JP7054199B2 - 残留応力分布の測定方法、算出方法及びプログラム - Google Patents
残留応力分布の測定方法、算出方法及びプログラム Download PDFInfo
- Publication number
- JP7054199B2 JP7054199B2 JP2018169714A JP2018169714A JP7054199B2 JP 7054199 B2 JP7054199 B2 JP 7054199B2 JP 2018169714 A JP2018169714 A JP 2018169714A JP 2018169714 A JP2018169714 A JP 2018169714A JP 7054199 B2 JP7054199 B2 JP 7054199B2
- Authority
- JP
- Japan
- Prior art keywords
- cut surface
- metal piece
- metal
- shape
- cross
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L5/00—Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
- G01L5/0047—Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes measuring forces due to residual stresses
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/20—Metals
- G01N33/207—Welded or soldered joints; Solderability
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/10—Geometric CAD
- G06F30/15—Vehicle, aircraft or watercraft design
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/10—Geometric CAD
- G06F30/17—Mechanical parametric or variational design
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
- G06F30/23—Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2119/00—Details relating to the type or aim of the analysis or the optimisation
- G06F2119/14—Force analysis or force optimisation, e.g. static or dynamic forces
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Geometry (AREA)
- Computer Hardware Design (AREA)
- Evolutionary Computation (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Mathematical Optimization (AREA)
- Mathematical Analysis (AREA)
- Pure & Applied Mathematics (AREA)
- Computational Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Food Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Automation & Control Theory (AREA)
- Aviation & Aerospace Engineering (AREA)
- Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
Description
本発明は、このような事情に鑑みてなされたものであり、左右非対称に部材を切断した場合でも残留応力分布の算出が可能となる残留応力分布の測定方法を提供する。
本発明は、金属部材の第1金属部と第2金属部との間の断面における残留応力分布を有限要素法構造解析を用いて算出する算出方法であって、前記金属部材の前記断面に切断面を付与した解析モデルを用いて、前記切断面において第1金属片に働く荷重ベクトルと、前記切断面において第2金属片に働く荷重ベクトルの和である残差力ベクトルを算出するステップと、前記金属部材の解析モデルの前記断面に前記残差力ベクトルを強制荷重として付与することにより、前記断面における移動量を修正変位ベクトルとして算出するステップと、第1金属部が第1金属片となるように前記金属部材を前記断面で切断することにより得た第1金属片の切断面の形状を有する解析モデル又は第2金属部が第2金属片となるように前記金属部材を前記断面で切断することにより得た第2金属片の切断面の形状を有する解析モデルを用いて、算出した修正変位ベクトルに基づき第1金属片の切断面の形状又は第2金属片の切断面の形状を修正するステップと、第1金属片の切断面の形状を修正した解析モデル又は第2金属片の切断面の形状を修正した解析モデルを用いて、解析モデルに強制変位を付与することにより前記断面における残留応力分布を算出するステップとを含む算出方法も提供する。
本発明は、本発明の算出方法をコンピューターに実行させるためのプログラムも提供する。
本実施形態の測定方法は、金属部材2の第1金属部3と第2金属部4との間の断面7における残留応力分布を測定する測定方法である。本実施形態の測定方法は、第1金属部3が第1金属片5となり第2金属部4が第2金属片6となるように断面7(切断面8)において金属部材2を切断するステップと、第1金属片5の切断面8aの形状又は第2金属片6の切断面8aの形状を測定するステップと、金属部材2の断面7に切断面8を付与した解析モデル10を用いて、切断面8において第1金属片5に働く荷重ベクトルと、切断面8において第2金属片6に働く荷重ベクトルの和である残差力ベクトルを算出するステップと、金属部材2の解析モデル10の断面7に前記残差力ベクトルを強制荷重として付与することにより、断面7における移動量を修正変位ベクトル15として算出するステップと、測定した第1金属片5の切断面8aの形状を有する解析モデル12又は測定した第2金属片6の切断面8bの形状を有する解析モデル13を用いて、算出した修正変位ベクトル15に基づき第1金属片5の切断面8aの形状又は第2金属片6の切断面8bの形状を修正するステップと、第1金属片5の切断面8aの形状を修正した解析モデル12又は第2金属片6の切断面8bの形状を修正した解析モデル13を用いて、解析モデル12又は13に強制変位を付与することにより断面7における残留応力分布を算出するステップとを含む。
また、本実施形態のプログラムは、本実施形態の算出方法をコンピューターに実行させるように作成されている。
本実施形態の測定方法は、例えば、試験的に製造した金属部材2の残留応力分布測定、故障などの問題が生じた金属部材2の残留応力分布の測定、生産した同一種の複数の金属部材2から任意に取り出した1つの金属部材2の残留応力分布測定などに用いることができる。
本実施形態の測定方法は、金属部材2の断面7における残留応力分布を測定する方法である。断面7は、断面7を切断面8として金属部材2を切断することにより、金属部材2を第1金属片5と第2金属片6とに分割できるような断面7である。金属部材2の第1金属片5に対応する部分を第1金属部3といい、金属部材2の第2金属片6に対応する部分を第2金属部4という。また、断面7は、平らな断面である。また、断面7は、溶接線を横切るように設定することができる。また、断面7は、第1金属部3と第2金属部4が非対称となるように設定することができる。
金属部材2を切断すると第1金属片5の切断面8a及び第2金属片6の切断面8bにおいて残留応力が解放され再分配されることによって、切断面8a、8bにおいて凹む又は突出する弾性変形が生じる。例えば、断面7のうち引張り残留応力が生じていた部分に相当する切断面8a、8bの部分は凹み、断面7のうち圧縮残留応力が生じていた部分に相当する切断面8a、8bの部分は突出する。
さらに、算出した残差力ベクトルを金属部材2の解析モデル10の断面7に強制荷重として付与することにより、断面7における移動量を修正変位ベクトルとして算出する。残差力ベクトル及び修正変位ベクトルの算出を図2、3を用いて説明する。
図2(a)のように、ばね26aの一方の端を固定し他方の端をu1だけ引っ張り、ばね26bの一方の端を固定し他方の端をu2だけ引っ張ることにより、ばね26a、26bを位置28aにおいて接触させる(連結しない)。この場合、位置28aにおけるばね26aの反力F1はk1u1となり、ばね26bの反力F2はk2u2となる。位置28aにおいて、F1とF2は釣り合っていないのでk1u1-k2u2=Rとなる。このRを残差力という。なお、F1とF2が釣り合っている場合k1u1-k2u2=0となる。
図2(b)のように、ばね26aとばね26bとが連結した1本のばねについて考える。このばねのばね定数kは、k1+k2となる。このばねの位置26aに残差力Rを強制荷重として付与する。
このとき荷重を負荷した点(位置26a→位置26b)の移動量umod(修正変位ベクトル)、ばね定数k、残差力Rとの関係は、kumod=Rとなり、umod=R/(k1+k2)となる。
u1 '=u1+umod、u2 ' =u2-umod
このような理論を金属部材2の解析モデル10に当てはめると、第1金属片5の切断面8aの形状、第2金属片6の切断面8bの形状を残留応力による反力が釣り合う位置における形状に修正できると考えられる。
作成した解析モデル10のX方向の両端面を固定し、第1金属部3と第2金属部4とを分ける断面7に切断面8を付与する(金属部材2は切断面8において第1金属片5と第2金属片6に分割されているが、第1金属片5の切断面8aと第2金属片6の切断面8bは切断面8において強制的にくっついている)。
このとき、第1金属片5、第2金属片6はそれぞれ固定境界(固定面)、強制変位境界(切断面8)、そして、いずれの境界にも含まれない自由度領域に分けて考えられる。
第1金属片5と第2金属片6の内部における釣り合い方程式はそれぞれ数1、数2のようになる。Kは剛性マトリクスであり、Uは変位ベクトル、Fは荷重ベクトルである。第1金属片5には上添え字1、第2金属片6には上添え字2を付ける。
固定境界に関する成分には下添え字1(下添え字10は固定境界の剛性に関する自由度領域の影響、下添え字11は固定境界の剛性、下添え字12は固定境界の剛性関する強制変位境界の影響)、強制変位境界に関する成分には下添え字2(下添え字20は強制変位境界の剛性に関する自由度領域の影響、下添え字21は強制変位境界の剛性に関する固定境界の影響、下添え字22は強制変位境界の剛性)、また、それ以外の自由度領域に関する成分には下添え字0(下添え字00は自由度領域の剛性、下添え字01は自由度領域の剛性に関する固定境界の影響、下添え字02は自由度領域の剛性に関する強制変位境界の影響)を付ける。
このときの金属部材2の内部における釣り合い方程式は数5で表される。Kは剛性マトリクスであり、Uは変位ベクトル、Fは荷重ベクトルである。固定境界(固定面)に関する成分には下添え字5(下添え字53は固定境界の剛性に関する自由度領域の影響、下添え字55は固定境界の剛性、下添え字54は固定境界の剛性関する強制荷重境界の影響)、強制荷重境界(断面7)に関する成分には下添え字4(下添え字43は強制荷重境界の剛性に関する自由度領域の影響、下添え字45は強制荷重境界の剛性に関する固定境界の影響、下添え字44は強制荷重境界の剛性)、また、それ以外の自由度領域に関する成分には下添え字3(下添え字33は自由度領域の剛性、下添え字35は自由度領域の剛性に関する固定境界の影響、下添え字34は自由度領域の剛性に関する強制荷重境界の影響)を付ける。
既知の変位ベクトル{U5}と、未知の変位ベクトル{U3}、{Umod}に分けて整理すると、数5から数6が得られる。
このように、第1金属片5の強制変位境界(切断面8)の変位ベクトル{U2 1}及び第2金属片6の強制変位境界(切断面8)の変位ベクトル{U2 2}を{Umod}で修正することにより、強制変位境界(切断面8)における釣り合い状態を満足させることができる。
図3に示したような解析モデルを作成し、FEM解析により残留応力分布を算出した。このシミュレーションでは、FEM解析により算出した第1金属片5の切断面8aの形状及び第2金属片6の切断面8bの形状を用いた。
金属部材2(第1金属片5、第2金属片6)の材料はSM490Aとし、金属部材2の寸法は長さが200 mm,幅が200 mm,板厚が12 mmとした。金属部材2の表面の板幅方向中央部(溶接線20)にビードオン溶接を実施した。入熱条件は電流が300 A、電圧が32 V、溶接速度が11.7 mm/sec、そして、熱効率は0.8とした。
このような解析モデルを用いてコンター法により断面7における残留応力分布を算出した。
図4(a)(c)は、切断面8aの形状を用いた従来のコンター法で算出した残留応力分布であり、図4(b)(d)は、切断面8bの形状を用いた従来のコンター法で算出した残留応力分布である。従来のコンター法では、切断面8aの形状と切断面8bの形状が鏡面対称となることが前提であり、切断面8aの形状と切断面8bの形状を平均化した形状を用いる。しかし、本シミュレーションでは、第1金属部3と第2金属部4とが非対称であり、切断面8aの形状と切断面8bの形状が鏡面対称とならないため、切断面の形状を平均化せずに、切断面8aの形状と切断面8bの形状とについてそれぞれ残留応力分布を算出している。
図5(a)(c)は、算出した修正変位ベクトル{Umod}に基づき修正した切断面8aの形状を用いた本発明の修正コンター法で算出した残留応力分布であり、図5(b)(d)は、算出した修正変位ベクトル{Umod}に基づき修正した切断面8bの形状を用いた本発明の修正コンター法で算出した残留応力分布である。
図5に示した本発明の修正コンター法を用いて算出した残留応力分布は、第1金属片5の切断面8aの形状を用いて算出した残留応力分布と、第2金属片6の切断面8bの形状を用いて算出した残留応力分布とがほぼ同じになっていることがわかった。これは、切断面8a、8bの形状を修正変位ベクトル{Umod}で修正することにより、第1金属片5と第2金属片6との形状の違いに基づく切断面の弾性変化の不釣合いが修正されたためと考えられる。
図6(a)は、残留応力分布測定に用いた試験体を斜め上から見た概略斜視図であり、図6(b)は、試験体を斜め下から見た概略斜視図である。
試験体(金属部材2)は、舶用ディーゼル機関やプロペラなどの回転系の軸受け部分を模擬したものである。試験体は、直径が40 mmの穴が設けられた第1金属板(長さ:240 mm、幅:170 mm、板厚:40 mm)と、第1金属板の表面に溶接により接合された管形の金属部材(板厚:40 mm、外径100mm、内径:54mm)と、第1金属板の裏面に溶接により接合された第2金属板(長さ:180mm、幅:100mm、厚さ40mm)とから構成される。第1及び第2金属板の穴及び管形の金属部材の穴は重なっており貫通している。試験体の材料はS25Cである。第1金属板と管形の金属部材は2パスの隅肉溶接により接合した。また、第1金属板と第2金属板は、2パスの隅肉溶接により接合した。
この試験体(金属部材2)を点線A-Aにおいてワイヤ放電加工(ワイヤ径:0.3 mm)を用いて切断し、第1金属片5と第2金属片6とに分割し、第1金属片5の切断面8aの形状と第2金属片6の切断面8bの形状とをレーザー変位計を用いて測定した。また、測定した形状にスムージング処理を施した。
図7(a)(b)から、左右非対称に金属部材2を切断した場合、従来のコンター法により算出される残留応力分布は凸凹の多い分布であった。また、図7(a)に示した切断面8aの形状から算出した残留応力分布と、図7(b)に示した切断面8bの形状から算出した残留応力分布とは鏡面対称ではなく、不連続であった。
図8(a)(b)から、左右非対称に金属部材2を切断した場合、本発明の修正コンター法により算出される残留応力分布は滑らかな分布であった。また、図8(a)に示した切断面8aの形状から算出した残留応力分布と、図8(b)に示した切断面8bの形状から算出した残留応力分布とはほぼ鏡面対称であり、連続的であった。
以上から、本発明の修正コンター法を用いることで、実構造物を任意の位置で非対称に2分割した際の各部材の剛性の違いを考慮した残留応力測定が可能であるといえる。
Claims (5)
- 金属部材の第1金属部と第2金属部との間の断面における残留応力分布を測定する測定方法であって、
第1金属部が第1金属片となり第2金属部が第2金属片となるように前記断面において前記金属部材を切断するステップと、
第1金属片の切断面の形状又は第2金属片の切断面の形状を測定するステップと、
前記金属部材の前記断面に切断面を付与した解析モデルを用いて、前記切断面において第1金属片に働く荷重ベクトルと、前記切断面において第2金属片に働く荷重ベクトルの和である残差力ベクトルを算出するステップと、
前記金属部材の解析モデルの前記断面に前記残差力ベクトルを強制荷重として付与することにより、前記断面における移動量を修正変位ベクトルとして算出するステップと、
測定した第1金属片の切断面の形状を有する解析モデル又は測定した第2金属片の切断面の形状を有する解析モデルを用いて、算出した修正変位ベクトルに基づき第1金属片の切断面の形状又は第2金属片の切断面の形状を修正するステップと、
第1金属片の切断面の形状を修正した解析モデル又は第2金属片の切断面の形状を修正した解析モデルを用いて、解析モデルに強制変位を付与することにより前記断面における残留応力分布を算出するステップとを含むことを特徴とする測定方法。 - 前記残留応力分布を算出するステップは、解析モデルに弾性解析により強制変位を付与することにより前記断面における残留応力分布を算出するステップである請求項1に記載の測定方法。
- 金属部材の第1金属部と第2金属部との間の断面における残留応力分布を算出する算出方法であって、
前記金属部材の前記断面に切断面を付与した解析モデルを用いて、前記切断面において第1金属片に働く荷重ベクトルと、前記切断面において第2金属片に働く荷重ベクトルの和である残差力ベクトルを算出するステップと、
前記金属部材の解析モデルの前記断面に前記残差力ベクトルを強制荷重として付与することにより、前記断面における移動量を修正変位ベクトルとして算出するステップと、
第1金属部が第1金属片となるように前記金属部材を前記断面で切断することにより得た第1金属片の切断面の形状を有する解析モデル又は第2金属部が第2金属片となるように前記金属部材を前記断面で切断することにより得た第2金属片の切断面の形状を有する解析モデルを用いて、算出した修正変位ベクトルに基づき第1金属片の切断面の形状又は第2金属片の切断面の形状を修正するステップと、
第1金属片の切断面の形状を修正した解析モデル又は第2金属片の切断面の形状を修正した解析モデルを用いて、解析モデルに強制変位を付与することにより前記断面における残留応力分布を算出するステップとを含む算出方法。 - 前記残差力ベクトルを算出するステップは、有限要素法構造解析を用いて残差力ベクトルを算出するステップであり、
第1又は第2金属片の切断面の形状を修正するステップは、第1又は第2金属片の切断面の形状を有限要素法構造解析を用いて修正するステップであり、
前記断面における残留応力分布を算出するステップは、解析モデルに弾性解析により強制変位を付与することにより前記断面における残留応力分布を算出するステップである請求項3に記載の算出方法。 - 請求項3又は4に記載の算出方法をコンピューターに実行させるためのプログラム。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018169714A JP7054199B2 (ja) | 2018-09-11 | 2018-09-11 | 残留応力分布の測定方法、算出方法及びプログラム |
US17/274,696 US11898923B2 (en) | 2018-09-11 | 2019-08-22 | Measuring method of residual stress distribution, calculating method of same, and program |
PCT/JP2019/032870 WO2020054347A1 (ja) | 2018-09-11 | 2019-08-22 | 残留応力分布の測定方法、算出方法及びプログラム |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018169714A JP7054199B2 (ja) | 2018-09-11 | 2018-09-11 | 残留応力分布の測定方法、算出方法及びプログラム |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020041918A JP2020041918A (ja) | 2020-03-19 |
JP7054199B2 true JP7054199B2 (ja) | 2022-04-13 |
Family
ID=69777811
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018169714A Active JP7054199B2 (ja) | 2018-09-11 | 2018-09-11 | 残留応力分布の測定方法、算出方法及びプログラム |
Country Status (3)
Country | Link |
---|---|
US (1) | US11898923B2 (ja) |
JP (1) | JP7054199B2 (ja) |
WO (1) | WO2020054347A1 (ja) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112149330B (zh) * | 2020-09-24 | 2024-02-06 | 河海大学常州校区 | 一种风电塔筒油封平台焊接残余应力预测、焊接工艺优化方法 |
CN114154370B (zh) * | 2021-11-23 | 2024-09-10 | 西安航天动力研究所 | 一种确定细长管路最大应力位移向量的快速分析方法 |
CN114739556B (zh) * | 2022-06-13 | 2022-09-06 | 中铝材料应用研究院有限公司 | 二次剖切轮廓法残余应力测试方法 |
CN115290241B (zh) * | 2022-09-30 | 2023-01-24 | 中铝材料应用研究院有限公司 | 薄板内部残余应力的测试方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003194637A (ja) | 2001-12-26 | 2003-07-09 | Toshiba Corp | 有限要素法による残留応力解析方法 |
DE102005008281A1 (de) | 2005-02-23 | 2006-08-24 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Verfahren zur Erfassung von lokalen Eigenspannungen in Festkörperobjekten mit einer Ionenstrahltechnik |
JP2015504170A (ja) | 2012-01-18 | 2015-02-05 | ユニヴェルシタ・デグリ・ストゥディ・ローマ・トレ | 材料のポアソン比および残留応力を測定するための方法 |
JP2017156263A (ja) | 2016-03-03 | 2017-09-07 | 株式会社神戸製鋼所 | 残留応力算出方法 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11148875A (ja) * | 1997-11-17 | 1999-06-02 | Hitachi Ltd | 残留応力解析装置 |
US6470756B1 (en) | 2001-02-23 | 2002-10-29 | The Regents Of The University Of California | System and method for measuring residual stress |
US20070251327A1 (en) * | 2006-04-13 | 2007-11-01 | Broene William J | Crash analysis through estimation of residual strains resulting from metal formation |
JP2008287520A (ja) * | 2007-05-17 | 2008-11-27 | Sharp Corp | 解析方法、プログラム、記録媒体および解析装置 |
TWI438041B (zh) * | 2008-09-30 | 2014-05-21 | Nippon Steel & Sumitomo Metal Corp | 成形模擬方法、成形模擬裝置、程式、記錄媒體及基於模擬結果之成形方法 |
US10684392B2 (en) * | 2014-01-14 | 2020-06-16 | Repsol, S.A. | Method to generate the in-situ state of stress in a domain Ω in a geological structure |
US9934339B2 (en) * | 2014-08-15 | 2018-04-03 | Wichita State University | Apparatus and method for simulating machining and other forming operations |
-
2018
- 2018-09-11 JP JP2018169714A patent/JP7054199B2/ja active Active
-
2019
- 2019-08-22 WO PCT/JP2019/032870 patent/WO2020054347A1/ja active Application Filing
- 2019-08-22 US US17/274,696 patent/US11898923B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003194637A (ja) | 2001-12-26 | 2003-07-09 | Toshiba Corp | 有限要素法による残留応力解析方法 |
DE102005008281A1 (de) | 2005-02-23 | 2006-08-24 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Verfahren zur Erfassung von lokalen Eigenspannungen in Festkörperobjekten mit einer Ionenstrahltechnik |
JP2015504170A (ja) | 2012-01-18 | 2015-02-05 | ユニヴェルシタ・デグリ・ストゥディ・ローマ・トレ | 材料のポアソン比および残留応力を測定するための方法 |
JP2017156263A (ja) | 2016-03-03 | 2017-09-07 | 株式会社神戸製鋼所 | 残留応力算出方法 |
Non-Patent Citations (1)
Title |
---|
河尻義貴、柴原正和、生島一樹、河原充、内田友樹、宇野新平、秋田貢一,コンター法を用いた残留応力測定,溶接構造シンポジウム2017 講演論文集,日本,一般社団法人溶接学会溶接構造研究委員会,2017年12月05日,pp.341-348 |
Also Published As
Publication number | Publication date |
---|---|
JP2020041918A (ja) | 2020-03-19 |
US11898923B2 (en) | 2024-02-13 |
WO2020054347A1 (ja) | 2020-03-19 |
US20220018724A1 (en) | 2022-01-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7054199B2 (ja) | 残留応力分布の測定方法、算出方法及びプログラム | |
Hobbacher | Recommendations for fatigue design of welded joints and components | |
KR101011844B1 (ko) | 스폿 용접 구조의 피로 수명 예측 방법 | |
JP6119451B2 (ja) | 薄板レーザ溶接部の疲労寿命予測方法 | |
JP5063768B2 (ja) | 変形推定方法、プログラムおよび記録媒体 | |
Kozak et al. | Problems of determination of welding angular distortions of T-fillet joints in ship hull structures | |
EP3892517A1 (en) | Stress assessing method for as-welded part of railway vehicle bogie frame | |
Barsoum et al. | Managing welding induced distortion–comparison of different computational approaches | |
JP2008292206A (ja) | 亀裂伝播予想方法 | |
US20070181643A1 (en) | Method and system for weld bead sequencing to reduce distortion and stress | |
JP5099637B2 (ja) | き裂進展解析方法 | |
JP4533621B2 (ja) | 残留応力測定方法及び装置 | |
Kitner | A study of manufacturable rib-to-floor beam connections in steel orthotropic bridge decks | |
Mikihito et al. | A simplified FE simulation method with shell element for welding deformation and residual stress generated by multi-pass butt welding | |
Luca et al. | Estimation of multi-pass welds deformations with Virtual Weld Bead method | |
CN113779844B (zh) | 一种含多裂纹损伤曲梁弹性屈曲的自适应求解方法 | |
Bennebach et al. | Several seam weld finite element idealizations challenged in fatigue within a French industrial collaborative workgroup | |
ÖZDEN et al. | Determinatıon of stress magnification factor in welded joint by experimental and numerical analysis using ultra-high-strength steel | |
Jie et al. | Fatigue life assessment of inclined welded joints in steel bridges subjected to combined normal and shear stresses | |
Karlsson | Static and Fatigue Analyses of Welded Joints in Thin-Walled Tubes | |
JP2009121882A (ja) | 溶接構造体の健全性検証方法 | |
Zhang et al. | Residual stress evaluation with contour method for thick butt welded joint | |
Goyal | A stress analysis method for fatigue life prediction of welded structures | |
Moarrefzadeh et al. | Evaluating the Effects of Overload and Welding Residual Stress in Fatigue Crack Propagation | |
Riad et al. | Fatigue life assessment of welded joints in a crane boom using different structural stress approaches |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20190820 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210702 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220322 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220325 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7054199 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |