JP7038909B2 - 電磁界強度推定装置および電磁界強度推定方法 - Google Patents

電磁界強度推定装置および電磁界強度推定方法 Download PDF

Info

Publication number
JP7038909B2
JP7038909B2 JP2021521701A JP2021521701A JP7038909B2 JP 7038909 B2 JP7038909 B2 JP 7038909B2 JP 2021521701 A JP2021521701 A JP 2021521701A JP 2021521701 A JP2021521701 A JP 2021521701A JP 7038909 B2 JP7038909 B2 JP 7038909B2
Authority
JP
Japan
Prior art keywords
field strength
electromagnetic field
current
measurement
cable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021521701A
Other languages
English (en)
Other versions
JPWO2020240787A1 (ja
Inventor
祐太朗 北川
康博 白木
佑介 山梶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2020240787A1 publication Critical patent/JPWO2020240787A1/ja
Application granted granted Critical
Publication of JP7038909B2 publication Critical patent/JP7038909B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/08Measuring electromagnetic field characteristics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Locating Faults (AREA)
  • Measuring Magnetic Variables (AREA)

Description

本願は、電磁界強度推定装置および電磁界強度推定方法に関するものである。
電子機器に接続される電源配線および信号配線からは、電子機器の動作状態に応じた電磁波が放射され、放射ノイズとして自他含む機器動作に影響を及ぼし、ときに誤動作を引き起こす。
従来から、放射ノイズに対する評価あるいは対策の為に、被測定対象の近傍の物理量を取得し、それに基づき遠方の電磁界強度を演算する手法が提案されている。
特許文献1に記載される従来装置では、被測定対象から送信される無線信号を近傍界で測定し、遠方界での電界強度を演算する。この場合、無変調波の参照信号を被測定対象に出力させ、参照信号の周波数と等しい周波数の無線信号を被測定対象から送信させ、該無線信号を測定信号として測定する。そして、複数の測定位置毎に、測定信号と参照信号との位相差、および測定信号の振幅を算出する。
特許文献2に記載される従来装置では、複数の電子機器を接続したケーブルに流れる高周波電流の位相分布を測定する。この場合、2つのセンサを備え、1つのセンサと他のセンサとの出力である電圧の波形から2点間の電流の位相を求める。
特開2018-9840号公報 特開2000-9775号公報
特許文献1では、位相情報を取得するために、基準となる参照信号を発生させる機器が必要であった。また特許文献2では、2つのセンサの内の1つをトリガ信号取得のための機器として電流の位相情報を取得していた。
このため、特許文献1、2に記載される従来装置では、位相情報を取得するために測定系の構成が複雑になるという問題点があった。また、こうした測定系の複雑さは、配線からのノイズ混入あるいは測定位置の誤差による誤差伝搬などにより、電磁界強度を推定する際の誤差を増大するものであった。
本願は、上記のような課題を解決するための技術を開示するものであり、別途、機器を要すること無く電流の位相情報を取得でき、小型で簡易な装置構成で電磁界強度を演算できる電磁界強度推定装置および電磁界強度推定方法を提供することを目的とする。
本願に開示される電磁界強度推定装置は、被測定ケーブルに流れる電流から電流振幅を取得する電流検出部と、前記電流検出部を前記被測定ケーブルに沿って複数の測定位置に移動させる移動装置と、前記測定位置毎に、前記電流振幅の周波数特性を測定する周波数特性測定装置と、前記測定位置毎の前記電流振幅の周波数特性を格納する第1格納部と、前記測定位置毎の位置情報を格納する第2格納部と、前記複数の測定位置における前記電流振幅の周波数特性および前記位置情報に基づいて、前記測定位置毎の電流位相の周波数特性を演算する電流位相演算部と、を備えて電磁界強度を演算する。
また本願に開示される電磁界強度推定方法は、被測定ケーブルに流れる電流から電流振幅を取得する電流検出部を、前記被測定ケーブルに沿って複数の測定位置に移動させて測定情報を収集し、電磁界強度を演算する。そして、前記電磁界強度推定方法は、前記測定位置毎に、前記測定情報となる前記電流振幅の周波数特性を測定して格納する第1ステップと、前記第1ステップが前記複数の測定位置について終了した後、前記複数の測定位置における位置情報および前記電流振幅の周波数特性に基づいて、前記測定位置毎の電流位相の周波数特性を演算する第2ステップと、前記複数の測定位置における前記位置情報と前記電流振幅の周波数特性と前記電流位相の周波数特性とに基づいて前記電磁界強度を演算する第3ステップと、を備える。
本願に開示される電磁界強度推定装置および電磁界強度推定方法によれば、別途、機器を要すること無く電流の位相情報を取得でき、小型で簡易な装置構成で電磁界強度を演算できる。
実施の形態1による電磁界強度推定装置の概略構成を示す図である。 実施の形態1による電磁界強度推定装置による測定動作を説明する図である。 実施の形態1による電磁界強度推定装置の動作を説明するフローチャートである。 実施の形態1による電流振幅の周波数特性を示す図である。 実施の形態1による電流位相の周波数特性を示す図である。 実施の形態1による推定結果である電磁界強度を示す図である。 実施の形態2による電磁界強度推定装置の概略構成を示す図である。
実施の形態1.
図1は、実施の形態1による電磁界強度推定装置の概略構成を示す図である。
図1に示すように、被測定ケーブルである測定対象のケーブル10は、装置Aと装置Bとに接続され、装置Aと装置Bとの間で直線状に配置される。電磁界強度推定装置100は、測定システム20と情報処理装置30とから構成され、ケーブル10に流れる高周波電流を測定して、ケーブル10からの放射ノイズ強度である電磁界強度を演算する。
測定システム20は、ケーブル10に流れる電流の振幅値である電流振幅を取得する電流検出部1と、電流検出部1を移動させる移動装置2と、位置検出部6と、周波数特性測定装置8とを備える。
移動装置2は、電流検出部1を支持する支持機構3と、ケーブル10に平行に敷設された軌道4と、コントローラ5とを備えて、電流検出部1をケーブル10に沿って複数の測定位置に移動させる。位置検出部6は、支持機構3に取り付けられた位置標識7を用いて測定位置の位置情報を検出する。周波数特性測定装置8は、電流検出部1からの信号が入力され、測定情報である電流振幅の周波数特性を測定する。
また情報処理装置30は、第1格納部としての電流振幅格納部31と、第2格納部としての測定位置格納部32と、電流位相演算部33と、電磁界強度演算部34とを備える。
電流振幅格納部31は、コネクタ35を介して周波数特性測定装置8に接続され、周波数特性測定装置8が測定する電流振幅の周波数特性を格納する。測定位置格納部32は、コネクタ36を介して位置検出部6と接続され、位置検出部6が検出する測定位置の位置情報を格納する。電流位相演算部33は、複数の測定位置における電流振幅の周波数特性および位置情報に基づいて、各測定位置での電流位相の周波数特性を演算する。電磁界強度演算部34は、複数の測定位置における電流振幅の周波数特性、位置情報および電流位相の周波数特性に基づいて電磁界強度を演算する。
なお、情報処理装置30は、演算処理回路とメモリ回路とを備えて構成され、電流振幅格納部31および測定位置格納部32にはメモリ回路が用いられ、電流位相演算部33および電磁界強度演算部34には演算処理回路が用いられる。
測定システム20の各要素について、以下に詳述する。
電流検出部1は、ケーブル10を径方向に囲む環状磁性体から成り、ケーブル10に流れる高周波電流の振幅値(電流振幅)を検出する目的で設置される。具体的には、ケーブル10に流れる電流量に応じて発生する磁界によって電流検出部1に誘起される電圧信号を、周波数特性測定装置8に伝送する。
移動装置2では、電流検出部1を支持する支持機構3が、固定された軌道4に接続され、コントローラ5により、支持機構3が軌道4に沿って走査される。これにより、電流検出部1は、ケーブル10に沿って複数の測定位置に移動される。
支持機構3と電流検出部1とは一定の位置関係で保持され、支持機構3は、各測定位置での測定中に、電流検出部1の位置を一定に保つ。支持機構3は、図示しないモータあるいはボールねじなどの送り機構を有し、軌道4に沿って走査される。また、支持機構3の材質は、金属または樹脂等が用いられる。
軌道4は、支持機構3および電流検出部1を搭載した際に歪まないことが求められ、剛性を有する材質、例えば、ステンレス等の金属から成る。そして、ケーブル10に平行に敷設された固定の軌道4に沿って支持機構3が走査される。
コントローラ5は、外部制御信号を受けて、支持機構3を軌道4に沿って設定された間隔で各測定位置に移動させ、各測定位置での測定の間、支持機構3を移動させず停止させる。
コントローラ5は、外部電源からの電力供給により動作しても良く、また、駆動電源としてバッテリを備えても良い。バッテリから電力供給される場合は、外乱ノイズを低減できる利点がある。
また、コントローラ5は、金属筐体で構成することで内部部品からの不要放射の影響を低減することができる。なお、内部部品からの不要放射の影響が少ない場合には、樹脂筐体で構成しても良い。
位置検出部6は、支持機構3に取り付けられた位置標識7を認識し、電流検出部1の位置を検出する。
位置検出部6は、位置標識7に向けて可視または赤外波長の光線を射出する送信部と、位置標識7によって反射された光線を受信する受信部とを有する。送信部は、指向性を有するレーザ光源とこのレーザ光源に電力供給する電源とから構成される。受信部は、可視または赤外波長で感度のある撮像素子から構成され、例えば、CCD(Charged Coupled Device)あるいはCMOS(Complementary Metal-Oxide-Simiconductor)が用いられる。
具体的には、位置検出部6は、レーザを射出して、レーザが位置標識7で反射されて受信されるまでの時間を計測し距離を求めるか、あるいは、射出レーザと受信されたレーザとの位相差から距離を求めることができる。この位置検出は、電流検出部1および支持機構3が各測定位置で停止している間に実施され、電流検出部1の位置を検出する事により、各測定位置の位置情報を検出する。
位置標識7は、電流検出部1および支持機構3がケーブル10の、長手方向のどの位置にあるかを位置検出部6によって検出するための標識としての機能を果たす。位置標識7は、可視または赤外波長の光線に対して反射強度を有する材質、例えば、アルミニウムあるいは銅などが用いられる。
なお、位置標識7は、支持機構3に設けられるものを示したが、電流検出部1に設けても良い。
周波数特性測定装置8は、電流検出部1と同軸ケーブルで接続され、ケーブル10に流れる電流における電流振幅の周波数特性を測定する。即ち、設定された周波数範囲である最小周波数fmin~最大周波数fmaxにおいて電流振幅を計測して、電流振幅の周波数特性を測定する。周波数特性測定装置8は、例えば、スペクトルアナライザあるいはEMI(Electromagnetic Interference)レシーバ等の測定機器が用いられる。この電流振幅の周波数特性の測定は、電流検出部1および支持機構3が各測定位置で停止している間に実施される。
また、測定対象であるケーブル10は、銅線および絶縁皮膜から構成され、一端は装置Aに、他端は装置Bに、コネクタあるいは半田付け等により接続される。即ち、ケーブル10は、装置Aと装置Bとを接続して、装置Aと装置Bとの間で電力あるいは信号を伝送する。
次に、情報処理装置30の各要素について詳述する。
電流振幅格納部31は、コネクタ35を介して周波数特性測定装置8と配線で接続され、周波数特性測定装置8が測定する電流振幅の周波数特性を格納する。
測定位置格納部32は、コネクタ36を介して位置検出部6と配線で接続され、位置検出部6が検出する測定位置の位置情報を格納する。
電流位相演算部33は、電流振幅格納部31および測定位置格納部32とそれぞれ配線で接続され、各測定位置での電流振幅の周波数特性を電流振幅格納部31から取得すると共に、各測定位置の位置情報を測定位置格納部32から取得する。そして、電流位相演算部33は、各測定位置での電流位相を演算により推定する。
電磁界強度演算部34は、電流振幅格納部31、測定位置格納部32および電流位相演算部33とそれぞれ配線で接続され、各測定位置における、電流振幅の周波数特性、位置情報および演算された電流位相を取得する。そして、電磁界強度演算部34は、これらの取得情報に基づいて、設定された位置における電磁界強度を演算により推定する。
次に、この実施の形態1による電磁界強度推定装置の動作について説明する。図2は、測定動作を説明する図である。この場合、各測定位置にて実施される、周波数特性測定装置8による電流振幅の周波数特性の測定と、位置検出部6による位置情報の検出(位置測定)との双方を、測定動作と称す。
測定動作は、ケーブル10に沿って、第1区間~第N区間のN区間に分割して行われる。 電流検出部1は、各区間(第k区間:k=1~N)の測定位置に停止され、各測定位置にて測定動作が実施される。整数Nは測定点数である。電流検出部1が第k区間に停止中に、周波数特性測定装置8は、電流検出部1を介して、各区間における電流振幅の周波数特性Ik(f)を取得し、位置検出部6は、位置標識7を用いて位置情報Xkを取得する。
なお、位置情報の値は、ケーブル10の装置A側の端部を座標原点(X=0)と定義し、ケーブル10の装置B側の端部を終端座標(X=L)と定義する。但し、Lはケーブル10の長さである。
また、分割したケーブル10の各区間(第k区間:k=1~N)の長さはΔXkで与えられる。すなわち、N区間にわたるΔXkの総和はケーブル10の長さLに等しい。
ところで、電磁界強度を精度良く演算するためには、電流位相を精度よく推定する必要があり、そのためには最小波長λminよりも細かい間隔で電流振幅の周波数特性と位置情報とを取得するのが望ましい。
解析の最大周波数fmaxに対応する最小波長λminは、真空中の光速cを用いて、λmin=c/fmax、と表される。例えば、300MHzまで解析する場合には、λmin=1mとなる。ケーブル10のケーブル長L=1mの場合、例えば、最小波長λminを10分割した10cm間隔で測定する。この場合、測定点数Nは10で、ケーブル10は、1区間10cmの10個の区間に分割して測定される。
なお、1区間を最小波長の1/10に設定するのに限るものでは無く、必要な電磁界強度の推定精度と測定時間を加味して適切な分割数になるように決めればよい。
また、ケーブル10が有する比誘電率εrによる波長短縮効果を考慮するには、最小波長λminの替わりに、λmin/(√εr)を用いる。
図3は、電磁界強度推定装置の全体の動作を説明するフローチャートである。
まず、移動装置2が、支持機構3に支持された電流検出部1を第k区間の測定位置に移動させる。初回はk=1で、電流検出部1は、第1区間の測定位置に移動される(ステップST1)。
次に、位置検出部6は、位置標識7を用いて位置情報Xkを取得し、取得された位置情報Xkは測定位置格納部32に伝送されて格納される(ステップST2)。
次に、周波数特性測定装置8は、周波数範囲(fmin~fmax)で周波数を走査しながら電流振幅を計測して、電流振幅の周波数特性Ik(f)を取得する。第1区間における電流振幅の周波数特性の例を、図4に示す。そして、取得された電流振幅の周波数特性Ik(f)は、電流振幅格納部31に伝送されて格納される(ステップST3)。
次に、電流振幅の周波数特性Ik(f)と位置情報Xkとが、N区間分、取得されたか判断し、即ち、k=Nであるか否かを判断し(ステップST4)、NOであれば、kに1を加算してステップST1に戻る。即ち、k=1~Nにおいて、ステップST1からステップST4の動作をN回繰り返す。なお、ステップST2とステップST3との動作順序は逆でも良い。
ステップST4において、YESの場合、即ち、k=Nであって、N区間分の電流振幅の周波数特性Ik(f)と位置情報Xkとが取得されると、電流位相演算部33は、N個の電流振幅の周波数特性Ik(f)と、N個の位置情報Xkとに基づいて、各測定位置での電流位相、即ちN個の電流位相の周波数特性Φk(f)を演算する。
電流位相の周波数特性Φk(f)の演算方法を、以下に示す。
伝送線路理論によると、ケーブル10上の測定位置Xkにおける複素電流I(Xk)は、以下の式(1)で表される。なお、位置情報Xkとなる測定位置を、測定位置Xkと称す。
Figure 0007038909000001
但し、γは伝搬定数、ΓBは装置Bにおける反射係数であり、以下の複素数で表現できる。
γ=s+jt
ΓB=u+jv
なお、s、t、u、vは実数値、jは虚数単位(=√(-1))であり、実数値s、t、u、vは、N個の電流振幅の周波数特性Ik(f)と、N個の位置情報Xkとに基づいて、決定することができる。決定した実数値s、t、u、vを式(1)に代入することで、測定位置Xkにおける複素電流I(Xk)が求められる。
そして、複素電流I(Xk)を用いて、測定位置Xkにおける電流位相の周波数特性Φk(f)を以下の式(2)で求めることができる。
Figure 0007038909000002
但し、Re[I(Xk)/I(L)]は複素数同士の商(I(Xk)/I(L))の実部を表し、Imは複素数同士の商(I(Xk)/I(L))の虚部を表す。
これにより、測定位置Xkにおける電流位相の周波数特性Φk(f)が求められる。そして、N個の測定位置での、それぞれの電流位相、即ちN個の電流位相の周波数特性Φk(f)が演算される(ステップST5)。第1区間における電流位相の周波数特性の例を、図5に示す。
次に、電磁界強度演算部34は、N個の電流振幅の周波数特性Ik(f)と、N個の位置情報Xkと、N個の電流位相の周波数特性Φk(f)とに基づいて、設定位置(X0、Y0、Z0)における電磁界強度を演算する。設定位置(X0、Y0、Z0)は、電磁界強度を観測する位置に設定される。
設定位置(X0、Y0、Z0)での電磁界強度は、ケーブル10に沿ったN個の測定位置での電流素片それぞれを放射源とした放射の重ね合わせとして演算できる。例えば、Clayton R. Paul著「Introduction to Electromagnetic Compatibility」5章によれば、以下の式(3)によって電磁界強度を演算できる。
Figure 0007038909000003
但し、Gkは、以下の式(4)で表される。
ここで、r、θ、φは球面座標における各座標を表わす。rは、ケーブル10の第k区間から設定位置(X0、Y0、Z0)に向かう放射方向の距離である。角度θは、該放射方向とz軸との成す角度である。角度φは、該放射方向のxy平面内への正射影とx軸との成す角度である。Ep(p=r、θ、φ)は上記座標の電界成分を表し、Hp(p=r、θ、φ)は、上記座標の磁界成分を表す。
また、ηは真空の波動インピーダンス、βは位相定数である。
Figure 0007038909000004
このように演算される電磁界強度のうち、ケーブル10の平行方向の水平偏波およびケーブル10と垂直方向の垂直偏波をそれぞれ求める(ステップST6)。このようにして演算された電界強度の例を図6に示す。
なお、電磁界強度演算部34には、式(3)のような数式を予め格納し、演算時に呼び出して用いても良いし、また、モーメント法として知られる計算手法を適用した電磁界シミュレータを呼び出して演算させても良い。
上述したステップST3は、電磁界強度推定方法の第1ステップに相当し、ステップST5は第2ステップに相当し、ステップST6は第3ステップに相当する。そして、ステップST2は第4ステップに相当し、ステップST2とステップST3とは、測定位置毎に、電流検出部1が停止中に実施される。
次に、実施の形態1による効果について説明する。
仮に、電流の位相情報を演算する事無く、位相情報が欠落した状態で電磁界強度を推定すると、推定精度が劣化する。特に、解析の最大周波数fmaxに対応する最小波長λminがケーブル長Lと同程度の場合には、位相情報が欠落すると電磁界強度の推定精度が著しく劣化する。
この実施の形態では、電流の位相情報を取得するための機器を別途設ける事無く、小型で簡易な装置構成で、各測定位置での電流位相の周波数特性を演算できる。これにより、N個の電流振幅の周波数特性Ik(f)と、N個の位置情報Xkと、N個の電流位相の周波数特性Φk(f)とに基づいて、設定位置(X0、Y0、Z0)における電磁界強度を高精度に演算して推定することができる。こにより、遠方界の電磁界強度を、小型で簡易な装置構成で信頼性良く取得できる。
なお、上記実施の形態では、電磁界強度推定装置100が位置検出部6を備えて、位置標識7を用いて位置情報Xkを取得したが、予め位置情報Xkを設定する事により、位置検出部6を不要とすることもできる。例えば、移動装置2により電流検出部1が移動する際、設定された等しい間隔で移動する、あるいは予め設定された測定位置に移動する場合、測定位置の位置情報Xkは、検出を要すること無く決定できる。この場合、さらに小型で簡易な装置構成で電磁界強度を推定できる。
実施の形態2.
図6は、実施の形態2による電磁界強度推定装置の概略構成を示す図である。この実施の形態では、被測定ケーブルである測定対象のケーブル10Aは、直線では無く蛇行する。即ち、ケーブル10Aは、装置Aと装置Bとの間で曲線を含む線状に配置される。
電磁界強度推定装置100Aは、測定システム20Aと情報処理装置30とから構成され、ケーブル10Aに流れる高周波電流を測定して、ケーブル10Aからの放射ノイズ強度である電磁界強度を演算する。
測定システム20Aは、ケーブル10Aに流れる電流の振幅値である電流振幅を取得する電流検出部1と、電流検出部1を移動させる移動装置2Aと、位置検出部6Aと、周波数特性測定装置8とを備える。
移動装置2Aは、電流検出部1を支持する支持機構3Aと、コントローラ5Aとを備えて、電流検出部1をケーブル10Aに沿って複数の測定位置に移動させる。位置検出部6Aは、支持機構3Aに取り付けられた位置標識7A、7B、7Cを用いて測定位置の位置情報を検出する。測定システム20A内の移動装置2A、位置検出部6Aおよび位置標識7A、7B、7C以外の構成は、上記実施の形態1と同様である。
この場合、移動装置2Aは、固定の直線状軌道を有するものでは無く、蛇行したケーブル10Aに沿って電流検出部1が三次元に移動可能となるように構成される。また、電流検出部1を支持する支持機構3Aに設けられる複数の位置標識7A、7B、7Cは、それぞれ異なる空間座標を有し、xyz軸の各座標が位置標識7A、7B、7C毎に異なる。位置標識7A、7B、7Cの空間座標が示す位置は、電流検出部1の移動により変化するが、複数の位置標識7A、7B、7Cの間の位置関係は固定である。また、支持機構3Aと電流検出部1との位置関係も固定であり、各位置標識7A、7B、7Cと電流検出部1とは、一定の位置関係で保持される。
位置検出部6Aは、支持機構3Aに取り付けられた複数の位置標識7A、7B、7Cを認識し、電流検出部1の位置を検出する。
位置検出部6Aは、撮像素子と画像処理部を有する。撮像素子には、例えば、CCDあるいはCMOSが用いられる。画像処理部は、半導体集積回路により構成され、FPGA(field-programmable gate array)等の専用回路を用いても良い。位置検出部6Aは、ケーブル10Aに沿って三次元に走査される電流検出部1の位置を検出する事により、各測定位置の位置情報を検出する。そして、検出された位置情報は、測定位置格納部32に格納される。
具体的には、1個の撮像素子を用いて、連続的に位置標識7A、7B、7Cの画像データ群を取得し、時系列の画像データ群から各位置標識7A、7B、7Cによって特徴づけられる特徴点を追跡することで、特徴点の三次元空間位置の推定を行う。この場合、電流検出部1および支持機構3Aの任意の移動によって生成される時系列的画像データ群から復元を行う。
なお、2個以上の撮像素子を用いて位置検出を行っても良く、その場合、相対位置が既知である2個以上の撮像素子で取得された画像群から、位置標識7A、7B、7C内の画素位置の視差を検出する。そして、三角測量の原理を用いて位置標識7A、7B、7Cにより位置標識7A、7B、7Cまでの距離を求める。このような位置検出部6Aとして、多眼ステレオカメラを使用することができる。
また、3個の位置標識7A、7B、7Cを図示したが、3個に限るものでは無い。また、位置標識7A、7B、7Cは、支持機構3Aに設けられるものを示したが、電流検出部1に設けても良い。
電磁界強度推定装置100Aは、上記実施の形態1と同様に、図3で示すフローチャートに示すように動作して電磁界強度を演算する。
即ち、移動装置2Aが、支持機構3Aに支持された電流検出部1をN個の測定位置に移動させ、各測定位置において、位置情報と電流振幅の周波数特性とをそれぞれ取得して格納する。N個の電流振幅の周波数特性と位置情報とが取得されると、各測定位置での電流位相、即ちN個の電流位相の周波数特性Φk(f)を演算する。そして、これらの情報に基づいて、設定位置における電磁界強度を演算する。
このように、上記実施の形態1と同様に、電流の位相情報を取得するための機器を別途設ける事無く、小型で簡易な装置構成で、各測定位置での電流位相の周波数特性Φk(f)を演算できる。これにより、設定位置における電磁界強度を高精度に演算して推定することができ、遠方界の電磁界強度を、小型で簡易な装置構成で信頼性良く取得できる。
本願は、様々な例示的な実施の形態及び実施例が記載されているが、1つ、または複数の実施の形態に記載された様々な特徴、態様、及び機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。
従って、例示されていない無数の変形例が、本願に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。
1 電流検出部、2,2A 移動装置、6,6A 位置検出部、7,7A,7B,7C 位置標識、8 周波数特性測定装置、10,10A ケーブル、31 電流振幅格納部、32 測定位置格納部、33 電流位相演算部、34 電磁界強度演算部、100,100A 電磁界強度推定装置。

Claims (9)

  1. 被測定ケーブルに流れる電流から電流振幅を取得する電流検出部と、
    前記電流検出部を前記被測定ケーブルに沿って複数の測定位置に移動させる移動装置と、
    前記測定位置毎に、前記電流振幅の周波数特性を測定する周波数特性測定装置と、
    前記測定位置毎の前記電流振幅の周波数特性を格納する第1格納部と、
    前記測定位置毎の位置情報を格納する第2格納部と、
    前記複数の測定位置における前記電流振幅の周波数特性および前記位置情報に基づいて、前記測定位置毎の電流位相の周波数特性を演算する電流位相演算部と、
    を備えて、電磁界強度を演算する電磁界強度推定装置。
  2. 設定された位置における前記電磁界強度を演算する電磁界強度演算部を備えて、前記複数の測定位置における前記電流振幅の周波数特性と前記位置情報と前記電流位相の周波数特性とに基づいて前記電磁界強度を演算する、
    請求項1に記載の電磁界強度推定装置。
  3. 前記測定位置毎の前記位置情報を検出する位置検出部を備える、
    請求項1または請求項2に記載の電磁界強度推定装置。
  4. 前記位置検出部は、位置標識を用いて前記位置情報を検出する、
    請求項3に記載の電磁界強度推定装置。
  5. 前記電流検出部は、前記被測定ケーブルを径方向に囲む環状磁性体から成る、
    請求項1から請求項4のいずれか1項に記載の電磁界強度推定装置。
  6. 前記移動装置は、直線状に配された前記被測定ケーブルに沿って前記電流検出部を移動させる、
    請求項1から請求項5のいずれか1項に記載の電磁界強度推定装置。
  7. 前記移動装置は、曲線を含む線状に配された前記被測定ケーブルに沿って前記電流検出部を移動させる、
    請求項1から請求項5のいずれか1項に記載の電磁界強度推定装置。
  8. 被測定ケーブルに流れる電流から電流振幅を取得する電流検出部を、前記被測定ケーブルに沿って複数の測定位置に移動させて測定情報を収集し、電磁界強度を演算する電磁界強度推定方法において、
    前記測定位置毎に、前記測定情報となる前記電流振幅の周波数特性を測定して格納する第1ステップと、
    前記第1ステップが前記複数の測定位置について終了した後、前記複数の測定位置における位置情報および前記電流振幅の周波数特性に基づいて、前記測定位置毎の電流位相の周波数特性を演算する第2ステップと、
    前記複数の測定位置における前記位置情報と前記電流振幅の周波数特性と前記電流位相の周波数特性とに基づいて前記電磁界強度を演算する第3ステップと、
    を備えた電磁界強度推定方法。
  9. 前記測定位置毎に、前記位置情報を検出して格納する第4ステップを備え、
    前記第1ステップおよび前記第4ステップは、前記測定位置毎に、前記電流検出部が停止中に実施される、
    請求項8に記載の電磁界強度推定方法。
JP2021521701A 2019-05-30 2019-05-30 電磁界強度推定装置および電磁界強度推定方法 Active JP7038909B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/021596 WO2020240787A1 (ja) 2019-05-30 2019-05-30 電磁界強度推定装置および電磁界強度推定方法

Publications (2)

Publication Number Publication Date
JPWO2020240787A1 JPWO2020240787A1 (ja) 2021-10-21
JP7038909B2 true JP7038909B2 (ja) 2022-03-18

Family

ID=73552797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021521701A Active JP7038909B2 (ja) 2019-05-30 2019-05-30 電磁界強度推定装置および電磁界強度推定方法

Country Status (2)

Country Link
JP (1) JP7038909B2 (ja)
WO (1) WO2020240787A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115099180B (zh) * 2022-07-25 2022-11-15 广州地铁设计研究院股份有限公司 地铁高压直流供电系统emi辐射源回路模型及建模方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08304491A (ja) * 1995-04-28 1996-11-22 Fujitsu Ltd 電磁界強度算出装置
JPH11183537A (ja) * 1997-12-24 1999-07-09 Nec Corp 電流波形の測定方法及び測定装置
JP2000009775A (ja) * 1998-06-19 2000-01-14 Nec Corp 電流測定装置および電流発生源特定方法
JP2011017535A (ja) * 2009-07-07 2011-01-27 Panasonic Corp 遠方電磁界ノイズ測定方法および装置
JP6389210B2 (ja) * 2016-07-12 2018-09-12 アンリツ株式会社 電界強度分布測定装置及び電界強度分布測定方法

Also Published As

Publication number Publication date
JPWO2020240787A1 (ja) 2021-10-21
WO2020240787A1 (ja) 2020-12-03

Similar Documents

Publication Publication Date Title
US8040127B2 (en) Multi-sensor distortion mapping method and system
US10101489B2 (en) System for exploring underground geophysical properties and method for analyzing underground geophysical properties using the same
CN105182357B (zh) 具有位置传感器系统的飞行时间相机
EP2385390A1 (en) System and method for estimating position and direction
CA2719193C (en) Method and device for measuring a radiation field
CN102626324A (zh) 超声波测量设备及其控制方法
CN102725764B (zh) 移动读取设备以及用于定位利用主动发射机应答器进行标记的对象的方法
He et al. The development of an EM-field probing system for manual near-field scanning
US20200107798A1 (en) Method and system for determining the position of a portable image detector assembly with respect to an emission point of an x-ray source in a radiographic system
CN105205424B (zh) 利用上下文可视化的电磁识别(emid)标签定位部件
JP7038909B2 (ja) 電磁界強度推定装置および電磁界強度推定方法
WO2003081265A1 (fr) Dispositif de detection de source de production d'ondes electromagnetiques
JPH1062467A (ja) 不要電磁波測定システム
JP5351466B2 (ja) 電波源可視化装置
CN112781530A (zh) 一种基于双目视觉的rcs检测系统及其检测方法
Hashi et al. Wireless magnetic motion capture system using multiple LC resonant magnetic markers with high accuracy
He et al. 2D imaging system with optical tracking for EMI source localization
JP5170955B2 (ja) 電磁波測定方法および電磁波測定装置
CN114200448A (zh) 综合孔径辐射计波数域近场成像方法及设备
WO2017008424A1 (zh) 一种无线充电装置、方法及设备
US10996295B1 (en) Noise generation source search device and noise generation source search method
KR101281057B1 (ko) 파 발원지 측정 시스템
JP2001318112A (ja) 電磁界測定装置または電磁界測定方法およびそれを用いた電子部品または電子装置の製造方法
JP2011017535A (ja) 遠方電磁界ノイズ測定方法および装置
JP6052355B1 (ja) 試験装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220308

R151 Written notification of patent or utility model registration

Ref document number: 7038909

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151