JP7049823B2 - 窒化物半導体発光素子 - Google Patents

窒化物半導体発光素子 Download PDF

Info

Publication number
JP7049823B2
JP7049823B2 JP2017241823A JP2017241823A JP7049823B2 JP 7049823 B2 JP7049823 B2 JP 7049823B2 JP 2017241823 A JP2017241823 A JP 2017241823A JP 2017241823 A JP2017241823 A JP 2017241823A JP 7049823 B2 JP7049823 B2 JP 7049823B2
Authority
JP
Japan
Prior art keywords
layer
nitride semiconductor
iii nitride
group iii
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017241823A
Other languages
English (en)
Other versions
JP2019110195A (ja
Inventor
亮介 長谷川
陽 吉川
梓懿 張
朋浩 森下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2017241823A priority Critical patent/JP7049823B2/ja
Priority to US16/184,237 priority patent/US10937928B2/en
Priority to CN201811330368.9A priority patent/CN109768140B/zh
Publication of JP2019110195A publication Critical patent/JP2019110195A/ja
Priority to US17/133,707 priority patent/US11637221B2/en
Application granted granted Critical
Publication of JP7049823B2 publication Critical patent/JP7049823B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、窒化物半導体発光素子に関する。
窒化物半導体であるAlN、GaN、InN、およびそれらの混晶は、III族元素(Al、Ga、In)の組成比を変えることでバンドギャップエネルギーを多様に変化させることができる魅力的な材料である。特に、AlGaNは、AlGaN/GaN系トランジスタや深紫外光の受発光素子などの様々なデバイスに用いられている。しかしながら、Al組成の高いAlGaNを用いた深紫外発光素子の場合、従来のGaInN系青色発光素子に比べて、十分な正孔濃度を有したp型AlGaNの実現が困難であることから光取り出し効率が低いこと、およびキャリアを効率良く発光層に注入することが困難であること、から十分な発光効率を得ることが極めて難しい。
さらに、Al組成の高いAlGaNは、電極材料とのオーミックコンタクトが取りにくいため、コンタクト抵抗が高くなることが知られている。したがって、AlGaNを発光素子の材料として用いた場合、コンタクト抵抗が高くなることで発光素子の駆動電圧が高くなるため発熱量が多くなり、出力低下や寿命低下が生じる。そのため、Al組成の高いAlGaNを用いた発光素子では、キャリアの効率的な注入による発光効率向上と、AlGaNと電極とのコンタクト抵抗を低くし、駆動電圧を低くすることが求められる。
特許文献1には、III族窒化物半導体を用いた紫外線発光素子の発光効率を高めることを目的とした発光素子構造が記載されている。
具体的には、AlN系単結晶層上に発光素子構造を形成し、多重量子井戸構造(MQW)の量子井戸層の厚さを最適化することで、内部量子効率の向上を図っている。また、多重量子井戸構造上にファイナルバリア層を設け、ファイナルバリア層上にファイナルバリア層に対して電子のエネルギー障壁となるp型又はi型のAlN層からなる電子ブロック層を設けてその厚さを最適化することで、電子注入効率の向上を図っている。
特許第5641173号公報
しかしながら、特許文献1に記載の技術を用いた場合でも、得られる発光効率はまだまだ低いのが現状である。加えて、特許文献1では、AlGaNと電極とのコンタクト抵抗を低くすることに関する記載がなく、発光素子構造の説明にNi/Au電極を用いた例が記載されているだけである。また、一般的に、バリア層の挿入、バリア層のポテンシャル障壁や膜厚を高めることで、駆動電圧は上昇してしまうことが分かっている。よって、特許文献1に記載された窒化物半導体発光素子には、低い駆動電圧と高い発光効率を両立させることにより高い電力変換効率(WPE)を実現するという点で改善の余地がある。
本発明の課題は、低い駆動電圧で高い発光効率が得られる窒化物半導体発光素子を提供することである。
上記課題を達成するために、本発明の一態様は、下記の構成(1)~(4)を有する窒化物半導体発光素子を提供する。
(1)基板と、基板上に形成され、AlおよびGaを少なくとも含む第一のIII族窒化物半導体層と、第一のIII族窒化物半導体層上の一部に形成された窒化物半導体積層体と、を有する。
(2)窒化物半導体積層体は、第一のIII族窒化物半導体層上の一部に形成された窒化物半導体積層体であって、AlおよびGaを少なくとも含むIII族窒化物半導体活性層と、AlxGa(1-x)N(0.90≦x≦1.00)層であるキャリア防壁層と、第二のIII族窒化物半導体層とを、第一のIII族窒化物半導体層側からこの順に含む。
(3)第一のIII族窒化物半導体層上に形成された第一電極層と、第二のIII族窒化物半導体層上に形成された第二電極層と、を有する
(4)第一電極層はアルミニウムを含む。第一電極層の第一のIII族窒化物半導体層に対する接触面または接触面近傍面に、第一電極層に含まれるアルミニウムの少なくとも一部が存在する。接触面または接触面近傍面におけるアルミニウムおよびアルミニウムを含む合金の合計存在率が70面積%以上である。
本発明の窒化物半導体発光素子によれば、低い駆動電圧で高い発光効率を達成することが期待できる。
実施形態の窒化物半導体素子を示す平面図である。 実施形態の窒化物半導体素子を示す断面図であり、図1のA-A断面を示している。 図1の窒化物半導体素子でパッド電極および絶縁層が形成される前の状態を示す平面図である。 実施形態の窒化物半導体素子を構成する第一電極層の第一窒化物半導体層に対する接触面の一例を示す平面図である。 実施形態の窒化物半導体素子を構成する第一電極層を示す断面図であり、例えば、図3のB-B断面に対応する。 キャリア防壁層であるAlxGa(1-x)N層のAl組成と膜厚との関係を示すグラフである。
〔一態様の窒化物半導体発光素子〕
本発明の一態様の窒化物半導体発光素子は上記構成(1)~(4)を有する。つまり、基板、第一のIII族窒化物半導体層、III族窒化物半導体活性層、キャリア防壁層、第二のIII族窒化物半導体層、第一電極、および第二電極を有する。一態様の窒化物半導体発光素子は、キャリア防壁層と第二のIII族窒化物半導体層との間に組成傾斜層を有することが好ましい。これらについて以下に説明する。
<基板>
基板は、窒化物半導体層を形成することが可能なものであれば特に制限されない。基板を形成する材料の具体例としては、サファイア、Si、SiC、MgO、Ga23、ZnO、GaN、InN、AlN、あるいはこれらの混晶等が挙げられる。これらのうち、GaNおよびAlNおよびAlGaN等の窒化物半導体で形成された基板を用いると、基板上に形成される各窒化物半導体層との格子定数差や熱膨張係数差が小さく、結晶欠陥の少ない窒化物半導体層を成長できるため好ましい。特に、AlN基板を用いることが好ましい。また、基板を形成する材料には不純物が混入していてもよい。
上述の窒化物半導体を材料とする基板には、基板として使用できる厚さに窒化物半導体を単結晶成長させたものや、サファイア基板などの上に窒化物半導体を結晶成長させたもの(いわゆるテンプレート)が挙げられる。テンプレート用のサファイア基板としては、平坦な成長表面が比較的容易に実現できることからC面サファイア基板を用いることが望ましいが、これに限定されるものではない。
(不純物濃度の測定)
基板、および各層のドーパントや不純物の濃度は、二次イオン質量測定(SIMS)およびX線光電子分光法(XPS)を用いて定量化を行うことが可能である。XPSでは、X線等で励起して得られる光電子スペクトルを測定・解析する。後述するn型、およびp型ドーパントの添加濃度(Si、Mg)においてもこれらの測定により定量化できる。
<第一のIII族窒化物半導体層>
第一のIII族窒化物半導体層は、AlおよびGaを少なくとも含む材料で形成された第一導電型の半導体層である。第一のIII族窒化物半導体層を形成する材料は、AlN、GaN、InNの単結晶および混晶であることが好ましい。これらの材料には、P、As、SbといったN以外のV族元素や、C、H、F、O、Mg、Siなどの不純物が含まれていてもよく、不純物の種類はこれらに限定されない。。
第一のIII族窒化物半導体層を電子供給層とする場合、第一導電型はn型である。第一のIII族窒化物半導体層の具体例としては、Siをn型ドーパントとして添加したn-AlxGa(1-x)N(0<x≦1)が挙げられる。300nm以下の深紫外光を発するIII族窒化物半導体活性層をさらに積層する場合、下地との格子定数差を小さくして結晶欠陥を低減する観点からAl組成は高いことが好ましい。一方で、Al組成の上昇に伴い、第一の電極層とのコンタクト抵抗は高くなるため、Al組成には適した範囲が存在する。上記の観点から、n-AlxGa(1-x)NのAl組成xは、0.50≦x≦0.80であることが好ましく、0.60≦x≦0.75であることがより好ましい。
第一のIII族窒化物半導体層が下地に対して格子緩和した場合、膜中の電子濃度や電子移動度が低下してしまうことで、第一のIII族窒化物半導体層のシート抵抗が悪化する。その結果、駆動電圧が上昇してしまう。したがって、第一のIII族窒化物半導体層の格子緩和率は、0%以上15%以下であることが好ましく、より好ましくは0%以上12%以下である。
格子緩和率を低くする手段としては、下地との格子定数差を低減すること、第一のIII族窒化物半導体層の膜厚を薄くすることが挙げられる。AlN基板上にn-AlxGa(1-x)N層を積層する場合、上述のAl組成範囲(0.50≦x<0.80)においては、格子緩和を抑制する観点から、膜厚は1.3μm以下であることが好ましく、より好ましくは1.2μm以下である。一方で、素子化プロセス工程の観点から、第一のIII族窒化物半導体の膜厚は100nm以上であることが好ましい。したがって、n-AlxGa(1-x)N層の膜厚は100nm以上1.3μm以下であることが好ましく、より好ましくは100nm以上1.2μm以下である。
第一のIII族窒化物半導体層は、基板上に直接ではなく、例えばバッファ層など第一導電型の窒化物半導体層以外の層を介して形成されていてもよく、上記バッファ層の材料や膜厚は特に限定されない。
(Al組成の測定方法)
第一のIII族窒化物半導体層のAl組成xおよび格子緩和率は、X線回折(XRD:X-Ray Diffaction)法による逆格子マッピング測定(RSM:Reciprocal Space Mapping)を行うことにより定量化することが可能である。この時、非対称面を回折面として得られる回折ピーク近傍の逆格子マッピングデータを解析することにより、下地に対する格子緩和率とAl組成が得られるが、上記回折面としては、例えば(10-15)面や(20-24)面が挙げられる。
<III族窒化物半導体活性層>
III族窒化物半導体活性層は、単層構造でも多層構造であっても良い。多層構造の例としては、AlGaNからなる井戸層とAlGaNやAlNからなるバリア層とからなる多重量子井戸構造(MQW)が挙げられる。井戸層およびバリア層のAl組成や膜厚を変えることで、得られる発光波長を調整することが可能である。また、この層には、P、As、SbといったN以外のV族元素や、C、H、F、O、Mg、Siなどの不純物が含まれていてもよく、不純物の種類はこれに限定されない。
<キャリア防壁層>
キャリア防壁層は、電子と正孔を効率良くIII族窒化物半導体活性層へ注入する観点から極めて重要である。具体的には、第一のIII族窒化物半導体層から注入された電子に対してポテンシャル障壁として作用し、活性層への電子の閉じ込めを促進する。加えて、キャリア防壁層から活性層に対して応力が作用することにより、活性層内に内部電界が発生し、組成傾斜層および第二のIII族窒化物半導体層から供給された正孔がその電界により加速されることで、活性層への注入効率が向上する。以上のことから、キャリア防壁層を挿入することで、電子と正孔を効率良く活性層に注入することが可能となり、高い発光効率が実現できる。
キャリア防壁層はAlxGa(1-x)N(0.90≦x≦1.00)層である。また、キャリア防壁層には不純物が含まれていてもよい。
上述のように、発光層へ効率良くキャリアを注入する観点から、キャリア防壁層の膜厚は5nm以上18nm以下であることが好ましく、7nm以上14nm以下であることがより好ましい。膜厚が薄い場合、量子トンネル効果により電子が活性層からリークしてしまうこと、活性層へ印加される応力が小さくなってしまうことから発光効率は低下する。一方で、膜厚が厚い場合には、正孔の注入が妨げられるためやはり発光効率は低下してしまうため、最適範囲が存在する。
(膜厚の測定方法)
半導体積層構造の各層膜厚は、基板に垂直な所定断面を切り出して、この断面を透過型電子顕微鏡(TEM)により観察し、TEMの測長機能を使用することで測定可能である。測定方法として、先ず、TEMを用いて、紫外線発光素子の基板の主面に対して垂直な断面を観察する。具体的には、例えば、紫外線発光素子の基板の主面に対して垂直な断面を示すTEM画像内の、基板の主面に対して平行な方向において2μm以上の範囲を観察幅とする。この観察幅の範囲において、キャリア防壁層と組成の異なる層との界面にはコントラストが観察されるので、この界面までの厚みを、幅200nmの連続する観察領域で観察する。この200nm幅の観察領域内に含まれる電子障壁層の厚みの平均値を、上記2μm以上の観察幅から任意に抽出した5箇所から算出することで、このキャリア防壁層の膜厚を得る。
(組成の測定方法)
組成の測定方法としてはXPS、エネルギー分散型X線分光法(EDX)および電子エネルギー損失分光法(EELS)測定が挙げられる。
EELSでは、電子線が試料を透過する際に失うエネルギーを測定することで、試料の組成を分析する。具体的には、例えば、TEM観察等で使用する薄片化試料において、透過電子線の強度のエネルギー損失スペクトルを測定・解析する。そして、エネルギー損失量20eV付近に現れるピークのピーク位置がキャリア防壁層のAl組成xに応じて変化することを利用し、ピーク位置からAl組成xを求めることができる。
上述のTEM観察による膜厚算出方法と同様にして、観察幅200nmにおけるAl組成の平均値を、2μm以上の観察領域から任意に抽出した5箇所から算出することで、このキャリア防壁層のAl組成を得る。
EDXでは、上述のTEM観察等で使用する薄片化試料において電子線によって発生する特性X線を測定・解析する。上述のTEM観察による膜厚算出方法と同様にして、観察幅200nmにおけるAl組成の平均値を、2μm以上の観察領域から任意に抽出した5箇所から算出することで、キャリア防壁層のAl組成を得る。
XPSでは、イオンビームを用いたスパッタエッチングを行いながらXPS測定を行うことで、深さ方向の評価が可能である。イオンビームには一般的にAr+が用いられるが、XPS装置に搭載されたエッチング用イオン銃で照射できるイオンであれば、例えばArクラスターイオンなどの他のイオン種でもよい。Al、Ga、NのXPSピーク強度を測定・解析してキャリア防壁層のAl組成xの深さ方向分布を得る。スパッタエッチングではなく、紫外線発光素子の基板の主面に対して垂直な断面が拡大されて露出されるように斜め研磨して、露出断面をXPSで測る方法でもAl組成xを得ることができる。
XPSだけでなくオージエ電子分光法(AES)を用いても、スパッタエッチングあるいは斜め研磨により露出させた断面の測定を行うことでAl組成を測定できる。また、斜め研磨により露出させた断面のSEM-EDX測定を用いてもAl組成を測定できる。
<第二のIII族窒化物半導体層>
第二のIII族窒化物半導体層は、第二導電型のIII族窒化物半導体層である。つまり、第二のIII族窒化物半導体層の導電型は、第一のIII族窒化物半導体層の導電型(第一導電型)と異なる。
第二のIII族窒化物半導体層を正孔供給層とする場合、第二導電型はp型である。
第二のIII族窒化物半導体層の材料は、AlN、GaN、InNの単体および混晶であることが好ましい。p型III族窒化物半導体層としては、例えば、p-GaN層またはp-AlGaN層などが挙げられるが、第二の電極層とのコンタクト性を高める観点から、p-GaN層であることがより好ましい。C、H、F、O、Mg、Siなどの不純物が含まれていてもよく、不純物の種類はこれらに限定されない。
第二のIII族窒化物半導体層の膜厚は、5nm以上100nm以下であることが好ましく、5nm以上20nm以下であることがより好ましい。この膜厚範囲の特定により、III族窒化物半導体活性層が紫外線を発光する構成の場合、発光した紫外線を効率良く(吸収や損失が抑制された状態で)発光素子から取り出すことができるとともに、第二の電極層に対する良好な接触状態を維持して駆動電圧の増加や電気的不良を抑制することができる。
p型ドーパントとしては、Mg、Cd、Zn、Be等が挙げられる。Mgをp型ドーパントして用いる場合、p-GaN層の表面の平坦性を高めて第二電極層とのコンタクト性を高める観点から、Mgのドーピング濃度は、1×1020cm-3以上8×1020cm-3未満であることが好ましく、2×1020cm-3以上6×1020cm-3以下であることがより好ましい。
<組成傾斜層>
組成傾斜層は、AlyGa(1-y)N(0.00≦y≦1.00)層であって、キャリア防壁層に接する面から第二のIII族窒化物半導体層に接する面に向けて、Al組成yが減少する層である。
組成傾斜層のAl組成yは、キャリア防壁層に接する面から第二のIII族窒化物半導体層に接する面に向けて連続的に減少してもよいし、断続的に減少してもよい。「断続的に減少する」とは、組成傾斜層の膜厚方向にAl組成yが同じになっている部分を含むことを意味する。つまり、組成傾斜層には、キャリア防壁層側から第二のIII族窒化物半導体層側に向けてAl組成yが減少しない部分が含まれていてもよいが、増加する部分は含まれていない。組成傾斜層には、Al組成yが同じになっている部分が例えば数nmの厚さで含まれることがある。
キャリア防壁層と接する面における組成傾斜層のAl組成をy1、第二のIII族窒化物半導体層と接する面における組成傾斜層のAl組成をy2とすると、y1>y2となるが、y1とy2の値は特に限定されない。
組成傾斜層のAl組成y1とキャリア防壁層のAl組成xは同じでもよいし、異なっていてもよく、異なる場合はどちらが大きくてもよい。組成傾斜層のAl組成y2と第二のIII族窒化物半導体層のAl組成は同じでもよいし、異なっていてもよく、異なる場合はどちらが大きくてもよい。
各層での界面におけるポテンシャル障壁を低減し、組成傾斜層からの正孔の注入効率を向上させる観点からは、組成傾斜層のAl組成y1とキャリア防壁層のAl組成xとの差は0.3以下、組成傾斜層のAl組成y2と第二のIII族窒化物半導体層のAl組成との差は0.4以下であることが好ましい。
組成傾斜層にはC、H、F、O、Mg、Siなどの不純物が含まれていてもよい。
組成傾斜層は、分極ドーピング効果により正孔を生成させて、正孔を効率良く活性層に注入する作用を有するため、キャリア防壁層と第二のIII族窒化物半導体層との間に設けることで発光効率を高めることができる。
組成傾斜層の膜厚は、発光効率を高める観点から、5nm以上110nm以下であることが好ましく、15nm以上90nm以下であることがより好ましく、さらに好ましくは20nm以上70nm以下である。
(組成の測定方法)
組成の測定方法としてはXPS、エネルギー分散型X線分光法(EDX)および電子エネルギー損失分光法(EELS)測定が挙げられる。
<第一電極層>
第一電極層は、アルミニウムを含み、第一電極層の第一のIII族窒化物半導体層に対する接触面または接触面近傍面に、第一電極層に含まれるアルミニウムの少なくとも一部が存在する。接触面または接触面近傍面におけるアルミニウム(アルミニウム単体)およびアルミニウムを含む合金の合計存在率が70面積%以上であり、好ましくは90面積%以上である。
第一電極は、アルミニウムとともに、Ni、Ti、Au、V、Pt、Ag、Mo、Ta、ZrおよびPdのうちの少なくとも一つを含むことが好ましく、電極の密着性向上、電極材料の酸化防止などに効果があり、かつ第一のIII族窒化物半導体層とのコンタクト抵抗を下げる観点からはNi、Ti、Auを含むことがより好ましい。
アルミニウムを含む合金は、例えば、Ni、Ti、Au、V、Pt、Ag、Mo、Ta、ZrおよびPdのうちの少なくとも一つと、アルミニウムとで形成される合金であるが、第一のIII族窒化物半導体層とのコンタクト抵抗を下げる観点から少なくともNiを含む合金を形成していることが好ましい。
上記のことから、第一電極層は、アルミニウムとニッケルを含む材料で形成されていることが好ましい。また、電極の密着性の向上および電極材料の酸化防止などの作用を有するとともに、n-AlGaNとのコンタクト抵抗が低くなる材料(例えば、Ti、Mo、V、Au、W、Pt、Pd、Si、Zrなど)が、アルミニウムとニッケルに添加された材料で、第一電極層を形成してもよい。
第一電極層の第一のIII族窒化物半導体層に対する接触面に、アルミニウム単体およびアルミニウムとニッケルとを含む合金の両方が存在することが好ましい。接触面におけるアルミニウム単体およびアルミニウムとニッケルとを含む合金の合計存在率が70面積%以上であることが好ましい。つまり、第一電極層が第一のIII族窒化物半導体層を覆う面の70%以上にアルミニウム単体およびアルミニウムとニッケルとを含む合金が存在することが好ましく、より好ましくは80%以上であり、さらに好ましくは90%以上である。
<第二電極層>
第二電極層は、第二のIII族窒化物半導体層上に形成されている。
第二電極層が窒化物半導体素子に正孔(ホール)を注入する電極である場合、第二電極層の材料としては、一般的な窒化物半導体発光素子のp型電極層と同じ材料を使用することが可能である。具体的には、例えば、Ni、Au、Pt、Ag、Rh、Pd、Pt、Cuおよびその合金、またはITO等が挙げられる。これらのうち、窒化物半導体層とのコンタクト抵抗が小さいNi、Auもしくはこれらの合金、またはITOを用いることが好ましい。
<紫外線発光モジュール>
本発明の一態様の窒化物半導体発光素子を備えた発光装置は、紫外線発光モジュールとして使用することができる。紫外線発光モジュールは、例えば、医療・ライフサイエンス分野、環境分野、産業・工業分野、生活・家電分野、農業分野、その他分野の装置に適用可能である。
本発明の一態様の窒化物半導体発光素子を備えた発光装置は、薬品や化学物質の合成・分解装置、液体・気体・固体(容器、食品、医療機器等)殺菌装置、半導体等の洗浄装置、フィルム・ガラス・金属等の表面改質装置、半導体・FPD・PCB・その他電子品製造用の露光装置、印刷・コーティング装置、接着・シール装置、フィルム・パターン・モックアップ等の転写・成形装置、紙幣・傷・血液・化学物質等の測定・検査装置に適用可能である。
液体殺菌装置の例としては、冷蔵庫内の自動製氷装置・製氷皿および貯氷容器・製氷機用の給水タンク、冷凍庫、製氷機、加湿器、除湿器、ウォーターサーバの冷水タンク・温水タンク・流路配管、据置型浄水器、携帯型浄水器、給水器、給湯器、排水処理装置、ディスポーザ、便器の排水トラップ、洗濯機、透析用水殺菌モジュール、腹膜透析のコネクタ殺菌器、災害用貯水システム等が挙げられるがこの限りではない。
気体殺菌装置の例としては、空気清浄器、エアコン、天井扇、床面用や寝具用の掃除機、布団乾燥機、靴乾燥機、洗濯機、衣類乾燥機、室内殺菌灯、保管庫の換気システム、靴箱、タンス等が挙げられるがこの限りではない。固体殺菌装置(表面殺菌装置を含む)の例としては、真空パック器、ベルトコンベヤ、医科用・歯科用・床屋用・美容院用のハンドツール殺菌装置、歯ブラシ、歯ブラシ入れ、箸箱、化粧ポーチ、排水溝のふた、便器の局部洗浄器、便器フタ等が挙げられるがこの限りではない。
〔実施形態〕
以下、この発明の実施形態について説明するが、この発明は以下に示す実施形態に限定されない。以下に示す実施形態では、この発明を実施するために技術的に好ましい限定がなされているが、この限定はこの発明の必須要件ではない。
この実施形態では、本発明の一態様の窒化物半導体発光素子が紫外線発光素子に適用された例が記載されている。また、第一のIII族窒化物半導体層の導電型をn型、第二のIII族窒化物半導体層の導電型をp型としている。
[全体構成]
先ず、図1~図3を用いて、この実施形態の紫外線発光素子10の全体構成を説明する。
図1および図2に示すように、紫外線発光素子10は、基板1と、n型III族窒化物半導体層(第一のIII族窒化物半導体層)2と、窒化物半導体積層体3と、第一電極層4と、第二電極層5と、第一パッド電極6と、第二パッド電極7と、絶縁層8を有する。n型III族窒化物半導体層2は、基板1上に形成されている。窒化物半導体積層体3は、n型III族窒化物半導体層2上の一部に形成されたメサ部であり、側面が斜面となっている。
図2に示すように、窒化物半導体積層体3は、基板1側から、n型III族窒化物半導体層31、III族窒化物半導体活性層(発光層)32、キャリア防壁層33、組成傾斜層34、およびp型III族窒化物半導体層(第二のIII族窒化物半導体層)35が、この順に形成されたものである。
なお、窒化物半導体積層体3は、基板1上に、n型III族窒化物半導体層、III族窒化物半導体活性層、キャリア防壁層、組成傾斜層、およびp型III族窒化物半導体層を、この順に形成して得た積層体に対して、メサエッチングで、第一電極層4が形成される部分をn型III族窒化物半導体層の厚さ方向の途中まで除去することで形成されている。つまり、窒化物半導体積層体3のn型III族窒化物半導体層31は、n型III族窒化物半導体層2上に連続して成膜されたものである。
第一電極層4は、n型III族窒化物半導体層2上に例えば図3に示す平面形状で形成されている。第二電極層5は、p型III族窒化物半導体層35上に例えば図3に示す平面形状で形成されている。第一パッド電極6は、第一電極層4上に第一電極層4と同じ平面形状で形成されている。第二パッド電極7は、第二電極層5上に第二電極層5と同じ平面形状で形成されている。
紫外線発光素子10は、例えば、波長が300nm以下の紫外線を発光する素子である。
基板1はAlN基板であり、n型III族窒化物半導体層2,31はn-AlxGa(1-x)N(0.50≦x≦0.80)層であり、III族窒化物半導体活性層32はAlGaNからなる量子井戸層とAlGaNまたはAlNからなるバリア層とからなる多重量子井戸構造(MQW)である。キャリア防壁層33は、AlxGa(1-x)N(0.90≦x≦1.00)層であり、その膜厚が5nm以上18nm以下である。
組成傾斜層34は、AlyGa(1-y)N(0.00≦y≦1.00)層であって、Al組成yがキャリア防壁層と接する面から第二のIII族窒化物半導体層に接する面に向かって連続的に減少する。組成傾斜層34の膜厚は5nm以上110nm以下である。p型III族窒化物半導体層35は、不純物としてMgを1×1020cm-3以上8×1020cm-3未満の範囲で含むGaN層であり、その膜厚が5nm以上100nm以下である。
第一電極層4については後述する。
第二電極層5はNiとAuとの合金層である。
第一パッド電極6および第二パッド電極7の材料としては、例えばAu、Al、Cu、Ag、Wなどが挙げられるが、導電性の高いAuが望ましい。
絶縁層8は、n型III族窒化物半導体層2の第一電極層4で覆われていない部分と、窒化物半導体積層体3の第二電極層5で覆われていない部分と、第一電極層4の第一パッド電極6で覆われていない部分と、第二電極層5の第二パッド電極7で覆われていない部分と、第一パッド電極6および第二パッド電極7の下部の側面に形成されている。絶縁層8は第一パッド電極6および第二パッド電極7の上部の一部を覆うこともある。絶縁層8としては、例えば、SiN、SiO2、SiON、Al23、ZrO層などの酸化物や窒化物が挙げられる。
<第一電極層4について>
第一電極層4は、アルミニウムとニッケルを含む材料で形成されている。
第一電極層4のn型III族窒化物半導体層2に対する接触面41に、アルミニウム単体およびアルミニウムとニッケルとを含む合金の両方が存在する。接触面41におけるアルミニウム単体およびアルミニウムとニッケルとを含む合金の合計存在率は70面積%以上である。つまり、第一電極層4がn型III族窒化物半導体層2を覆う面の70%以上にアルミニウム単体およびアルミニウムとニッケルとを含む合金が存在する。
例えば図4に示すように、第一電極層4の接触面41内には、第一の領域411、第二の領域412、および第三の領域413が存在する。
第一の領域411は、アルミニウムとニッケルとを含む合金層である第一の層4aの下面(n型III族窒化物半導体層2側の面)である。第二の領域412は第二の層4bの下面である。第二の層4bは、アルミニウムとニッケルとを含む合金層以外のアルミニウム含有層であって、含まれるものはアルミニウム単体がほとんどであるが、アルミニウム以外の金属を極微量(面積を推定する際の断面線上で数nm以内)含む場合もある。
第三の領域413は、第三の層4cの下面である。第三の層4cには、アルミニウムとニッケルとを含む合金以外の合金、電極材料として用いた金属が各々単体で微粒子化しているものなどが混在している。
そして、アルミニウムとニッケルとを含む合金層の下面である第一の領域411の面積と、第二の領域412に存在するアルミニウム単体の面積と、の合計値が、接触面41の面積(第一の領域411、第二の領域412、および第三の領域413の合計面積)の70%以上になっている。好ましくは80%以上であり、さらに好ましくは90%以上である。
第一の層4aは、例えば、アルミニウムとニッケルの二成分合金層であり、合金層中のアルミニウムとニッケルの存在比は任意である。第一の層4aは、アルミニウムおよびニッケルとともにこれら以外の元素を含む層であってもよい。つまり、第一の層4aは、アルミニウムとニッケルとを含む三成分以上の化合物または混合物を含む層や、三成分以上の金属の合金層になっていてもよい。
また、第一の領域411と第二の領域412の合計面積に対する第二の領域412の面積の比率(以下、「アルミニウム含有率」と称する。)が、30%以上になっている。好ましくは40%以上であり、さらに好ましくは50%以上である。
また、第二の領域412では、アルミニウム単体が連続層になっていてもよいし、アルミニウム単体が他の元素と混合された状態で存在していてもよいし、アルミニウムと他の元素との化合物が存在していてもよいし、ニッケル以外の金属とアルミニウムとの合金が存在していてもよい。
図5に示すように、図4のA-A断面では、第一電極層4の幅方向中央部に第一の層4aが存在し、その左右に、第二の層4bとその上に形成された第三の層4cとの積層部が存在する。
図4のA-A断面は、基板1に垂直で、平面視で基板1の中心を通り基板1の一端から他端まで延びる直線に沿った断面である。つまり、図5は、例えば図3のB-B断面である。図1および図3において、直線Lは、平面視で基板1の中心Cを通り基板1の一端から他端まで延びる直線の一例である。
第一の層4aの厚さは、100nm以上600nm以下である。第二の層4bの厚さは、1nm以上100nm以下である。第三の層4cの厚さは、第一の層4aの厚さより薄く、第二の層4bの厚さより厚い。
なお、上記合金層および上記アルミニウム含有層とn型III族窒化物半導体層2との間に、これらの層(上記合金層および上記アルミニウム含有層)以外の層が存在する場合、これらの層の下面はn型III族第一窒化物半導体層2との接触面とならない。この場合には、一態様の窒化物半導体発光素子の構成(4)の合計存在率は、接触面における存在率ではなく接触面近傍面における存在率であり、上記合金層および上記アルミニウム含有層が第一窒化物半導体層に接触する場合は、接触面における存在率である。
[作用、効果]
<キャリア防壁層により得られる効果>
実施形態の紫外線発光素子10は、キャリア防壁層33として、Al組成xが0.90以上1.00以下のAlxGa(1-x)N層を膜厚5nm以上18nm以下で設けることで、発光層へのキャリア注入効率が向上するため、高い発光効率が得られる。
<組成傾斜層により得られる効果>
実施形態の紫外線発光素子10は、膜厚5nm以上110nm以下の組成傾斜層34を有することで、発光層への正孔注入効率が向上するため、高い発光効率が得られる。
<第一電極層の構成により得られる作用、効果>
実施形態の紫外線発光素子10は、Al組成xが0.50以上0.80未満と高いn-AlxGa(1-x)N層をn型III族半導体層2としているが、第一電極層4のn型半導体層2に対する接触面41に、アルミニウム単体およびアルミニウムとニッケルとを含む合金の両方が合計で70面積%以上存在することで、コンタクト抵抗を大幅に低減することが期待できる。コンタクト抵抗が低減することにより駆動電圧が低減できるため、紫外線発光素子10の発熱量が低減できる。よって、紫外線発光素子10は、熱による出力低下や寿命低下が抑制される。
そして、紫外線発光素子10の発熱量が少なくなることで、紫外線発光素子10を用いた窒化物半導体発光装置のヒートシンクを縮小できるため、窒化物半導体発光装置の小型化が可能になる。
さらに、実施形態の紫外線発光素子10では、第一電極層4のn型III族窒化物半導体層2に対する接触面41にアルミニウム単体が存在することで、第一電極層4のn型III族窒化物半導体層2との界面での反射率が高くなるため、発光出力が向上する。また、接触面41に存在するアルミニウム単体により、第一電極層4のn型III族窒化物半導体層2との界面に導電率の高い層が形成されるため、第一電極層4の面内で電流が流れやすくなり、電流の集中を抑制できる。これらの効果はアルミニウムを含む合金中のアルミニウムでも得ることができるが、アルミニウム単体の方が得られる効果が高い。
また、実施形態の紫外線発光素子10では、第一電極層4のn型III族窒化物半導体層2に対する接触面41にアルミニウムとニッケルとを含む合金が存在することにより、第一電極層4の上面(接触面41の反対側の面)が凹凸状となる。これに伴い、第一電極層4と第一パッド電極6との密着性が向上するため、紫外線発光素子10の寿命を長くすることができる。この効果は、接触面41にアルミニウムが存在することによっても得ることができるが、アルミニウムとニッケルとを含む合金が存在する場合に高い効果が得られる。
なお、第一電極層4の第一の層(アルミニウムとニッケルとを含む合金層)4aの厚さは、上述のコンタクト抵抗の低減および第一パッド電極6との密着性の観点から100nm以上であることが好ましく、150nm以上であることがより好ましい。また、第一の層4aの厚さが厚すぎると、第一電極層4内の凹凸が激しくなりすぎるため、その上部に形成される第一パッド電極6や絶縁層8の被覆性が悪くなり、信頼性不良のリスクが高くなることから、600nm以下であることが好ましく、300nm以下であることがより好ましい。
これらの観点から、実施形態の紫外線発光素子10では、第一電極層4の第一の層4aの厚さを100nm以上600nm以下としている。第一電極層4の第一の層4aの厚さは150nm以上300nm以下であることがより好ましい。
また、第一電極層4の第二の層(アルミニウム含有層)4bの厚さは、上述のコンタクト抵抗の低減および反射率の向上という観点から、1nm以上であることが好ましく、10nm以上であることがより好ましい。また、第二の層4bの厚さが厚すぎると、第三の層4cの厚さが相対的に薄くなることで第二の層4bが酸素と接触しやすくなるため、第一電極層4の酸素との接触を低減するという観点から、第二の層4bの厚さは100nm以下であることが好ましい。これらの観点から、実施形態の紫外線発光素子10では、第一電極層4の第二の層4bの厚さを1nm以上100nm以下としている。
なお、この実施形態では、本発明の一態様の窒化物半導体素子を紫外線発光素子に適用した例を説明しているが、発光波長は紫外線に限定されない。
<試験1:No.1-1~No.1-47>
実施形態に記載された構造の紫外線発光素子10であって、以下の構成を有する素子を作製した。
基板1はAlN基板である。n型III族窒化物半導体層2とn型III族窒化物半導体層31は、Siを不純物として用いたn型Al0.7Ga0.3N層であって、n型III族窒化物半導体層2とn型III族窒化物半導体層31の合計厚さ(つまり、基板1とIII族窒化物半導体活性層32との間のn型III族窒化物半導体層の膜厚)は500nmである。III族窒化物半導体活性層32は、厚さ6.5nmのAl0.78GaN(バリア層)と厚さ2.5nmのAl0.52N(量子井戸層)とを交互にそれぞれ五層有する多重量子井戸構造である。キャリア防壁層33はAlxGa(1-x)N層であって、Al組成xと膜厚を表1および表2に示すように変化させている。
組成傾斜層34は、AlyGa(1-y)N層であり、Al組成yが、キャリア防壁層33からp型III族窒化物半導体層35に向けて0.75から0.25へ連続的に変化する層である。p型III族窒化物半導体層35は、不純物としてMgを4.2×1020cm-3含むp型GaN層である。
第一電極層4は、TiとAlとNiとAuを含有し、n型III族窒化物半導体層2との接触面41に、アルミニウムおよびアルミニウムとニッケルとを含む合金の両方が存在する。第二電極層5はNi/Auである。第一パッド電極6および第二パッド電極7はTiとAuとの積層構造である。
第一電極層4のn型III族窒化物半導体層2との接触面41におけるアルミニウムおよびアルミニウムとニッケルとを含む合金の合計存在率(以下、単に「Al存在率」とも称する。)を、No.1-1~No.1-9では90面積%、No.1-10~No.1-23とNo.1-37~No.1-42では80面積%、No.1-24~No.1-31では75面積%、No.1-32とNo.1-33では65面積%、No.1-34~No.1-36とNo.1-43~No.1-47では50面積%とした。
上記構成の各素子を以下の方法で作製・評価を行った。
先ず、MOCVD法により、AlN基板の全面に、厚さ500nmのSiドープAl0.7Ga0.3N層、上記多重量子井戸構造、キャリア防壁層33となるAlxGa(1-x)N層(xと膜厚は表1および表2の値で)、組成傾斜層34となるAlyGa(1-y)N層(Al組成yを0.75から0.25に連続的に変化させ、膜厚40nmで積層)、不純物としてMgを4.20×1020cm-3含む厚み10nmのp型GaN層を、この順に成膜した。これにより、基板1上に積層体が形成された物体を得た。原料としては、トリエチルガリウム(TEGa)、トリメチルアルミニウム(TMAl)、アンモニア(NH3)、モノシラン(SiH4)、ビスシクロペンタジエニルマグネシウム(Cp2Mg)を使用した。各層のAl組成はトリエチルガリウム(TEGa)、トリメチルアルミニウム(TMAl)の供給比を制御することで、膜厚は成長時間を変化させることでそれぞれ制御を行った。成膜中は基板温度を1100℃、成長圧力を50hPaに制御し、V族原料であるNH3とIII族原料(トリエチルガリウム、トリメチルアルミニウム)との原料供給比(V/III比)は3000とした。
n型III族窒化物半導体層2のAl組成と格子緩和率は、(10-15)面近傍におけるX線回折逆格子マッピング測定によりそれぞれ測定した結果、格子緩和率は0%であった。また、作成した発光素子構造の一部に対してEELS測定を行うことによりn型III族窒化物半導体層2以外の各層のAl組成を定量した。
n型III族窒化物半導体層2のSi濃度、p型GaN層のMg濃度はそれぞれSIMS測定により定量化を行った。詳細は後述するが、各層の膜厚は透過型電子顕微鏡(TEM)による断面観察により測長した。
次に、基板1上の積層体に対して、面内の一部を所定深さで除去するエッチングを行うことにより、図2に示す窒化物半導体積層体3を形成した。エッチング深さは、n型III族窒化物半導体層2が一部除去される深さであり、このエッチングにより平面視でn型III族窒化物半導体層2の一部が露出する。エッチングされない部分が窒化物半導体積層体3のn型III族窒化物半導体層31として残る。エッチング方法としては、誘導結合型プラズマ方式の装置を用いたドライエッチングを行った。
次に、この状態の基板1の全面に絶縁層8を形成した後、面内の一部の絶縁層8を除去してn型III族窒化物半導体層2の一部を露出するためにBHFによるエッチングを行った。
次に、n型III族窒化物半導体層2の平面視で露出面となった領域に、以下の方法で第一電極層4を形成した。
先ず、この領域に図1に示す第一電極層4の平面形状で、チタン(Ti)層、アルミニウム(Al)層、ニッケル(Ni)層、金(Au)層を、この順に20nm/130nm/35nm/50nmの厚さに蒸着法で形成することで、金属積層体を得た。次に、この状態の基板1を熱処理装置に入れて、金属積層体をRTA(Rapid Thermal Annealing)法で加熱処理した。
加熱処理条件は、接触面41でのAl存在率に応じて変化させるが、例えば、Al存在率を90%とするNo.1-1~No.1-9では、基板1の温度を850℃に保持し、熱処理装置内に150℃の窒素ガスを導入して2分間行った。窒素ガスの温度はガス配管にヒーターを取り付けて調整した。
次に、第一電極層4が形成された後の基板1に対して、窒化物半導体積層体3のp型III族窒化物半導体層35の一部を露出するため、BHFによるエッチングを行った。
次に、この状態の基板1を蒸着装置に入れ、窒化物半導体積層体3のp型III族窒化物半導体層35上に、図1に示す第二電極層5の平面形状で、ニッケル(Ni)層、金(Au)層をこの順に形成した後、既知の加熱処理を行って第二電極層5を形成した。
次に、この状態の基板1の第二電極層5が形成されている面の全体に絶縁層8を形成した後、絶縁層8に第一パッド電極6および第二パッド電極7を形成する開口部を形成した。
次に、第一パッド電極6および第二パッド電極7をTiとAuとの積層膜で形成した。
紫外線発光素子10における、各層の膜厚、第一電極層4における接触面41でのアルミニウム単体およびアルミニウムとニッケルとを含む合金の合計存在率は、以下の方法で確認した。
先ず、30kVのGa+を用いたFIB(Focus Ion Beam)法で、紫外線発光素子10の第一電極層4を含む部分の基板1に垂直な所定断面を切り出して、この断面を透過型電子顕微鏡(TEM)により加速電圧200kVで観察した。そして、TEMの測長機能を使用して、切り出した断面における各層の膜厚、および第一電極層4とn型半導体層2との境界線の長さを測定し、この長さの測定値から接触面41の面積を算出した。
また、切り出した断面をTEMで観察して、その観察領域の接触面41を示す線上をEDX(Energy Dispersive X-ray Spectroscope)により元素分析した。そして、この線上での分析結果から、接触面41におけるアルミニウム単体およびアルミニウムとニッケルとを含む合金の合計存在率を推定した。
また、得られたNo.1-1~No.1-47の各紫外線発光素子10に350mAの電流を流して光出力と駆動電圧を調べた。その結果、波長270nm近傍にピーク波長を持つ発光が得られたが、その光出力の相対値(No.1-2の値を1とした値)と駆動電圧の測定値をNo.1-1~No.1-47の各紫外線発光素子10の構成とともに、下記の表1および表2に示す。また、No.1-1~No.1-47の各紫外線発光素子10について、キャリア防壁層33であるAlxGa(1-x)N層のAl組成と膜厚との関係を図6に示す。
Figure 0007049823000001
Figure 0007049823000002
表1および表2の構成の欄では、本発明の一態様の必須要件である「キャリア防壁層33であるAlxGa(1-x)N層のAl組成xが0.90≦x≦1.00」と「第一電極層の接触面41でのAl存在率70面積%以上」から外れる数値に下線を施し、好ましい態様である「キャリア防壁層33の膜厚5nm以上18nm以下」から外れる数値に二重下線を施してある。また、表1および表2の性能の欄では、良好な光出力値(相対値)に相当する「0.62以上」から外れる数値と、良好な駆動電圧に相当する「8.0V以下」から外れる数値に下線を施し、好ましい光出力値(相対値)に相当する「0.75以上」から外れる数値に二重下線を施してある。
表1に示すNo.1-1~No.1-31の素子は、キャリア防壁層33であるAlxGa(1-x)N層のAl組成xが0.90≦x≦1.00と、第一電極層の接触面41でのAl存在率70面積%以上を満たしている。そのため、8.0V以下の駆動電圧で0.62以上の良好な光出力が得られている。
これらのうちNo.1-1~No.1-23の素子は、さらに、キャリア防壁層33の膜厚5nm以上18nm以下(図6のA)を満たしている。そのため、8.0V以下の駆動電圧でより高い0.75以上の光出力が得られている。
また、No.1-1~No.1-9の素子は、キャリア防壁層33のAl組成xが0.95以上、膜厚が7nm以上14nm以下(図6のB)であり、0.90以上の光出力が得られている。つまり、キャリア防壁層33のAl組成xを0.95以上とし、その膜厚を7nm以上14nm以下とすることで、光出力をさらに高くできることが分かる。
<試験2:No.2-1~No.2-15>
実施形態に記載された構造の紫外線発光素子10であって、以下の点を除いて試験1と同じ構成を有する素子を作製した。キャリア防壁層33を膜厚10nmのAlN層とし、第一電極層の接触面41でのAl存在率を80面積%とし、組成傾斜層34の膜厚を変化させた。つまり、No.2-1~No.2-15の素子は、キャリア防壁層33であるAlxGa(1-x)N層のAl組成xが0.90≦x≦1.00と、第一電極層の接触面41でのAl存在率70面積%以上を満たしている。
また、得られたNo.2-1~No.2-15の各紫外線発光素子10に350mAの電流を流して光出力と駆動電圧を調べた。その結果、波長270nm近傍にピーク波長を持つ発光が得られた。光出力の相対値(No.1-2の値を1とした値)と駆動電圧の測定値をNo.2-1~No.2-15の各紫外線発光素子10の構成とともに、下記の表3に示す。
Figure 0007049823000003
表3の構成の欄では、本発明の一態様の好ましい態様である「組成傾斜層34の膜厚の膜厚5nm以上110nm以下」から外れる数値に二重下線を施してある。また、表3の性能の欄では、好ましい光出力値(相対値)に相当する「0.75以上」から外れる数値に二重下線を施してある。なお、表3の性能の欄では、良好な駆動電圧に相当する「8V以下」から外れる数値はなかった。
表3の結果から分かるように、No.2-1~No.2-15の素子は、組成傾斜層34の膜厚が0以上200nm以下であり、8V以下の駆動電圧で0.62以上の良好な光出力が得られている。これらのうち組成傾斜層34の膜厚が5以上110nm以下の範囲にあるNo.2-3~No.2-12の素子は、8V以下の駆動電圧でより高い0.75以上の光出力が得られている。つまり、膜厚が5以上110nm以下の組成傾斜層34を設けることで、光出力を高くできることが分かる。
また、膜厚が15以上90nm以下の範囲であると、0.90以上の光出力が得られ、膜厚が20以上70nm以下の範囲であると、0.93以上の光出力が得られている。つまり、組成傾斜層34の膜厚は15以上90nm以下であることがより好ましく、20以上70nm以下であることがさらに好ましいことが分かる。
<試験3:No.3-1~No.3-10>
実施形態に記載された構造の紫外線発光素子10であって、以下の点を除いて試験1と同じ構成を有する素子を作製した。キャリア防壁層33を膜厚10nmのAlN層とし、第一電極層の接触面41でのAl存在率を80面積%とし、p型III族窒化物半導体層35は、不純物としてMgを含むGaN層(膜厚10nm)であるが、Mg濃度を変化させた。つまり、No.3-1~No.3-10の素子は、キャリア防壁層33であるAlxGa(1-x)N層のAl組成xが0.90≦x≦1.00であること、第一電極層の接触面41でのAl存在率70面積%以上であることを満たしている。
また、得られたNo.3-1~No.3-10の各紫外線発光素子10に350mAの電流を流して光出力と駆動電圧を調べた。その結果、波長270nm近傍にピーク波長を持つ発光が得られた。光出力の相対値(No.1-2の値を1とした値)と駆動電圧の測定値をNo.3-1~No.3-10の各紫外線発光素子10の構成とともに、下記の表4に示す。
Figure 0007049823000004
表4の構成の欄では、本発明の一態様の好ましい態様である「Mg濃度1×1020cm-3以上8×1020cm-3未満」から外れる数値に二重下線を施してある。また、より良好な駆動電圧に相当する「7.4V以下」から外れる数値に二重下線を施してある。なお、表4の性能の欄では、良好な光出力値に相当する「0.62以上」および良好な駆動電圧に相当する「8V以下」から外れる数値はなかった。
表4の結果から分かるように、p型III族窒化物半導体層35であるp型GaN層のMg濃度が、1×1020cm-3以上7.6×1020cm-3以下であるNo.3-3~No.3-7の素子では、7.4V以下の駆動電圧で0.97以上の高い光出力が得られている。
<試験4:No.4-1~No.4-9>
実施形態に記載された構造の紫外線発光素子10であって、以下の点を除いて試験1と同じ構成を有する素子を作製した。キャリア防壁層33を膜厚10nmのAlN層とし、第一電極層の接触面41でのAl存在率を80面積%とした。また、n型III族窒化物半導体層2とn型III族窒化物半導体層31の合計膜厚を変化させて、格子緩和率を変化させた。つまり、No.4-1~No.4-9の素子は、キャリア防壁層33であるAlxGa(1-x)N層のAl組成xが0.90≦x≦1.00であることと、第一電極層の接触面41でのAl存在率70面積%以上を満たしている。
また、得られたNo.4-1~No.4-9の各紫外線発光素子10に350mAの電流を流して光出力と駆動電圧を調べた。その結果、波長270nm近傍にピーク波長を持つ発光が得られた。光出力の相対値(No.1-2の値を1とした値)と駆動電圧の測定値をNo.4-1~No.4-9の各紫外線発光素子10の構成とともに、下記の表5に示す。
Figure 0007049823000005
表5の結果から、n型III族窒化物半導体層による格子緩和率を15%以下とすることで、7.4V以下の駆動電圧で0.97以上の高い光出力が得られることが分かる。
1 基板
2 n型III族窒化物半導体層(第一のIII族窒化物半導体層)
3 窒化物半導体積層体
31 n型III族窒化物半導体層(第一のIII族窒化物半導体層)
32 III族窒化物半導体活性層
33 キャリア防壁層
34 組成傾斜層
35 p型III族窒化物半導体層(第二のIII族窒化物半導体層)
4 第一電極層
4a 第一電極層を構成する第一の層
4b 第一電極層を構成する第二の層
4c 第一電極層を構成する第三の層
41 第一電極層のn型窒化物半導体層に対する接触面
411 接触面の第一の領域
412 接触面の第二の領域
413 接触面の第三の領域
5 第二電極層
6 第一パッド電極
7 第二パッド電極
8 絶縁層
10 紫外線発光素子(窒化物半導体発光素子)

Claims (11)

  1. 基板と、
    前記基板上に形成され、アルミニウム(Al)およびガリウム(Ga)を少なくとも含む第一のIII族窒化物半導体層と、
    前記第一のIII族窒化物半導体層上の一部に形成された窒化物半導体積層体であって、アルミニウム(Al)およびガリウム(Ga)を少なくとも含むIII族窒化物半導体活性層と、AlxGa(1-x)N(0.90≦x≦1.00)層であるキャリア防壁層と、第二のIII族窒化物半導体層とを、前記基板側からこの順に含む窒化物半導体積層体と、
    前記第一のIII族窒化物半導体層上に形成された第一電極層と、
    前記第二のIII族窒化物半導体層上に形成された第二電極層と、
    を有し、
    前記第一電極層はアルミニウム単体とアルミニウムを含む合金とを含み、
    前記第一電極層の前記第一のIII族窒化物半導体層に対する接触面にアルミニウム単体およびアルミニウムを含む合金の両方が存在し、前記接触面におけるアルミニウム単体とアルミニウムを含む合金の合計存在率が70面積%以上である窒化物半導体発光素子。
  2. 前記キャリア防壁層の膜厚が5nm以上18nm以下である請求項1記載の窒化物半導体発光素子。
  3. 前記キャリア防壁層と前記第二のIII族窒化物半導体層との間に配置されたAlyGa(1-y)N(0.00≦y≦1.00)層であって、Al組成yが、前記キャリア防壁層に接する面から前記第二のIII族窒化物半導体層に接する面に向けて減少する組成傾斜層を、
    さらに有する請求項1または2記載の窒化物半導体発光素子。
  4. 前記組成傾斜層の膜厚が5nm以上110nm以下である請求項3記載の窒化物半導体発光素子。
  5. 前記第二のIII族窒化物半導体層は、不純物としてMgを1×1020cm-3以上8×1020cm-3未満の範囲で含むGaN層である請求項1~4のいずれか一項に記載の窒化物半導体発光素子。
  6. 前記第二のIII族窒化物半導体層の膜厚が5nm以上100nm以下である請求項1~5のいずれか一項に記載の窒化物半導体発光素子。
  7. 前記接触面におけるアルミニウム単体とアルミニウムを含む合金の合計存在率が90面積%以上である請求項1~6のいずれか一項に記載の窒化物半導体発光素子。
  8. 前記第一電極層は、アルミニウムとともに、Ni、Ti、Au、V、Pt、Ag、Mo、Ta、ZrおよびPdのうちの少なくとも一つを含む請求項1~7のいずれか一項に記載の窒化物半導体発光素子。
  9. 前記第一電極層は、アルミニウム単体とともにアルミニウムとニッケルとを含む合金を含み、
    記接面に、アルミニウム単体およびアルミニウムとニッケルとを含む合金の両方が存在し、前記接触面におけるアルミニウム単体およびアルミニウムとニッケルとを含む合金の合計存在率が70面積%以上である請求項1~8のいずれか一項に記載の窒化物半導体発光素子。
  10. 前記第一のIII族窒化物半導体層の格子緩和率が0%以上15%以下である請求項1~9のいずれか一項に記載の窒化物半導体素子。
  11. 前記基板がAlN基板である請求項1~10のいずれか一項に記載の窒化物半導体発光素子。
JP2017241823A 2017-11-09 2017-12-18 窒化物半導体発光素子 Active JP7049823B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017241823A JP7049823B2 (ja) 2017-12-18 2017-12-18 窒化物半導体発光素子
US16/184,237 US10937928B2 (en) 2017-11-09 2018-11-08 Nitride semiconductor element, nitride semiconductor light emitting element, ultraviolet light emitting element
CN201811330368.9A CN109768140B (zh) 2017-11-09 2018-11-09 氮化物半导体元件、氮化物半导体发光元件、紫外线发光元件
US17/133,707 US11637221B2 (en) 2017-11-09 2020-12-24 Nitride semiconductor element, nitride semiconductor light emitting element, ultraviolet light emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017241823A JP7049823B2 (ja) 2017-12-18 2017-12-18 窒化物半導体発光素子

Publications (2)

Publication Number Publication Date
JP2019110195A JP2019110195A (ja) 2019-07-04
JP7049823B2 true JP7049823B2 (ja) 2022-04-07

Family

ID=67180166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017241823A Active JP7049823B2 (ja) 2017-11-09 2017-12-18 窒化物半導体発光素子

Country Status (1)

Country Link
JP (1) JP7049823B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7015339B2 (ja) * 2020-03-24 2022-02-02 旭化成エレクトロニクス株式会社 紫外線発光素子

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006237539A (ja) 2005-02-28 2006-09-07 Toyoda Gosei Co Ltd Iii族窒化物系化合物半導体素子の製造方法
JP2006261609A (ja) 2005-03-18 2006-09-28 Mitsubishi Cable Ind Ltd GaN系発光ダイオードおよびそれを用いた発光装置
JP2007311764A (ja) 2006-04-17 2007-11-29 Nichia Chem Ind Ltd 半導体発光素子
JP2009200514A (ja) 2001-07-24 2009-09-03 Nichia Corp 半導体発光素子
JP2016066691A (ja) 2014-09-24 2016-04-28 日亜化学工業株式会社 半導体発光素子
WO2016125833A1 (ja) 2015-02-06 2016-08-11 株式会社トクヤマ 発光素子、及び発光素子の製造方法
WO2017150280A1 (ja) 2016-03-01 2017-09-08 スタンレー電気株式会社 縦型紫外発光ダイオード
WO2017175860A1 (ja) 2016-04-08 2017-10-12 スタンレー電気株式会社 半導体ウェハ

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009200514A (ja) 2001-07-24 2009-09-03 Nichia Corp 半導体発光素子
JP2006237539A (ja) 2005-02-28 2006-09-07 Toyoda Gosei Co Ltd Iii族窒化物系化合物半導体素子の製造方法
JP2006261609A (ja) 2005-03-18 2006-09-28 Mitsubishi Cable Ind Ltd GaN系発光ダイオードおよびそれを用いた発光装置
JP2007311764A (ja) 2006-04-17 2007-11-29 Nichia Chem Ind Ltd 半導体発光素子
JP2016066691A (ja) 2014-09-24 2016-04-28 日亜化学工業株式会社 半導体発光素子
WO2016125833A1 (ja) 2015-02-06 2016-08-11 株式会社トクヤマ 発光素子、及び発光素子の製造方法
WO2017150280A1 (ja) 2016-03-01 2017-09-08 スタンレー電気株式会社 縦型紫外発光ダイオード
WO2017175860A1 (ja) 2016-04-08 2017-10-12 スタンレー電気株式会社 半導体ウェハ

Also Published As

Publication number Publication date
JP2019110195A (ja) 2019-07-04

Similar Documents

Publication Publication Date Title
JP4681684B1 (ja) 窒化物半導体素子およびその製造方法
EP3425684A1 (en) Vertical-type ultraviolet light-emitting diode
JP7049823B2 (ja) 窒化物半導体発光素子
US11637221B2 (en) Nitride semiconductor element, nitride semiconductor light emitting element, ultraviolet light emitting element
KR20080077212A (ko) 산화물 반도체 발광 소자
JP2020167321A (ja) 窒化物半導体発光素子
JP2008115463A (ja) Iii族窒化物半導体の積層構造及びその製造方法と半導体発光素子とランプ
JP7141803B2 (ja) 窒化物半導体素子
JP2021082751A (ja) 窒化物半導体素子
JP2017139414A (ja) 紫外線発光素子及びそれを備えた装置
JP7470607B2 (ja) 窒化物半導体素子
JP2022051304A (ja) 紫外線発光素子
WO2023163230A1 (ja) レーザダイオード
JP7405554B2 (ja) 紫外線発光素子
JP2022041740A (ja) 紫外線発光素子
JP7388859B2 (ja) 窒化物半導体素子
JP2022041739A (ja) 紫外線発光素子
WO2024047917A1 (ja) レーザダイオード
JP2022041738A (ja) 紫外線発光素子
JP2022153164A (ja) 光デバイス
JP6998146B2 (ja) 紫外線発光素子及び紫外線照射モジュール
JP2022154809A (ja) 光デバイス
JP7195815B2 (ja) 紫外線発光素子
JP2023127193A (ja) 紫外線発光素子
JP7473333B2 (ja) 窒化物半導体素子、窒化物半導体発光素子

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211005

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20211206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220328

R150 Certificate of patent or registration of utility model

Ref document number: 7049823

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150