶液20μlを4°Cで30分間、細胞に添加した。未結合の抗体を除去するため、希釈された二次抗体PE-conjugated AffiniPure F(ab’)2 Fragment goat anti-human IgG Fcg Fragment Specific(Jackson ImmunoResearch,#109-116-170又は#109-116-098)の添加前に細胞をFACS緩衝液で2回洗浄した。4°Cで30分のインキュベーションの後、未結合の二次抗体を洗い流した。測定の前に、細胞を200μl FACS緩衝液中で再懸濁し、BD Canto II又はBD FACS Fortessaを使用してフローサイトメトリーによって分析した。
EGFRvIII PGLALA IgGを用いたCAR J NFATレポーター細胞アッセイ
EGFRvIII PGLALA IgGのT細胞活性化を誘導する有効性を、CAR J NFATレポーター細胞アッセイを使用して評価した。アッセイの原理は、Jurkat-NFAT操作されたエフェクター細胞(Jurkat-NFAT engineered effector cell)を、腫瘍抗原を発現する癌細胞と共培養することである。IgGが、PGLALA変異を介したCARと標的抗原EGFRvIIIとに同時に結合する際にのみ、NFATプロモーターは、活性化されて、Jurkatエフェクター細胞内のルシフェラーゼ発現の増大を引き起こす。十分な基質が添加されると、活性ホタルルシフェラーゼは、CAR媒介活性化のシグナルとして測定されることができる、発光の放出を引き起こす。手短に述べれば、標的細胞を、採取し、生存度を決定した。アッセイの開始の前日に、平底、白壁の96ウェルプレート(Greiner bio-one,#655098)内で、100μl培地に30000標的細胞/ウェルをプレートした。次の日に、培地を取り除き、25μl/ウェルの希釈した抗体又は培地(対照のため)を、標的細胞に添加した。続いて、Jurkat-NFATレポーター細胞を採取し、ViCellを使用して生存度を評価した。細胞を、1.5mio細胞/mlで細胞培地内で再懸濁し、75000細胞/ウェル(50μl/ウェル)で腫瘍細胞に添加し、最終エフェクター対標的(E:T)比2.5:1、及び1ウェルあたり最終体積75μlを得た。次いで、4μlのGloSensor(Promega,#E1291)を、各ウェルに添加した(終了体積の2%)。細胞を、加湿したインキュベータ内において37°Cで24時間インキュベートした。インキュベーション時間の終わりに、プレートを室温に適合させた(約15分)。次いで、25μl/ウェルのOne-Glo Luciferase(Promega,#E6120)を添加し、TECAN Sparkを使用して発光を検出する前に、プレートを15分間暗闇でインキュベートした。
EGFRvIII TCBを用いたJurkat NFATレポーター細胞アッセイ
改良されたCD3又は元々のCD3バインダのいずれかを伴うEGFRvIII TCBの、T細胞架橋及び続いてT細胞活性化を誘導する能力を、EGFRvIII陽性細胞及びJurkat-NFATレポーター細胞を使用して評価した。EGFRvIII TCBが、EGFRvIII陽性標的細胞及びCD3抗原(Jurkat-NFATレポーター細胞上に発現された)に同時に結合する際、NFATプロモーターが、活性化されて、活性ホタルルシフェラーゼの発現を引き起こす。(ルシフェラーゼ基質の添加の際に得られる)発光シグナルの強度は、CD3活性化及びシグナル伝達の強度に比例する。アッセイのために、標的細胞を採取し、生存度を決定した。平底、白壁の96ウェルプレート(Greiner bio-one,#655098)内で、100μl培地に30000標的細胞/ウェルをプレートし、50μl/ウェルの希釈された抗体又は培地(対照のため)を、標的細胞に添加した。続いて、Jurkat-NFATレポーター細胞を採取し、ViCellを使用して生存度を評価した。細胞を、1.2mio細胞/mlで細胞培地内でハイグロマイシンBなしで再懸濁し、60000細胞/ウェル(50μl/ウェル)で腫瘍細胞に添加し、最終エフェクター対標的(E:T)比2:1、及び1ウェルあたり最終体積200μlを得た。次いで、4μlのGloSensor(Promega,#E1291)を、各ウェルに添加した(終了体積の2%)。細胞を、加湿したインキュベータ内において37°Cで24時間インキュベートした。インキュベーション時間の終わりに、TECAN Sparkを使用して発光を検出した。
T細胞媒介腫瘍細胞殺傷
標的細胞を、トリプシン/EDTAを用いて採取し、洗浄し、30000細胞/ウェルの密度で平底96ウェルプレートを使用してプレートした。細胞を、一晩付着したままにしておいた。末梢血単核球(PBMC)を、健康なヒトドナーからの新鮮血のHistopaque密度遠心分離により調製した。新鮮血を、滅菌PBSで希釈し、Histopaque gradient(Sigma,#H8889)上で積層した。遠心分離(450xg、30分、室温)後、PBMC含有界面相より上方の血漿を廃棄し、PBMCを新しいfalconチューブに移し、続いてPBS 50mlで満たした。混合物を遠心分離(400xg,10分,室温)し、上清を廃棄し、PBMCペレットを滅菌PBSで2回洗浄した(遠心分離ステップ350xg,10分)。結果として得られたPBMC集団を、自動的にカウントし(ViCell)、10%FCS及び1%GlutaMAXを含有するRPMI1640培地に37°C、5%CO2で、細胞インキュベータ内で、さらに使用するまで保存した(24時間より長くはない)。殺傷アッセイのために、抗体を、示される濃度で3連で添加した。PBMCを、最終エフェクター対標的(E:T)比10:1で標的細胞に添加した。標的細胞殺傷を、37°C、5%CO2での24時間のインキュベーション後に、アポトーシス/ネクローシス細胞によって細胞上清内に放出されたLDHの定量化により評価した(LDH検出キット,Roche Applied Science,#11 644 793 001)。標的細胞の最大溶解(=100%)は、1%Triton X-100での標的細胞のインキュベーションによって達成された。最小溶解(=0%)は、二重特異性構築物を有しないエフェクター細胞と共インキュベートした標的細胞を基準とする。
TCBが媒介する標的細胞のT細胞殺傷の際のCD8及びCD4 T細胞の活性化を、T細胞活性化マーカーCD25(後期活性化マーカー)及びCD69(早期活性化マーカー)を認識する抗体を使用してフローサイトメトリーによって評価した。48時間のインキュベーション後、PBMCを丸底96ウェルプレートに移し、350xgで5分間遠心分離し、FACS緩衝液で2回洗浄した。CD4 APC(BioLegend,#300514)、CD8 FITC(BioLegend,#344704)、CD25 BV421(BioLegend,#302630)及びCD69 PE(BioLegend,#310906)についての表面染色を、供給元の指示に従って行った。細胞を、150μl/ウェルのFACS緩衝液で2回洗浄し、100μl/ウェルの固定緩衝液(BD,#554655)を使用して4°Cで15分間固定した。遠心分離後、試料を200μl/ウェルのFACS緩衝液中で再懸濁した。試料を、BD FACS Fortessaで分析した。
上清内のサイトカイン分泌を、製造元の指示に従ってサイトメトリックビーズアレイ(CBA)を使用して、フローサイトメトリーによって測定したが、50μlビーズ及び試料の代わりに25μlの上清及びビーズだけが使用された。以下のCBAキット(BD Biosciences)を使用した。CBA human interferon gamma(IFNγ)Flex Set、CBA human Granzyme ss Flex Set及びCBA human TNF Flex Set。試料を、BD FACS Canto II又はBD FACS Fortessaを使用して測定し、分析を、Diva Software(BD Biosciences)を使用して行った。
実施例9-最適化CD3バインダを含むT細胞二重特異性抗体のCD3及びEGFRvIIIへの結合
組み換えCD3への結合
EGFRvIII TCBの組み換えCD3への結合を、最適化された(EGFRvIII TCB CD3opt)又は元々の(EGFRvIII TCB CD3orig)CD3結合配列のいずれかを有するTCBを使用してSPRにより、上記でTYRP1 TCBについて実施例5において説明した通りに評価した。捕捉抗体を、標準的なアミンカップリングキット(GE Healthcare)を用いて、pH5.0で約5200共鳴単位(RU)の直接固定化によりセンサーチップ表面にカップリングし、TCB分子を、30秒間、20nMで、10μl/分の流れで捕捉した。
ヒト及びカニクイザルCD3への結合についてのKD値は、TYRP1 TCB CD3optについてそれぞれ30nM及び20nMとして決定され、TYRP1 TCB CD3origのものに類似していた(それぞれ40nM及び30nM)。
これは、非ストレス条件下、CD3opt又はCD3origのいずれかを含むTCBの両方が、組み換えCD3に比較的良く結合されることを示している。
EGFRvIII TCBの組み換えヒトCD3への結合はまた、最適化された又は元々のCD3結合配列のいずれかを有するTCBを使用して、37°C又は40°Cの14日間の温度ストレス後に評価された。実験は、IgG分子の代わりにTCBを使用して、上記実施例2で説明した通りに行われた。
この実験の結果を図21に示す。
図21で見ることができるように、最適化CD3バインダであるCD3optを含むTCBは、元々のCD3バインダであるCD3origを含むTCBと比較して、ストレス(37°C、pH7.4で2週間)後、CD3への強く改善された結合を示した。この結果は、最適化CD3バインダの改善された特性(実施例2を参照されたい)が、TCBレベルで維持されることを再び裏付ける。
組み換えEGFRvIIIへの結合
EGFRvIII TCBの組み換えEGFRvIIIへの結合を、SPRにより評価した。
SPR実験は、ランニング緩衝液としてHBS-EP(0.01M HEPES pH7.4,0.15M NaCl,0.05%(v/v)界面活性剤P20(GE Healthcare))を用いて、Biacore T200で行った。
抗Fc抗体(GE Healthcare)を、pH5.0で、標準的なアミンカップリングキット(GE Healthcare)を用いて、CM5センサーチップ上に直接カップリングした。EGFRvIII TCB(5nM)を、10μl/分の流量で30秒間捕捉した。EGFRvIII抗原の3倍希釈系列を、30μl/分で200秒間フローセルに通し、会合相を記録した。解離相は、300秒間監視され、試料溶液からHBS-EPへのスイッチングによってトリガされた。チップ表面を、3M MgCL2の30秒間の20μl/分の1回の注射を使用して、毎サイクル後に再生した。
使用された抗原は、C末端のAvi-tag及びHis-tagに融合された、ヒトEGFRvIIIの細胞外ドメインを含む(EGFRvIII-ECD avi his;配列番号36)。
容積屈折率の差は、基準フローセル(TCBは全く捕捉されなかった)から得られる応答を差し引くことによって訂正された。親和性定数(KD)を、BIAevalソフトウェア(GE Healthcare)を使用して、1:1ラングミュア結合へのフィッティングにより、動態速度定数から導出した。見かけ上の結合力定数(avidity constant)KDを、この2:1相互作用への1:1結合フィッティングを使用して、速度定数を介して、動態分析によって近似的に求めた。
ヒトEGFRvIIIへの結合のKD値(親和性)を、CD3opt又はCD3origのいずれかを含むEGFRvIII TCBの両方について6nMと決定した。
EGFRvIII TCBの組み換えEGFRvIIIへの結合はまた、最適化された又は元々のCD3結合配列のいずれかを有するTCBを使用して、37°C又は40°Cの14日間の温度ストレス後に評価された。実験は、抗原としてEGFRvIII-ECD avi hisを使用して、上記実施例5で説明した通りに行われた。
この実験の結果を図22に示す。これらは、両方のTCBについてのヒトEGFRvIIIへの結合が、ストレス条件による影響を受けないことを裏付ける。
Jurkat細胞上のCD3への結合
上記実施例2で説明した通りの、最適化CD3バインダ「CD3opt」又は元々のCD3バインダ「CD3orig」を含むEGFRvIII TCBについて、ヒトレポーターT細胞株Jurkat NFAT上のCD3への結合は、FACSによって決定された。
図23に示すように、最適化CD3バインダ「CD3opt」又は元々のCD3バインダ「CD3orig」のいずれかを含むTCBは、Jurkat細胞上のCD3に比較的良く結合した。
U87MG-EGFRvIII細胞上のEGFRvIIIへの結合
CD3opt若しくはCD3origのいずれかを伴うEGFRvIIIバインダP063.056又はCD3origを伴うEGFRvIIIクローンP056.021を含むEGFRvIII TCBについて、ヒト膠芽腫細胞株U87MG-EGFRvIII上のEGFRvIIIへの結合は、FACSによって測定された。EGFRvIIIバインダP063.056は、IgGフォーマットにも含まれていた。
図24に示すように、3つすべてのTCBが、U87MG-EGFRvIII細胞上に発現されるEGFRvIIIに、高い親和性をもって結合するのであり、結合は、TCBフォーマットへの変換によって損なわれることはない。
実施例10-最適化CD3バインダを含むT細胞二重特異性抗体の機能活性
CD3活性化
選択されたEGFRvIIIバインダ(P063.056)及び最適化CD3バインダCD3opt又は元々のCD3バインダCD3origのいずれかを含むEGFRvIII TCBを、EGFRvIII陽性膠芽腫細胞DK-MG、U87MG-huEGFRvIII及びEGFRwt陽性MKN45細胞の存在下で、上記実施例8で説明した通りにJurkat NFATレポーター細胞アッセイで試験した。
IgG(実施例3)の場合に見られるように、CD3opt又はCD3origのいずれかを含むTCBの両方が、Jurkat NFATレポーター細胞上で類似の機能活性を有しており、濃度に依存する態様でCD3活性化を誘発した(図20)。
標的細胞殺傷
選択されたEGFRvIIIバインダ(P063.056)及び最適化CD3バインダCD3opt又は元々のCD3バインダCD3origのいずれかを含むEGFRvIII TCBを、膠芽腫細胞株U87MG-EGFRvIII及びPBMCの存在下で、上記実施例8で説明した通りに腫瘍細胞殺傷試験で、親EGFRvIIIバインダP056.021及びCD3バインダCD3origを含むEGFRvIII TCBと比較した。Jurkat NFATレポーター細胞上で見られるように、CD3opt又はCD3origのいずれかを伴うTCBの機能活性は、CD69アップレギュレーションにより測定される腫瘍細胞溶解の誘発並びにCD4及びCD8 T細胞の活性化に関して類似する(図25)。
加えて、EGFRvIIIバインダP063.056及び最適化CD3バインダCD3optを「2+1フォーマット」(図6に示す通り)で伴うEGFRvIII TCBの機能活性を、同じEGFRvIII及びCD3バインダを「1+1 head-to-tailフォーマット」(図1Gに概略的に示す)で伴うEGFRvIII TCBと比較した。これら2つのEGFRvIII TCBを、膠芽腫細胞株U87MG-EGFRvIIIを用いて、実施例8で説明した通りにJurkat NFATレポーター細胞アッセイで、及び腫瘍細胞殺傷アッセイで試験した。2+1フォーマットのEGFRvIII TCBは、Jurkat NFATレポーター細胞アッセイ(図26)で測定されたCD3活性化とPBMCを用いた殺傷アッセイ(図27)における腫瘍細胞殺傷の誘発及びT細胞活性化との両方で優れた機能活性を有していた。
実施例11-最適化CD3バインダを含むT細胞二重特異性抗体の機能的特徴付け
EGFRvIII TCBによるT細胞増殖及び活性化
選択されたEGFRバインダ(P063.056)及び最適化CD3バインダCD3opt又は元々のCD3バインダCD3origのいずれかを含むEGFRvIII TCBの機能活性を、U87MG-EGFRvIII細胞上のT細胞増殖アッセイにおいて、親EGFRvIIIバインダP056.021及びCD3バインダCD3origを含むEGFRvIII TCBと比較した(図28)。3つすべてのTCBが、CD4 T細胞及びCD8 T細胞の強力な増殖及び活性化を誘導した。CD3optを伴うP063.056 EGFRvIII TCBは、他の2つのEGFRvIII TCBよりも高い活性を有していた。
EGFRvIII TCBによる腫瘍細胞溶解
次に、選択されたEGFRバインダ(P063.056)及び最適化CD3バインダCD3optを含むEGFRvIII TCB、並びに親EGFRvIIIバインダP056.021及びCD3バインダCD3origを含むEGFRvIII TCBを、DK-MG細胞と共培養されたPBMCで、腫瘍細胞溶解アッセイにおいて試験した(図29)。このアッセイにおいて、腫瘍細胞溶解とは別に、追加の読み出しとしてT細胞活性化及びサイトカイン放出を測定した。既に見られたように、CD3optを伴うP063.056 EGFRvIII TCBは、腫瘍細胞溶解、T細胞活性化並びにIFNγ及びTNFαの放出に関して、CD3origを伴うP056.021 EGFRvIII TCBよりも高い活性を有していた。
TYRP1 TCBによるT細胞活性化及び腫瘍細胞溶解
サイトカイン放出を誘導するTYRP1 TCBの機能特性を、原発性黒色腫細胞株M150543と健康なドナーから単離されたPBMCとの共培養によって試験した。TYRP1 TCBを介してT細胞が媒介する腫瘍細胞溶解を、処理の24時間及び48時間後に分析した(図30)。上清内へのIFNγ及びTNFαの放出、並びにCD4及びCD8 T細胞活性化を、処理の48時間後に分析した。TYRP1 TCBは、24時間後に既に、強力な腫瘍細胞溶解を誘導することができた。これには、CD25のアップレギュレーション並びにIFNγ及びTNFαの著しい放出によって測定された、CD4及びCD8 T細胞の強力な活性化が伴った。
(方法)
PBMC単離
末梢血単核球(PBMC)を、健康なヒトドナーからの新鮮血のHistopaque密度遠心分離により調製した。新鮮血を、滅菌PBSで希釈し、Histopaque gradient(Sigma,#H8889)上で積層した。遠心分離(450xg、30分、室温)後、PBMC含有界面相より上方の血漿を廃棄し、PBMCを新しいfalconチューブに移し、続いてPBS 50mlで満たした。混合物を遠心分離(400xg,10分,室温)し、上清を廃棄し、PBMCペレットを滅菌PBSで2回洗浄した(遠心分離ステップ350xg,10分)。結果として得られたPBMC集団を、自動的にカウントし(ViCell)、10%FCS及び1%GlutaMAXを含有するRPMI1640培地に37°C、5%CO2で、細胞インキュベータ内で、さらに使用するまで保存し(24時間より長くはない)、又はさらに使用するまで液体窒素中で冷凍して保存した。使用の前日に、冷凍したPBMCを解凍し、培地中で37°Cで一晩培養した。
T細胞増殖
手短に述べれば、標的細胞を採取し、カウントし、PBSで2回洗浄した。細胞を、PBS中で1mlあたり5mio細胞で再懸濁した。細胞を、細胞増殖染料eFluor670(eBioscience,#65-0840-85)で、5μMの最終濃度で10分間37°Cで染色した。染色反応を停止するために、4ボリュームの冷たい細胞培養完全培地(cold complete cell culture medium)を細胞懸濁物に添加し、5分間4°Cでインキュベートし、次いで培地で3回洗浄した。標識された標的細胞を、カウントし、RPMI1640、10%FCS及び1%GlutaMax中で1mlあたり0.1mio細胞に調節した。1ウェルあたり10,000標的細胞を、96ウェルプレートに播種した。次いで、処置剤を、示される濃度で添加し、終わりに、健康なドナーから単離された100,000PBMCを、1ウェルあたり添加した。細胞を、37°Cで5日間インキュベートし、次いでPBMCを、採取し、CD3 BUV395(BioLegend,#563548)、CD4 PE(BioLegend,#300508)、CD8 APC(BioLegend,#344722)、CD25 PE/Cy7(BioLegend,#302612)で染色した。増殖を、フローサイトメトリー(FACS Fortessa,BD Biosciences)によって測定されたCD4 T細胞及びCD8 T細胞中のeFluor670染料の希釈によって決定し、CD4及びCD8 T細胞の活性化を、CD25アップレギュレーションを測定することにより決定した。
T細胞媒介腫瘍細胞殺傷
標的細胞を、トリプシン/EDTAを用いて採取し、洗浄し、30000細胞/ウェルの密度で平底96ウェルプレートを使用してプレートした。細胞を、一晩付着したままにしておいた。殺傷アッセイのために、抗体を、示される濃度で3連で添加した。PBMCを、最終エフェクター対標的(E:T)比10:1で標的細胞に添加した。標的細胞殺傷を、37°C、5%CO2での24時間のインキュベーション後に、アポトーシス/ネクローシス細胞によって細胞上清内に放出されたLDHの定量化により評価した(LDH検出キット,Roche Applied Science,#11 644 793 001)。標的細胞の最大溶解(=100%)は、1%Triton X-100での標的細胞のインキュベーションによって達成された。最小溶解(=0%)は、二重特異性構築物を有しないエフェクター細胞と共インキュベートした標的細胞を基準とする。
T細胞活性化
TCBが媒介する標的細胞のT細胞殺傷の際のCD8及びCD4 T細胞の活性化を、T細胞活性化マーカーCD25(後期活性化マーカー)及びCD69(早期活性化マーカー)を認識する抗体を使用してフローサイトメトリーによって評価した。48時間のインキュベーション後、PBMCを丸底96ウェルプレートに移し、350xgで5分間遠心分離し、FACS緩衝液で2回洗浄した。CD4 APC(BioLegend,#300514)、CD8 FITC(#344704,BioLegend)、CD25 BV421(BioLegend,#302630)及びCD69 PE(BioLegend,#310906)についての表面染色を、供給元の指示に従って行った。細胞を、150μl/ウェルのFACS緩衝液で2回洗浄し、100μl/ウェルの固定緩衝液(BD,#554655)を使用して4°Cで15分間固定した。遠心分離後、試料を200μl/ウェルのFACS緩衝液中で再懸濁した。試料を、BD FACS Fortessaで分析した。
サイトカイン分泌
上清内のサイトカイン分泌を、製造元の指示に従ってサイトメトリックビーズアレイ(CBA)を使用して、フローサイトメトリーによって測定したが、50μlビーズ及び試料の代わりに25μlの上清及びビーズだけが使用された。以下のCBAキット(BD Biosciences)を使用した。CBA human interferon gamma(IFNγ)Flex Set及びCBA human TNF Flex Set。試料を、BD FACS Canto II又はBD FACS Fortessaを使用して測定し、分析を、Diva Software(BD Biosciences)を使用して行った。
実施例13-最適化CD3バインダを含むT細胞二重特異性抗体のインビボ有効性
TYRP1 TCB(実施例1で同定された最適化CD3バインダを含む)を、その抗腫瘍有効性について、ヒト腫瘍細胞株の異種移植マウスモデル、IGR-1黒色腫異種移植モデルにおいて試験した。
IGR-1細胞(ヒト黒色腫)を、10%FCS(Sigma)を含有するDMEM培地で培養した。5%CO2で、水飽和した雰囲気中、37°Cで細胞を培養した。移植のために継代6を使用した。細胞生存度は、96.7%であった。1動物あたり2×106細胞を、100μlのRPMI細胞培地(Gibco)内で、マウスの脇腹内へ、1mlツベルクリンシリンジ(BD Biosciences,Germany)を使用して皮下に注入した。
完全にヒト化されたNSG雌マウス(Roche Glycart AG,Switzerland)を、委ねられたガイドライン(GV-Solas;Felasa;TierschG)に従って、12時間光/12時間暗闇のデイリーサイクルで、特定病原体除去条件下で維持した。この実験研究プロトコルは、地方政府によって調査され、承認された(ZH223/2017)。継続的な健康モニタリングは、定期的に行われた。
マウスは、研究において第0日に2×106のIGR-1細胞を皮下に注入され、ランダム化され、重さを量られた。腫瘍細胞注入(腫瘍体積>200mm3)後20日に、マウスは、毎週2回で5週間、10μg(0.5mg/kg)TYRP1 TCBを静脈内に注入された。すべてのマウスは、200μlの適切な溶液を静脈内に注入された。ビヒクル群のマウスは、ヒスチジン緩衝液を注入され、処置群のマウスは、TYRP1 TCB構築物を注入された。200μlあたり適切な量の抗体を得るために、必要な場合にストック溶液をヒスチジン緩衝液で希釈した。腫瘍サイズを、キャリパーで週に3回測定し、mm3の体積+/-SEMとしてGrahPad Prismソフトウェアでプロットした。JMP12ソフトウェアで統計分析を行った。
図31は、腫瘍成長抑制に関して、TYRP1 TCBがビヒクル群と比較して著しい有効性を媒介したことを示す(68%TGI,p=0.0058*)。
EGFRvIII TCB(実施例1で同定された最適化CD3バインダを含む)を、その抗腫瘍有効性について、ヒト腫瘍細胞株の異種移植マウスモデル、U87-EGFRvIII膠芽腫異種移植モデルにおいて同様に試験した。
U87細胞(ヒト膠芽腫)は、ATCC(Manassas,USA)から最初に得られ、ヒトEGFRvIIIタンパク質を発現するように安定してトランスフェクトされた(Roche Glycart AG,Switzerland)。拡張後、細胞をRoche Glycart internal cell bankに預けた。U87-EGFRvIII細胞株を、10%FCS(Sigma)及び0.5μg/ml ピューロマイシン(Invitrogen)を含有するDMEM培地で培養した。5%CO2で、水飽和した雰囲気中、37°Cで細胞を培養した。移植のために継代8を使用した。細胞生存度は、94.7%であった。1動物あたり5×105細胞を、100μlのRPMI細胞培地(Gibco)内で、マウスの脇腹内へ、1mlツベルクリンシリンジ(BD Biosciences,Germany)を使用して皮下に注入した。
完全にヒト化されたNSG雌マウス(Roche Glycart AG,Switzerland)を、委ねられたガイドライン(GV-Solas;Felasa;TierschG)に従って、12時間光/12時間暗闇のデイリーサイクルで、特定病原体除去条件下で維持した。この実験研究プロトコルは、地方政府によって調査され、承認された(ZH223/2017)。継続的な健康モニタリングは、定期的に行われた。
マウスは、研究において第0日に5×105のU87-EGFRvIII細胞を皮下に注入され、ランダム化され、重さを量られた。腫瘍細胞注入(腫瘍体積>200mm3)後2週間に、マウスは、毎週2回で3週間、10μg(0.5mg/kg)EGFRvIII TCBを静脈内に注入された。すべてのマウスは、200μlの適切な溶液を静脈内に注入された。ビヒクル群のマウスは、ヒスチジン緩衝液を注入され、処置群のマウスは、EGFRvIII TCB構築物を注入された。200μlあたり適切な量の抗体を得るために、必要な場合にストック溶液をヒスチジン緩衝液で希釈した。腫瘍サイズを、キャリパーで週に3回測定し、mm3の体積+/-SEMとしてGrahPad Prismソフトウェアでプロットした。
図32は、腫瘍成長制御に関して、EGFRvIII TCBが著しい有効性を媒介し、すべてのマウスが完全寛解を達成したことを示す。
実施例12-マウスにおけるEGFRvIII TCBでのPK研究
最適化CD3バインダ、CD3optを含むEGFRvIII TCBの薬物動態(PK)を、ヒトFcRnトランスジェニック(line32,ホモ)及びNOD-SCIDマウスへの1mg/kgでの静脈内ボーラス投与を追って研究した。一連の血液マイクロサンプルを、ヒトFcRnトランスジェニック(tg)マウス及びNOD-SCIDマウスから672時間まで(投薬後5分から672時間までマウス1匹あたり9つの試料)取った。EGFRvIII TCBで処置したマウス血清の試料を、non-GLP条件の下で、特異的な酵素結合免疫吸着検定法(ELISA)を使用して分析した。EGFRvIII TCBの捕捉を、ストレプトアビジン-被覆されたマイクロタイタープレート(SA-MTP)上で、ビオチン化EGFRvIII抗原(huEGFRvIII his biotin)を用いて行った。結合されたEGFRvIII TCBを、ヒトIgG1 Fc(PGLALA)(実施例3を参照されたい)に対するジゴキシゲニン標識されたモノクローナル抗体を用いて検出し、続いて抗ジゴキシゲニン-POD二次検出抗体を、添加した。シグナルを、ペルオキシダーゼ基質(ABTS)の添加により生成した。較正範囲は、2.35ng/ml~150ng/mlであり、2.5ng/mlが、定量下限(LLOQ)であった。
この研究の結果を表7に示す。EGFRvIII TCBのPKプロファイルは、両方の試験されたマウス株について予想範囲内である。これは、CD3バインダのCDRの操作が、抗体クリアランスに影響するであろう、他の配列ライアビリティを引き起こさなかったことを示している。
上述の発明を、理解を明確にする目的で、説明及び実施例によってある程度詳細に記載してきたが、その記載及び実施例は、本発明の範囲を限定するものと解釈すべきではない。本明細書に引用されるすべての特許及び科学文献の開示は、その全体が参照により明示的に組み込まれる。