JP7049127B2 - キャパシタ及びその製造方法、並びに導電性高分子分散液 - Google Patents
キャパシタ及びその製造方法、並びに導電性高分子分散液 Download PDFInfo
- Publication number
- JP7049127B2 JP7049127B2 JP2018017621A JP2018017621A JP7049127B2 JP 7049127 B2 JP7049127 B2 JP 7049127B2 JP 2018017621 A JP2018017621 A JP 2018017621A JP 2018017621 A JP2018017621 A JP 2018017621A JP 7049127 B2 JP7049127 B2 JP 7049127B2
- Authority
- JP
- Japan
- Prior art keywords
- mass
- conductive polymer
- poly
- capacitor
- solid electrolyte
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Conductive Materials (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
Description
本発明は、等価直列抵抗が従来よりも小さく、耐熱性に優れたキャパシタ及びその製造方法、並びにそのキャパシタの製造に適した導電性高分子分散液を提供する。
[2] 下記式(1)で表される化合物が、1,3-ビス(2-ヒドロキシエトキシ)ベンゼン及び1,4-ビス(2-ヒドロキシエトキシ)ベンゼンのうち少なくとも一方である、[1]に記載の導電性高分子分散液。
[3] 窒素含有芳香族性環式化合物をさらに含有する、[1]又は[2]に記載の導電性高分子分散液。
[4] 前記窒素含有芳香族性環式化合物がイミダゾールである、[3]に記載の導電性高分子分散液。
[5] 下記式(1)で表される化合物とは異なる、ヒドロキシ基を2つ以上有する化合物を少なくとも1種類さらに含有する[1]から[4]のいずれか一項に記載の導電性高分子分散液。
[6] 前記π共役系導電性高分子がポリ(3,4-エチレンジオキシチオフェン)である、[1]から[5]のいずれか一項に記載の導電性高分子分散液。
[7] 前記ポリアニオンがポリスチレンスルホン酸である、[1]から[6]のいずれか一項に記載の導電性高分子分散液。
[8] 弁金属の多孔質体からなる陽極と、前記弁金属の酸化物からなる誘電体層と、前記誘電体層の、前記陽極と反対側に設けられた導電物質製の陰極と、前記誘電体層及び前記陰極の間に形成された固体電解質層とを具備し、前記固体電解質層が、π共役系導電性高分子及びポリアニオンを含む導電性複合体と、下記式(1)で表される化合物とを有する、キャパシタ。
[9] 下記式(1)で表される化合物が、1,3-ビス(2-ヒドロキシエトキシ)ベンゼン及び1,4-ビス(2-ヒドロキシエトキシ)ベンゼンのうち少なくとも一方である、[8]に記載のキャパシタ。
[10] 前記固体電解質層が、窒素含有芳香族性環式化合物をさらに含有する、[8]又は[9]に記載のキャパシタ。
[11] 前記窒素含有芳香族性環式化合物がイミダゾールである、[10]に記載のキャパシタ。
[12] 前記固体電解質層が、下記式(1)で表される化合物とは異なる、ヒドロキシ基を2つ以上有する化合物を少なくとも1種類さらに含有する[8]から[11]のいずれか一項に記載のキャパシタ。
[13] 前記π共役系導電性高分子がポリ(3,4-エチレンジオキシチオフェン)である、[8]から[12]のいずれか一項に記載のキャパシタ。
[14] 前記ポリアニオンがポリスチレンスルホン酸である、[8]から[13]のいずれか一項に記載のキャパシタ。
[15] 弁金属の多孔質体からなる陽極の表面を酸化して誘電体層を形成する工程と、前記誘電体層に対向する位置に陰極を配置する工程と、前記誘電体層の表面に[1]から[7]のいずれか一項に記載の導電性高分子分散液を塗布し、乾燥させて固体電解質層を形成する工程とを有する、キャパシタの製造方法。
本発明のキャパシタの製造方法によれば、耐熱性に優れ、等価直列抵抗が小さいキャパシタを容易に製造することができる。
本発明の導電性高分子分散液は、耐熱性に優れ、等価直列抵抗が小さいキャパシタの固体電解質層の形成に好適である。
本発明のキャパシタの一実施形態について説明する。図1に示すように、本実施形態のキャパシタ10は、弁金属の多孔質体からなる陽極11と、弁金属の酸化物からなる誘電体層12と、誘電体層12の表面に形成された固体電解質層14と、最も表側に設けられた陰極13とを具備する。陰極13は誘電体層12及び固体電解質層14を間に挟んで、陽極11と反対側に設けられている。
陽極11の具体例としては、アルミニウム箔をエッチングして表面積を増加させた後、その表面を酸化処理したものや、タンタル粒子やニオブ粒子の焼結体表面を酸化処理してペレットにしたものが挙げられる。このように処理されたものは表面に凹凸が形成された多孔質体となる。
固体電解質層14の厚さは、一定でもよいし、一定でなくてもよく、例えば、1μm以上100μm以下の厚さが挙げられる。
上記範囲であると、キャパシタの等価直列抵抗がより低下し易くなり、耐熱性もより向上し易くなるので好ましい。
固体電解質層14に含まれる化合物1の種類は、1種類でもよいし、2種類以上でもよい。
π共役系導電性高分子としては、主鎖がπ共役系で構成されている有機高分子であれば特に制限されず、例えば、ポリピロール系導電性高分子、ポリチオフェン系導電性高分子、ポリアセチレン系導電性高分子、ポリフェニレン系導電性高分子、ポリフェニレンビニレン系導電性高分子、ポリアニリン系導電性高分子、ポリアセン系導電性高分子、ポリチオフェンビニレン系導電性高分子、及びこれらの共重合体等が挙げられる。空気中での安定性の点からは、ポリピロール系導電性高分子、ポリチオフェン系導電性高分子及びポリアニリン系導電性高分子が好ましく、ポリチオフェン系導電性高分子がより好ましい。
以上で例示したπ共役系導電性高分子の中でも、導電性、耐熱性の点から、ポリ(3,4-エチレンジオキシチオフェン)が特に好ましい。
π共役系導電性高分子は1種を単独で使用してもよいし、2種以上を併用してもよい。
ポリアニオンのアニオン基は、スルホ基またはカルボキシ基であることが好ましい。
ポリアニオンの具体例としては、ポリスチレンスルホン酸、ポリビニルスルホン酸、ポリアリルスルホン酸、ポリアクリルスルホン酸、ポリメタクリルスルホン酸、ポリ(2-アクリルアミド-2-メチルプロパンスルホン酸)、ポリイソプレンスルホン酸、ポリスルホエチルメタクリレート、ポリ(4-スルホブチルメタクリレート)、ポリメタクリルオキシベンゼンスルホン酸等のスルホン酸基を有する高分子や、ポリビニルカルボン酸、ポリスチレンカルボン酸、ポリアリルカルボン酸、ポリアクリルカルボン酸、ポリメタクリルカルボン酸、ポリ(2-アクリルアミド-2-メチルプロパンカルボン酸)、ポリイソプレンカルボン酸、ポリアクリル酸等のカルボン酸基を有する高分子が挙げられる。これらの単独重合体であってもよいし、2種以上の共重合体であってもよい。
これらのポリアニオンのなかでも、導電性をより高くできることから、スルホン酸基を有する高分子が好ましく、ポリスチレンスルホン酸がより好ましい。
ポリアニオンは1種を単独で使用してもよいし、2種以上を併用してもよい。
ポリアニオンの質量平均分子量は2万以上100万以下であることが好ましく、10万以上50万以下であることがより好ましい。
ポリアニオンの質量平均分子量は、ゲルパーミエーションクロマトグラフィで測定し、標準物質をポリスチレンとして求めた値である。
アミン化合物は、アミノ基を有する化合物であり、アミノ基が、ポリアニオンのアニオン基と反応する。
アミン化合物としては、1級アミン、2級アミン、3級アミン、4級アンモニウム塩のいずれであってもよい。また、アミン化合物は1種を単独で使用してもよいし、2種以上を併用してもよい。
アミン化合物は、炭素数2以上12以下の直鎖、もしくは分岐鎖のアルキル基、炭素数6以上12以下のアリール基、炭素数7以上12以下のアラルキル基、炭素数2以上12以下のアルキレン基、炭素数6以上12以下のアリーレン基、炭素数7以上12以下のアラルキレン基、及び炭素数2以上12以下のオキシアルキレン基から選択される置換基を有していてもよい。
具体的な1級アミンとしては、例えば、アニリン、トルイジン、ベンジルアミン、エタノールアミン等が挙げられる。
具体的な2級アミンとしては、例えば、ジエタノールアミン、ジメチルアミン、ジエチルアミン、ジプロピルアミン、ジフェニルアミン、ジベンジルアミン、ジナフチルアミン等が挙げられる。
具体的な3級アミンとしては、例えば、トリエタノールアミン、トリメチルアミン、トリエチルアミン、トリプロピルアミン、トリブチルアミン、トリオクチルアミン、トリフェニルアミン、トリベンジルアミン、トリナフチルアミン等が挙げられる。
具体的な4級アンモニウム塩としては、例えば、テトラメチルアンモニウム塩、テトラエチルアンモニウム塩、テトラプロピルアンモニウム塩、テトラフェニルアンモニウム塩、テトラベンジルアンモニウム塩、テトラナフチルアンモニウム塩等が挙げられる。アンモニウムの対となる陰イオンとしてはヒドロキシドイオンが挙げられる。
これらアミン化合物のうち、3級アミンが好ましく、トリエチルアミン、トリプロピルアミンがより好ましい。
窒素含有芳香族性環式化合物(少なくとも1つの窒素原子が環構造を形成する芳香族性化合物)としては、例えば、ピロール、イミダゾール、2-メチルイミダゾール、2-プロピルイミダゾール、N-メチルイミダゾール、N-プロピルイミダゾール、N-ブチルイミダゾール、1-(2-ヒドロキシエチル)イミダゾール、2-エチル-4-メチルイミダゾール、1,2-ジメチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾール、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、1-アセチルイミダゾール、2-アミノベンズイミダゾール、2-アミノ-1-メチルベンズイミダゾール、2-ヒドロキシベンズイミダゾール、2-(2-ピリジル)ベンズイミダゾール、ピリジン等が挙げられる。
これら窒素含有芳香族性環式化合物のうち、イミダゾールがより好ましい。
上記範囲であると、キャパシタの等価直列抵抗がより低下し易くなり、耐熱性もより向上し易くなるので好ましい。
固体電解質層14に含まれる前記含窒素化合物の種類は、1種類でもよいし、2種類以上でもよい。
前記ポリオール化合物としては、例えば、エチレングリコール、ジエチレングリコール、プロピレングリコール、1,4-ブタンジオール、グリセリン、ペンタエリスリトール、トリメチロールプロパン、1,3,5-トリス(2-ヒドロキシエチル)イソシアヌレート、及びトリメチロールエタンから選択される1種以上が挙げられる。
前記ポリオール化合物は、後述する電解質の溶媒または導電性複合体の分散媒として含まれていてもよい。
上記範囲であると、キャパシタの等価直列抵抗がより低下し易くなり、耐熱性もより向上し易くなるので好ましい。
固体電解質層14に含まれる前記ポリオール化合物の種類は、1種類でもよいし、2種類以上でもよい。
前記ポリオール化合物として、ジエチレングリコール及び1,3,5-トリス(2-ヒドロキシエチル)イソシアヌレートを含む場合の両者の含有比は、上記の効果をより一層奏する観点から、ジエチレングリコール:1,3,5-トリス(2-ヒドロキシエチル)イソシアヌレート=10:10~10:1(質量比)が好ましい。
電解液用溶媒としては、例えば、エチレングリコール、ジエチレングリコール、プロピレングリコール、1,4-ブタンジオール、グリセリン等のアルコール系溶媒、γ-ブチロラクトン、γ-バレロラクトン、δ-バレロラクトン等のラクトン系溶媒、N-メチルホルムアミド、N,N-ジメチルホルムアミド、N-メチルアセトアミド、N-メチルピロリジノン等のアミド系溶媒、アセトニトリル、3-メトキシプロピオニトリル等のニトリル系溶媒、水等が挙げられる。
電解質としては、例えば、アジピン酸、グルタル酸、コハク酸、安息香酸、イソフタル酸、フタル酸、テレフタル酸、マレイン酸、トルイル酸、エナント酸、マロン酸、蟻酸、1,6-デカンジカルボン酸、5,6-デカンジカルボン酸等のデカンジカルボン酸、1,7-オクタンジカルボン酸等のオクタンジカルボン酸、アゼライン酸、セバシン酸等の有機酸;あるいは、硼酸、硼酸と多価アルコールより得られる硼酸の多価アルコール錯化合物;リン酸、炭酸、ケイ酸等の無機酸などをアニオン成分とし、1級アミン(メチルアミン、エチルアミン、プロピルアミン、ブチルアミン、エチレンジアミン等)、2級アミン(ジメチルアミン、ジエチルアミン、ジプロピルアミン、メチルエチルアミン、ジフェニルアミン等)、3級アミン(トリメチルアミン、トリエチルアミン、トリプロピルアミン、トリフェニルアミン、1,8-ジアザビシクロ(5,4,0)-ウンデセン-7等)、テトラアルキルアンモニウム(テトラメチルアンモニウム、テトラエチルアンモニウム、テトラプロピルアンモニウム、テトラブチルアンモニウム、メチルトリエチルアンモニウム、ジメチルジエチルアンモニウム等)などをカチオン成分とした電解質;等が挙げられる。
本発明のキャパシタの固体電解質層が前記式(1)で表される化合物を含有することによって、静電容量を低下させることなく、キャパシタの等価直列抵抗を従来よりも低減することができる。このメカニズムは未解明であるが、前記化合物が固体電解質層の導電性を向上させることによって、その等価直列抵抗が小さくなったと推測される。
また、本発明のキャパシタの固体電解質層が前記式(1)で表される化合物を含有することによって、キャパシタの耐熱性を向上させることができる。このメカニズムは未解明であるが、前記化合物が固体電解質層に含まれる導電性複合体の安定性を向上させることによって、その耐熱性が向上したと推測される。
本発明にかかるキャパシタは、弁金属の多孔質体からなる陽極の表面を酸化して誘電体層を形成する工程(誘電体形成工程)と、前記誘電体層に対向する位置に陰極を配置する工程(陰極形成工程)と、前記誘電体層の表面の少なくとも一部に、導電性高分子分散液を塗布し、乾燥させて、固体電解質層を形成する工程と、によって製造することができる。
前記導電性高分子分散液には、前記含窒素化合物、前記ポリオール化合物、後述する添加剤等を含有させてもよい。
誘電体層12を形成する方法としては、例えば、アジピン酸アンモニウム水溶液、ホウ酸アンモニウム水溶液、リン酸アンモニウム水溶液などの化成処理用電解液中にて、陽極11の表面を陽極酸化する方法が挙げられる。
陰極13を配置する方法としては、例えば、カーボンペースト、銀ペースト等の導電性ペーストを用いて陰極13を形成する方法、アルミニウム箔等の金属箔を誘電体層12に対向配置させる方法などが挙げられる。
有機溶剤としては、例えば、アルコール系溶媒、エーテル系溶媒、ケトン系溶媒、エステル系溶媒、芳香族炭化水素系溶媒等が挙げられる。これら有機溶剤は1種を単独で使用してもよいし、2種以上を併用してもよい。
アルコール系溶媒としては、例えば、メタノール、エタノール、イソプロパノール、n-ブタノール、t-ブタノール、アリルアルコール等が挙げられる。
エーテル系溶媒としては、例えば、ジエチルエーテル、ジメチルエーテル、エチレングリコール、プロピレングリコール、プロピレングリコールモノメチルエーテル等のプロピレングリコールモノアルキルエーテル、プロピレングリコールジアルキルエーテル等が挙げられる。
ケトン系溶媒としては、例えば、ジエチルケトン、メチルプロピルケトン、メチルブチルケトン、メチルイソプロピルケトン、メチルイソブチルケトン、メチルアミルケトン、ジイソプロピルケトン、メチルエチルケトン、アセトン、ジアセトンアルコール等が挙げられる。
エステル系溶媒としては、例えば、酢酸エチル、酢酸プロピル、酢酸ブチル等が挙げられる。
芳香族炭化水素系溶媒としては、例えば、ベンゼン、トルエン、キシレン、エチルベンゼン、プロピルベンゼン、イソプロピルベンゼン等が挙げられる。
界面活性剤としては、ノニオン系、アニオン系、カチオン系の界面活性剤が挙げられるが、保存安定性の面からノニオン系が好ましい。また、ポリビニルアルコール、ポリビニルピロリドンなどのポリマー系界面活性剤を添加してもよい。
無機導電剤としては、金属イオン類、導電性カーボン等が挙げられる。金属イオンは、金属塩を水に溶解させることにより生成させることができる。
消泡剤としては、シリコーン樹脂、ポリジメチルシロキサン、シリコーンオイル等が挙げられる。
カップリング剤としては、ビニル基、アミノ基、エポキシ基等を有するシランカップリング剤等が挙げられる。
酸化防止剤としては、フェノール系酸化防止剤、アミン系酸化防止剤、リン系酸化防止剤、硫黄系酸化防止剤、糖類等が挙げられる。
紫外線吸収剤としては、ベンゾトリアゾール系紫外線吸収剤、ベンゾフェノン系紫外線吸収剤、サリシレート系紫外線吸収剤、シアノアクリレート系紫外線吸収剤、オキサニリド系紫外線吸収剤、ヒンダードアミン系紫外線吸収剤、ベンゾエート系紫外線吸収剤等が挙げられる。
導電性高分子分散液を構成する分散媒が、水を50質量%以上含む水系分散媒である場合、前記式(1)の水に対する溶解性が低いことを考慮して、前記含有量は、0.1質量%以上3質量%以下が好ましく、0.5質量%以上2質量%以下がより好ましい。
得られた導電性高分子分散液に、前記式(1)で表される化合物を添加し、さらに必要に応じて前記含窒素化合物、前記2つ以上のヒドロキシ基を有する化合物、及び添加剤等を添加することができる。
導電性高分子分散液に含まれる各材料の分散性を向上させる目的で、塗布前に導電性高分子分散液にせん断力を加えながら分散させる公知の高分散処理を施すことが好ましい。
乾燥方法としては、例えば、室温乾燥、熱風乾燥、遠赤外線乾燥等が挙げられる。
本発明のキャパシタでは、誘電体層と陰極との間に、セパレータが設けられてもよい。
誘電体層と陰極との間にセパレータが設けられたキャパシタとしては、巻回型キャパシタが挙げられる。
セパレータとしては、例えば、セルロース、ポリビニルアルコール、ポリエステル、ポリエチレン、ポリスチレン、ポリプロピレン、ポリイミド、ポリアミド、ポリフッ化ビニリデンなどからなるシート(不織布を含む)、ガラス繊維の不織布などが挙げられる。
セパレータの密度は、0.1g/cm3以上1.0g/cm3以下の範囲であることが好ましく、0.2g/cm3以上0.8g/cm3以下の範囲であることがより好ましい。
セパレータを設ける場合には、セパレータにカーボンペーストあるいは銀ペーストを含浸させて陰極を形成する方法を適用することもできる。
1000mlのイオン交換水に206gのスチレンスルホン酸ナトリウムを溶解し、80℃で攪拌しながら、予め10mlの水に溶解した1.14gの過硫酸アンモニウム酸化剤溶液を20分間滴下し、この溶液を12時間攪拌した。
得られたスチレンスルホン酸ナトリウム含有溶液に10質量%に希釈した硫酸を1000ml添加し、限外ろ過法によりポリスチレンスルホン酸含有溶液の約1000mlの溶媒を除去した。残液に2000mlのイオン交換水を加え、限外ろ過法により約2000mlの溶媒を除去し、ポリスチレンスルホン酸を水洗した。この限外ろ過操作を3回繰り返した。
得られた溶液中の水を減圧除去して、無色の固形状のポリスチレンスルホン酸を得た。
3,4-エチレンジオキシチオフェン14.2gと、製造例1で得たポリスチレンスルホン酸36.7gとを2000mlのイオン交換水に溶かした溶液とを20℃で混合させた。
得られた混合溶液を20℃に保ち、掻き混ぜながら、200mlのイオン交換水に溶かした29.64gの過硫酸アンモニウムと8.0gの硫酸第二鉄の酸化触媒溶液とをゆっくり添加し、3時間攪拌して反応させた。
得られた反応液に2000mlのイオン交換水を加え、限外ろ過法により約2000ml溶液を除去した。この操作を3回繰り返した。
得られた溶液に200mlの10質量%に希釈した硫酸と2000mlのイオン交換水とを加え、限外ろ過法により約2000mlの溶媒を除去した。残液に2000mlのイオン交換水を加え、限外ろ過法により約2000mlの溶媒を除去し、ポリスチレンスルホン酸ドープポリ(3,4-エチレンジオキシチオフェン)(PEDOT-PSS)を水洗した。この操作を8回繰り返し、1.60質量%のポリスチレンスルホン酸ドープポリ(3,4-エチレンジオキシチオフェン)水分散液(PEDOT-PSS水分散液)を得た。
エッチドアルミニウム箔(陽極箔)に陽極リード端子を接続した後、アジピン酸アンモニウム10質量%水溶液中で130Vの電圧を印加し、化成(酸化処理)して、アルミニウム箔の両面に誘電体層を形成して陽極箔を得た。
次に、陽極箔の両面に、陰極リード端子を溶接させた対向アルミニウム陰極箔を、セルロース製のセパレータを介して積層し、これを円筒状に巻き取ってキャパシタ用素子を得た。
製造例2で得た1.60質量%のPEDOT-PSS水分散液100質量部に、市販の1,3-ビス(2-ヒドロキシエトキシ)ベンゼン(略称:1,3-BHEB)2.0質量部(導電性複合体100質量部に対して125質量部)を加え、室温で撹拌した後、高圧分散機を用い、100MPaの圧力で分散処理を施し、導電性高分子分散液を得た。
製造例3で得たキャパシタ用素子を導電性高分子分散液に減圧下で浸漬した後、125℃の熱風乾燥機により30分間乾燥する工程を2回繰り返して、誘電体層表面上に導電性複合体を含む固体電解質層を形成させた。
次いで、アルミニウム製のケースに、固体電解質層を形成させたキャパシタ用素子を装填し、封口ゴムで封止して、キャパシタを得た。
1,3-ビス(2-ヒドロキシエトキシ)ベンゼンを添加しなかったほかは、実施例1と同様にしてキャパシタを得た。
[静電容量・等価直列抵抗]
実施例1及び比較例1のキャパシタについて、LCRメータZM2376((株)エヌエフ回路設計ブロック製)を用いて、120Hzでの静電容量(C0)、及び100kHzでの等価直列抵抗(ESR0)を測定した。その測定結果を表1に示す。
[耐熱性試験]
実施例1及び比較例1のキャパシタを135℃の熱風乾燥機中に静置し、500時間経過後に取り出し、室温で30分間冷却した。冷却後のキャパシタについて、LCRメータZM2376((株)エヌエフ回路設計ブロック製)を用いて、120Hzでの静電容量(C1)、及び100kHzでの等価直列抵抗(ESR1)を測定した。その測定結果を表1に示す。
また、耐熱試験前後の変化量として、△C=C1/C0、△ESR=ESR1/ESR0を求めた。△C及び△ESRについても表1に示す。
前記式(1)で表される化合物を含有しない固体電解質層を備えた比較例1のキャパシタは、実施例と同等の静電容量を有するが、等価直列抵抗が実施例と比べて大きかった。また、耐熱性試験後の等価直列抵抗の値も大きかった。
製造例2で得た1.60質量%のPEDOT-PSS水分散液100質量部に、1,3-ビス(2-ヒドロキシエトキシ)ベンゼンの2.0質量部、イミダゾールの0.3質量部(導電性複合体100質量部に対して18.8質量部)を加え、室温で撹拌した後、高圧分散機を用い、100MPaの圧力で分散処理を施し、導電性高分子分散液を得た。
製造例3で得たキャパシタ用素子を導電性高分子分散液に減圧下で浸漬した後、125℃の熱風乾燥機により30分間乾燥する工程を2回繰り返して、誘電体層表面上に導電性複合体を含む固体電解質層を形成させた。
次いで、アルミニウム製のケースに、固体電解質層を形成させたキャパシタ用素子を装填し、封口ゴムで封止して、キャパシタを得た。
1,3-ビス(2-ヒドロキシエトキシ)ベンゼンの添加量を1.0質量部に変更したほかは実施例2と同様にキャパシタを得た。
1,3-ビス(2-ヒドロキシエトキシ)ベンゼンを市販の1,4-ビス(2-ヒドロキシエトキシ)ベンゼン(略称:1,4-BHEB)に変更し、その添加量を1.0質量部に変更したほかは実施例2と同様にキャパシタを得た。
イミダゾールの添加量を0.4質量部にしたほかは実施例2と同様にキャパシタを得た。
1,3-ビス(2-ヒドロキシエトキシ)ベンゼンを添加しなかったほかは、実施例2と同様にしてキャパシタを得た。
[静電容量・等価直列抵抗]
実施例2~5及び比較例2のキャパシタについて、LCRメータZM2376((株)エヌエフ回路設計ブロック製)を用いて、120Hzでの静電容量(C0)、及び100kHzでの等価直列抵抗(ESR0)を測定した。その測定結果を表2に示す。
[耐熱性試験]
実施例2~5及び比較例2のキャパシタを135℃の熱風乾燥機中に静置し、500時間経過後に取り出し、室温で30分間冷却した。冷却後のキャパシタについて、LCRメータZM2376((株)エヌエフ回路設計ブロック製)を用いて、120Hzでの静電容量(C1)、及び100kHzでの等価直列抵抗(ESR1)を測定した。その測定結果を表2に示す。
また、耐熱試験前後の変化量として、△C=C1/C0、△ESR=ESR1/ESR0を求めた。△C及び△ESRについても表2に示す。
前記式(1)で表される化合物を含有しない固体電解質層を備えた比較例2のキャパシタは、実施例と同等の静電容量を有するが、等価直列抵抗が実施例と比べて大きかった。さらに耐熱性試験後の等価直列抵抗の変化量も大きかった。
製造例2で得た1.60質量%のPEDOT-PSS水分散液100質量部に、1,3-ビス(2-ヒドロキシエトキシ)ベンゼンの1.0質量部(導電性複合体100質量部に対して62.5質量部)、イミダゾールの0.3質量部(導電性複合体100質量部に対して18.8質量部)ジエチレングリコールの5.0質量部を加え、室温で撹拌した後、高圧分散機を用い、100MPaの圧力で分散処理を施し、導電性高分子分散液を得た。
製造例3で得たキャパシタ用素子を導電性高分子分散液に減圧下で浸漬した後、125℃の熱風乾燥機により30分間乾燥する工程を2回繰り返して、誘電体層表面上に導電性複合体を含む固体電解質層を形成させた。
次いで、アルミニウム製のケースに、固体電解質層を形成させたキャパシタ用素子を装填し、封口ゴムで封止して、キャパシタを得た。
1,3-ビス(2-ヒドロキシエトキシ)ベンゼンを1,4-ビス(2-ヒドロキシエトキシ)ベンゼンに変更したほかは実施例6と同様にキャパシタを得た。
さらに1,3,5-トリス(2-ヒドロキシエチル)イソシアヌレートを3.0質量部添加したほかは実施例6と同様にキャパシタを得た。
さらに1,3,5-トリス(2-ヒドロキシエチル)イソシアヌレートを3.0質量部添加し、1,3-ビス(2-ヒドロキシエトキシ)ベンゼンを1,4-ビス(2-ヒドロキシエトキシ)ベンゼンに変更したほかは実施例6と同様にキャパシタを得た。
1,3-ビス(2-ヒドロキシエトキシ)ベンゼンを添加しなかったほかは、実施例6と同様にしてキャパシタを得た。
[静電容量・等価直列抵抗]
実施例6~9及び比較例3のキャパシタについて、LCRメータZM2376((株)エヌエフ回路設計ブロック製)を用いて、120Hzでの静電容量(C0)、及び100kHzでの等価直列抵抗(ESR0)を測定した。その測定結果を表3に示す。
[耐熱性試験]
実施例6~9及び比較例3のキャパシタを135℃の熱風乾燥機中に静置し、500時間経過後に取り出し、室温で30分間冷却した。冷却後のキャパシタについて、LCRメータZM2376((株)エヌエフ回路設計ブロック製)を用いて、120Hzでの静電容量(C1)、及び100kHzでの等価直列抵抗(ESR1)を測定した。その測定結果を表3に示す。
また、耐熱試験前後の変化量として、△C=C1/C0、△ESR=ESR1/ESR0を求めた。△C及び△ESRについても表3に示す。
前記式(1)で表される化合物を含有しない固体電解質層を備えた比較例3のキャパシタは、実施例と同等の静電容量を有するが、等価直列抵抗が実施例と比べて大きかった。さらに耐熱性試験後の等価直列抵抗の変化量も大きかった。
11 陽極
12 誘電体層
13 陰極
14 固体電解質層
Claims (9)
- ポリ(3,4-エチレンジオキシチオフェン)及びポリスチレンスルホン酸を含む導電性複合体と、
1,3-ビス(2-ヒドロキシエトキシ)ベンゼン、又は1,4-ビス(2-ヒドロキシエトキシ)ベンゼンと、分散媒とを含有する、導電性高分子分散液。 - 窒素含有芳香族性環式化合物をさらに含有する、請求項1に記載の導電性高分子分散液。
- 前記窒素含有芳香族性環式化合物がイミダゾールである、請求項2に記載の導電性高分子分散液。
- 1,3-ビス(2-ヒドロキシエトキシ)ベンゼン、及び1,4-ビス(2-ヒドロキシエトキシ)ベンゼンとは異なる、ヒドロキシ基を2つ以上有する化合物を少なくとも1種類さらに含有する請求項1から3のいずれか一項に記載の導電性高分子分散液。
- 弁金属の多孔質体からなる陽極と、前記弁金属の酸化物からなる誘電体層と、前記誘電体層の、前記陽極と反対側に設けられた導電物質製の陰極と、前記誘電体層及び前記陰極の間に形成された固体電解質層とを具備し、
前記固体電解質層が、ポリ(3,4-エチレンジオキシチオフェン)及びポリスチレンスルホン酸を含む導電性複合体と、
1,3-ビス(2-ヒドロキシエトキシ)ベンゼン、又は1,4-ビス(2-ヒドロキシエトキシ)ベンゼンとを有する、キャパシタ。 - 前記固体電解質層が、窒素含有芳香族性環式化合物をさらに含有する、請求項5に記載のキャパシタ。
- 前記窒素含有芳香族性環式化合物がイミダゾールである、請求項6に記載のキャパシタ。
- 前記固体電解質層が、1,3-ビス(2-ヒドロキシエトキシ)ベンゼン、及び1,4-ビス(2-ヒドロキシエトキシ)ベンゼンとは異なる、ヒドロキシ基を2つ以上有する化合物を少なくとも1種類さらに含有する請求項5から7のいずれか一項に記載のキャパシタ。
- 弁金属の多孔質体からなる陽極の表面を酸化して誘電体層を形成する工程と、
前記誘電体層に対向する位置に陰極を配置する工程と、
前記誘電体層の表面に請求項1から4のいずれか一項に記載の導電性高分子分散液を塗布し、乾燥させて固体電解質層を形成する工程とを有する、キャパシタの製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018017621A JP7049127B2 (ja) | 2018-02-02 | 2018-02-02 | キャパシタ及びその製造方法、並びに導電性高分子分散液 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018017621A JP7049127B2 (ja) | 2018-02-02 | 2018-02-02 | キャパシタ及びその製造方法、並びに導電性高分子分散液 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019134143A JP2019134143A (ja) | 2019-08-08 |
JP7049127B2 true JP7049127B2 (ja) | 2022-04-06 |
Family
ID=67546449
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018017621A Active JP7049127B2 (ja) | 2018-02-02 | 2018-02-02 | キャパシタ及びその製造方法、並びに導電性高分子分散液 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7049127B2 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7241658B2 (ja) * | 2019-09-27 | 2023-03-17 | 信越ポリマー株式会社 | キャパシタ及びその製造方法、並びに導電性高分子分散液 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011082313A (ja) | 2009-10-06 | 2011-04-21 | Shin Etsu Polymer Co Ltd | 固体電解キャパシタ及びその製造方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3376890B2 (ja) * | 1997-10-14 | 2003-02-10 | 松下電器産業株式会社 | 生ごみ処理装置 |
-
2018
- 2018-02-02 JP JP2018017621A patent/JP7049127B2/ja active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011082313A (ja) | 2009-10-06 | 2011-04-21 | Shin Etsu Polymer Co Ltd | 固体電解キャパシタ及びその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
JP2019134143A (ja) | 2019-08-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5891160B2 (ja) | キャパシタ及びその製造方法 | |
US20210142952A1 (en) | Solid electrolytic capacitor | |
JP2017216317A (ja) | キャパシタ用導電性高分子分散液、キャパシタ及びその製造方法 | |
JP7049127B2 (ja) | キャパシタ及びその製造方法、並びに導電性高分子分散液 | |
JP7049126B2 (ja) | キャパシタ及びその製造方法、並びに導電性高分子分散液 | |
JP6655474B2 (ja) | キャパシタ及びその製造方法 | |
JP7071834B2 (ja) | キャパシタ及びその製造方法、並びに導電性高分子分散液 | |
JP6948227B2 (ja) | キャパシタ及びその製造方法 | |
JP6590642B2 (ja) | 導電性高分子分散液、キャパシタ及びその製造方法 | |
JP7042208B2 (ja) | キャパシタ及びその製造方法、並びに導電性高分子分散液 | |
JP6900329B2 (ja) | キャパシタ及びその製造方法、並びに導電性高分子分散液 | |
JP7146620B2 (ja) | キャパシタ及びその製造方法、並びに導電性高分子分散液 | |
JP7241658B2 (ja) | キャパシタ及びその製造方法、並びに導電性高分子分散液 | |
JP6820727B2 (ja) | キャパシタ及びその製造方法 | |
JP7558130B2 (ja) | キャパシタ及びその製造方法 | |
JP6722530B2 (ja) | キャパシタの製造方法 | |
JP6614927B2 (ja) | キャパシタ及びその製造方法 | |
JP7438079B2 (ja) | キャパシタ及びその製造方法 | |
JP6951159B2 (ja) | キャパシタ及びその製造方法 | |
JP2019192752A (ja) | 導電性高分子組成物、導電性高分子膜及び電解コンデンサ | |
JP2023069382A (ja) | 導電性高分子分散液、キャパシタ及びその製造方法 | |
JP7573380B2 (ja) | キャパシタ用陽極の製造方法、及びキャパシタの製造方法 | |
JP2023077583A (ja) | キャパシタ及びその製造方法 | |
JP2024090346A (ja) | 導電性高分子分散液、導電性高分子分散液の製造方法、及びキャパシタ | |
JP2024117375A (ja) | 導電性高分子分散液及びその製造方法、並びにキャパシタ及びその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20201222 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20211116 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220104 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220308 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220325 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7049127 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |