JP7034751B2 - 基礎設計システム - Google Patents

基礎設計システム Download PDF

Info

Publication number
JP7034751B2
JP7034751B2 JP2018023459A JP2018023459A JP7034751B2 JP 7034751 B2 JP7034751 B2 JP 7034751B2 JP 2018023459 A JP2018023459 A JP 2018023459A JP 2018023459 A JP2018023459 A JP 2018023459A JP 7034751 B2 JP7034751 B2 JP 7034751B2
Authority
JP
Japan
Prior art keywords
foundation
cross
section
target
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018023459A
Other languages
English (en)
Other versions
JP2019138086A (ja
Inventor
篤弘 寺田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Housing Corp
Original Assignee
Toyota Housing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Housing Corp filed Critical Toyota Housing Corp
Priority to JP2018023459A priority Critical patent/JP7034751B2/ja
Publication of JP2019138086A publication Critical patent/JP2019138086A/ja
Application granted granted Critical
Publication of JP7034751B2 publication Critical patent/JP7034751B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Foundations (AREA)

Description

本発明は、基礎設計システムに関する。
この種のシステムとして、特許文献1には、ユニット式建物の基礎についてその断面設計を行うシステムが開示されている。この特許文献1のシステムでは、建物ユニットの柱から基礎に加わる軸力がユーザによって入力されるようになっており、その入力された軸力に基づいて断面設計が行われるようになっている。具体的には、当該システムでは、軸力の入力に際し、あらかじめ用意された軸力の一覧がディスプレイ上に表示されるようになっており、その一覧からユーザが適切な軸力を選択することで軸力の入力が行われるようになっている。
特開2004-62269号公報
ところで、上記特許文献1のシステムでは、ユーザが軸力の一覧からいずれかの軸力を選択し入力するようになっているため、例えば実際に建物から基礎に加わるよりも過大な軸力が入力(設定)される場合が想定される。その場合、その過大な軸力に基づいて基礎の断面設計が行われることになるため、当該建物の基礎としては、過剰品質な基礎が設計されてしまうことになる。つまり、上記特許文献1のシステムでは、建物の実際の荷重状況に応じた基礎断面を設計するのが困難な場合が想定され、その点で未だ改善の余地がある。
本発明は、上記事情に鑑みてなされたものであり、建物の荷重状況に応じた最適な基礎断面を設計することができる基礎設計システムを提供することを主たる目的とするものである。
上記課題を解決すべく、第1の発明の基礎設計システムは、柱及び梁を有してなる複数の建物ユニットが互いに連結されて構成されるユニット式の建物の基礎について設計を行う基礎設計システムであって、前記基礎上には、前記建物ユニットの前記柱が設置されることで前記建物が設けられ、前記建物の設計データを取得する取得手段と、その取得手段により取得した前記建物の設計データに基づき、前記柱から前記基礎に作用する荷重を算出する荷重算出手段と、その荷重算出手段により算出した荷重に基づき、前記基礎の断面設計を行う断面設計手段と、を備えることを特徴とする。
本発明によれば、基礎上に設けられるユニット式建物の設計データが取得され、その取得された建物の設計データに基づき、建物において基礎上に設置される柱から基礎に作用する荷重(換言すると支点反力)が算出される。そして、その算出された柱からの荷重に基づき、基礎の断面設計が行われる。この場合、建物の柱から基礎に対して実際に作用する荷重に応じて基礎の断面設計を行うことができるため、建物の荷重状況に応じた最適な基礎断面を設計することができる。
第2の発明の基礎設計システムは、第1の発明において、前記基礎は、地盤に埋設されるフーチング部と、そのフーチング部から上方に立ち上がり地盤から露出される立ち上がり部とを有する布基礎であり、前記荷重算出手段は、前記柱から前記基礎に作用する鉛直荷重を算出し、前記荷重算出手段により算出した鉛直荷重に基づき、地盤から前記フーチング部底面に作用する接地圧を算出する接地圧算出手段を備え、前記断面設計手段は、前記算出した接地圧に基づいて、前記フーチング部の幅を決定することを特徴とする。
本発明によれば、建物の柱から基礎に作用する鉛直荷重が算出され、その算出された鉛直荷重に基づき、地盤から基礎のフーチング部底面に作用する接地圧が算出される。そして、基礎の断面設計に際しては、その算出された接地圧に基づき、フーチング部の幅が決定される。例えば、接地圧が地盤の地耐力以下となるようにフーチング幅が決定される。この場合、建物の荷重状況(鉛直荷重の状況)に応じた最適なフーチング幅で基礎断面を設計することができる。
第3の発明の基礎設計システムは、第2の発明において、前記基礎において、前記立ち上がり部を含み当該基礎の上下方向全域に亘る部分は基礎梁部となっており、前記荷重算出手段は、前記柱から前記基礎に作用する水平荷重を算出し、前記荷重算出手段により算出した水平荷重に基づき、その水平荷重が前記基礎に対して作用する水平荷重作用時に前記基礎梁部に生じる応力を基礎梁応力として算出する応力算出手段を備え、前記断面設計手段は、前記応力算出手段により算出した基礎梁応力に基づき、前記基礎梁部の断面形状を含む基礎梁断面を決定することを特徴とする。
本発明によれば、建物の柱から基礎に作用する水平荷重が算出され、その算出された水平荷重に基づき、水平荷重の基礎への作用時に基礎梁部に生じる応力(基礎梁応力)が算出される。そして、基礎の断面設計に際しては、その算出された基礎梁応力に基づき、基礎梁部の断面(基礎梁断面)が決定される。例えば、基礎梁応力が基礎梁部の許容耐力以下となるように基礎梁断面が決定される。この場合、建物の荷重状況(水平荷重の状況)に応じた最適な基礎梁断面を得ることができる。
第4の発明の基礎設計システムは、第3の発明において、前記断面設計手段により決定される前記基礎梁断面には、前記基礎梁部の断面形状に加え、前記基礎梁部に設けられる鉄筋の情報が含まれていることを特徴とする。
本発明によれば、建物の荷重状況に応じて、基礎梁部の断面形状に加え基礎梁部に設けられる鉄筋(配筋)についても決定することができる。なお、基礎梁部における鉄筋の情報としては、鉄筋の径や配置、本数等の情報が挙げられる。
基礎設計装置の概略構成を示す図。 基礎の断面構成を示す縦断面図。 ユニット式建物の概略を示す斜視図。 基礎断面データベースに記憶されている断面データを説明するための図。 基礎設計処理を示すフローチャート。 (a)が基礎の平面形状を示す平面図であり、(b)が基礎が複数の基礎領域に区分された状態を示す平面図。 基礎断面設計処理を示すフローチャート。
以下に、本発明を具体化した一実施の形態について図面を参照しつつ説明する。本実施形態では、ユニット式建物の基礎の設計を行う基礎設計装置について具体化している。図1は、その基礎設計装置の概略構成を示す図である。
図1に示すように、基礎設計装置10は、パーソナルコンピュータにより構成され、建物や基礎の設計を行うためのCADプログラムを有している。基礎設計装置10は、制御部11と記憶部12と操作部13と表示部14とを備え、制御部11には、記憶部12、操作部13及び表示部14がそれぞれ接続されている。なお、基礎設計装置10が基礎設計システムに相当する。
制御部11は、基礎の設計を行う基礎設計処理を行うものである。記憶部12には、基礎設計処理に必要な各種情報が記憶されており、制御部11は、その記憶部12に記憶されている各種情報を基に基礎設計処理を行う。操作部13は、基礎設計処理に必要な情報等、各種情報を入力するためのもので、キーボードやマウス等を有して構成されている。また、表示部14は、基礎設計処理に関する各種情報を表示するもので、ディスプレイを有して構成されている。
次に、基礎設計装置10により設計される基礎の構成について図2を用いながら簡単に説明する。図2は、基礎の断面構成を示す縦断面図である。
図2に示すように、基礎21は、鉄筋コンクリート造りの布基礎とされている。基礎21は、地盤に埋設されるフーチング部22と、そのフーチング部22から上方に立ち上がり地盤上に露出する立ち上がり部23とを有している。基礎21において、フーチング部22は水平方向に延びており、立ち上がり部23は上下方向に延びている。
基礎21のうち、立ち上がり部23を含んで基礎21の高さ方向(上下方向)全域に亘って延びる部分は基礎梁部24となっている。基礎梁部24には、鉄筋が埋設されている。基礎梁部24には、鉄筋として、基礎21の長手方向に延びる複数の横鉄筋26~28と、上下方向に延びて各横鉄筋26~28に連結されたあばら筋29とが設けられている。複数の横鉄筋26~28には、上端筋26、下端筋27及び腹筋28が含まれている。また、あばら筋29は、基礎21の長手方向に所定の間隔で複数配置されている。
フーチング部22には、基礎梁部24と同様、鉄筋が埋設されている。フーチング部22には、鉄筋として、基礎21の長手方向に延びる一対のベース配力筋31と、フーチング部22の幅方向に延びて各ベース配力筋31に連結されたベース筋32とが設けられている。ベース筋32は、基礎21の長手方向に所定の間隔で複数配置されている。
次に、基礎21上に設置されるユニット式建物について図3を用いながら簡単に説明する。図3は、ユニット式建物の概略を示す斜視図である。
図3に示すように、ユニット式建物40は、直方体状の建物ユニット41が複数組み合わされることにより構成される。図3の例では、ユニット式建物40が二階建てとなっており、一階部分と二階部分とにそれぞれ建物ユニット41が複数ずつ配置されている。建物ユニット41は、その四隅に配設される4本の柱42と、各柱42の上端部及び下端部をそれぞれ連結する各4本の天井大梁43及び床大梁44とを備える。建物ユニット41では、それら柱42、天井大梁43及び床大梁44により直方体状の枠体45が形成され、その枠体45に天井材や床材、壁材、屋根材等が取り付けられている。また、ユニット式建物40では、各建物ユニット41の枠体45により架構体47(躯体)が構成されている。
ユニット式建物40は、基礎21上に設置される。この場合、ユニット式建物40において一階部分の各建物ユニット41が基礎21上に設置される。詳しくは、それら各建物ユニット41の柱42がそれぞれ基礎21(立ち上がり部23)上に設置され、それにより、各建物ユニット41が基礎21上に設置される。したがって、ユニット式建物40では、当該建物40の荷重が建物ユニット41の柱42を介して基礎21上に伝達されるようになっている。
続いて、基礎設計装置10(制御部11)により行われる基礎21の設計処理について説明する。ここでは、上述したユニット式建物40(以下、略して建物40という)の基礎21について設計を行うことを想定しており、記憶部12には、その建物40の設計データがあらかじめ記憶されている。
制御部11は、基礎設計処理として、基礎21の平面形状の設計を行う。つまり、制御部11は、基礎21の平面図、すなわち基礎伏図の設計(作成)を行う。制御部11は、記憶部12から建物40の設計データを取得し、その設計データに基づき基礎21の平面図を設計する。
制御部11は、基礎設計処理として、基礎21の平面図の設計に加え、基礎21の断面設計を行う。制御部11は、断面設計に際し、まず基礎21の平面図と建物40の設計データとに基づき、基礎21上に設置される建物40の各柱42を特定し(図6(a)も参照)、それら柱42から基礎21上に作用する荷重(支点反力)をそれぞれ算出する。この際、制御部11は、例えば建物40の設計データに含まれる架構体47のデータを用いて当該架構体47の応力解析を実施し、その応力解析の結果に基づき各柱42から基礎21に作用する荷重を算出する。そして、制御部11は、その算出した柱42から基礎21に作用する荷重に基づき基礎21の断面設計を行う。
また、本基礎設計装置10では、図1に示すように、記憶部12に基礎21の断面データ(詳しくは縦断面データ)を記憶する基礎断面データベース17が構築されている。そして、制御部11は、その基礎断面データベース17を用いて基礎21の断面設計を行うこととしている。以下、この基礎断面データベース17について図4を参照しながら説明する。図4は基礎断面データベース17に記憶されている断面データを説明するための図である。
図4に示すように、基礎断面データベース17には、基礎21の断面データXが断面図データとして記憶(登録)されている。基礎21の断面データXには、基礎21の断面形状(縦断面形状)に加え、基礎21に設けられた鉄筋26~29に関する鉄筋情報が含まれている。基礎21の断面形状(断面形状データ)には、基礎21の外形寸法(断面寸法)が含まれており、詳しくは基礎21におけるフーチング部22の幅W(フーチング幅W)や基礎梁部24の高さH、幅B等の寸法が含まれている。なお、基礎梁部24の高さHは基礎21の高さに相当する。また、鉄筋情報には、鉄筋26~29,31,32の径や本数、配置等に関する情報が含まれている。
基礎断面データベース17には、フーチング幅Wの異なる複数の断面データXが記憶されているとともに、基礎梁部24の断面形状(詳しくは高さH,幅B)が異なる複数の断面データXが記憶されている。例えば、基礎断面データベース17には、同じフーチング幅Wであって基礎梁部24の断面形状が異なる複数の断面データXが記憶されている。また、基礎断面データベース17には、鉄筋26~29,31,32の径や本数、配置が異なる複数の断面データXが記憶されている。
なお、基礎断面データベース17には、操作部13の操作により断面データXを登録(記憶)することが可能となっている。
次に、制御部11により実行される基礎設計処理について図5に示すフローチャートに基づき説明する。なお、本処理は、操作部13に対する処理開始操作に基づき開始される。
図5に示すように、まずステップS11では、記憶部12から建物40の設計データを読み出して取得する(取得手段に相当)。なお、建物40の設計データを記憶部12からでなく、基礎設計装置10の外部から取得するようにしてもよい。
ステップS12では、建物40の設計データに基づき、基礎21(以下、基礎21Kという)の平面図つまり基礎伏図を作成(設計)する。この場合、例えば建物40の外形形状や建物40の柱42位置等に基づき、基礎伏図を作成する。図6(a)には、その作成された基礎伏図が示されている。なお、図6(a)では、説明の便宜上、基礎21K上に設置される建物40(建物ユニット41)の各柱42を併せて示している。また、図6(a)では、基礎21により囲まれた内側に独立基礎35が配置され、その独立基礎35上に設置される柱42についても併せて示している(図6(b)も同様)。
ステップS13では、建物40の設計データに基づき、建物40の各柱42から基礎21Kに作用する荷重(支点反力)を算出する(荷重算出手段に相当)。具体的には、本ステップでは、各柱42ごとに、柱42から基礎21Kに作用する鉛直荷重Ftと、柱42から基礎21Kに作用する水平荷重Fsとをそれぞれ算出する。これら柱42ごとに算出された鉛直荷重Ft及び水平荷重Fsは記憶部12に一時的に記憶される。
ステップS14では、ステップS12で作成された基礎伏図に基づいて、基礎21Kを複数の領域(以下、基礎領域21aという)に区分する。図6(b)には、基礎21Kが複数の基礎領域21aに区分された状態が示されている。なお、基礎21Kの区分の仕方は任意であるが、各基礎領域21a上にそれぞれ柱42が位置するように区分する。
ここで、本基礎設計処理では、上記区分された各基礎領域21aごとに、基礎21Kの断面設計を行うこととしている。そこで、ステップS15では、各基礎領域21aのうちいずれの基礎領域21aについて断面設計を行うか、つまり断面設計を行う対象の基礎領域21aを決定する。なお、以下では、この基礎領域21aを対象基礎領域21aといい、図6(b)ではその対象基礎領域21aにドットハッチを付して示している。
ステップS16では、対象基礎領域21aについて断面設計を行う基礎断面設計処理を実施する。以下、この基礎断面設計処理について図7に示すフローチャートに基づき説明する。
基礎断面設計処理では、図7に示すように、まずステップS21において、対象基礎領域21aに対して基礎断面を初期設定する。この場合、例えば基礎断面データベース17に記憶されている各断面データXの中から断面の大きさが最小の断面データXを抽出し、その抽出した断面データXを対象基礎領域21aの基礎断面として初期設定する。
ステップS22~S27では、対象基礎領域21aのフーチング部22の幅Lを決定するための処理を行う。まずステップS22では、対象基礎領域21a上に設置された柱42(以下、柱42aという)を特定し、その柱42aから当該対象基礎領域21aに作用する鉛直荷重Ftを記憶部12より読み出す。詳しくは、記憶部12には、建物40の各柱42ごとに柱42から基礎21Kに作用する鉛直荷重Ftが記憶されているため(ステップS13参照)、その記憶部12より柱42aから作用する鉛直荷重Ftを読み出して取得する。
ステップS23では、対象基礎領域21aの重量Gを算出する。この場合、対象基礎領域21aの長さLaと、対象基礎領域21aの断面積(縦断面の断面積)とに基づき、対象基礎領域21aの重量Gを算出する。具体的には、対象基礎領域21aの長さLa(図6(b)参照)と断面積とを乗算することで対象基礎領域21aの体積を求め、その体積に基づき対象基礎領域21aの重量Gを算出する。
なお、対象基礎領域21aの長さLaは、基礎21Kの伏図に基づき求められる。この場合、この長さLaは、例えば対象基礎領域21aの幅方向の中心を通る中心線を想定した場合、その中心線の全長に相当する。また、対象基礎領域21aの断面積は、対象基礎領域21aに設定されている基礎断面(断面データX)に基づき求められる。
ステップS24では、対象基礎領域21aの底面積、つまり対象基礎領域21aにおけるフーチング部22の底面積Sを算出する。この場合、対象基礎領域21aの長さLaとフーチング部22の幅Wとに基づき、詳しくはLaとWとを乗算することでフーチング部22の底面積Sを算出する。フーチング部22の幅Wは、対象基礎領域21aに設定されている基礎断面(断面データX)に基づき取得する。
ステップS25では、柱42aから対象基礎領域21aに作用する鉛直荷重Ftと、対象基礎領域21aの重量Gと、対象基礎領域21aの底面積Sとに基づき、地盤から対象基礎領域21aのフーチング部22底面に作用する接地圧を算出する(接地圧算出手段に相当)。接地圧とは、地盤からフーチング部22の底面に作用する単位面積当たりの荷重のことである。この場合、接地圧は、鉛直荷重Ftと対象基礎領域21aの重量Gとの和をフーチング部22の底面積Sで割ることにより算出される。
ステップS26では、上記算出された接地圧が地盤の地耐力以下であるか否かを判定する。地盤の地耐力とは、基礎21Kが構築される地盤の地耐力のことである。この地耐力はあらかじめ記憶部12に記憶されている。接地圧が地耐力以下である場合にはステップS28に進む。一方、接地圧が地耐力よりも大きくなっている場合にはステップS27に進む。
ステップS27では、対象基礎領域21aに設定されている基礎断面のフーチング幅Wを変更する。この場合、基礎断面データベース17に記憶されている各断面データXの中から、対象基礎領域21aに(今現在)設定されている基礎断面(断面データ)よりもフーチング幅Wの大きい断面データXを読み出し(抽出し)、その断面データXを新たに対象基礎領域21aの基礎断面として設定する。詳しくは、基礎断面データベース17に記憶されている各断面データXのうち、対象基礎領域21aに設定されている断面データの次にフーチング幅Wの大きい断面データXを読み出し、それを新たな基礎断面として設定する。また、この場合、基礎断面データベース17から読み出す断面データXは、対象基礎領域21aに設定されている基礎断面(断面データ)と同じ基礎梁断面(基礎梁部24の断面)を有するものとされる。したがって、本ステップでは、対象基礎領域21aに設定されている基礎断面の基礎梁断面については維持しながらフーチング幅Wが変更される。
ステップS27の後、ステップS23に戻り、対象基礎領域21aに新たに設定された基礎断面、すなわちフーチング幅Wが大きくされた基礎断面に基づき、再度ステップS23~S26の処理を行う。このように、本処理では、ステップS26にて接地圧が地耐力以下と判定されるまで、繰り返しステップS23~S27の処理が行われるようになっている。
ステップS26にて接地圧が地耐力以下と判定されると、対象基礎領域21aのフーチング幅W(ひいてはフーチング部22の断面)が決定され、ステップS28に進む。ステップS28~S31,S33では、対象基礎領域21aの基礎梁断面を決定するための処理を行う。まず、ステップS28では、対象基礎領域21aのフーチング部22底面に地盤から作用する地反力を算出する。地反力は、ステップS23~S25で算出した対象基礎領域21aの重量G及び底面積Sと、対象基礎領域21aに作用する接地圧とに基づき算出される。詳しくは、地反力は、接地圧から、対象基礎領域21aの重量Gを底面積Sで割った値を差し引くことで求められる。
ステップS29では、柱42aから対象基礎領域21aに作用する水平荷重Fsを記憶部12より読み出して取得する。詳しくは、記憶部12には、建物40の各柱42ごとに柱42から基礎21Kに作用する水平荷重Fsが記憶されているため(ステップS13参照)、その記憶部12より柱42aから基礎21K(対象基礎領域21a)に作用する水平荷重Fsを読み出して取得する。
ステップS30では、対象基礎領域21aに柱42aより水平荷重Fsが作用する水平荷重時に対象基礎領域21aの基礎梁部24に生じる応力(詳しくはせん断応力)を算出する(応力算出手段に相当)。この場合、上記ステップS28で算出した地反力と、上記ステップS29で取得した水平荷重Fsとに基づき、基礎梁部24に生じる応力(以下、基礎梁応力という)を算出する。
ステップS31では、上記算出された基礎梁応力が、対象基礎領域21aに設定されている基礎断面(断面データX)の許容耐力以下であるか否かを判定する。本実施形態では、基礎断面データベース17に記憶されている各断面データXごとに許容耐力があらかじめ定められており、同データベース17には、各断面データXにそれぞれ対応付けて許容耐力が記憶されている。そして、本ステップでは、対象基礎領域21aに設定されている基礎断面(断面データX)に対応する許容耐力を基礎断面データベース17から読み出し、その読み出した許容耐力との対比で上記の判定を行う。
ステップS31にて、基礎梁応力が許容耐力以下である場合にはステップS32に進む。一方、基礎梁応力が許容耐力を上回っている場合にはステップS33に進む。
ステップS33では、対象基礎領域21aに設定されている基礎断面のうち基礎梁断面(基礎梁部24の断面)について変更する。この場合、基礎断面データベース17に記憶されている各断面データXのうち、対象基礎領域21aに(今現在)設定されている基礎断面(断面データX)よりも基礎梁部24の耐力(詳しくは許容耐力)が大きい断面データXを読み出し(抽出し)、その断面データXを新たに対象基礎領域21aの基礎断面として設定する。詳しくは、基礎断面データベース17に記憶されている各断面データXのうち、対象基礎領域21aに設定されている断面データXの次に基礎梁部24の耐力が大きい断面データXを読み出し、それを新たな基礎断面として設定する。また、この場合、基礎断面データベース17から読み出す断面データXは、対象基礎領域21aに設定されている基礎断面(断面データ)と同じフーチング幅Wを有するものとされる。したがって、本ステップでは、対象基礎領域21aに設定されている基礎断面のフーチング幅W(ひいてはフーチング部22の断面)については維持しながら基礎梁断面が変更される。
基礎梁断面の変更に際しては、上述したように、対象基礎領域21aに(今現在)設定されている基礎断面(以下、現基礎断面という)よりも基礎梁部24の耐力が大きい断面データXを基礎断面データベース17から読み出し(抽出し)、それを対象基礎領域21aの新たな基礎断面として設定する。ここで、現基礎断面よりも基礎梁部24の耐力が大きい断面データXを抽出するに際しては、例えば現基礎断面よりも基礎梁部24の幅Bが大きい断面データXを抽出することが考えられる。また、その他に、例えば現基礎断面よりも基礎梁部24に設けられた鉄筋26~29が高強度とされている断面データXを抽出することが考えられる。詳しくは、この場合、現基礎断面よりも少なくともいずれかの鉄筋26~29の径が大きくされている断面データを抽出することが考えられる。
ステップS33の後、ステップS30に戻り、対象基礎領域21aに新たに設定された基礎断面、すなわち基礎梁部24の断面が高耐力のものに変更された基礎断面に基づき、再度ステップS30,S31の処理を行う。このように、本処理では、ステップS31にて基礎梁応力が許容耐力以下と判定されるまで、繰り返しステップS30,S31,S33の処理が行われるようになっている。
ステップS31にて、基礎梁応力が許容耐力以下と判定されると、ステップS32に進む。この場合、対象基礎領域21aのフーチング幅W(ひいてはフーチング断面)に加え基礎梁断面についても決定される。ステップS32では、対象基礎領域21aに設定されている基礎断面を当該対象基礎領域21aの基礎断面として決定する。これにより、対象基礎領域21aの基礎断面が作成(設計)される。その後、本処理を終了する。
図5の説明に戻って、ステップS16(基礎断面設計処理)の後のステップS17では、すべての対象基礎領域21aについて断面設計が終了したか否かを判定する。まだ断面設計が終了していない対象基礎領域21aがある場合にはステップS15に戻り、新たに対象基礎領域21aを決定し、その対象基礎領域21aについて基礎断面設計処理(ステップS16)を行う。また、すべての対象基礎領域21aについて断面設計が終了した場合にはステップS18に進む。
ステップS18では、基礎設計処理の結果を表示部14に出力する。具体的には、ステップS12で作成された基礎21Kの平面図(伏図)を表示部14に表示するとともに、ステップS31で作成された各基礎領域21aの基礎断面を表示部14に表示する。その後、本処理を終了する。
以上、詳述した本実施形態の構成によれば、以下の優れた効果が得られる。
基礎21K上に設けられるユニット式建物40の設計データが取得され、その取得された建物40の設計データに基づき、建物40において基礎21K上に設置される柱42から基礎21Kに作用する荷重が算出される。そして、その算出された柱42からの荷重に基づき、基礎21Kの断面設計が行われる。この場合、建物40の柱42から基礎21Kに対し実際に作用する荷重に応じて基礎21Kの断面設計を行うことができるため、建物40の荷重状況に応じた最適な基礎断面を設計することができる。
建物40の柱42から基礎21Kに作用する鉛直荷重Ftが算出され、その算出された鉛直荷重Ftに基づき、地盤から基礎21Kのフーチング部22底面に作用する接地圧が算出される。そして、基礎21Kの断面設計に際しては、その算出された接地圧に基づき、フーチング部22の幅Wが決定される。具体的には、この場合、接地圧が地盤の地耐力以下となるようにフーチング幅Wが決定される。この場合、建物40の荷重状況(鉛直荷重の状況)に応じた最適なフーチング幅で基礎断面を設計することができる。
建物40の柱42から基礎21Kに作用する水平荷重Fsが算出され、その算出された水平荷重Fsに基づき、水平荷重の基礎21Kへの作用時に基礎梁部24に生じる応力(基礎梁応力)が算出される。そして、基礎21Kの断面設計に際しては、その算出された基礎梁応力に基づき、基礎梁部24の断面(基礎梁断面)が決定される。具体的には、基礎梁応力が基礎梁部24の許容耐力以下となるように基礎梁断面が決定される。この場合、建物の荷重状況(水平荷重の状況)に応じた最適な基礎梁断面を有する基礎断面を設計することができる。
本発明は上記実施形態に限らず、例えば次のように実施されてもよい。
・上記実施形態では、基礎断面データベース17に、基礎21の断面データを断面図データとして記憶したが、断面図データではなく、数値(寸法)データ(例えば、フーチング幅W、基礎梁部24の幅B、高さH等の外形寸法や鉄筋26~29の径等)として記憶するようにしてもよい。この場合、ステップS21(図7)において対象基礎領域21aの基礎断面を初期設定することに代え、基礎断面データベース17から基礎断面を特定するのに必要な各種数値データ(フーチング幅W、基礎梁部24の幅B、高さH等の数値データ)を読み出し、それら読み出した数値データを対象基礎領域21aの基礎寸法(基礎断面寸法)として初期設定することが考えられる。また、この場合、ステップS27(図7)においてフーチング幅Wを変更するにあたっては、基礎断面データベース17から対象基礎領域21aに設定されているフーチング幅Wよりも値の大きいフーチング幅Wを読み出し、その読み出したフーチング幅Wを対象基礎領域21aのフーチング幅として新たに設定することが考えられる。また、ステップS33(図7)において基礎梁断面を変更するにあたっては、基礎断面データベース17から対象基礎領域21aに設定されている基礎梁断面に関する寸法(基礎梁部24の幅Bや高さH等の基礎梁寸法)よりも基礎梁断面の耐力を大きくする基礎梁寸法を読み出し、その読み出した基礎梁寸法を対象基礎領域21aの基礎梁寸法として新たに設定することが考えられる。そして、ステップS32(図7)では、対象基礎領域21aに設定されている各種数値データ(基礎寸法)を基に、対象基礎領域21aの基礎断面を作成(設計)することが考えられる。
・上記実施形態では、基礎21を複数の基礎領域21aに区分し、それら各基礎領域21aごとに断面設計を行ったが、基礎21を複数の基礎領域21aに区分せず基礎21全体を対象として断面設計を行ってもよい。
・上記実施形態では、基礎21の断面データXに、基礎21の断面形状に加え鉄筋情報を含めたが、鉄筋情報は含めず断面形状だけ含めるようにしてもよい。
・上記実施形態では、布基礎21の断面設計を行うにあたり、本発明の基礎設計装置を用いたが、べた基礎や杭基礎等、布基礎以外の基礎の断面設計を行う際にも本基礎設計装置を用いることができる。
・例えば、杭基礎の断面設計に本発明を適用する場合には、対象基礎領域21aに柱42aから作用する鉛直荷重を算出した後、その鉛直荷重に基づき各杭に生じる応力を算出し、その算出した応力が杭耐力以下となるように杭の本数を決定することが考えられる。この場合、建物の荷重状況に応じた最適な本数で杭を配置することができる。
10…基礎設計装置、11…制御部、12…記憶部、17…基礎断面データベース、21…基礎、22…フーチング部、23…立ち上がり部、24…基礎梁部、40…ユニット式建物、41…建物ユニット、42…柱。

Claims (3)

  1. 柱及び梁を有してなる複数の建物ユニットが互いに連結されて構成されるユニット式の建物の基礎を対象として、その対象基礎について設計を行う基礎設計システムであって、
    前記対象基礎は、地盤に埋設されるフーチング部と、そのフーチング部から上方に立ち上がり地盤から露出される立ち上がり部とを有する布基礎であり、
    前記対象基礎上には、前記建物ユニットの前記柱が設置されることで前記建物が設けられ、
    前記建物の設計データを取得する取得手段と、
    その取得手段により取得した前記建物の設計データに基づき、前記柱から前記対象基礎に作用する荷重を算出する荷重算出手段と、
    その荷重算出手段により算出した荷重に基づき、前記対象基礎の断面設計を行う断面設計手段と、を備え
    前記荷重算出手段は、前記柱から前記対象基礎に作用する鉛直荷重を算出し、
    基礎の断面データとして、前記フーチング部の幅の異なる複数の断面データが記憶されている基礎断面データベースを備え、
    前記基礎断面データベースから断面データを抽出し、その抽出した断面データを前記対象基礎の基礎断面として設定するようになっており、
    前記対象基礎に設定された基礎断面を基に前記対象基礎の前記フーチング部の幅を取得し、その取得した前記フーチング部の幅に基づき、前記対象基礎の前記フーチング部の底面積を算出する底面積算出手段と、
    前記底面積算出手段により算出した前記フーチング部の底面積と、前記荷重算出手段により算出した鉛直荷重とに基づき、地盤から前記フーチング部の底面に作用する接地圧を算出する接地圧算出手段と、
    前記算出した接地圧が地盤の地耐力以下であるか否かを判定する判定手段と、
    前記判定手段により前記算出した接地圧が地盤の地耐力よりも大きいと判定された場合に、前記基礎断面データベースに記憶されている各断面データの中から前記対象基礎に設定されている基礎断面よりも前記フーチング部の幅の大きい断面データを抽出し、その抽出した断面データを新たに前記対象基礎の基礎断面として設定する手段と、を備え、
    前記対象基礎の基礎断面が新たに設定された後、その新たな基礎断面に基づき、前記底面積算出手段による算出と、前記接地圧算出手段による算出と、前記判定手段による判定とが再度行われるようになっており、
    前記断面設計手段は、前記判定手段により前記算出した接地圧が地盤の地耐力以下であると判定された場合に、前記対象基礎に設定されている基礎断面の前記フーチング部の幅を当該対象基礎の前記フーチング部の幅として決定することを特徴とする基礎設計システム。
  2. 前記対象基礎において、前記立ち上がり部を含み当該基礎の上下方向全域に亘る部分は基礎梁部となっており、
    前記荷重算出手段は、前記柱から前記対象基礎に作用する水平荷重を算出し、
    前記荷重算出手段により算出した水平荷重に基づき、その水平荷重が前記対象基礎に対して作用する水平荷重作用時に前記基礎梁部に生じる応力を基礎梁応力として算出する応力算出手段を備え、
    前記断面設計手段は、前記応力算出手段により算出した基礎梁応力に基づき、前記基礎梁部の断面形状を含む基礎梁断面を決定することを特徴とする請求項に記載の基礎設計システム。
  3. 前記断面設計手段により決定される前記基礎梁断面には、前記基礎梁部の断面形状に加え、前記基礎梁部に設けられる鉄筋の情報が含まれていることを特徴とする請求項に記載の基礎設計システム。
JP2018023459A 2018-02-13 2018-02-13 基礎設計システム Active JP7034751B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018023459A JP7034751B2 (ja) 2018-02-13 2018-02-13 基礎設計システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018023459A JP7034751B2 (ja) 2018-02-13 2018-02-13 基礎設計システム

Publications (2)

Publication Number Publication Date
JP2019138086A JP2019138086A (ja) 2019-08-22
JP7034751B2 true JP7034751B2 (ja) 2022-03-14

Family

ID=67693371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018023459A Active JP7034751B2 (ja) 2018-02-13 2018-02-13 基礎設計システム

Country Status (1)

Country Link
JP (1) JP7034751B2 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001288754A (ja) 2000-04-06 2001-10-19 Misawa Homes Co Ltd ユニット式建物の基礎設計システム
JP2001317062A (ja) 2000-05-09 2001-11-16 Misawa Homes Co Ltd ユニット式建物の基礎設計装置
JP2002021095A (ja) 2000-07-07 2002-01-23 Nishiyama Tetsumou Seisakusho:Kk 建築構造及びその設計方法
JP2009275347A (ja) 2008-05-12 2009-11-26 Sekkeishitsu Soil:Kk 小規模建築物の基礎・地盤補強設計プログラム
JP2014149567A (ja) 2013-01-31 2014-08-21 Daiwa House Industry Co Ltd 構造材の最適断面選定方法・選定装置・選定プログラム

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9679088B1 (en) * 2013-02-15 2017-06-13 Bentley Systems, Incorporated Technique for using variable soil bearing capacity in foundation design

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001288754A (ja) 2000-04-06 2001-10-19 Misawa Homes Co Ltd ユニット式建物の基礎設計システム
JP2001317062A (ja) 2000-05-09 2001-11-16 Misawa Homes Co Ltd ユニット式建物の基礎設計装置
JP2002021095A (ja) 2000-07-07 2002-01-23 Nishiyama Tetsumou Seisakusho:Kk 建築構造及びその設計方法
JP2009275347A (ja) 2008-05-12 2009-11-26 Sekkeishitsu Soil:Kk 小規模建築物の基礎・地盤補強設計プログラム
JP2014149567A (ja) 2013-01-31 2014-08-21 Daiwa House Industry Co Ltd 構造材の最適断面選定方法・選定装置・選定プログラム

Also Published As

Publication number Publication date
JP2019138086A (ja) 2019-08-22

Similar Documents

Publication Publication Date Title
Akin et al. Harmony search algorithm based optimum detailed design of reinforced concrete plane frames subject to ACI 318-05 provisions
JP7186509B2 (ja) 設計支援装置、設計支援方法及び設計支援プログラム
Degertekin et al. Optimal load and resistance factor design of geometrically nonlinear steel space frames via tabu search and genetic algorithm
JP7121891B2 (ja) 構造情報表示装置、構造設計支援装置、及び構造設計支援モデル学習装置
CN103590496A (zh) 梁柱节点箍筋骨架及其用于梁柱节点钢筋的安装方法
Vidot-Vega et al. Drift, strain limits and ductility demands for RC moment frames designed with displacement-based and force-based design methods
Anjaneyulu et al. Analysis and design of flat slab by using Etabs software
JP7034751B2 (ja) 基礎設計システム
JP6758235B2 (ja) 応力又はたわみの算出システム
Skalomenos et al. Application of the hybrid force/displacement (HFD) seismic design method to composite steel/concrete plane frames
JP7362473B2 (ja) 架構データ判断装置、架構データ判断方法及び架構データ判断プログラム
JP2007264840A (ja) ひび割れ解析装置、ひび割れ解析方法、及びひび割れ解析プログラム
Walls et al. An algorithm for grouping members in a structure
JP2003150043A (ja) 構造物の耐震設計演算装置、及び構造物の耐震設計方法
Hymans et al. Optimization of post-tensioned concrete floor slabs
JP7007945B2 (ja) 基礎設計装置
Njomo et al. Sequential analysis coupled with optimized substructure technique modeled on 3D-frame construction process
Saisaran et al. Push Over Analysis for Concrete Structures at Sesimic Zone-3 using Etabs Software
US20040044429A1 (en) Optimal section setting program
Parmar et al. Seismic performance evaluation of RCC buildings with different structural configurations
JP2003013458A (ja) 柱型部設計支援装置、柱型部設計支援プログラム、該プログラムを記録したコンピュータ読み取り可能な記録媒体
JP6786406B2 (ja) 構造計算プログラム
JP7107781B2 (ja) 設計支援システム
Buck et al. Seismic performance comparison of New Zealand and Japanese concrete moment frames
Городецкий et al. “Characteristic Load” Principle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220302

R150 Certificate of patent or registration of utility model

Ref document number: 7034751

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150