JP7058769B2 - 電子ビーム観察装置、電子ビーム観察システム、電子ビーム観察装置における画像補正方法及び画像補正のための補正係数算出方法 - Google Patents

電子ビーム観察装置、電子ビーム観察システム、電子ビーム観察装置における画像補正方法及び画像補正のための補正係数算出方法 Download PDF

Info

Publication number
JP7058769B2
JP7058769B2 JP2020567289A JP2020567289A JP7058769B2 JP 7058769 B2 JP7058769 B2 JP 7058769B2 JP 2020567289 A JP2020567289 A JP 2020567289A JP 2020567289 A JP2020567289 A JP 2020567289A JP 7058769 B2 JP7058769 B2 JP 7058769B2
Authority
JP
Japan
Prior art keywords
electron beam
image
pattern
correction coefficient
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020567289A
Other languages
English (en)
Other versions
JPWO2020152795A1 (ja
Inventor
宏一 浜田
愛美 木村
百代 圓山
竜 弓場
慎 榊原
計 酒井
聡 山口
勝美 瀬戸口
真純 白井
容徳 高杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Tech Corp filed Critical Hitachi High Tech Corp
Publication of JPWO2020152795A1 publication Critical patent/JPWO2020152795A1/ja
Priority to JP2022065752A priority Critical patent/JP7288997B2/ja
Application granted granted Critical
Publication of JP7058769B2 publication Critical patent/JP7058769B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/28Electron or ion microscopes; Electron or ion diffraction tubes with scanning beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/22Optical or photographic arrangements associated with the tube
    • H01J37/222Image processing arrangements associated with the tube
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/153Electron-optical or ion-optical arrangements for the correction of image defects, e.g. stigmators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/22Treatment of data
    • H01J2237/221Image processing
    • H01J2237/223Fourier techniques
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/26Electron or ion microscopes
    • H01J2237/28Scanning microscopes
    • H01J2237/2813Scanning microscopes characterised by the application
    • H01J2237/2814Measurement of surface topography
    • H01J2237/2816Length
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/26Electron or ion microscopes
    • H01J2237/28Scanning microscopes
    • H01J2237/2813Scanning microscopes characterised by the application
    • H01J2237/2817Pattern inspection

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Description

本発明は、電子ビームを用いて検査または計測を行う電子ビーム観察装置に係わる。
電子ビームを用いた試料の観察や検査あるいは計測に用いられる走査電子顕微鏡(SEM)などの電子ビーム観察装置は、電子源から放出された電子を加速し、静電レンズや電磁レンズによって試料表面上に収束させて照射する。これを一次電子と呼んでいる。
一次電子の入射によって試料からは二次電子(低エネルギーの電子を二次電子、高エネルギーの電子を反射電子と分けて呼ぶ場合もある)が放出される。これら二次電子を、電子ビームを偏向して走査しながら検出することで、試料上の微細パターンや組成分布の走査画像を得ることができる。また、試料に吸収される電子を検出することで、吸収電流像を形成することも可能である。
特開2017-27829号公報(対応米国特許公開公報US2012/0290990) 特許第5596141号公報(対応米国特許第9702695号)
電子ビーム観察装置のうち、取得した画像から半導体等の微細パターンの寸法を測定する測長SEM(CD-SEM:Critical Dimension-Scanning Electron Microscope)装置においては、複数装置間の測長値の差(機差)が小さいことが望ましい。これまで、ハードウェア的またはソフトウェア的な調整により、機差を許容できる範囲にまで小さくする取り組みが行なわれてきたが、半導体等のパターンのさらなる微細化に伴い、既存の機差低減方法が限界に近づきつつある。例えば、特許文献1では、一次電子ビームのプロファイルを推定して、それを元に画像の先鋭化処理を実行し、高精度な寸法計測を行う方法が開示されている。
しかし、特許文献1に示す従来例では、補正に用いる一次電子ビームの強度分布を正確に求める方法が明らかになっていない。従来の走査電子顕微鏡は電子源の像を試料上に形成するために、一次電子ビームの強度分布は、電子源像、光学収差、ビーム振動などにより決まることになる。更に取得画像には試料内での電子ビーム散乱の影響も現れる。
また、特許文献2では、測長電子顕微鏡の計測精度をモニタし、半導体製造ラインで使用する全ての装置で常に同じ精度の測定結果が出るように、装置の調整や構成を実施する必要がある旨が述べられている。しかし、同文献では、電子ビームの形状差等によって生じる複数の装置間の機差(画像差)を解決する手段については、必ずしも明らかになっていない。
電子ビームの形状を正確に把握することは極めて困難であることから、推定した電子ビームのプロファイルを用いた画像補正によって、精度よく機差を低減させることは難しい。一方で、装置使用後の経年変化や、使用環境等の影響により、わずかな電子ビームの形状変化等が生じ、許容できる範囲以上の機差(画像差)が生じてしまうことがある。また、マルチビーム装置やマルチカラム装置においても、装置使用後の経年変化や、使用環境等の影響により、わずかな電子ビーム差(画像差)が生じてしまうことがある。本発明はこれらの課題を解決し、精度よく機差を低減させる方法を提案する。
本願において開示される発明のうち、代表的なものの概要を簡単に説明すれば、次の通りである。
(1)電子ビームを試料に走査することによって画像を生成する電子ビーム観察装置において、複数の前記電子ビーム観察装置間での画像を補正するための補正係数算出方法であって、第1の電子ビーム観察装置が、第1のパターンおよび前記第1のパターンとは形状または大きさが異なる第2のパターンを有する試料、或いは前記第1のパターンを有する第1の試料および前記第2のパターンを有する第2の試料において、前記第1および第2のパターンに第1の電子ビームを走査して第1の画像を生成するステップと、第2の電子ビーム観察装置が、前記第1および第2のパターンに第2の電子ビームを走査して第2の画像を生成するステップと、前記第1または第2の電子ビーム観察装置が、前記第1および第2の画像に基づいて算出した第1および第2の周波数特性から選択的に抽出したピーク周波数における補正係数を算出するステップと、を含むことを特徴とする電子ビーム観察装置における画像補正のための補正係数算出方法である。
(2)電子ビームを試料に走査することによって画像を生成する電子ビーム観察装置において、複数の前記電子ビーム観察装置間での画像を補正する方法であって、第1の電子ビーム観察装置が、第1のパターンおよび前記第1のパターンとは形状または大きさが異なる第2のパターンを有する試料、或いは前記第1のパターンを有する第1の試料および前記第2のパターンを有する第2の試料において、前記第1および第2のパターンに第1の電子ビームを走査して第1の画像を生成するステップと、第2の電子ビーム観察装置が、前記第1および第2のパターンに第2の電子ビームを走査して第2の画像を生成するステップと、前記第1または第2の電子ビーム観察装置が、前記第1および第2の画像に基づいて算出した第1および第2の周波数特性から選択的に抽出したピーク周波数における補正係数を算出するステップと、前記第1または第2の電子ビーム観察装置が、前記第1または第2の電子ビーム観察装置で取得した第3の画像を前記補正係数で補正するステップと、を含むことを特徴とする電子ビーム観察装置における画像補正方法である。
(3)電子ビームを試料に走査することによって画像を生成する電子ビーム観察装置を複数台備えた電子ビーム観察システムであって、第1の電子ビーム観察装置は、第1のパターンおよび前記第1のパターンとは形状または大きさが異なる第2のパターンを有する試料、或いは前記第1のパターンを有する第1の試料および前記第2のパターンを有する第2の試料において、前記第1および第2のパターンに第1の電子ビームを走査して第1の画像を生成する第1のコンピュータシステムを備え、第2の電子ビーム観察装置は、前記第1および第2のパターンに第2の電子ビームを走査して第2の画像を生成する第2のコンピュータシステムを備え、前記第1または第2のコンピュータシステムは、 前記第1および第2の画像に基づいて算出した第1および第2の周波数特性から選択的に抽出したピーク周波数における補正係数を算出し、前記第1または第2の電子ビーム観察装置で取得した第3の画像を前記補正係数で補正するように構成されたことを特徴とする電子ビーム観察システムである。
(4)電子ビームを試料に走査することによって画像を生成する電子ビーム観察装置において、複数の前記電子ビーム観察装置間での画像を補正するための補正係数算出方法であって、第1の電子ビーム観察装置が、第1のパターンおよび前記第1のパターンとは形状または大きさが異なる第2のパターンを有する試料、或いは前記第1のパターンを有する第1の試料および前記第2のパターンを有する第2の試料において、前記第1および第2のパターンに第1の電子ビームを走査して第1の画像を生成するステップと、前記第1の電子ビーム観察装置が、前記第1の画像に基づいて第1の周波数特性を算出するステップと、第2の電子ビーム観察装置が、前記第1および第2のパターンに第2の電子ビームを走査して第2の画像を生成するステップと、前記第2の電子ビーム観察装置が、前記第2の画像に基づいて第2の周波数特性を算出するステップと、前記第1または第2の電子ビーム観察装置が、前記第1および第2の周波数特性から選択的に抽出したピーク周波数における補正係数を算出するステップと、を含むことを特徴とする電子ビーム観察装置における画像補正のための補正係数算出方法である。
(5)電子ビームを試料に走査することによって画像を生成する電子ビーム観察装置において、複数の前記電子ビーム観察装置間での画像を補正する方法であって、第1の電子ビーム観察装置が、第1のパターンおよび前記第1のパターンとは形状または大きさが異なる第2のパターンを有する試料、或いは前記第1のパターンを有する第1の試料および前記第2のパターンを有する第2の試料において、前記第1および第2のパターンに第1の電子ビームを走査して第1の画像を生成するステップと、前記第1の電子ビーム観察装置が、前記第1の画像に基づいて第1の周波数特性を算出するステップと、第2の電子ビーム観察装置が、前記第1および第2のパターンに第2の電子ビームを走査して第2の画像を生成するステップと、前記第2の電子ビーム観察装置が、前記第2の画像に基づいて第2の周波数特性を算出するステップと、前記第1または第2の電子ビーム観察装置が、前記第1および第2の周波数特性から選択的に抽出したピーク周波数における補正係数を算出するステップと、前記第1または第2の電子ビーム観察装置が、前記第1または第2の電子ビーム観察装置で取得した第3の画像を前記補正係数で補正するステップと、を含むことを特徴とする電子ビーム観察装置における画像補正方法である。
(6)電子ビームを試料に走査することによって画像を生成する電子ビーム観察装置を複数台備えた電子ビーム観察システムであって、第1の電子ビーム観察装置は、第1のパターンおよび前記第1のパターンとは形状または大きさが異なる第2のパターンを有する試料、或いは前記第1のパターンを有する第1の試料および前記第2のパターンを有する第2の試料において、前記第1および第2のパターンに第1の電子ビームを走査して第1の画像を生成し、前記第1の画像に基づいて第1の周波数特性を算出する第1のコンピュータシステムを備え、第2の電子ビーム観察装置は、前記第1および第2のパターンに第2の電子ビームを走査して第2の画像を生成し、前記第2の画像に基づいて第2の周波数特性を算出する第2のコンピュータシステムを備え、前記第1または第2のコンピュータシステムは、前記第1および第2の周波数特性から選択的に抽出したピーク周波数における補正係数を算出し、前記第1または第2の電子ビーム観察装置で取得した第3の画像を前記補正係数で補正するように構成されたことを特徴とする電子ビーム観察システムである。
(7)電子ビームを試料に走査することによって画像を生成する電子ビーム観察装置と、複数の前記電子ビーム観察装置間での画像差を管理するコンピュータシステムと、を備えた電子ビーム観察システムにおいて、複数の前記電子ビーム観察装置間での画像を補正するための補正係数算出方法であって、第1の電子ビーム観察装置が、第1のパターンおよび前記第1のパターンとは形状または大きさが異なる第2のパターンを有する試料、或いは前記第1のパターンを有する第1の試料および前記第2のパターンを有する第2の試料において、前記第1および第2のパターンに第1の電子ビームを走査して画像を生成するステップと、第2の電子ビーム観察装置が、前記第1および第2のパターンに第2の電子ビームを走査して第2の画像を生成するステップと、前記コンピュータシステムが、前記第1および第2の画像に基づいて算出した第1および第2の周波数特性から選択的に抽出したピーク周波数における補正係数を算出するステップと、を含むことを特徴とする電子ビーム観察システムにおける画像補正のための補正係数算出方法である。
(8)電子ビームを試料に走査することによって画像を生成する電子ビーム観察装置と、複数の前記電子ビーム観察装置間での画像差を管理するコンピュータシステムと、を備えた電子ビーム観察システムにおいて、複数の前記電子ビーム観察装置間での画像を補正する方法であって、第1の電子ビーム観察装置が、第1のパターンおよび前記第1のパターンとは形状または大きさが異なる第2のパターンを有する試料、或いは前記第1のパターンを有する第1の試料および前記第2のパターンを有する第2の試料において、前記第1および第2のパターンに第1の電子ビームを走査して画像を生成するステップと、第2の電子ビーム観察装置が、前記第1および第2のパターンに第2の電子ビームを走査して第2の画像を生成するステップと、前記コンピュータシステムが、前記第1および第2の画像に基づいて算出した第1および第2の周波数特性から選択的に抽出したピーク周波数における補正係数を算出するステップと、前記第1または第2の電子ビーム観察装置が、前記第1または第2の電子ビーム観察装置で取得した第3の画像を前記補正係数で補正するステップと、を含むことを特徴とする電子ビーム観察システムにおける画像補正方法である。
(9)電子ビームを試料に走査することによって画像を生成する電子ビーム観察装置と、複数の前記電子ビーム観察装置間での画像差を管理する第3のコンピュータシステムと、を備えた電子ビーム観察システムであって、第1の電子ビーム観察装置は、第1のパターンおよび前記第1のパターンとは形状または大きさが異なる第2のパターンを有する試料、或いは前記第1のパターンを有する第1の試料および前記第2のパターンを有する第2の試料において、前記第1および第2のパターンに第1の電子ビームを走査して画像を生成する第1のコンピュータシステムを備え、第2の電子ビーム観察装置は、前記第1および第2のパターンに第2の電子ビームを走査して第2の画像を生成する第2のコンピュータシステムを備え、前記第3のコンピュータシステムは、前記第1および第2の画像に基づいて算出した第1および第2の周波数特性から選択的に抽出したピーク周波数における補正係数を算出し、前記第1または第2のコンピュータシステムは、前記第1または第2の電子ビーム観察装置で取得した第3の画像を前記補正係数で補正するように構成されたことを特徴とする電子ビーム観察システムである。
(10)電子ビームを試料に走査することによって画像を生成する電子ビーム観察装置と、複数の前記電子ビーム観察装置間での画像差を管理するコンピュータシステムと、を備えた電子ビーム観察システムにおいて、複数の前記電子ビーム観察装置間での画像を補正するための補正係数算出方法であって、第1の電子ビーム観察装置が、第1のパターンおよび前記第1のパターンとは形状または大きさが異なる第2のパターンを有する試料、或いは前記第1のパターンを有する第1の試料および前記第2のパターンを有する第2の試料において、前記第1および第2のパターンに第1の電子ビームを走査して画像を生成するステップと、前記第1の電子ビーム観察装置が、前記第1の画像に基づいて第1の周波数特性を算出するステップと、第2の電子ビーム観察装置が、前記第1および第2のパターンに第2の電子ビームを走査して第2の画像を生成するステップと、前記第2の電子ビーム観察装置が、前記第2の画像に基づいて第2の周波数特性を算出するステップと、前記コンピュータシステムが、前記第1および第2の周波数特性に基づいて基準周波数特性を特定するステップと、前記第1または第2の電子ビーム観察装置が、前記基準周波数特性および前記第1または第2の周波数特性から選択的に抽出したピーク周波数における補正係数を算出するステップと、を含むことを特徴とする電子ビーム観察システムにおける画像補正のための補正係数算出方法である。
(11)電子ビームを試料に走査することによって画像を生成する電子ビーム観察装置と、複数の前記電子ビーム観察装置間での画像差を管理するコンピュータシステムと、を備えた電子ビーム観察システムにおいて、複数の前記電子ビーム観察装置間での画像を補正する方法であって、第1の電子ビーム観察装置が、第1のパターンおよび前記第1のパターンとは形状または大きさが異なる第2のパターンを有する試料、或いは前記第1のパターンを有する第1の試料および前記第2のパターンを有する第2の試料において、前記第1および第2のパターンに第1の電子ビームを走査して画像を生成するステップと、前記第1の電子ビーム観察装置が、前記第1の画像に基づいて第1の周波数特性を算出するステップと、第2の電子ビーム観察装置が、前記第1および第2のパターンに第2の電子ビームを走査して第2の画像を生成するステップと、前記第2の電子ビーム観察装置が、前記第2の画像に基づいて第2の周波数特性を算出するステップと、前記コンピュータシステムが、前記第1および第2の周波数特性に基づいて基準周波数特性を特定するステップと、前記第1または第2の電子ビーム観察装置が、前記基準周波数特性および前記第1または第2の周波数特性から選択的に抽出したピーク周波数における補正係数を算出するステップと、前記第1または第2の電子ビーム観察装置が、前記第1または第2の電子ビーム観察装置で取得した第3の画像を前記補正係数で補正するステップと、を含むことを特徴とする電子ビーム観察システムにおける画像補正方法である。
(12)電子ビームを試料に走査することによって画像を生成する電子ビーム観察装置と、複数の前記電子ビーム観察装置間での画像差を管理する第3のコンピュータシステムと、を備えた電子ビーム観察システムにおいて、複数の前記電子ビーム観察装置間での画像を補正する方法であって、第1の電子ビーム観察装置は、第1のパターンおよび前記第1のパターンとは形状または大きさが異なる第2のパターンを有する試料、或いは前記第1のパターンを有する第1の試料および前記第2のパターンを有する第2の試料において、前記第1および第2のパターンに第1の電子ビームを走査して画像を生成し、前記第1の画像に基づいて第1の周波数特性を算出する第1のコンピュータシステムを備え、第2の電子ビーム観察装置は、前記第1および第2のパターンに第2の電子ビームを走査して第2の画像を生成し、前記第2の画像に基づいて第2の周波数特性を算出する第2のコンピュータシステムを備え、前記第3のコンピュータシステムは、前記第1および第2の周波数特性に基づいて基準周波数特性を特定し、前記第1または第2のコンピュータシステムは、前記基準周波数特性および前記第1または第2の周波数特性から選択的に抽出したピーク周波数における補正係数を算出し、前記第1または第2の電子ビーム観察装置で取得した第3の画像を前記補正係数で補正するように構成されたことを特徴とする電子ビーム観察システムである。
(13)複数の電子ビームを試料に走査することによって画像を生成する電子ビーム観察装置において、画像を補正するための補正係数算出方法であって、前記電子ビーム観察装置が、第1のパターンおよび前記第1のパターンとは形状または大きさが異なる第2のパターンを有する試料、或いは前記第1のパターンを有する第1の試料および前記第2のパターンを有する第2の試料において、前記第1および第2のパターンに第1の電子ビームを走査して第1の画像を生成するステップと、前記第1および第2のパターンに第2の電子ビームを走査して第2の画像を生成するステップと、前記第1および第2の画像に基づいて算出した第1および第2の周波数特性から選択的に抽出したピーク周波数における補正係数を算出するステップと、を含むことを特徴とする電子ビーム観察装置における画像補正のための補正係数算出方法である。
(14)複数の電子ビームを試料に走査することによって画像を生成する電子ビーム観察装置において、画像を補正する方法であって、前記電子ビーム観察装置が、第1のパターンおよび前記第1のパターンとは形状または大きさが異なる第2のパターンを有する試料、或いは前記第1のパターンを有する第1の試料および前記第2のパターンを有する第2の試料において、前記第1および第2のパターンに第1の電子ビームを走査して第1の画像を生成するステップと、前記第1および第2のパターンに第2の電子ビームを走査して第2の画像を生成するステップと、前記第1および第2の画像に基づいて算出した第1および第2の周波数特性から選択的に抽出したピーク周波数における補正係数を算出するステップと、前記電子ビーム観察装置で取得した第3の画像を前記補正係数で補正するステップと、を含むことを特徴とする電子ビーム観察装置における画像補正方法である。
(15)複数の電子ビームを試料に走査することによって画像を生成する電子ビーム観察装置であって、前記電子ビーム観察装置は、第1のパターンおよび前記第1のパターンとは形状または大きさが異なる第2のパターンを有する試料、或いは前記第1のパターンを有する第1の試料および前記第2のパターンを有する第2の試料において、前記第1および第2のパターンに第1の電子ビームを走査して第1の画像を生成し、前記第1および第2のパターンに第2の電子ビームを走査して第2の画像を生成し、前記第1および第2の画像に基づいて算出した第1および第2の周波数特性から選択的に抽出したピーク周波数における補正係数を算出し、前記電子ビーム観察装置で取得した第3の画像を前記補正係数で補正するように構成されたことを特徴とする電子ビーム観察装置である。
本発明により、電子ビームの形状差等によって生じる複数の装置間の機差(画像差)や、マルチビーム装置やマルチカラム装置における電子ビーム差(画像差)を、撮像後の画像処理により低減することが可能となる。
本発明の実施例1を示し、電子ビーム観察装置の一例を示すブロック図である。 本発明の実施例1を示し、周波数特性から補正係数を算出する処理の一例を示すフローチャートである。 本発明の実施例1を示し、画像補正方法の一例を示す説明図である。 本発明の実施例2を示し、装置Aの周波数特性を示すグラフである。 本発明の実施例2を示し、装置Bの周波数特性を示すグラフである。 本発明の実施例1の変型例を示し、周波数特性から補正係数を算出する処理の一例を示すフローチャートである。 本発明の実施例7を示し、周波数特性から補正係数を算出する処理の一例を示すフローチャートである。 本発明の実施例8を示し、画像補正方法の一例を示す説明図である。 本発明の実施例10を示し、データ更新の一例を示すフローチャートである。 本発明の実施例1を示し、画像補正の設定画面の一例を示すGUI概略図である。 本発明の実施例2を示し、複数の電子ビーム観察装置を管理する電子ビーム観察システムの一例を示す構成図である。 第16の実施例に係る電子ビーム観察装置の一例を示すブロック図である。 第16の実施例に係る電子ビーム差低減用補正係数を取得するためのフローチャートである。 第16の実施例に係る電子ビーム差低減用補正係数を取得するための画面の一例である。 本発明の実施例11を示し、補正係数の一例を示す説明図である。 本発明の実施例11を示し、周波数特性から補正係数を算出する処理の一例を示すフローチャートである。 本発明の実施例12を示し、画像補正方法の一例を示す説明図である。 本発明の実施例13を示し、補正係数を算出する処理の一例を示す説明図である。 本発明の実施例14を示し、補正係数の平滑化処理の一例を示す説明図である。 本発明の実施例15を示し、電子ビーム観察システムの一例を示す説明図である。 本発明の実施例1を示し、画像補正方法の一例を示すフローチャートである。 本発明の実施例2を示し、画像補正方法の一例を示すフローチャートである。 本発明の実施例3を示し、画像補正方法の一例を示すフローチャートである。 本発明の実施例13を示し、補正係数を算出する処理の一例を示すフローチャートである。 本発明の実施例15を示し、画像補正方法の一例を示すフローチャートである。 本発明の実施例1を示し、周波数特性から補正係数を算出する処理の一例を示すフローチャートである。
以下、図面を参照して本発明の実施の形態を説明する。以下では電子ビーム観察装置の一例として走査電子顕微鏡を例にとって説明するが、本発明は走査電子顕微鏡以外の電子ビーム観察装置にも適用可能である。
図1は、実施例1に係る電子ビーム観察装置(走査電子顕微鏡)の概略構成を示すブロック図である。図示の例は、データバスやネットワーク等の通信手段121を介して、電子ビーム観察装置1-Aに電子ビーム観察装置1-Bが接続された電子ビーム観察システムを示す。電子ビーム観察装置1-Aと電子ビーム観察装置1-Bとは、通信手段121を介して、お互いにデータの送受信が可能なように構成されている。なお、電子ビーム観察装置1-Aと電子ビーム観察装置1-Bの構成は同様であるので、電子ビーム観察装置1-Aのみについて説明する。なお、電子ビーム観察装置1-A、1-Bを特定しない場合には、「-」以降を省略した符号「1」を用いる。
まず、装置構成について説明する。電子源(電子銃)101から電子ビーム(電子線)102が照射される下流方向(図中下方)には、変形照明絞り103と、開口板154と、検出器104と、走査偏向用偏向器105と、対物レンズ106が配置されている。更に、電子光学系には、図示はしないが一次ビームの中心軸(光軸)調整用アライナと、収差補正器等も付加されている。
なお、本実施例1における対物レンズ106は励磁電流によってフォーカスを制御する電磁レンズである例を示すが、静電レンズまたは電磁レンズと静電レンズの複合であってもよい。
コンピュータシステム116は、システム制御部110と、制御装置109と、入出力部113とで構成されている。
ステージ107は上にウェハ、すなわち試料108を載置して移動する構成となっている。電子源101と、検出器104と、走査偏向用偏向器105と、対物レンズ106と、ステージ107の各部は制御装置109に接続され、さらに制御装置109にはシステム制御部110が接続されている。
システム制御部110は、機能的には記憶装置111と、演算部112が配置され、画像表示装置を含む入出力部113が接続されている。また、図示はしていないが、制御系、回路系以外の構成要素は真空容器内に配置しており、真空排気して動作させていることは言うまでもない。また、真空外からウェハをステージ107上に配置するウェハ搬送系が具備されていることも言うまでもない。
なお、システム制御部110は、より具体的には、演算部112である中央処理部や記憶装置111である記憶部を有する構成とし、この中央処理部を上述の演算部112として記憶装置111に記憶された制御プログラム120や画像処理部148等を実行させることにより、欠陥検査や寸法計測に関わる画像処理、あるいは制御装置109等の制御を行うことができる。なお、画像処理部148はSEM画像を処理するプログラムである。
本実施例1において、このシステム制御部110と、入出力部113と、制御装置109等をも含め、制御部と総称する場合がある。更に、入出力部113は、キーボードやマウス等の入力手段と、液晶表示デバイスなどの表示手段が、入力部、出力部として別構成とされていても良いし、タッチパネルなどを利用した一体型の入出力手段で構成されていても良い。
本実施例1の装置を用いて実施される画像観察に関して説明する。電子源101から放出された電子ビーム102は対物レンズ106によってフォーカスを制御され、試料108上にビーム径が極小になるように集束される。
走査偏向用偏向器105は電子ビーム102が試料108の所定の領域を走査するように制御装置109により制御される。試料108の表面に到達した電子ビーム102は、表面付近の物質と相互に作用する。これにより、反射電子、二次電子、オージェ電子等の二次的な電子が試料から発生し、取得すべき信号となる。
本実施例1においては信号が二次電子である場合について示す。電子ビーム102が試料108に到達した位置から発生した二次電子114は検出器104により検出される。二次電子114を検出する検出器104の出力信号の信号処理が、制御装置109から走査偏向用偏向器105に送られる走査信号と同期して行われることにより画像(SEM画像)が生成され、試料108の観察が実施される。なお、当該画像(SEM画像)の代わりに、検出器104の出力信号から信号波形(例えば、試料108の表面上の位置と、当該位置に対応して検出器104が検出した二次電子114の量との関係を示す信号プロファイル)を生成することも可能である。
なお、生成された画像は、記憶装置111や不揮発性記憶装置(図示省略)に格納することができる。記憶装置111や不揮発性記憶装置等の記憶部に格納された画像は、後述する画像処理部148によって処理される。
なお、本実施例1においては、検出器104は対物レンズ106や走査偏向用偏向器105より上流に配置したが、配置の順序は入れ替わっていてもよい。また、図示はしないが電子源101と対物レンズ106の間には電子ビーム102の光軸を補正するアライナが配置され、電子ビーム102の中心軸が絞りや電子光学系に対してずれている場合に補正できる構成となっている。
電子ビーム観察装置1-A、1-B(以降、装置A、装置B)において、取得した画像から試料108のパターンの寸法を測定する場合においては、複数装置間の測長値の差(機差)が小さいことが望ましい。
従来例では、図1に記載した各構成要素のハードウェア的な調整や、ソフトウェア的な調整により、機差を許容できる範囲にまで小さくする取り組みが行われてきた。しかしながら、装置A、B使用後の経年変化や、使用環境等の影響により、わずかな電子ビームの形状差等が生じ、許容できる範囲以上の測長値の差(機差)が生じてしまうことがある。
本実施例1においては、装置Aと装置Bの機差を図1における画像処理部148における画像処理で低減する方法を提案する。本実施例1では、装置Aと装置Bの機差を低減させる処理について説明する。
本実施例1では、装置Aを基準装置として、装置Bの撮像画像を装置Aと同じ周波数特性となるように装置Bで撮像された画像を補正する例を示す。装置Aと装置Bは別の装置として説明するが、装置Aと装置Bは同じであっても構わない。この場合、装置Aが時間変化により装置Bとなったとして扱う場合や、装置Aにおいて、開口板154の形状を変化させた場合等に対応可能である。
画像処理部148による画像の補正は、装置Aと装置Bにより撮像されたそれぞれの画像から補正係数を算出し、算出された補正係数に基づいて行われる。
図2は、補正係数を算出する手順の一例を示すフローチャートである。
基準装置となる装置Aが、特定のパターンの試料(基準試料)108のSEM画像を撮像する(301)。装置Aは、撮像した画像をフーリエ変換等することによって、画像の周波数特性Aを算出して保存する(302)。
周波数特性の算出は、画像を周波数空間画像に変換した際に生成される係数のそれぞれについて係数の乗算または除算で行うことができる。
同様に装置Bは、特定のパターンの試料(基準試料)108のSEM画像を撮像する(303)。装置Aは、撮像した画像をフーリエ変換等することによって、画像の周波数特性Bを算出して保存する(304)。なお、特定のパターンの試料は、同一の試料が望ましい。また、特定パターンの試料としては、比較的広い周波数帯域でピーク周波数が抽出できるブラックシリコン等を用いるのが好適である。
装置Aを基準装置として、装置Bを装置Aに合わせることを考慮すると、補正係数は、
補正係数=装置Aの周波数特性A/装置Bの周波数特性B ………(式1)
として算出する。装置Aは、当該(式1)を用いて、周波数特性Aと周波数特性Bから補正係数を算出する(305)。この補正係数は、画像を周波数領域へ変換した後の各画素に対して算出する。
図2では、装置Aが装置Bの周波数特性Bを取得して補正係数を算出する例を示した。
図25では、装置Aが装置Bで撮像した画像の周波数特性Bを演算するようにした場合におけるフローチャートの一例を示す。
基準装置となる装置Aが、特定のパターンの試料(基準試料)108のSEM画像を撮像する(301)。同様に装置Bは、特定のパターンの試料(基準試料)108のSEM画像を撮像する(303)。
次に、装置Aは、装置Aで撮像した画像から周波数特性Aを算出して保存し、装置Bで撮像した画像から周波数特性Bを算出して保存する(2503)。装置Aは、当該周波数特性Aと周波数特性Bから、(式1)を用いて補正係数を算出する(305)。
周波数特性は、一枚の画像からでも取得できるが、ノイズ等による値のばらつき等の影響を低減するために、複数の撮像画像の周波数特性を平均して用いてもよい。また、周波数特性のノイズ等による値のばらつきを低減するために、算出された周波数特性に対して平滑化処理を行ってもよい。図2および図25は、一枚の画像から周波数特性を取得する例であるが、複数枚の画像を用いる場合は図5に示されるような処理手順となる。
図5は、実施例1の変型例を示し、複数の周波数特性から補正係数を算出する処理の一例を示すフローチャートである。
装置Aでは、特定のパターンの試料(基準試料)108のSEM画像を撮像し(301)、画像から周波数特性Aを算出する処理(601)をN回繰り返してから(310)、N個の周波数特性Aから平均周波数特性Aを算出する(602)。
装置Bでも同様にして、特定のパターンの試料108のSEM画像を撮像し(303)、画像から周波数特性Bを算出する処理(603)をM回繰り返してから(311)、M個の周波数特性Bから平均周波数特性Bを算出する(604)。
装置AにおいてN枚、装置BにおいてM枚の画像をそれぞれ撮像し、それぞれの装置A、Bにおける平均周波数特性A、B(602、604)を得る。なお、NとMは、それぞれ予め設定された1以上の整数値である。
周波数特性の平均とは、各周波数における振幅特性の平均を意味する。補正係数の算出(306)方法は、後述する図3の処理手順と同様である。
図20に、装置Bが、前述の装置Aで算出した補正係数(306、2505)を用いて装置Bで撮像された画像に補正を施し、装置Aと同じ周波数特性へと変換するフローチャートの一例を示す。
装置Bは、装置Aで算出された補正係数(306)を取得する(2001)。装置Bは、装置Bで撮像した実空間の画像を周波数空間の画像に変換し(2002)、周波数空間の画像の各画素に対して、補正係数(306)を乗算する(2003)。装置Bは、補正係数(306)が乗算された周波数空間の画像を二次元逆FFT(フーリエ変換)等の手法を用いて再び実空間の画像へと変換し(2004)、補正後の画像として出力する(2005)。補正後の画像は、装置Aと同じ周波数特性となるように補正されていることになるため、装置Bと装置Aの機差が低減される。
撮像した実空間の画像から補正後の実空間の画像を得るプロセスの一例をブロック図で表すと、図3のようになる。撮像された実空間の画像401は、フーリエ変換等の手法を用いて周波数空間の画像へと変換される(402)。次に、周波数空間の画像の各画素に対して、補正係数が乗算される(403)。補正係数が乗算された周波数空間の画像は、二次元逆FFT(フーリエ変換)等の公知又は周知の手法により再び実空間の画像へと変換され(404)、補正後の実空間の画像405として出力される。
なお、図20のフローチャートでは、装置Bが、装置Aで算出した補正係数(306)を用いて装置Bで撮像された画像を補正する例を示したが、装置Aが、装置Aで算出した補正係数(306)を用いて装置Bで撮像された画像を補正するように構成してもよい。また、装置Aが、装置Aで算出した補正係数(306)を用いて装置Aで撮像された画像を補正するように構成してもよい。
画像補正の環境設定を行うGUI(Graphical User Interface)の一例を図9に示す。図9は、入出力部113の画像表示装置に出力される環境設定画面600の一例を示す図である。設定画面600は、機差の補正を行うか否かをONまたはOFFにより設定するスイッチ610と、補正対象の装置を設定する補正ターゲット620を含む。
撮像時に、画像補正(機差補正)を実行するかしないかをスイッチ610により設定する。この際に、どの装置の周波数特性に合わすかを、補正ターゲット620としてファイルを指定することができる。
環境設定画面600で指定する補正ターゲット620は、補正対象の周波数特性を記録したファイルを想定している。本実施例1で説明するような環境設定画面600を設けることにより、画像補正の有無と、補正ターゲットを任意に設定することが可能となる。なお、GUIとして、入出力部113の表示部を共用することができる。
以上のように図5の実施例によれば、基準となる装置Aで、特定のパターンの試料を複数枚撮像し、複数の画像を取得する。これらの画像一枚一枚の空間周波数特性をフーリエ変換等を利用して取得し、それらを統計処理することで、装置Aとしての空間周波数特性Aを得る。
次に、別の装置Bで、前記装置Aで用いたものと同じパターンの試料を複数枚撮像し、複数の画像を取得する。これらの画像を一枚一枚の空間周波数特性をフーリエ変換等を利用して取得し、これらを統計処理することで、装置Bの空間周波数特性Bを得る。
空間周波数特性Aと、空間周波数特性Bを比較することで、画像を周波数的に補正するための補正係数を算出する。空間周波数特性Aと、空間周波数特性Bの差が生じないように、どちらかの装置の撮像画像を補正することで、装置Aと装置Bの機差を低減させる。装置間の周波数特性を同じ特性に合わせることで、測長値差が低減可能なことは実験により判明している。複数装置間の機差を低減することが可能となり、複数装置を有するサイトでの運用管理を正確に行うことが可能となる。
前記、同じパターンと記した試料108は、実際に測長処理を施す試料であることが好ましいが、画像に含まれている周波数成分が測長処理に用いる画像と似ているものであれば、別のパターンであっても構わない。また、前記補正係数を算出するために用いた試料と、測長に用いる試料は同一であってもよいし、異なっても構わない。
実施例1においては、2台の装置A、装置Bの機差を低減する方法に関して記載したが、基準となる装置Aの画像には、できるだけ高い周波数の成分が含まれていることが望ましい。
画像に高い周波数成分が含まれていないということは、画像がぼやけていることを意味し、逆に、画像に高い周波数成分が多く含まれているということは、画像が鮮明であることを意味するからである。よって、複数台の装置で、同じパターン(試料108)の画像を撮像し、それぞれの画像の周波数成分を比較して、高い周波数成分が最も多く含まれている装置を基準装置とすることで、他の装置で撮像した画像をより鮮明な画像に補正して、機差を低減することが可能となる。
図4A、図4Bは、周波数特性の一例を示すグラフである。図4Aは、装置Aの周波数特性Aを示すグラフで、図4Bは、装置Bの周波数特性Bを示すグラフである。図示の例の周波数特性A、Bは、周波数とパワー(振幅)の関係を示すが、これに限定されるものではない。
図4A、図4Bでは説明のため、水平周波に対するパワーのみ示す。これらの図のように、装置Aで取得した画像に対し、装置Bで取得した画像の方が周波数の高い部分にパワーが残っている場合、装置Bを基準装置とし、装置Aを装置Bに合わせるような画像処理を行えばよい。
周波数が高い領域にパワーがあるかどうかは、例えば、周波数特性として高い部分のパワーの大きさで判断可能であり、また、ハイパスフィルターの出力の大きさを比較する等、既存の手法で判断可能である。
図10は、実施例2に係る電子ビーム観察システムの概略構成を示す図である。コンピュータシステム(管理システム)1001には、データバスやネットワーク等の通信手段1002を介して、K台(K≧2)の図1に示す電子ビーム観察装置が接続されている。コンピュータシステム1001は、周波数特性に関する処理を実行し、周波数特性とそれに付随する情報を保存する周波数特性処理部1003と、入出力部1004や通信手段1002を介した周波数特性のデータ転送のための入出力I/F部1005、各電子ビーム観察装置の制御も可能な全体制御部1006とを適宜用いて構成される。
周波数特性処理部1003は、周波数特性に関する演算を実行する演算部1007と、情報を保存する記憶部1008とを有する。記憶部1008は、各電子ビーム観察装置で得られた周波数特性を記憶する周波数特性記憶部1011と、周波数特性と共に各電子ビーム観察装置から得られる撮像条件等の付随情報を周波数特性毎に記憶する付随情報記憶部1012とを適宜用いて構成される。演算部1007は、各電子ビーム観察装置で得られた周波数特性や周波数特性記憶部1011に記憶されている周波数特性に対して演算を行う周波数特性演算部1009と、これらの周波数特性を解析する周波数特性解析部1013と、機差を調整するための基準となる周波数特性を特定する基準周波数特性特定部1010とを適宜用いて構成される。
コンピュータシステム1001は、複数台の電子ビーム観察装置で得られた周波数特性の入力を受け、周波数特性の演算結果や基準となる周波数特性等を、入出力部1004に出力する機能を持つ。入出力部1004は、操作者に対するデータの表示及び操作者からの入力を受け付ける為のキーボード・マウス・ディスプレイ装置等を用いて構成される。
このコンピュータシステム1001は、本発明を用いて機差を調整するための基準となる周波数特性を記憶部1008に保持することが可能であり、各装置1-1~1-Kからの要求に応じて、当該基準周波数特性を各装置に伝送することができる。また、各装置1-1~1-Kは、各装置で撮像した画像の周波数特性のうち、任意の周波数特性をコンピュータシステム1001に伝送することができる。また、コンピュータシステム1001は、通信手段1002を介して各装置が保有する任意の周波数特性を取得することができ、当該各装置の周波数特性の中から基準とすべき周波数特性を特定することができる。各装置においては、この基準周波数特性に撮像画像の周波数特性を合わせる処理を行う。
各装置1-1~1-Kでは、コンピュータシステム1001から取得した基準となる周波数特性と、各装置1-1~1-Kで撮像した画像の周波数特性から補正係数を算出し、当該補正係数で画像を補正する。この場合、装置1-Kにおける補正係数は、
補正係数=基準となる周波数特性/装置1-Kの周波数特性 ………(式2)
として算出できる。
図21に、実施例2におけるフローチャートの一例を示す。各装置1-1~1-Kは、特定のパターンの試料(基準試料)のSEM画像を撮像し(2101)、演算部112や画像処理部148を通じて当該撮像画像から各々の周波数特性を取得し、記憶部111に保存する(2102)。次に、各装置1-1~1-Kが、当該各々の周波数特性をコンピュータシステム1001に伝送する(2103)。この場合、コンピュータシステム1001が、各装置の記憶部111に保存されている所望の周波数特性を取得するようにしてもよい(2103)。コンピュータシステム1001は、当該各々の周波数特性を付随情報と共に、周波数特性記憶部1011、付随情報記憶部1012に保存する(2108)。コンピュータシステム1001の演算部1007の基準周波数特性特定部1010は、記憶部1008に保存された周波数特性の中から基準となる周波数特性を特定する(2104)。基準となる周波数特性は、できるだけ高い周波数の成分が含まれている周波数特性が望ましい。このような周波数特性の解析は、周波数特性解析部1013で行うことが可能である。コンピュータシステム1001は、特定した基準となる周波数特性を各装置1-1~1-Kに伝送する(2105)。この場合、各装置が、コンピュータシステム1001から当該基準となる周波数特性取得するようにしてもよい(2105)。各装置は、当該基準となる周波数特性と各装置で撮像した特定のパターンの試料(基準試料)の画
像の周波数特性から(式2)を用いて補正係数を算出する(2106)。各装置において、当該補正係数を用いて各装置で撮像した画像の補正を行う(2107)。
本実施例2によれば、複数の装置1間の機差を低減することが可能となり、複数の装置1を有する電子ビーム観察システムでの運用管理を正確に行うことが可能となる。
また、装置1-1~1-K毎に、周波数特性を表現する数値列を算出して保持するようにしてもよい。周波数特性を表現する数値列としては、例えば、二次元FFTの振幅などを用いることができる。
本発明においては、特定の1台を基準装置として機差を合わせることは必須でない。機差の低減に必要となるのは、画像の周波数特性のみであることから、複数台の装置で特定のパターン(基準試料)を撮像し、それぞれの画像の周波数特性の平均値を基準となる周波数特性とし、当該基準の周波数特性を用いて補正係数を算出することも可能である。
本実施例3では、図10に示した電子ビーム観察装置のコンピュータシステムにおいて、コンピュータシステム1001が、各装置の周波数特性を用いて、周波数特性の平均値(平均周波数特性)を算出する。この場合、装置1-Kにおける補正係数は、
補正係数=基準となる周波数特性/装置1-Kの周波数特性
=各装置の周波数特性の平均値(平均周波数特性)/装置1-Kの周波数特性 ………(式3)
として算出する。
図22に、本実施例におけるフローチャートの一例を示す。コンピュータシステム1001は、各装置の周波数特性を記憶部1008に保存した後(2108)、演算部1007の周波数特性演算部1009は、各装置の周波数特性の平均値(平均周波数特性)を算出し、当該平均周波数特性を基準となる周波数特性として特定する(2201)。各装置は、当該基準となる周波数特性と各装置で撮像した特定のパターンの試料(基準試料)の画像の周波数特性から(式3)を用いて補正係数を算出する(2202)。他のステップは、図21と同様である。
本実施例3によれば、複数の装置1間の機差を低減することが可能となり、複数の装置1を有する電子ビーム観察システムでの運用管理を正確に行うことが可能となる。また、各装置の周波数特性の平均値(平均周波数特性)を基準周波数特性とすることで、複数台の装置を基準装置群として取り扱うことができ、電子ビーム観察システムの機差補正(画像差補正)におけるフレキシブルな運用管理が可能となる。
実施例3で示したように、機差の低減に必要となるのは、画像の周波数特性のみであることから、画像を撮影する装置は、異なる構造を有する電子ビーム観察装置1であっても構わない。それぞれの装置で特定のパターンの試料108を撮像し、画像の周波数特性をもとに、補正係数を算出すればよい。
また、画像の周波数特性を保存しておくことで、同じ装置であっても電子ビームの時間変化(経年変化)を検出する目的で使用することも可能となり、電子ビームの時間変化を画像の補正により低減することが可能となる。また、メンテナンスに伴い部品を交換する場合についても、たとえば、開口板154や電子源101の交換による電子ビーム形状の変化を画像補正で低減することも可能である。
実施例1において、撮像画像から取得した画像の周波数特性をもとに、電子ビームの形状の差が画像に及ぼす影響を低減できることを示した。実施例1においては、装置間の機差を低減する目的で画像補正を行なったが、これ以外にも、同じ装置において、開口板154を複数有して、複数の開口板154を切り替えて使用する場合に、特定の開口板154で撮像した画像の周波数特性に、他の開口板154で撮像した画像の周波数特性を合わす目的でも活用できる。
本明細書において、絞り形状を含む、電子ビームの試料到達エネルギーや、試料108上の開き角や、試料照射電流量、光学倍率など、試料108に照射する電子ビーム形状を決定する全ての設計、設定条件を光学条件とする。本実施例5では絞り形状だけを切り替えた例について説明する。
これは、例えば、分解能を優先した絞り形状と、深溝を有する試料108を撮像するのに適した絞り形状が異なる場合等に活用できる。分解能を優先した絞り形状で、1枚以上の複数の画像を撮像することにより、その絞りを用いた場合の画像の周波数特性を取得しておく。同じパターンを深溝撮像用の絞りに変更した後に、1枚以上の複数の画像を撮像することにより画像の周波数特性を取得しておく。
実施例1と同様にこれらの画像から取得した周波数特性の差を低減させるような補正係数を算出しておけば、その後の撮像においては、一方の絞りで撮像した画像の周波数特性を、もう一方の絞りで撮像した画像の周波数特性へと補正することが可能となる。
電子ビーム観察装置1の拡大率(倍率)は、補正係数の算出時と画像の補正時で異なっても構わない。補正係数は、周波数ごとの係数を有しているため、補正係数の算出時の倍率と、画像の補正時の倍率の比に合わせて、適切に補正係数の周波数方向のスケーリングを行った後に画像補正を行えばよい。
なお、周波数毎の係数は、画素毎に周波数と強度(振幅またはパワー)と位相を含んでおり、本実施例6では位相を用いないので、位相を排除することができる。
本実施例7では、補正係数を複数算出し、複数の補正係数を平均化する例について説明する。
前記実施例5においては、特定の絞り形状(絞り形状Aとする)を撮像した画像の周波数特性を、ほかの絞り形状(絞り形状Bとする)で撮像した画像の周波数特性へと補正するための補正係数を算出する例を示した。
本実施例7では、ノイズなどによる値のばらつきの影響を低減するために、複数の補正係数を用意して平均化しても良く、その方法は図6に示すような処理手順となる。
図6は、周波数特性から補正係数を算出する処理の一例を示すフローチャートである。装置Aは、絞り形状Aで特定のパターンの試料108のSEM画像を撮像し(701)、画像から周波数特性Aを算出(702)する。
装置Bは、絞り形状Bで特定のパターンの試料108のSEM画像を撮像し(703)、画像から周波数特性Bを算出(704)する。
装置Aは、装置Bの周波数特性Bを取得して補正係数を前記実施例1と同様に算出する(306)。上記ステップ701~704及びステップ306を所定のL回繰り返してから(312)、上記ステップ306で算出された補正係数の平均値を平均補正係数として算出する(707)。
前述した実施例1の図5との違いは、装置A、装置Bが絞り形状Aと絞り形状Bで差異があることと、補正係数を算出してから平均化する点である。補正係数の算出(306)をL回繰り返した平均値を、絞り形状Aと絞り形状Bの平均補正係数707とすることで値のばらつきの影響を抑制することができる。
本実施例8では同じ装置、同じ絞り形状において、複数の絞り形状以外の光学条件で撮像した画像の周波数特性から補正係数を算出する例について説明する。
前述した実施例5では、一方の絞り形状で撮像した画像の周波数特性をもう一方の絞り形状で撮像した周波数特性へ補正できることを示したが、同じ装置、同じ絞り形状において、ある光学条件で撮像した画像の周波数特性を異なる光学条件で撮像した画像の周波数特性へ補正することも可能である。
たとえば、同じ装置、同じ絞り形状で、照射電流よりも分解能を優先した光学条件(小電流モード)と、分解能よりも照射電流が大きいことを優先した光学条件(大電流モード)で撮像した画像の周波数特性について、実施例5と同様に、同じパターンの画像を小電流モードと大電流モードで取得し、補正係数を取得することで、大電流モードで撮像した画像の周波数特性を高分解能モードで取得した画像の周波数特性へと補正できる。
上記光学条件を変更した場合の補正処理において、光学条件毎の画像の周波数特性を、図7に示すように光学条件710に紐づけてデータベース700として装置内に保有しておくことで、装置1は、補正する画像の周波数特性の光学条件710と補正後の画像の周波数特性の光学条件710に対応するデータをデータベース700から読みだし、補正係数を算出し、画像の周波数特性の補正を行うことができる。
データベース700内に存在しない光学条件の画像を補正する場合については、撮像前に補正係数を算出し、データベース700に格納しても良く、近い光学条件710の画像周波数特性から対応する補正係数を推測するのでもよい。これらの画像のパターンは同じであり、撮像条件あるいは画像のドーズ量が等しい条件で取得したものである。データベース700内のデータは補正係数として保有するのでも良い。
前述した実施例8では、複数の光学条件で撮像した画像の周波数特性についても補正係数を算出し、補正可能であることを示した。光学条件毎に画像の明るさや、SN比が異なるため、補正係数を算出に用いる画像に対して基準(撮像条件)を設けてもよい。
撮像条件とは、撮像する画像の大きさや、複数の撮像画像を積算して一枚の画像を形成する場合のフレーム積算数や、走査スピードなど撮像する際に設定される条件のこととする。
たとえば、いかなる光学条件においても補正係数を算出する際に用いる画像は画像の総ドーズ量が予め設けておいた基準範囲内とすると、小電流モードで一画素あたりの照射電流量が少ないため、フレーム積算数を増やし、逆に大電流モードの場合は一画素あたりの照射電流量は多いが試料108の表面への照射コンタミネーション付着によるパターン形状変化のリスクが高いため、フレーム積算数を少なくして撮像すればよい。
本実施例9では撮像前に設定された光学条件から基準のドーズ量を満たす撮像条件を選択することを前提に説明したが、任意の撮像条件で撮像後、基準範囲に満たない画像は補正係数算出に使用しないと判断するとしてもよい。
前述した実施例8において、光学条件毎の画像の周波数特性をデータベース700として保存する例を示した。本実施例10では、データベース700に保存する画像について、エラー画像を判定して除外する例について示す。
図8は、装置Aがデータを更新する処理の一例を示すフローチャートである。データベース700内のデータは光学条件を変更する毎に更新しても良い。このとき、ノイズや、外乱等の影響で乱れた画像を取得した場合については、たとえば、過去のデータを蓄積して、周波数特性の平均値を基準値として保有しておき、今回取得した周波数特性(901)が基準値となる標準偏差の3σから外れるか否かを判定(902)し、範囲内であればデータを更新し(903)、範囲外であれば更新対象外として除外する(904)。なお、判定の基準値はこの例に限定されるものではない。
本実施例では、パターン形状やパターンサイズなどが異なる複数の試料においても共通に利用できる補正係数を算出する方法を説明する。一例として、図14(A)に、パターン幅W1およびパターン幅W2で試料上に形成された複数のラインパターンの二次電子画像を取得した場合において、ラインパターンの伸長方向に対して垂直な方向に一次電子ビームを走査した際に得られる二次電子の信号プロファイル(信号波形)を示す。また、図14(B)に、上記ラインパターン(試料)の二次電子画像における周波数特性と、上記ラインパターン(試料)に対して図2等に示すフローチャートにより求めた補正係数の周波数特性を示した。図14(B)に示す通り、ラインパターンのパターン幅が異なる場合、パターンに対して電子ビームを走査して得られた信号の周波数特性が異なるため、補正すべき周波数(ピーク周波数)が異なってくる。そのため、パターン幅W1のラインパターンが形成された試料にて算出した補正テーブルを、パターン幅W2のラインパターンが形成された試料に適用したとしても、パターンW2のみに存在する周波数ピークに対応する成分は補正することができないという問題(課題)が生じる。このような問題は、ラインパターンのパターン幅に限られず、パターンのサイズ(大きさ)が異なる場合に生じてくる。理想的には、周波数帯域全体で信号が存在するようなパターンで補正係数表を作成するのが望ましいが、実際の試料の半導体パターンは特定の周期構造を持つライン&スペースまたはホールパターン等で形成されており、周波数空間上ではパターンの形状を示す周波数にのみピークが現れるため、周波数帯域全体を補正するような理想的な補正係数表の作成は困難である。しかしながら、パターン形状に依存しない機差成分のみを抽出することができれば、周波数特性の異なる他のパターンの撮像画像においても補正することが可能となる。
図15のフローチャートを用いて、そのようなパターンサイズが異なる複数のパターン(試料)に対しても共通で利用できる補正係数表または補正係数関数を算出する方法の一例を説明する。
基準装置となる装置Aが、パターン幅W1のラインパターンの試料(基準試料)108のSEM画像を複数枚(一枚以上)撮像する(1501)。装置Aは、撮像した各画像をフーリエ変換等することによって、画像の周波数特性Aを算出し保存する(1502)。同様に装置Bは、パターン幅W1のラインパターンの試料(基準試料)108のSEM画像を複数枚(一枚以上)撮像する(1503)。装置Aは、撮像した各画像をフーリエ変換等することによって、画像の周波数特性Bを算出し保存する(1504)。なお、パターン幅W1のラインパターンの試料は、同一の試料が望ましい。
次に、周波数特性A、Bにおけるピーク周波数を抽出する(1505)。ピーク周波数の抽出は、特定帯域の周波数成分の最大値、もしくは周波数成分が所定のしきい値以上となる周波数から選択的に抽出することができる。
次のステップでは、各々のピーク周波数における補正係数を算出する(1506)。ここで、装置Aを基準装置として、装置Bを装置Aに合わせることを考慮する場合は、各ピーク周波数における補正係数は(式1)を用いて算出する。
その後、算出した各ピーク周波数における補正係数を用いて、ピーク周波数間の補正係数を補間した補正係数表、或いは周波数空間全体において直線または曲線近似した補正係数関数を作成する(1507)。ピーク周波数のみにおける補正係数では、パターン幅W1のパターン形状しか補正することができないが、各ピーク周波数の間の補正係数を補間、またはピーク周波数における補正係数で周波数空間全体における補正係数を直線または曲線近似した補正係数関数を作成することで、電子ビーム形状の変化を周波数空間全体で表現することが可能となる。当該補正係数表または補正係数関数を用いて、所望の画像を補正することで、パターン形状やパターンサイズによらずに、装置間の機差(画像差)やマルチビーム装置またはマルチカラム装置における電子ビーム差(画像差)を低減できる。
本実施例11では、装置Aが装置Bの周波数特性Bを取得して補正係数を算出する例を示したが、装置Aが装置Bで撮像した画像の周波数特性Bを演算するようにしてもよい。周波数特性は、一枚の画像からでも取得できるが、ノイズ等による値のばらつき等の影響を低減するために、複数の撮像画像の周波数特性を平均して用いてもよい。また、周波数特性のノイズ等による値のばらつきを低減するために、算出された周波数特性に対して平滑化処理を行ってもよい。また、補正係数の算出にあっては、図5のフローように複数枚の画像を用いてもよいし、図6のフローのように異なる絞り形状における補正係数の平均値を適用してもよい。同じく、補正係数の算出にあっては、図10に示すようにコントローラ1001と接続した電子ビーム観察システムを構成してもよいし、図19に示すように画像処理装置1901と接続した電子ビーム観察システムを構成してもよい。同じく、補正係数の算出にあっては、図11乃至13に示すようなマルチビーム装置或いはマルチカラム装置に本実施例11を適用してもよい。また、これらに限られず、本実施例11と既に述べた実施例1~10或いは後述する本実施例12~14とを組み合わせた形態にて実施してもよい。さらに、補正係数の補間には単純に前後2点から直線を求めるなどの補間をしてもよいし、直線または曲線近似には電子ビーム形状の変化をモデル化した指数関数などの式を用いてもよい。基準装置と補正対象の装置のボケの違いが、電子ビームのガウシアン形状の幅の違いに起因するものであれば、指数関数で近似することが可能である。
本実施例12では、図16を用いて画像の補正処理の一例について説明する。先に述べたように、パターンを走査して得られた信号を周波数空間で表現した際、ライン&スペースやホールといったパターンの形状情報は、主に周波数ピークにおける周波数情報で表現される。言い換えれば、周波数ピーク以外の周波数帯域は、ほとんどパターンの形状情報が含まれていないともいえる。この場合、ピーク周波数のみ若しくはピーク周波数を含む近傍の周波数帯域のみで補正係数を用いて撮像画像を補正すれば、他の周波数帯域に関しては補正を行わなくても、機差やビーム差による画像差を低減することが可能となる。図16(A)に、パターン幅W1で試料上に形成された複数のラインパターンの二次電子画像の周波数特性を、図16(B)および(C)に、基準装置と補正対象装置で撮像した幅W1およびW2のラインパターン画像から算出したピーク周波数における補正係数および当該補正係数に対し曲線近似した補正係数関数を示す。幅W1のラインパターンの形状情報は、図16(B)の黒丸で示すピーク周波数およびピーク周波数近傍の周波数帯域のみによって表現されているため、曲線近似して補正係数関数を求めることなく、画像差の補正が可能である。図16(A)のピーク周波数は実施例11で説明した方法で抽出でき、そのピーク周波数またはピーク周波数を含むその近傍帯域のみで補正係数を適用する。本実施例によれば、曲線近似した補正係数関数を作成して周波数空間全体に補正係数を適用する必要がないため、補正処理の負荷を軽減でき、補正処理時間を短縮できる。また、図16(B)と図16(C)を比較すると、図16(C)には、図16(B)ではみられないピーク周波数が複数存在する。画像のパターンの形状に応じて、図16(B)或いは(C)の補正係数関数を使い分けることで、画像差をより低減することも可能である。
本実施例では、パターンサイズの異なる2つ以上の試料を用いて補正係数表または補正係数関数を算出する方法を説明する。図17(A)に、パターン幅W1、W2のラインパターンに対する一次電子ビーム走査で得られた二次電子の信号プロファイルと、パターン幅W1、W2のラインパターンの二次電子画像の周波数特性及び抽出したピーク周波数と、基準装置と補正対象装置で撮像した幅W1、W2のラインパターン画像から算出したピーク周波数における補正係数を示す。例えば、試料のパターンに含まれる周波数ピーク数が少ない場合、ピーク周波数における信号のみから一次電子ビーム形状の変化を安定してとらえることが困難となる。このような場合、パターンサイズなどが異なる複数のパターン(試料)におけるそれぞれの周波数特性のピーク周波数を抽出することで、補正係数の補間や近似に利用する周波数を増やすことができる。
図23に、本実施例におけるフローチャートの一例を示す。
基準装置となる装置Aが、パターン幅W1のラインパターンの試料(基準試料)のSEM画像を複数枚(一枚以上)撮像する(2301)。次に、装置Aが、パターン幅W2のラインパターンの試料(基準試料)のSEM画像を複数枚(一枚以上)撮像する(2302)。同様に装置Bは、パターン幅W1のラインパターンの試料(基準試料)とパターン幅W2のラインパターンの試料(基準試料)のSEM画像を複数枚(一枚以上)撮像する(2303、2304)。この場合、装置Aと装置Bで撮像するパターン幅W1のラインパターンの試料は同一の試料であることが望ましく、装置Aと装置Bで撮像するパターン幅W2のラインパターンの試料も同一の試料であることが望ましい。また、パターン幅W1のラインパターンとパターン幅W2のラインパターンは、同一の試料(基準試料)上において異なる位置に形成されていてもよい。
装置Aは、撮像した幅W1、W2のラインパターン画像をフーリエ変換等することによって、周波数特性AW1、AW2を算出し保存する(2305)。同様に装置Bは、撮像した幅W1、W2のラインパターン画像をフーリエ変換等することによって、周波数特性BW1、BW2を算出し保存する(2306)。次に、周波数特性AW1、BW1におけるピーク周波数を抽出する(2307)。同様に、周波数特性AW2、BW2におけるピーク周波数を抽出する(2307)。ピーク周波数の抽出は、特定帯域の周波数成分の最大値、もしくは周波数成分が所定のしきい値以上となる周波数から選択的に抽出することができる。
次のステップでは、各々のピーク周波数における補正係数を算出する(1506)。ここで、装置Aを基準装置として、装置Bを装置Aに合わせることを考慮する場合は、各ピーク周波数における補正係数は(式1)を用いて算出する。
その後、算出した各ピーク周波数における補正係数を用いて、ピーク周波数間の補正係数を補間した補正係数表、或いは周波数空間全体において直線または曲線近似した補正係数関数を作成する(1507)。
まず、幅W1のラインパターンを走査して得られた二次電子画像の周波数特性からピーク周波数を抽出し、ピーク周波数における補正係数を算出する。幅W2のラインパターンについても同様に、補正係数を算出する。次に、幅W1、W2のラインパターン画像から算出したピーク周波数における補正係数を用いて、先の実施例11で述べた手法により、補正係数表または補正係数関数を作成する。図17(B)に、曲線近似した補正係数関数の例を示す。このようにパターン幅が異なる2つのラインパターンの試料を用いることで、補正係数表または補正係数関数を作成する際のピーク周波数の数を増やすことができるため、より画像差の低減効果が高い補正係数表または補正係数関数を作成することが可能となる。
上述した処理は、3つ以上の試料でも同様に実行可能である。周波数特性(ピーク周波数)の異なるパターン(試料)を多数用いて、より汎用性の高い補正係数表や補正係数関数を作成することで、周波数特性の異なる種々のパターンの撮像画像においても画像差の補正が可能となる。この場合、より汎用性が高く、より画像差低減効果が高い補正係数表や補正係数関数を作成する上で、比較的広い周波数帯域でピーク周波数が抽出できるブラックシリコンを試料(基準試料)として用いることで、試料(基準試料)の数を少なくすることが可能である。また、本実施例では、パターンの二次電子画像から周波数特性を求めてピーク周波数の抽出を行っているが、二次電子の信号プロファイルから周波数特性を求めてピーク周波数の抽出を行っても良い。例えば、ホールパターンでは画像から周波数特性を求める方が望ましいが、ラインパターンでは信号プロファイルから周波数特性を求めてピーク周波数の抽出を行っても、画像の補正について同等の効果を得ることができる。
本実施例では、補正係数の平滑化方法について説明する。パターン構造(パターンの形状やパターン配列のピッチ)がランダムな試料を撮像した画像の周波数特性においては、特徴的な周波数ピークが現れないことがあり、先の実施例で述べた手法によって算出したピーク周波数における補正係数では、最適な画像差の補正ができない場合がある。言い換えれば、このような場合、基準装置と補正対象装置で取得した画像の周波数特性から算出した補正係数表或いは補正係数関数はノイズの影響を受けやすく、所望の画像の補正を行った際に特定の周波数のみ過補正もしくは補正不足となるといった問題を生ずる。こういった問題を解決するため(過補正または補正不足の影響を軽減するため)、以下、補正係数表や補正係数関数を平滑化する処理の流れについて説明する。図18に、基準装置と補正対象装置においてパターン構造(パターンの形状やパターン配列のピッチ)がランダムな試料を撮像した際の周波数特性、当該周波数特性を用いて算出した補正係数マップ、当該補正係数マップを角度方向に展開した補正係数とそのプロファイル、さらに補正係数を角度方向に平滑化して得られた平滑化補正係数マップ、当該平滑化補正係数マップを角度方向に展開した補正係数とそのプロファイルについて、処理の流れに沿って矢印で示した。まず、パターン構造がランダムな試料を基準装置で撮像した画像の周波数特性1801と、同試料を補正対象装置で撮像した画像の周波数特性1802を用いて、補正係数を算出し(1803)、補正係数マップを作成する(1804)。基準装置と補正対象装置との機差によるビーム形状の変化は、補正係数マップ1504上で二次元の分布として現れる。補正係数マップ1804の二次元分布の中心(周波数空間の直流成分)を基準として極座標に展開し(1805)、角度方向に空間フィルタによる平滑化処理を行って(1807)、極座標展開した平滑化補正係数1508を生成する。平滑化処理を行う前の補正係数プロファイル1806と比較して、平滑化後はノイズの少ない補正係数プロファイルが得られる(1810)。その後、当該平滑化補正係数マップ1808を二次元座標(x-y座標)に変換して、平滑化補正係数マップ1809を求める。補正係数マップ1804を極座標展開した後で角度方向に平滑化処理を行うことで、空間フィルタのフィルタサイズを比較的大きくした場合であっても補正係数を過度にぼかし過ぎることがないため、一定の補正効果を得ることができる。また、上記方法に限られず、移動平均によるノイズ除去や、角度方向に周波数特性を算出してローパスフィルタによって平滑化を行うことも可能である。このようにして平滑化を行った補正テーブルを補正に利用することで、ノイズの影響を抑え特定の周波数の過補正や、補正不足といった課題を解決できる。
図19は、実施例15に係る電子ビーム観察システムの概略構成を示す図である。コンピュータシステム(管理システム)1901には、通信手段1002を介して、K台(K≧2)の図1に示した構成の電子ビーム観察装置が接続されている。コンピュータシステム1901は、画像や補正係数等に関する処理を実行し、画像や補正係数等とそれらに付随する情報を保存する補正係数処理部1902と、入出力部1004や通信手段1002を介した画像および二次信号プロファイルのデータ転送のための入出力I/F部1005、各電子ビーム観察装置の制御も可能な全体制御部1006とを適宜用いて構成される。
補正係数処理部1902は、補正係数等に関する演算を実行する演算部1903と、情報を保存する記憶部1904とを有する。記憶部1904は、各電子ビーム観察装置で得られた画像を記憶する画像記憶部1909と、各電子ビーム観察装置で得られた二次信号プロファイルを記憶する信号波形記憶部1910と、画像や二次信号プロファイルと共に各電子ビーム観察装置から得られる撮像条件等の付随情報を画像や二次信号プロファイル毎に記憶する付随情報記憶部1012と、演算部1903で処理された周波数特性を記憶する周波数特性記憶部1011と、演算部1903で処理された補正係数を記憶する補正係数記憶部1911とを適宜用いて構成される。演算部1903は、各電子ビーム観察装置で得られた画像から周波数特性を算出する画像演算部1905、各電子ビーム観察装置で得られた二次信号プロファイルから周波数特性を算出する信号波形演算部1906、画像演算部1905や信号波形演算部1906で算出された周波数特性(周波数特性記憶部1011に記憶されている周波数特性でもよい)に対して演算を行う周波数特性演算部1009と、これらの周波数特性を解析する周波数特性解析部1013と、複数の周波数特性から補正係数を算出する補正係数演算部1907と、機差を調整するための基準となる補正係数を特定する基準補正係数特定部1908とを適宜用いて構成される。
コンピュータシステム1901は、複数台の電子ビーム観察装置で得られた画像または二次信号プロファイルの入力を受け、画像や二次信号プロファイル、周波数特性のみならず、補正係数の演算結果や基準となる補正係数等のデータを、入出力部1004に出力する機能を持つ。
コンピュータシステム1901は、各装置1-1~1-Kで取得した画像または二次信号プロファイルを用いて、それらの周波数特性から選択的にピーク周波数を抽出し、ピーク周波数における補正係数を算出する。また、コンピュータシステム1901は、画像差を調整するための基準となる補正係数を記憶部1903に保持し、当該補正係数で各装置1-1~1-Kで別途撮像された画像の補正処理を行い、入出力部1004の補正前後の画像を表示することが可能である。また、コンピュータシステム1901は、各装置1-1~1-Kのからの要求に応じて、基準となる補正係数或いは補正処理後の画像を各装置に伝送する。各装置においては、当該基準となる補正係数を用いて更に別の画像を補正してもよいし、伝送された補正処理後の画像を表示してもよい。
図24に、本実施例におけるフローチャートの一例を示す。各装置1-1~1-Kは、特定のパターンの試料(基準試料)のSEM画像または二次信号プロファイルを取得し、記憶部111に保存する(2401)。各装置1-1~1-Kは、当該各々の画像または二次信号プロファイルを画像処理装置1901に伝送する(2402)。この場合、コンピュータシステム1901が、各装置の記憶部111に保存されている所望の周波数特性を取得するようにしてもよい(2402)。コンピュータシステム1901は、当該各々の画像や二次信号プロファイルを付随情報と共に、周波数特性記憶部1011、付随情報記憶部1012に保存する(2403)。コンピュータシステム1901の演算部1903の画像演算部1905や信号波形演算部1906は、当該各々の画像または二次信号プロファイルからそれぞれの周波数特性を取得し、記憶部1904の画像記憶部1909や信号波形記憶部1910に保存する(2404)。コンピュータシステム1901の演算部1903の周波数特性解析部1013は、各々の周波数特性からピーク周波数を抽出する(2405)。その後、コンピュータシステム1901の補正係数演算部1907が、各ピーク周波数における補正係数を算出し、記憶部1904の補正係数記憶部1911に保存する(2406)。この場合、補正係数演算部1907は、当該補正係数に基づいて補正係数表または補正係数関数を作成し、補正係数記憶部1911に保存してもよい。コンピュータシステム1901の演算部1903の基準補正係数特定部1908は、補正係数記憶部1907に保存された補正係数の中から基準となる補正係数を特定する(2407)。この場合、基準補正係数特定部1908は、基準となる補正係数表または補正係数関数を特定してもよい。コンピュータシステム1901は、特定した基準となる補正係数を各装置1-1~1-Kに伝送する(2408)。この場合、各装置が、コンピュータシステム1901から当該基準となる補正係数を取得するようにしてもよい(2408)。各装置は、当該基準となる補正係数(補正係数表または補正係数関数でもよい)と(式3)を用いて、各装置で取得した任意の画像に対して補正を行う(2409)。
本実施例15によれば、複数の装置1間の機差を低減することが可能となり、複数の装置1を有する電子ビーム観察システムでの運用管理を正確に行うことが可能となる。また、コンピュータシステム1901が、各々の電子ビーム観察装置で取得した画像や二次信号プロファイルを付随情報と共に記憶部1904に保存することで、各装置の測定データの一元管理が可能となることから、電子ビーム観察システムにおけるデータ管理が容易になる。
実施例1~15においては、電子ビーム観察装置内の電子ビームが1本である、いわゆるシングルビーム装置における例を示した。実施例11においては、図11のように電子ビーム観察装置内の電子ビームが2本以上である、いわゆるマルチビーム装置或いはマルチカラム装置において本発明を適用した例について示す。
マルチビーム装置或いはマルチカラム装置においては、装置内を通過する複数の電子ビームのそれぞれで取得した画像の分解能や、その画像を使った試料パターンの測長結果がばらつくことがある。これは、ビーム電流やレンズによって受ける収差などが、電子ビームごとに異なるためである。ここで、実施例1~15において説明してきたように、複数装置間の分解能や測長値の差(機差)は小さいことが望ましい。これはマルチビーム装置あるいはマルチカラム装置における各電子ビーム間の分解能や測長値の差(電子ビーム差)においても同様である。したがって、実施例1~15に示した複数装置で取得した画像に適用する本発明手法を、1台のマルチビーム装置あるいはマルチカラム装置内の複数の電子ビームで取得した画像に適用することで、マルチビーム装置あるいはマルチカラム装置における電子ビーム差を低減することが可能である。
本実施例においては、代表として実施例1において複数装置間を複数電子ビーム間に置き換えた内容について示す。実施例2~15においても同様に、複数装置間を複数電子ビーム間に置き換えることで、マルチビーム装置またはマルチカラム装置における電子ビーム差の低減の内容となるが、ここでは記載を省略する。
以下、本実施例においては電子ビーム観察装置がマルチビーム装置である例を示すが、同一装置の中に複数のカラムが存在するマルチカラム装置であっても同様である。
図11は実施例11に係る電子ビーム観察装置の概略構成を示す図である。まず、装置構成について説明する。電子源(電子銃)1101から電子ビーム(電子線)1102が照射される下流方向(図中下方)には、レンズ1103と、マルチビーム形成部1104と、検出器アレイ1106と、ビームセパレータ1107と、走査偏向用偏向器1108が配置されている。更に、電子光学系には、図示はしないが一次ビームの中心軸(光軸)調整用アライナと、収差補正器等も付加されている。レンズ1103は励磁電流によってフォーカスを制御する電磁レンズ、静電レンズ、またはその複合のいずれであってもよい。また、本実施例においては、マルチビーム形成部1104は開口アレイとレンズアレイの組み合わせとしたが、本発明の範囲はそれに限定されるものではない。また、本実施例においては、電子源は電子源1101単一としたが、マルチビームの各電子ビームに対応するように電子源が複数存在する場合においても本発明は効果を失わない。また、検出器アレイ1106はその内部に複数の検出器1106a~eを含む。
コンピュータシステム116は、システム制御部110と、制御装置109と、入出力部113とで構成されている。
ステージ1109は上にウェハ、すなわち試料1110を載置して移動する構成となっている。電子源1101、レンズ1103、マルチビーム形成部1104、検出器アレイ1106、ビームセパレータ1107、走査偏向用偏向器1108、ステージ1109の各部は制御装置109に接続され、さらに制御装置109にはシステム制御部110が接続されている。
システム制御部110には、機能的には記憶装置111と、演算部112が配置され、画像表示装置を含む入出力部113が接続されている。また、図示はしていないが、制御系、回路系以外の構成要素は真空容器内に配置しており、真空排気して動作させていることは言うまでもない。また、真空外からウェハをステージ1109上に配置するウェハ搬送系が具備されていることも言うまでもない。
なお、システム制御部110は、より具体的には、演算部112である中央処理部や記憶装置111である記憶部を有する構成とし、この中央処理部を上述の演算部112として記憶装置111に記憶された制御プログラム120や画像処理部148等を実行させることにより、欠陥検査や寸法計測に関わる画像処理、あるいは制御装置109等の制御を行うことができる。なお、画像処理部148はSEM画像を処理するプログラムである。
本実施例において、このシステム制御部110と、入出力部113と、制御装置109等をも含め、制御部と総称する場合がある。更に、入出力部113は、キーボードやマウス等の入力手段と、液晶表示デバイスなどの表示手段が、入力部、出力部として別構成とされていても良いし、タッチパネルなどを利用した一体型の入出力手段で構成されていても良い。
本実施例の装置を用いて実施される画像観察に関して説明する。電子源1101から放出された電子ビーム1102はレンズ1103によって略平行ビームに整えられてマルチビーム形成部1104に入射し、マルチビーム1105a~eとなる。なお、本実施例においてはマルチビームの本数が5本(1105a~e)である例を示したが、ビームの本数はこれ以上であってもこれ以下であっても本発明の効果は失われない。マルチビームとなった電子ビーム1105a~eはビームセパレータ1107を通過した後走査偏向用偏向器1108により偏向作用を受けながら試料1110上にビーム径が極小になるように集束される。
走査偏向用偏向器1108はマルチビームとなった電子ビーム1105a~eのそれぞれが試料1110の所定の領域を走査するように制御装置109により制御される。試料1110の表面に到達したマルチビームとなった電子ビーム1105a~eは表面付近の物質と相互に作用する。これにより、反射電子、二次電子、オージェ電子等の二次的な電子が試料から発生し、取得すべき信号となる。本実施例においては信号が二次電子である場合について示す。マルチビームとなった電子ビーム1105a~eが試料1110に到達した位置から発生した二次電子1111a~eはビームセパレータ1107によってマルチビームとなった電子ビーム1105a~eとは軌道分離され、検出器アレイ1106中の複数の検出器1106a~eのそれぞれによって検出される。検出器アレイ1106a~eから検出される二次電子1111a~eの信号処理が、制御装置109から走査偏向用偏向器1108に送られる走査信号と同期して行われることにより画像(SEM画像)が生成され、試料1110の観察が実施される。
なお、生成された画像は、記憶装置111や不揮発性記憶装置(図示省略)に格納することができる。記憶装置111や不揮発性記憶装置等の記憶部に格納された画像は、後述する画像処理部148によって処理される。
なお、本実施例において示した、レンズ1103、マルチビーム形成部1104、検出器アレイ1106、ビームセパレータ1107、走査偏向用偏向器1108の配置順序は入れ替わっていてもよいし、図11に示す以外の電子光学素子などを含んでいてもよい。また、図示はしないが電子源1101から試料1110の間には電子ビーム1102あるいはマルチビームとなった電子ビーム1105a~eの位置や角度を調整するためのアライナが配置され、電子ビーム1102あるいはマルチビームとなった電子ビーム1105a~eの中心軸が各種電子光学素子に対してずれている場合に補正できる構成となっている。
ここで、マルチビームとなった電子ビーム1105a~eを使用して取得した画像から試料1110のパターンの寸法を測定する場合においては、複数の電子ビーム間における分解能や、プローブ電流量、測長値などの差(電子ビーム差)が小さいことが望ましい。従来例では、図11に記載した各構成要素のハードウェア的な調整や、ソフトウェア的な調整により、電子ビーム差を許容できる範囲にまで小さくする取り組みが行われてきた。しかしながら、装置使用後の経年変化や、使用環境等の影響により、わずかな電子ビームの形状差等が生じ、許容できる範囲以上の電子ビーム差が生じてしまうことがある。
本実施例においては、マルチビームとなった電子ビーム1105a~eの電子ビーム差を図11における画像処理部148における画像処理で低減する。すなわち、ある電子ビームを基準の電子ビームと決め、電子ビーム差を低減したい電子ビームで取得した画像を補正する。
ここで、実施例1においては図2または図5のフローチャートを用いて、装置Aを基準装置として、装置Bを装置Aに合わせるため、補正係数を算出する例を示した。本実施例においては、これらのフローチャートにおける「装置AまたはBで取得した画像」を「電子ビーム1105a~eのうちのいずれか取得した画像」に置き換えて考えることで、電子ビーム差を低減することが可能である。それ以外に関しては、実施例1で説明した内容とすべて同一であるため、ここでは説明を割愛する。
すなわち、電子ビーム1105aを基準の電子ビームとし、電子ビーム1105bで取得した画像の基準の電子ビームに対する電子ビーム差を低減する場合、装置Aで取得した画像として電子ビーム1105aで取得した画像を適用し、装置Bで取得した画像として電子ビーム1105bで取得した画像を適用することで、電子ビーム差を低減するための補正係数が算出できる(306)。電子ビーム1105c~eに関しても同様にして補正係数を算出することで、該当となる電子ビーム観察装置内のすべてのマルチビームとなった電子ビーム1105a~eの電子ビーム差が低減できる。
なお、実施例1と同様に、本実施例においても同一の電子ビーム(たとえば1105a)で取得した画像同士での差の低減を行うことはもちろん発明の範囲に含まれる。たとえば電子ビーム1105aが時間変化により変化したとして扱う場合等に対応可能である。
また、該当の電子ビーム観察装置以外の電子装置で撮像した画像を基準の電子ビームと定義し、マルチビームとなった電子ビーム1105a~eのすべてに関して基準となる電子ビームに対する補正係数を求め、すべての画像を補正する場合であっても発明の効果を失わない。
なお、繰り返しとなるが、本実施例においては、画像処理部148による画像の補正は、マルチビームとなった電子ビーム1105a~eにより撮像されたそれぞれの画像から補正係数を算出し、算出された補正係数に基づいて行われる。
画像補正処理方法に関しては、実施例1と同様に、たとえば図3に示す説明図に従えばよい。
次に、マルチビームの電子ビーム差を低減するために、補正係数を取得する手順に関して、図12及び13を使用して説明する。図12は電子ビーム差低減用補正係数を取得するためのフローチャートである。オペレーターは、画像表示装置を備えた入出力装置113を介して電子ビーム差低減用補正係数取得を開始する(図12中ステップS1201)。画像表示装置には図13に示すマルチビーム電子ビーム差低減画面が現れる。以下、特に断らない場合は図13を参照する。オペレーターが条件選択部1301のプルダウンから電子ビーム差を低減する光学条件を選択すると、記憶装置111にあらかじめ保存されていた加速電圧、開き角、ビーム電流やビーム間距離などの条件が画像表示装置に反映される。なお、これらの光学条件はあくまで一例に過ぎず、これらが光学条件に必ず含まれるとは限らないし、これ以外の光学条件が設定されてもかまわない。オペレーターは条件呼出ボタン1302を押下し、光学条件を決定する(ステップS1202)。本実施例においては光学条件をプルダウンから選択する例について示したが、直接入力するようにしてもよい。また、光学条件は、レンズのフォーカス条件や、電子ビームのビーム電流、開き角、加速電圧、及び光軸調整の結果などをまとめたものであり、事前に調整、設定された結果が記憶装置111に保存されている。条件が選択されると、システム制御部110から制御装置109を介して装置に制御信号が送られ、所望の光学条件が設定される。
条件設定が完了すると、オペレーターは電子ビーム差低減のための準備として、基準電子ビーム選択部1303で基準となる電子ビームを選択して基準電子ビーム設定ボタンを押下する(図12中ステップS1203)。本実施例においては、基準となる電子ビームとして電子ビーム1105aを選択した場合を示した。既に説明したとおり、基準となる電子ビームとしては、該当の電子ビーム観察装置内のいずれの電子ビームを選択してもよいし、該当以外の電子ビーム観察装置の電子ビームを選択してもよいし、過去に撮像した画像を取得した際に使用した電子ビームを選択してもよい。SEM画像表示部1304には随時更新されたSEM画像が表示され、また、更新ボタン1305を押下するたびに新たに画像が撮像されて更新される。本実施例においては、このSEM画像として、基準電子ビームを用いて撮像されたSEM画像、オペレーターが表示電子ビーム選択部1306を通じて選択した電子ビームを用いて撮像されたSEM画像、および、本発明の手法により電子ビーム差を低減されたSEM画像の3種類が表示される例を示した。電子ビーム差を低減されたSEM画像に関しては後述する。なお、表示電子ビーム選択部1306で選択されなかった電子ビームについてもSEM画像は取得されており、画面の構成によっては、すべての電子ビームによって撮像されたSEM画像を表示する例も考えられる。
次にオペレーターは、補正係数算出ボタン1307を押下すると、補正係数算出が行われる(ステップS1204)。本ステップにおいては、既に説明したように、記憶装置111内に保存されている図2あるいは図5のフローチャートに従い演算部112、画像処理部148を通じて各種演算処理が施されることでマルチビームである各電子ビームにかかわる補正係数がそれぞれ算出され、記憶装置111に一時的に保存される。なお、本実施例においては、全電子ビームが同時にSEM画像を取得し、補正係数も並列的に算出される例を示すが、演算部112のスペックや、あるいは、基準試料108のスペックによっては、各ビームの補正係数を別々に取得してもよい。なお、このフローにおいては試料に関して特に記述していないが、専用の試料を装置内に常備し、図13のマルチビーム電子ビーム差低減画面を呼び出すことで自動的にステージが該当の試料位置に移動するようにしてもよい。
補正係数の算出が終わると、電子ビーム差表示部1308に、上述の補正係数をもとに図3に基づく方法で画像処理を施した後の電子ビーム差を低減した後の電子ビーム差が表示される。本実施例においては、この電子ビーム差を示す指標として分解能および測長値を適用し、それぞれの値が基準となる電子ビームのSEM画像の値に対して何倍であるかを表示する例とした。前述の指標は電子ビーム差をあらわすものであればなんでもよく、分解能、測長値以外のものであっても本発明の効果は失われない。また、基準に対する比率で表示する例を示したが、絶対値の比較など、ほかの形態をとる場合でも本発明の効果は失われない。また、本実施例においては、この時点でSEM画像表示部1304は更新される。電子ビーム差を低減されたSEM画像に関しては上述の補正係数をもとに図3に基づく方法で画像処理を施したものが表示される。なお、本実施例においては明記していないが、前回取得された補正係数が電子ビーム差低減用の補正係数のテーブルとして記憶装置111に保存されており、基準電子ビーム選択ステップにおいてこれが呼び出され、電子ビーム差表示部1308の値が更新される構成としてもよい。
以上のフローにより電子ビーム差の低減を確認した後にオペレーターが完了ボタン1309を押下すると、電子ビーム差低減用の補正係数のテーブルが更新され、マルチビームの電子ビーム差低減を完了する(S1205)。
以上のようにしてあらかじめマルチビームの電子ビーム差低減用の補正係数のテーブルを作成しておくことで、試料の観察やそれに基づく計測、検査を行う際には図3の方法で画像処理を行うことが可能となり、リアルタイム、あるいは、事後処理により電子ビーム差が低減された画像を取得することが可能となった。
以上より、マルチビーム装置またはマルチカラム装置における電子ビーム差を低減できるようになった。
<まとめ>
本発明の効果は装置間の機差低減や、ビーム形状の変換に限定されることなく、撮像画像を元にして、画像を周波数空間で補正する際に広く有効な発明である。
なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に記載したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加、削除、又は置換のいずれもが、単独で、又は組み合わせても適用可能である。
また、上記の各構成、機能、処理部、及び処理手段等は、それらの一部又は全部を、例えば集積回路で設計する等によりハードウェアで実現してもよい。また、上記の各構成、及び機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリや、ハードディスク、SSD(Solid State Drive)等の記録装置、または、ICカード、SDカード、DVD等の記録媒体に置くことができる。
また、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えてもよい。
101 電子源
102 電子ビーム
103 変形照明絞り
104 検出器
105 走査偏向用偏向器
106 対物レンズ
107 ステージ
108 試料
109 制御装置
110 システム制御部
111 記憶装置
112 演算部
113 入出力部
114 二次電子
115 光軸
116 コンピュータシステム
120 制御プログラム
121 通信手段
148 画像処理部
154 開口板

Claims (28)

  1. 電子ビームを試料に照射することによって画像を生成する電子ビーム観察装置において、複数の前記電子ビーム観察装置間での画像を補正するための補正係数算出方法であって、
    第1の電子ビーム観察装置が、
    第1のパターンおよび前記第1のパターンとは形状または大きさが異なる第2のパターンを有する試料、或いは前記第1のパターンを有する第1の試料および前記第2のパターンを有する第2の試料において、前記第1および第2のパターンに第1の電子ビームを照射して第1の画像データを生成するステップと、
    第2の電子ビーム観察装置が、
    前記第1および第2のパターンに第2の電子ビームを照射して第2の画像データを生成するステップと、
    前記第1または第2の電子ビーム観察装置が、
    前記第1および第2の画像データに基づいて算出した第1および第2の周波数特性から選択的に抽出した周波数における補正係数を算出するステップと、
    を含むことを特徴とする電子ビーム観察装置における画像補正のための補正係数算出方法。
  2. 請求項1に記載の補正係数算出方法であって、
    前記第1および第2の周波数特性は、前記第1および第2の画像データを周波数空間画像に変換した際の振幅を含むことを特徴とする電子ビーム観察装置における画像補正のための補正係数算出方法。
  3. 請求項2に記載の補正係数算出方法であって、
    前記第1および第2の周波数特性の算出は、前記第1および第2の画像データを周波数空間画像に変換した際に生成される係数のそれぞれについて係数の乗算または除算で行うことを特徴とする電子ビーム観察装置における画像補正のための補正係数算出方法。
  4. 請求項1に記載の補正係数算出方法であって、
    前記第1または第2の電子ビーム観察装置が、
    前記算出した補正係数に基づいて補正係数表または補正係数関数を作成するステップと、を含むことを特徴とする電子ビーム観察装置における画像補正のための補正係数算出方法。
  5. 電子ビームを試料に照射することによって画像を生成する電子ビーム観察装置において、複数の前記電子ビーム観察装置間での画像を補正する方法であって、
    第1の電子ビーム観察装置が、
    第1のパターンおよび前記第1のパターンとは形状または大きさが異なる第2のパターンを有する試料、或いは前記第1のパターンを有する第1の試料および前記第2のパターンを有する第2の試料において、前記第1および第2のパターンに第1の電子ビームを照射して第1の画像データを生成するステップと、
    第2の電子ビーム観察装置が、
    前記第1および第2のパターンに第2の電子ビームを照射して第2の画像データを生成するステップと、
    前記第1または第2の電子ビーム観察装置が、
    前記第1および第2の画像データに基づいて算出した第1および第2の周波数特性から選択的に抽出した周波数における補正係数を算出するステップと、
    前記第1または第2の電子ビーム観察装置が、
    前記第1または第2の電子ビーム観察装置で取得した第3の画像データを前記補正係数で補正するステップと、
    を含むことを特徴とする電子ビーム観察装置における画像補正方法。
  6. 電子ビームを試料に照射することによって画像を生成する電子ビーム観察装置を複数台備えた電子ビーム観察システムであって、
    第1の電子ビーム観察装置は、
    第1のパターンおよび前記第1のパターンとは形状または大きさが異なる第2のパターンを有する試料、或いは前記第1のパターンを有する第1の試料および前記第2のパターンを有する第2の試料において、前記第1および第2のパターンに第1の電子ビームを照射して第1の画像データを生成する第1のコンピュータシステムを備え、
    第2の電子ビーム観察装置は、
    前記第1および第2のパターンに第2の電子ビームを照射して第2の画像データを生成する第2のコンピュータシステムを備え、
    前記第1または第2のコンピュータシステムは、
    前記第1および第2の画像データに基づいて算出した第1および第2の周波数特性から選択的に抽出した周波数における補正係数を算出し、
    前記第1または第2の電子ビーム観察装置で取得した第3の画像データを前記補正係数で補正するように構成されたことを特徴とする電子ビーム観察システム。
  7. 電子ビームを試料に照射することによって画像を生成する電子ビーム観察装置において、複数の前記電子ビーム観察装置間での画像を補正するための補正係数算出方法であって、
    第1の電子ビーム観察装置が、
    第1のパターンおよび前記第1のパターンとは形状または大きさが異なる第2のパターンを有する試料、或いは前記第1のパターンを有する第1の試料および前記第2のパターンを有する第2の試料において、前記第1および第2のパターンに第1の電子ビームを照射して第1の画像データを生成するステップと、
    前記第1の電子ビーム観察装置が、
    前記第1の画像データに基づいて第1の周波数特性を算出するステップと、
    第2の電子ビーム観察装置が、
    前記第1および第2のパターンに第2の電子ビームを照射して第2の画像データを生成するステップと、
    前記第2の電子ビーム観察装置が、
    前記第2の画像データに基づいて第2の周波数特性を算出するステップと、
    前記第1または第2の電子ビーム観察装置が、
    前記第1および第2の周波数特性から選択的に抽出した周波数における補正係数を算出するステップと、
    を含むことを特徴とする電子ビーム観察装置における画像補正のための補正係数算出方法。
  8. 電子ビームを試料に照射することによって画像を生成する電子ビーム観察装置において、複数の前記電子ビーム観察装置間での画像を補正する方法であって、
    第1の電子ビーム観察装置が、
    第1のパターンおよび前記第1のパターンとは形状または大きさが異なる第2のパターンを有する試料、或いは前記第1のパターンを有する第1の試料および前記第2のパターンを有する第2の試料において、前記第1および第2のパターンに第1の電子ビームを照射して第1の画像データを生成するステップと、
    前記第1の電子ビーム観察装置が、
    前記第1の画像データに基づいて第1の周波数特性を算出するステップと、
    第2の電子ビーム観察装置が、
    前記第1および第2のパターンに第2の電子ビームを照射して第2の画像データを生成するステップと、
    前記第2の電子ビーム観察装置が、
    前記第2の画像データに基づいて第2の周波数特性を算出するステップと、
    前記第1または第2の電子ビーム観察装置が、
    前記第1および第2の周波数特性から選択的に抽出した周波数における補正係数を算出するステップと、
    前記第1または第2の電子ビーム観察装置が、
    前記第1または第2の電子ビーム観察装置で取得した第3の画像データを前記補正係数で補正するステップと、
    を含むことを特徴とする電子ビーム観察装置における画像補正方法。
  9. 電子ビームを試料に照射することによって画像を生成する電子ビーム観察装置を複数台備えた電子ビーム観察システムであって、
    第1の電子ビーム観察装置は、
    第1のパターンおよび前記第1のパターンとは形状または大きさが異なる第2のパターンを有する試料、或いは前記第1のパターンを有する第1の試料および前記第2のパターンを有する第2の試料において、前記第1および第2のパターンに第1の電子ビームを照射して第1の画像データを生成し、前記第1の画像データに基づいて第1の周波数特性を算出する第1のコンピュータシステムを備え、
    第2の電子ビーム観察装置は、
    前記第1および第2のパターンに第2の電子ビームを照射して第2の画像データを生成し、前記第2の画像データに基づいて第2の周波数特性を算出する第2のコンピュータシステムを備え、
    前記第1または第2のコンピュータシステムは、
    前記第1および第2の周波数特性から選択的に抽出した周波数における補正係数を算出し、
    前記第1または第2の電子ビーム観察装置で取得した第3の画像データを前記補正係数で補正するように構成されたことを特徴とする電子ビーム観察システム。
  10. 電子ビームを試料に照射することによって画像を生成する電子ビーム観察装置と、複数の前記電子ビーム観察装置と通信可能に構成されたコンピュータシステムと、を備えた電子ビーム観察システムにおいて、複数の前記電子ビーム観察装置間での画像を補正するための補正係数算出方法であって、
    第1の電子ビーム観察装置が、
    第1のパターンおよび前記第1のパターンとは形状または大きさが異なる第2のパターンを有する試料、或いは前記第1のパターンを有する第1の試料および前記第2のパターンを有する第2の試料において、前記第1および第2のパターンに第1の電子ビームを照射して第1の画像データを生成するステップと、
    第2の電子ビーム観察装置が、
    前記第1および第2のパターンに第2の電子ビームを照射して第2の画像データを生成するステップと、
    前記コンピュータシステムが、
    前記第1および第2の画像データに基づいて算出した第1および第2の周波数特性から選択的に抽出した周波数における補正係数を算出するステップと、
    を含むことを特徴とする電子ビーム観察システムにおける画像補正のための補正係数算出方法。
  11. 電子ビームを試料に照射することによって画像を生成する電子ビーム観察装置と、複数の前記電子ビーム観察装置と通信可能に構成されたコンピュータシステムと、を備えた電子ビーム観察システムにおいて、複数の前記電子ビーム観察装置間での画像を補正する方法であって、
    第1の電子ビーム観察装置が、
    第1のパターンおよび前記第1のパターンとは形状または大きさが異なる第2のパターンを有する試料、或いは前記第1のパターンを有する第1の試料および前記第2のパターンを有する第2の試料において、前記第1および第2のパターンに第1の電子ビームを照射して第1の画像データを生成するステップと、
    第2の電子ビーム観察装置が、
    前記第1および第2のパターンに第2の電子ビームを照射して第2の画像データを生成するステップと、
    前記コンピュータシステムが、
    前記第1および第2の画像データに基づいて算出した第1および第2の周波数特性から選択的に抽出した周波数における補正係数を算出するステップと、
    前記第1または第2の電子ビーム観察装置が、
    前記第1または第2の電子ビーム観察装置で取得した第3の画像データを前記補正係数で補正するステップと、
    を含むことを特徴とする電子ビーム観察システムにおける画像補正方法。
  12. 電子ビームを試料に照射することによって画像を生成する電子ビーム観察装置と、複数の前記電子ビーム観察装置と通信可能に構成された第3のコンピュータシステムと、を備えた電子ビーム観察システムであって、
    第1の電子ビーム観察装置は、
    第1のパターンおよび前記第1のパターンとは形状または大きさが異なる第2のパターンを有する試料、或いは前記第1のパターンを有する第1の試料および前記第2のパターンを有する第2の試料において、前記第1および第2のパターンに第1の電子ビームを照射して第1の画像データを生成する第1のコンピュータシステムを備え、
    第2の電子ビーム観察装置は、
    前記第1および第2のパターンに第2の電子ビームを照射して第2の画像データを生成する第2のコンピュータシステムを備え、
    前記第3のコンピュータシステムは、
    前記第1および第2の画像データに基づいて算出した第1および第2の周波数特性から選択的に抽出した周波数における補正係数を算出し、
    前記第1または第2のコンピュータシステムは、
    前記第1または第2の電子ビーム観察装置で取得した第3の画像データを前記補正係数で補正するように構成されたことを特徴とする電子ビーム観察システム。
  13. 電子ビームを試料に照射することによって画像を生成する電子ビーム観察装置と、複数の前記電子ビーム観察装置と通信可能に構成されたコンピュータシステムと、を備えた電子ビーム観察システムにおいて、複数の前記電子ビーム観察装置間での画像を補正するための補正係数算出方法であって、
    第1の電子ビーム観察装置が、
    第1のパターンおよび前記第1のパターンとは形状または大きさが異なる第2のパターンを有する試料、或いは前記第1のパターンを有する第1の試料および前記第2のパターンを有する第2の試料において、前記第1および第2のパターンに第1の電子ビームを照射して第1の画像データを生成するステップと、
    前記第1の電子ビーム観察装置が、
    前記第1の画像データに基づいて第1の周波数特性を算出するステップと、
    第2の電子ビーム観察装置が、
    前記第1および第2のパターンに第2の電子ビームを照射して第2の画像データを生成するステップと、
    前記第2の電子ビーム観察装置が、
    前記第2の画像データに基づいて第2の周波数特性を算出するステップと、
    前記コンピュータシステムが、
    前記第1および第2の周波数特性に基づいて基準周波数特性を特定するステップと、
    前記第1または第2の電子ビーム観察装置が、
    前記基準周波数特性および前記第1または第2の周波数特性から選択的に抽出した周波数における補正係数を算出するステップと、
    を含むことを特徴とする電子ビーム観察システムにおける画像補正のための補正係数算出方法。
  14. 請求項13に記載の補正係数算出方法であって、
    前記基準周波数特性は、前記第1の周波数特性または前記第2の周波数特性であることを特徴とする電子ビーム観察装置における画像補正のための補正係数算出方法。
  15. 請求項13に記載の補正係数算出方法であって、
    前記基準周波数特性は複数の周波数特性の平均値であり、前記複数の周波数特性には前記第1および第2の周波数特性が含まれることを特徴とする電子ビーム観察システムにおける画像補正のための補正係数算出方法。
  16. 電子ビームを試料に照射することによって画像を生成する電子ビーム観察装置と、複数の前記電子ビーム観察装置と通信可能に構成されたコンピュータシステムと、を備えた電子ビーム観察システムにおいて、複数の前記電子ビーム観察装置間での画像を補正する方法であって、
    第1の電子ビーム観察装置が、
    第1のパターンおよび前記第1のパターンとは形状または大きさが異なる第2のパターンを有する試料、或いは前記第1のパターンを有する第1の試料および前記第2のパターンを有する第2の試料において、前記第1および第2のパターンに第1の電子ビームを照射して第1の画像データを生成するステップと、
    前記第1の電子ビーム観察装置が、
    前記第1の画像データに基づいて第1の周波数特性を算出するステップと、
    第2の電子ビーム観察装置が、
    前記第1および第2のパターンに第2の電子ビームを照射して第2の画像データを生成するステップと、
    前記第2の電子ビーム観察装置が、
    前記第2の画像データに基づいて第2の周波数特性を算出するステップと、
    前記コンピュータシステムが、
    前記第1および第2の周波数特性に基づいて基準周波数特性を特定するステップと、
    前記第1または第2の電子ビーム観察装置が、
    前記基準周波数特性および前記第1または第2の周波数特性から選択的に抽出した周波数における補正係数を算出するステップと、
    前記第1または第2の電子ビーム観察装置が、
    前記第1または第2の電子ビーム観察装置で取得した第3の画像データを前記補正係数で補正するステップと、
    を含むことを特徴とする電子ビーム観察システムにおける画像補正方法。
  17. 電子ビームを試料に照射することによって画像を生成する電子ビーム観察装置と、複数の前記電子ビーム観察装置と通信可能に構成された第3のコンピュータシステムと、を備えた電子ビーム観察システムにおいて、複数の前記電子ビーム観察装置間での画像を補正する方法であって、
    第1の電子ビーム観察装置は、
    第1のパターンおよび前記第1のパターンとは形状または大きさが異なる第2のパターンを有する試料、或いは前記第1のパターンを有する第1の試料および前記第2のパターンを有する第2の試料において、前記第1および第2のパターンに第1の電子ビームを照射して第1の画像データを生成し、前記第1の画像データに基づいて第1の周波数特性を算出する第1のコンピュータシステムを備え、
    第2の電子ビーム観察装置は、
    前記第1および第2のパターンに第2の電子ビームを照射して第2の画像データを生成し、前記第2の画像データに基づいて第2の周波数特性を算出する第2のコンピュータシステムを備え、
    前記第3のコンピュータシステムは、
    前記第1および第2の周波数特性に基づいて基準周波数特性を特定し、
    前記第1または第2のコンピュータシステムは、
    前記基準周波数特性および前記第1または第2の周波数特性から選択的に抽出した周波数における補正係数を算出し、
    前記第1または第2の電子ビーム観察装置で取得した第3の画像データを前記補正係数で補正するように構成されたことを特徴とする電子ビーム観察システム。
  18. 複数の電子ビームを試料に照射することによって画像を生成する電子ビーム観察装置において、画像を補正するための補正係数算出方法であって、
    前記電子ビーム観察装置が、
    第1のパターンおよび前記第1のパターンとは形状または大きさが異なる第2のパターンを有する試料、或いは前記第1のパターンを有する第1の試料および前記第2のパターンを有する第2の試料において、前記第1および第2のパターンに第1の電子ビームを照射して第1の画像データを生成するステップと、
    前記第1および第2のパターンに第2の電子ビームを照射して第2の画像データを生成するステップと、
    前記第1および第2の画像データに基づいて算出した第1および第2の周波数特性から選択的に抽出した周波数における補正係数を算出するステップと、
    を含むことを特徴とする電子ビーム観察装置における画像補正のための補正係数算出方法。
  19. 複数の電子ビームを試料に照射することによって画像を生成する電子ビーム観察装置において、画像を補正する方法であって、
    前記電子ビーム観察装置が、
    第1のパターンおよび前記第1のパターンとは形状または大きさが異なる第2のパターンを有する試料、或いは前記第1のパターンを有する第1の試料および前記第2のパターンを有する第2の試料において、前記第1および第2のパターンに第1の電子ビームを照射して第1の画像データを生成するステップと、
    前記第1および第2のパターンに第2の電子ビームを照射して第2の画像データを生成するステップと、
    前記第1および第2の画像データに基づいて算出した第1および第2の周波数特性から選択的に抽出した周波数における補正係数を算出するステップと、
    前記電子ビーム観察装置で取得した第3の画像データを前記補正係数で補正するステップと、
    を含むことを特徴とする電子ビーム観察装置における画像補正方法。
  20. 複数の電子ビームを試料に照射することによって画像を生成する電子ビーム観察装置であって、
    前記電子ビーム観察装置は、
    第1のパターンおよび前記第1のパターンとは形状または大きさが異なる第2のパターンを有する試料、或いは前記第1のパターンを有する第1の試料および前記第2のパターンを有する第2の試料において、前記第1および第2のパターンに第1の電子ビームを照射して第1の画像データを生成し、
    前記第1および第2のパターンに第2の電子ビームを照射して第2の画像データを生成し、
    前記第1および第2の画像データに基づいて算出した第1および第2の周波数特性から選択的に抽出した周波数における補正係数を算出し、
    前記電子ビーム観察装置で取得した第3の画像データを前記補正係数で補正するように構成されたことを特徴とする電子ビーム観察装置。
  21. 請求項1~4、7、10、13~15、18のいずれか1項に記載の補正係数算出方法であって、
    前記第1の周波数特性を複数算出して平均化するステップ、
    前記第2の周波数特性を複数算出して平均化するステップ、
    を有することを特徴とする補正係数算出方法。
  22. 請求項5、8、11、16、19のいずれか1項に記載の画像補正方法であって、
    前記第1の周波数特性を複数算出して平均化するステップ、
    前記第2の周波数特性を複数算出して平均化するステップ、
    を有することを特徴とする画像補正方法。
  23. 請求項6、9、12、17のいずれか1項に記載の電子ビーム観察システムであって、
    前記第1の周波数特性は複数算出されて平均化され、
    前記第2の周波数特性は複数算出されて平均化される
    ことを特徴とする電子ビーム観察システム。
  24. 請求項20に記載の電子ビーム観察装置であって、
    前記第1の周波数特性は複数算出されて平均化され、
    前記第2の周波数特性は複数算出されて平均化される
    ことを特徴とする電子ビーム観察装置。
  25. 請求項1~4、7、10、13~15、18のいずれか1項に記載の補正係数算出方法であって、
    前記第1の画像データは、画像又は信号波形であり、
    前記第2の画像データは、画像又は信号波形である
    ことを特徴とする補正係数算出方法。
  26. 請求項5、8、11、16、19のいずれか1項に記載の画像補正方法であって、
    前記第1の画像データは、画像又は信号波形であり、
    前記第2の画像データは、画像又は信号波形である
    ことを特徴とする画像補正方法。
  27. 請求項6、9、12、17のいずれか1項に記載の電子ビーム観察システムであって、
    前記第1の画像データは、画像又は信号波形であり、
    前記第2の画像データは、画像又は信号波形である
    ことを特徴とする電子ビーム観察システム。
  28. 請求項20に記載の電子ビーム観察装置であって、
    前記第1の画像データは、画像又は信号波形であり、
    前記第2の画像データは、画像又は信号波形である
    ことを特徴とする電子ビーム観察装置。
JP2020567289A 2019-01-23 2019-01-23 電子ビーム観察装置、電子ビーム観察システム、電子ビーム観察装置における画像補正方法及び画像補正のための補正係数算出方法 Active JP7058769B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022065752A JP7288997B2 (ja) 2019-01-23 2022-04-12 電子ビーム観察装置、電子ビーム観察システム、電子ビーム観察装置における画像補正方法及び画像補正のための補正係数算出方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/001968 WO2020152795A1 (ja) 2019-01-23 2019-01-23 電子ビーム観察装置、電子ビーム観察システム、電子ビーム観察装置における画像補正方法及び画像補正のための補正係数算出方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2022065752A Division JP7288997B2 (ja) 2019-01-23 2022-04-12 電子ビーム観察装置、電子ビーム観察システム、電子ビーム観察装置における画像補正方法及び画像補正のための補正係数算出方法

Publications (2)

Publication Number Publication Date
JPWO2020152795A1 JPWO2020152795A1 (ja) 2021-10-21
JP7058769B2 true JP7058769B2 (ja) 2022-04-22

Family

ID=71736238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020567289A Active JP7058769B2 (ja) 2019-01-23 2019-01-23 電子ビーム観察装置、電子ビーム観察システム、電子ビーム観察装置における画像補正方法及び画像補正のための補正係数算出方法

Country Status (5)

Country Link
US (1) US11791130B2 (ja)
JP (1) JP7058769B2 (ja)
KR (1) KR102577946B1 (ja)
TW (2) TW202135120A (ja)
WO (1) WO2020152795A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7058769B2 (ja) 2019-01-23 2022-04-22 株式会社日立ハイテク 電子ビーム観察装置、電子ビーム観察システム、電子ビーム観察装置における画像補正方法及び画像補正のための補正係数算出方法
JP7431136B2 (ja) * 2020-10-09 2024-02-14 株式会社日立ハイテク 荷電粒子線装置、及び制御方法
US20220365010A1 (en) * 2021-05-11 2022-11-17 Nuflare Technology, Inc. Multiple secondary electron beam alignment method, multiple secondary electron beam alignment apparatus, and electron beam inspection apparatus
WO2023095315A1 (ja) * 2021-11-29 2023-06-01 株式会社日立ハイテク 補正方法及び補正装置
WO2023162856A1 (ja) * 2022-02-22 2023-08-31 株式会社Screenホールディングス 基板処理装置管理システム、支援装置、基板処理装置、チャンバ間性能比較方法およびチャンバ間性能比較プログラム

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005322423A (ja) 2004-05-06 2005-11-17 Hitachi High-Technologies Corp 電子顕微鏡装置およびそのシステム並びに電子顕微鏡装置およびそのシステムを用いた寸法計測方法
JP2006153837A (ja) 2004-10-29 2006-06-15 Hitachi High-Technologies Corp 走査型電子顕微鏡及びそれを用いたパターン計測方法並びに走査型電子顕微鏡の機差補正装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5596141U (ja) 1978-12-25 1980-07-03
DE19745771B4 (de) 1997-10-16 2005-12-22 Unaxis Deutschland Holding Gmbh Verfahren für den Betrieb eines Hochleistungs-Elektronenstrahls
JP2001304842A (ja) * 2000-04-25 2001-10-31 Hitachi Ltd パターン検査方法及びその装置並びに基板の処理方法
DE10200645A1 (de) * 2002-01-10 2003-07-24 Leo Elektronenmikroskopie Gmbh Elektronenmikroskop mit ringförmiger Beleuchtungsapertur
DE102006043895B9 (de) * 2006-09-19 2012-02-09 Carl Zeiss Nts Gmbh Elektronenmikroskop zum Inspizieren und Bearbeiten eines Objekts mit miniaturisierten Strukturen
DE112010000687B4 (de) 2009-01-22 2019-10-31 Hitachi High-Technologies Corp. Elektronenmikroskop
US9702695B2 (en) 2010-05-27 2017-07-11 Hitachi High-Technologies Corporation Image processing device, charged particle beam device, charged particle beam device adjustment sample, and manufacturing method thereof
JP5537448B2 (ja) 2011-01-21 2014-07-02 株式会社日立ハイテクノロジーズ 荷電粒子線装置、及び画像解析装置
WO2015033601A1 (ja) 2013-09-06 2015-03-12 株式会社 日立ハイテクノロジーズ 荷電粒子線装置及び試料画像取得方法
JP6470654B2 (ja) 2015-07-24 2019-02-13 株式会社日立ハイテクノロジーズ 荷電粒子線装置
WO2018067243A1 (en) 2016-10-04 2018-04-12 Kla-Tencor Corporation Expediting spectral measurement in semiconductor device fabrication
US10733744B2 (en) * 2017-05-11 2020-08-04 Kla-Tencor Corp. Learning based approach for aligning images acquired with different modalities
JP2020181629A (ja) 2017-07-27 2020-11-05 株式会社日立ハイテク 電子線観察装置、電子線観察システム及び電子線観察装置の制御方法
JP7058769B2 (ja) 2019-01-23 2022-04-22 株式会社日立ハイテク 電子ビーム観察装置、電子ビーム観察システム、電子ビーム観察装置における画像補正方法及び画像補正のための補正係数算出方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005322423A (ja) 2004-05-06 2005-11-17 Hitachi High-Technologies Corp 電子顕微鏡装置およびそのシステム並びに電子顕微鏡装置およびそのシステムを用いた寸法計測方法
JP2006153837A (ja) 2004-10-29 2006-06-15 Hitachi High-Technologies Corp 走査型電子顕微鏡及びそれを用いたパターン計測方法並びに走査型電子顕微鏡の機差補正装置

Also Published As

Publication number Publication date
US11791130B2 (en) 2023-10-17
KR20210060564A (ko) 2021-05-26
TWI731559B (zh) 2021-06-21
JPWO2020152795A1 (ja) 2021-10-21
US20220051868A1 (en) 2022-02-17
TW202135120A (zh) 2021-09-16
KR102577946B1 (ko) 2023-09-14
TW202029268A (zh) 2020-08-01
WO2020152795A1 (ja) 2020-07-30

Similar Documents

Publication Publication Date Title
JP7058769B2 (ja) 電子ビーム観察装置、電子ビーム観察システム、電子ビーム観察装置における画像補正方法及び画像補正のための補正係数算出方法
KR102402301B1 (ko) 전자선 관찰 장치, 전자선 관찰 시스템 및 전자선 관찰 장치의 제어 방법
JP4857101B2 (ja) プローブ評価方法
JP2008177064A (ja) 走査型荷電粒子顕微鏡装置および走査型荷電粒子顕微鏡装置で取得した画像の処理方法
US8878925B2 (en) Observation method and observation device
JP6470654B2 (ja) 荷電粒子線装置
US8581186B2 (en) Charged particle beam apparatus
JP6163063B2 (ja) 走査透過電子顕微鏡及びその収差測定方法
JP7288997B2 (ja) 電子ビーム観察装置、電子ビーム観察システム、電子ビーム観察装置における画像補正方法及び画像補正のための補正係数算出方法
WO2017159360A1 (ja) 荷電粒子ビームの評価方法、荷電粒子ビームの評価のためのコンピュータープログラム、及び荷電粒子ビームの評価装置
JP6302785B2 (ja) 走査荷電粒子顕微鏡画像の高画質化方法およびその装置
JP6770482B2 (ja) 荷電粒子線装置および走査像の歪み補正方法
JP6613219B2 (ja) 走査型顕微鏡
JP2012142299A (ja) 走査型荷電粒子顕微鏡装置および走査型荷電粒子顕微鏡装置で取得した画像の処理方法
JP7344390B6 (ja) 補正係数計算装置、補正係数計算方法、補正係数計算プログラム
JP7336540B2 (ja) 荷電粒子線装置及び検査装置
JP2013242994A (ja) 画像処理システム、および画像処理方法
JP2014116168A (ja) 透過電子顕微鏡

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210524

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220412

R150 Certificate of patent or registration of utility model

Ref document number: 7058769

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150