JP7031207B2 - Treatment method of waste acid generated in copper smelting - Google Patents

Treatment method of waste acid generated in copper smelting Download PDF

Info

Publication number
JP7031207B2
JP7031207B2 JP2017195142A JP2017195142A JP7031207B2 JP 7031207 B2 JP7031207 B2 JP 7031207B2 JP 2017195142 A JP2017195142 A JP 2017195142A JP 2017195142 A JP2017195142 A JP 2017195142A JP 7031207 B2 JP7031207 B2 JP 7031207B2
Authority
JP
Japan
Prior art keywords
gypsum
sulfurizing
starch
solid
cadmium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017195142A
Other languages
Japanese (ja)
Other versions
JP2019063781A (en
Inventor
茂 佐々井
陽介 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2017195142A priority Critical patent/JP7031207B2/en
Publication of JP2019063781A publication Critical patent/JP2019063781A/en
Application granted granted Critical
Publication of JP7031207B2 publication Critical patent/JP7031207B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、銅製錬において発生する廃酸の処理方法に関し、特に銅製錬排ガスの水洗処理によって生じる廃酸から重金属を除去する際に発生する澱物のカドミウム品位及び水分を調整することが可能な廃酸の処理方法に関する。 The present invention relates to a method for treating waste acid generated in copper smelting, and in particular, it is possible to adjust the cadmium grade and water content of a starch generated when heavy metals are removed from the waste acid generated by washing the copper smelting exhaust gas with water. Regarding the treatment method of waste acid.

銅製錬プロセスにおいて発生する銅製錬排ガスは亜硫酸ガス(SO)を含んでいるため、従来、硫酸の原料として硫酸工場に送り、そこで転化工程及び吸収工程により硫酸を製造することが行われている。この銅製錬排ガスは亜硫酸ガス以外に銅等の重金属(鉄よりも重い金属元素)の煙灰やヒュームを含んでおり、その除去のため上記転化工程の前工程のガス精製工程において洗浄水を用いて水洗処理した後、乾燥処理することが行われている。 Since the copper smelting exhaust gas generated in the copper smelting process contains sulfurous acid gas (SO 2 ), it has been conventionally sent to a sulfuric acid factory as a raw material for sulfuric acid, where sulfuric acid is produced by a conversion step and an absorption step. .. In addition to sulfite gas, this copper smelting exhaust gas contains smoke ash and fume of heavy metals such as copper (metal elements heavier than iron), and in order to remove them, wash water was used in the gas refining step before the conversion step. After being washed with water, it is dried.

上記ガス精製工程で使用した洗浄水は、重金属を含む洗浄排水として連続的又は定期的に排出される。この洗浄排水には、上記銅製錬排ガスにSOと共に含まれるSOに由来する硫酸分が含まれている。このため、かかる硫酸分を含む洗浄排水(以降、廃酸と称する)の処理では、これら硫酸分と重金属の処理が必要になる。上記のような廃酸の処理方法として、特許文献1には廃酸に炭酸カルシウムを添加して硫酸分を石膏として除去した後、水硫化ナトリウムを添加して重金属を硫化澱物として除去する技術が開示されている。また、特許文献2には廃酸に2段階で水硫化ナトリウムを添加して重金属を硫化澱物として除去する技術が開示されている。 The washing water used in the gas refining step is continuously or periodically discharged as washing wastewater containing heavy metals. This washing wastewater contains sulfuric acid derived from SO 3 contained in the copper smelting exhaust gas together with SO 2 . Therefore, in the treatment of the washing wastewater containing such sulfuric acid (hereinafter referred to as waste acid), it is necessary to treat these sulfuric acids and heavy metals. As a method for treating waste acid as described above, Patent Document 1 describes a technique in which calcium carbonate is added to waste acid to remove sulfuric acid as gypsum, and then sodium hydrosulfide is added to remove heavy metals as sulfide starch. Is disclosed. Further, Patent Document 2 discloses a technique of adding sodium hydrosulfide to waste acid in two steps to remove heavy metals as sulfide starch.

特開2004-275895号公報Japanese Unexamined Patent Publication No. 2004-275895 特開2015-020103号公報Japanese Unexamined Patent Publication No. 2015-02103

近年、銅製錬工場では夾雑物を多く含む様々な原料を処理することが多くなってきている。これに伴い、上記の硫化澱物には砒素やカドミウム、亜鉛といった銅以外の重金属の占める割合が増える傾向にある。硫化澱物は一般に銅製錬工程に繰り返して処理するため、特定の重金属については系内での循環量が増加することになり、現状の廃酸の処理装置の処理能力を超えることが懸念されている。更に、銅製錬工程に繰り返す際、硫化澱物に随伴して水分が持ち込まれるため、その乾燥に要するコストが上昇するおそれがある。 In recent years, copper smelting factories often process various raw materials containing a large amount of impurities. Along with this, the proportion of heavy metals other than copper such as arsenic, cadmium, and zinc tends to increase in the above-mentioned sulfide starch. Since sulfide starch is generally treated repeatedly in the copper smelting process, the amount of circulation in the system increases for specific heavy metals, and there is concern that it will exceed the treatment capacity of the current waste acid treatment equipment. There is. Further, when the copper smelting process is repeated, water is brought in along with the sulfide starch, so that the cost required for drying the copper smelting step may increase.

本発明は、上記した従来の廃酸の処理方法がかかえる問題点に鑑みてなされたものであり、廃酸に含まれる重金属のうちカドミウムを分離回収することで、製錬工程に繰り返されるカドミウムの量を減らして系内でのカドミウム循環量を低減すると共に、上記繰り返しの際に持ち込まれる水分量を減らして乾燥コストを抑えることが可能な廃酸の処理方法を提供することを目的としている。 The present invention has been made in view of the problems of the above-mentioned conventional waste acid treatment method, and cadmium is repeatedly produced in the smelting process by separating and recovering cadmium from the heavy metals contained in the waste acid. It is an object of the present invention to provide a waste acid treatment method capable of reducing the amount of cadmium circulating in the system and reducing the amount of water brought in during the above repetition to reduce the drying cost.

本発明者らは、上記目的を達成するために検討を重ねた結果、廃酸に対して2回に分けて硫化剤を添加することで第1及び第2硫化澱物をそれぞれ生成すると共に、該第2硫化澱物を生成する硫化反応工程において硫化反応条件を調整することで、該第2硫化澱物のカドミウム品位及び水分を調整し得ることを見出し、本発明を完成するに至った。 As a result of repeated studies to achieve the above object, the present inventors produced first and second sulfurized starches by adding a sulfurizing agent to waste acid in two portions, respectively. It has been found that the cadmium grade and water content of the second sulfurized starch can be adjusted by adjusting the sulfurization reaction conditions in the sulfurization reaction step of producing the second sulfurized starch, and the present invention has been completed.

すなわち、本発明に係る第1の廃酸の処理方法は、銅製錬工程で発生する排ガスの水洗処理の際に排出される重金属としての銅、砒素、カドミウム及び亜鉛並びに硫酸分を含む廃酸に硫化剤を添加して酸化還元電位80mV以上160mV以下(銀-塩化銀電極基準)の条件で該重金属のうち銅及び砒素を選択的に硫化させた後、得られたスラリーから第1清澄液を固液分離することで得た第1硫化澱物を該銅製錬工程に繰り返す第1硫化工程と、前記第1清澄液にカルシウム系中和剤を添加して前記硫酸分から石膏を生成させた後、この石膏を含むスラリーを石膏と石膏終液に固液分離する石膏製造工程と、前記石膏終液に硫化剤を添加して残存する重金属を酸化還元電位-10mV以上+10mV以下(銀-塩化銀電極基準)の条件で硫化させた後、得られたスラリーから第2清澄液を固液分離することでカドミウムを第2硫化澱物として回収する第2硫化工程とを有し、前記第2硫化澱物のカドミウム品位が40質量%を下回る場合は第2硫化工程で前記硫化剤の添加量を増加させ、前記第2硫化澱物のカドミウム品位が50質量%を上回る場合は第2硫化工程で前記硫化剤の添加量を減少させることを特徴としている。 That is, the first waste acid treatment method according to the present invention comprises waste acids containing copper, arsenic, cadmium, zinc and sulfuric acid as heavy metals discharged during the washing treatment of exhaust gas generated in the copper smelting process. After adding a sulfurizing agent and selectively sulfurizing copper and arsenic among the heavy metals under the condition of redox potential of 80 mV or more and 160 mV or less (based on silver-silver chloride electrode), the first clarified solution is obtained from the obtained slurry. After the first sulfurization step in which the first sulfurized starch obtained by solid-liquid separation is repeated in the copper smelting step, and a calcium-based neutralizing agent is added to the first clarified solution to generate gypsum from the sulfuric acid content. , A gypsum manufacturing process in which the slurry containing this gypsum is solid-liquid separated into gypsum and gypsum final solution, and the redox potential of -10 mV or more + 10 mV or less (silver-silver chloride ) by adding a sulfurizing agent to the gypsum final solution. It has a second sulfurization step of recovering cadmium as a second sulfurized starch by solid-liquid separation of the second clear liquid from the obtained slurry after sulfurization under the conditions of the electrode standard) . When the cadmium grade of the disulfide starch is less than 40% by mass, the amount of the sulfurizing agent added is increased in the second sulfurization step, and when the cadmium grade of the second sulfurized starch is more than 50% by mass, the second sulfurization is performed. It is characterized in that the amount of the sulfurizing agent added is reduced in the process.

また、本発明に係る第2の廃酸の処理方法は、銅製錬工程で発生する排ガスの水洗処理の際に排出される重金属としての銅、砒素、カドミウム及び亜鉛並びに硫酸分を含む廃酸に硫化剤を添加して酸化還元電位80mV以上160mV以下(銀-塩化銀電極基準)の条件で該重金属のうち銅及び砒素を選択的に硫化させた後、得られたスラリーから第1清澄液を固液分離することで得た第1硫化澱物を該銅製錬工程に繰り返す第1硫化工程と、前記第1清澄液にカルシウム系中和剤を添加して前記硫酸分から石膏を生成させた後、この石膏を含むスラリーを石膏と石膏終液に固液分離する石膏製造工程と、前記石膏終液に硫化剤を添加して残存する重金属を酸化還元電位-10mV以上+10mV以下(銀-塩化銀電極基準)の条件で硫化させた後、得られたスラリーから第2清澄液を固液分離することでカドミウムを第2硫化澱物として回収する第2硫化工程とを有し、前記第2硫化工程における前記硫化剤の添加量によって前記第2硫化澱物の含水率を調整することを特徴としている。 In addition, the second waste acid treatment method according to the present invention comprises waste acids containing copper, arsenic, cadmium, zinc and sulfuric acid as heavy metals discharged during the washing treatment of exhaust gas generated in the copper smelting process. After adding a sulfurizing agent and selectively sulfurizing copper and arsenic among the heavy metals under the condition of redox potential of 80 mV or more and 160 mV or less (based on silver-silver chloride electrode), the first clarified solution is obtained from the obtained slurry. After the first sulfurization step in which the first sulfurized starch obtained by solid-liquid separation is repeated in the copper smelting step, and a calcium-based neutralizing agent is added to the first clarified solution to generate gypsum from the sulfuric acid content. , A gypsum manufacturing process in which the slurry containing this gypsum is solid-liquid separated into gypsum and gypsum final solution, and the redox potential of -10 mV or more + 10 mV or less (silver-silver chloride ) by adding a sulfurizing agent to the gypsum final solution. It has a second sulfurization step of recovering cadmium as a second sulfurized starch by solid-liquid separation of the second clear liquid from the obtained slurry after sulfurization under the conditions of the electrode standard) . 2. It is characterized in that the water content of the second sulfurized starch is adjusted by the amount of the sulfurizing agent added in the disulfide step.

本発明によれば、廃酸に含まれるカドミウムを第2硫化澱物として系外に排出することができるので、銅製錬工程に繰り返されるカドミウムの量を減らすことができる。 According to the present invention, cadmium contained in waste acid can be discharged to the outside of the system as a second sulfide starch, so that the amount of cadmium repeated in the copper smelting process can be reduced.

本発明に係る廃酸の処理方法の一具体例を示すブロックフロー図である。It is a block flow figure which shows a specific example of the waste acid treatment method which concerns on this invention.

以下、本発明の廃酸の処理方法の一具体例について説明する。図1に示すように、銅製錬工場では原料の銅精鉱を処理して銅を生産する銅製錬工程1において、硫酸の原料となる亜硫酸ガスを含んだ銅製錬排ガスが発生するため、ガス精製工程2において銅製錬排ガスに洗浄水を接触させる水洗処理によって亜硫酸ガスを洗浄した後、硫酸製造工程3に送って硫酸の生産を行っている。 Hereinafter, a specific example of the method for treating waste acid of the present invention will be described. As shown in FIG. 1, in the copper smelting process 1 in which copper concentrate is processed to produce copper in a copper smelting factory, copper smelting exhaust gas containing sulfite gas, which is a raw material for sulfuric acid, is generated, so that gas purification is performed. In step 2, the sulfite gas is washed by a water washing treatment in which the washing water is brought into contact with the copper smelting exhaust gas, and then sent to the sulfuric acid manufacturing step 3 to produce sulfuric acid.

この銅製錬排ガスの水洗処理の際に排出される重金属及び硫酸分を含む廃酸に対して、先ず第1硫化工程4において硫化剤を添加して重金属から硫化澱物を生成させた後、固液分離により該硫化澱物の除去を行う。次に、上記第1硫化工程4で硫化澱物が除去された後の処理液に対して石膏製造工程5においてカルシウム系中和剤を添加して硫酸分を石膏として回収する。 A sulfurizing agent is first added to the waste acid containing heavy metals and sulfuric acid discharged during the washing treatment of the copper smelting exhaust gas to generate sulfurized starch from the heavy metals in the first sulfurization step 4, and then solidified. The sulfide starch is removed by liquid separation. Next, a calcium-based neutralizing agent is added to the treatment liquid after the sulfurized starch is removed in the first sulfurization step 4 in the gypsum production step 5, and the sulfuric acid content is recovered as gypsum.

次に、上記石膏製造工程5で石膏が回収された後の処理液に対して第2硫化工程6において再度硫化剤を添加して残存する重金属から硫化澱物を生成させた後、固液分離により硫化澱物の回収を行う。上記第2硫化工程6で回収した硫化澱物は、有価金属回収工程7で処理して有価金属であるカドミウムや亜鉛を回収し、第2硫化工程6で硫化澱物から分離された処理液は排水処理工程8で処理する。 Next, a sulfurizing agent is added again in the second sulfurization step 6 to the treatment liquid after the gypsum is recovered in the gypsum manufacturing step 5 to generate sulfurized starch from the remaining heavy metals, and then solid-liquid separation is performed. The sulfide starch is recovered by. The sulfide starch recovered in the second sulfurization step 6 is treated in the valuable metal recovery step 7 to recover the valuable metals cadmium and zinc, and the treatment liquid separated from the sulfide starch in the second sulfurization step 6 is It is treated in the wastewater treatment step 8.

上記の第1硫化工程4以降の各工程について、以下、具体的に説明する。第1硫化工程4では、先ず第1硫化反応工程41において廃酸に硫化剤を添加して混合することで、銀-塩化銀電極基準における酸化還元電位(ORP)が約80mV以上160mV以下となる条件で硫化反応を行う。これにより、廃酸中に含まれる銅、砒素を選択的に硫化澱物にすることができる。上記硫化剤には、水硫化ナトリウム(硫化水素ナトリウム)NaHS、硫化水素HS、硫化ナトリウムNaS等の一般的な硫化剤を使用することができる。これらの硫化剤の中では、水硫化ナトリウム及び硫化水素が、コスト面及び石膏製造に適した硫酸濃度を有する石膏始液が得られる点において特に好ましい。 Each step after the first sulfurization step 4 described above will be specifically described below. In the first sulfurization step 4, the redox potential (ORP) in the silver-silver chloride electrode standard is about 80 mV or more and 160 mV or less by first adding a sulfurizing agent to the waste acid and mixing it in the first sulfurization reaction step 41. Perform sulfurization reaction under the conditions. This makes it possible to selectively convert copper and arsenic contained in waste acid into sulfide starch. As the sulfide agent, a general sulfide agent such as sodium hydrosulfide (sodium hydrogen sulfide) NaHS, hydrogen sulfide H 2S, sodium sulfide Na 2 S and the like can be used. Among these sulfurizing agents, sodium hydrosulfide and hydrogen sulfide are particularly preferable in terms of cost and in that a gypsum starting solution having a sulfuric acid concentration suitable for gypsum production can be obtained.

この第1硫化反応工程41の酸化還元電位が80mV未満になると、廃酸中のカドミウムの硫化反応が進み、上記の第1硫化反応工程41で生成される硫化澱物のカドミウム品位が上昇し、結果的に後述する第2硫化反応工程で生成される硫化澱物のカドミウム品位が低下する。逆に酸化還元電位が160mVを超えると、廃酸中に残存する砒素の量が多くなりすぎ、後工程の石膏製造工程5にて生成する石膏の砒素品位が上昇する。 When the redox potential of the first sulfurization reaction step 41 becomes less than 80 mV, the sulfurization reaction of cadmium in the waste acid proceeds, and the cadmium grade of the sulfurized starch produced in the first sulfurization reaction step 41 is improved. As a result, the cadmium grade of the sulfide starch produced in the second sulfurization reaction step described later is lowered. On the contrary, when the redox potential exceeds 160 mV, the amount of arsenic remaining in the waste acid becomes too large, and the arsenic grade of the gypsum produced in the gypsum manufacturing step 5 of the subsequent step increases.

次に第1固液分離工程42において、上記第1硫化反応工程41で得た硫化澱物を含む第1スラリーに対してシックナーなどの固液分離手段で固液分離することによって、硫化澱物に富む第1濃縮物と第1清澄液とを得る。この第1固液分離工程42で得た硫化澱物を含む第1濃縮物には銅が含まれるため、第1脱水工程43において含水率を低減した後、第1硫化澱物として銅製錬工程1に繰り返す。上記の第1脱水工程43では、フィルタープレス、真空式ろ過機、ベルトプレス、遠心分離機等の一般的な脱水装置を使用することで良好に脱水することができる。 Next, in the first solid-liquid separation step 42, the sulfurized starch is separated into the first slurry containing the sulfurized starch obtained in the first sulfurization reaction step 41 by a solid-liquid separation means such as a thickener. A rich first concentrate and a first clarified solution are obtained. Since the first concentrate containing the sulfide starch obtained in the first solid-liquid separation step 42 contains copper, the copper smelting step as the first sulfide starch after reducing the water content in the first dehydration step 43. Repeat to 1. In the first dehydration step 43 described above, good dehydration can be achieved by using a general dehydrator such as a filter press, a vacuum filter, a belt press, and a centrifuge.

一方、上記第1固液分離工程43で得た第1清澄液は、石膏始液として石膏製造工程5で処理される。石膏製造工程5では例えば中和槽に受け入れた石膏始液にカルシウム系中和剤を添加することで中和反応を行い、これにより石膏始液に含まれる硫酸分を石膏として析出させることができる。この石膏を含むスラリーをフィルタープレス、遠心分離機などの固液分離手段で固液分離することで石膏を回収することができる。上記のカルシウム系中和剤としては、炭酸カルシウム(石灰石)、水酸化カルシウム、酸化カルシウムなどを粉砕したものを用いるのがコスト的な観点から好ましい。 On the other hand, the first clarified liquid obtained in the first solid-liquid separation step 43 is treated as a gypsum starting liquid in the gypsum manufacturing step 5. In the gypsum manufacturing step 5, for example, a neutralization reaction is carried out by adding a calcium-based neutralizing agent to the gypsum starting solution received in the neutralization tank, whereby the sulfuric acid contained in the gypsum starting solution can be precipitated as gypsum. .. The gypsum can be recovered by solid-liquid separating the slurry containing the gypsum with a solid-liquid separating means such as a filter press or a centrifuge. As the above-mentioned calcium-based neutralizing agent, it is preferable to use pulverized calcium carbonate (limestone), calcium hydroxide, calcium oxide or the like from the viewpoint of cost.

上記の石膏製造工程5の固液分離により硫酸分が除かれた石膏終液は、次に第2硫化工程6で処理される。この第2硫化工程6では、第2硫化反応工程61、第2固液分離工程62及び第2脱水工程63の順に石膏終液が処理される。具体的には、第2硫化反応工程61において石膏終液に対して硫化剤として水硫化ナトリウム又は硫化水素を添加して混合し、銀-塩化銀電極基準における酸化還元電位が約-10mV以上+10mV以下となる条件で、より好ましくは0mV以上+10mV以下となる条件で硫化反応を行って硫化澱物を含む第2スラリーを得る。 The gypsum final liquid from which the sulfuric acid content has been removed by the solid-liquid separation in the gypsum manufacturing step 5 is then treated in the second sulfurization step 6. In the second sulfurization step 6, the gypsum final solution is treated in the order of the second sulfurization reaction step 61, the second solid-liquid separation step 62, and the second dehydration step 63. Specifically, in the second sulfurization reaction step 61, sodium hydroxide or hydrogen sulfide is added and mixed as a sulfurizing agent with the final solution of gypsum, and the redox potential based on the silver-silver chloride electrode is about -10 mV or more + 10 mV. The sulfurization reaction is carried out under the following conditions, more preferably 0 mV or more and +10 mV or less to obtain a second slurry containing a sulfurized starch.

上記の酸化還元電位が-10mV未満では、上記の第2硫化反応工程61で生成される硫化澱物中の亜鉛品位が増加する可能性があり、その結果、該硫化澱物中のカドミウム品位が低下するので好ましくない。特に上記の酸化還元電位が0mV未満では、硫化剤の添加量が多くなるのでコストが増加する。逆にこの酸化還元電位が+10mVを超えると、石膏終液中のカドミウムが硫化されにくくなり、結果的に一部のカドミウムが除去されずに第2清澄液に含まれ、後工程の排水処理工程8の処理負荷が増すので好ましくない。すなわち、硫化剤の添加量により硫化澱物のカドミウム品位を調整することができる。本発明では、このカドミウム品位の調整において、後述する第2硫化澱物のカドミウム品位が40質量%を下回る場合は第2硫化工程6で硫化剤の添加量を増加させ、逆に第2硫化澱物のカドミウム品位が50質量%を上回る場合は第2硫化工程6で硫化剤の添加量を減少させている。なお、本発明でいうカドミウム品位及び亜鉛品位は、乾燥状態における質量を100%とおいた乾物基準の質量である。 When the redox potential is less than -10 mV, the zinc grade in the sulfurized starch produced in the second sulfurization reaction step 61 may be increased, and as a result, the cadmium grade in the sulfurized starch may be increased. It is not preferable because it decreases. In particular, when the redox potential is less than 0 mV, the amount of the sulfurizing agent added is large, which increases the cost. On the contrary, when this redox potential exceeds +10 mV, the cadmium in the final gypsum solution is less likely to be sulfided, and as a result, some of the cadmium is not removed and is contained in the second clarified solution, and the wastewater treatment step in the subsequent step. It is not preferable because the processing load of 8 increases. That is, the cadmium grade of the sulfurized starch can be adjusted by the amount of the sulfurizing agent added. In the present invention, in the adjustment of the cadmium grade, when the cadmium grade of the second sulfurized starch, which will be described later, is less than 40% by mass, the amount of the sulfurizing agent added is increased in the second sulfurizing step 6, and conversely, the second sulfurized starch is added. When the cadmium grade of the product exceeds 50% by mass, the amount of the sulfurizing agent added is reduced in the second sulfurizing step 6. The cadmium grade and zinc grade referred to in the present invention are masses based on dry matter, with the mass in a dry state being 100%.

上記の第2スラリーは、次に第2固液分離工程62において固液分離することで、硫化澱物に富む第2濃縮物と第2清澄液とを得る。この第2濃縮物は、第2脱水工程63において含水率を低減した後、第2硫化澱物として回収する。一方、上記の第2固液分離工程62で得た第2清澄液は、排水処理工程8において活性汚泥などの一般的な水処理方法で処理する。なお、上記の第2固液分離工程62及び第2脱水工程63では、それぞれ前述した第1固液分離工程42及び第1脱水工程43と同様の固液分離手段を使用することができる。 The above-mentioned second slurry is then solid-liquid separated in the second solid-liquid separation step 62 to obtain a second concentrate and a second clarified liquid rich in sulfide starch. This second concentrate is recovered as a second sulfide starch after reducing the water content in the second dehydration step 63. On the other hand, the second clarified liquid obtained in the second solid-liquid separation step 62 is treated by a general water treatment method such as activated sludge in the wastewater treatment step 8. In the second solid-liquid separation step 62 and the second dehydration step 63, the same solid-liquid separation means as those in the first solid-liquid separation step 42 and the first dehydration step 43 described above can be used, respectively.

上記の第2脱水工程63で得た第2硫化澱物は有価金属であるカドミウムを含んでいるため、有価金属回収工程7において公知の精製法を用いてカドミウムの回収を行うことができる。この有価金属回収工程7では、第2硫化澱物のカドミウム品位が高く且つ水分が低い程、精製コストを抑えることができる。このため、本発明の一具体例の廃酸の処理方法では、前述したように上記の第2硫化工程6の第2硫化反応工程62において酸化還元電位の調整を行っている。すなわち、第2硫化工程6の始液にあたる石膏終液には銅、砒素、及び硫酸分はほとんど含まれておらず、カドミウム及び亜鉛が残存している状態にあるため、第2硫化反応工程62では硫化反応条件のうち酸化還元電位を適宜調整することにより、第2硫化澱物のカドミウム品位を調整することができる。 Since the second sulfide starch obtained in the second dehydration step 63 above contains cadmium, which is a valuable metal, cadmium can be recovered by using a known purification method in the valuable metal recovery step 7. In this valuable metal recovery step 7, the higher the cadmium grade and the lower the water content of the second sulfide starch, the lower the purification cost can be. Therefore, in the waste acid treatment method of one specific example of the present invention, the redox potential is adjusted in the second sulfurization reaction step 62 of the second sulfurization step 6 as described above. That is, since the gypsum final solution, which is the initial solution of the second sulfurization step 6, contains almost no copper, arsenic, and sulfuric acid, and cadmium and zinc remain, the second sulfurization reaction step 62. Then, the cadmium grade of the second sulfurized starch can be adjusted by appropriately adjusting the redox potential among the sulfurization reaction conditions.

その際、第2硫化澱物はカドミウム品位が高くなれば当該第2硫化澱物の水分の割合が低くなるという相関関係がある。この相関関係は、第2硫化澱物においてカドミウムの脱水性が他の硫化物より高いことに起因すると考えている。この相関関係を利用して、第2硫化澱物のカドミウム品位を高めに調整することにより結果として第2硫化澱物の含水率を低めに調整することが可能になる。これは、硫化剤の添加量によって第2硫化澱物の含水率を調整することを意味している。具体的には、前述したように第2硫化工程6において硫化剤の添加量の調整により第2硫化澱物のカドミウム品位を40~50質量%(乾物基準)程度の比較的高品位にすることで、フィルタープレスなどの圧搾法による固液分離で得た第2硫化澱物の含水率を30~40質量%(湿潤基準)程度の比較的低めな値に間接的に調整することができる。 At that time, the second sulfide starch has a correlation that the higher the cadmium grade, the lower the water content of the second sulfide starch. This correlation is believed to be due to the higher dehydration of cadmium in the second sulfide starch than in other sulfides. By utilizing this correlation, the cadmium grade of the second sulfide starch can be adjusted to be higher, and as a result, the water content of the second sulfide starch can be adjusted to be lower. This means that the water content of the second sulfurized starch is adjusted by the amount of the sulfurizing agent added. Specifically, as described above, in the second sulfurization step 6, the cadmium grade of the second sulfurized starch is adjusted to a relatively high grade of about 40 to 50% by mass (dry matter standard) by adjusting the addition amount of the sulfurizing agent. Therefore, the water content of the second sulfide starch obtained by solid-liquid separation by a pressing method such as a filter press can be indirectly adjusted to a relatively low value of about 30 to 40% by mass (wetting standard).

銅製錬プラントから排出された重金属及び硫酸を含むpH0の廃酸を、図1に示すフローに沿って処理した。具体的には、該廃酸を300L/分の流量で反応槽に供給し、ここに濃度25質量%の水硫化ソーダを酸化還元電位が150mV(銀-塩化銀電極基準)となるように添加することにより第1硫化澱物を含む第1スラリーを得た(第1硫化反応工程41)。この第1スラリーをシックナーに導入して固液分離し、上部から第1清澄液をオーバーフローさせながら沈降濃縮した第1濃縮物を底部から抜き出した(第1固液分離工程42)。この第1濃縮物をフィルタープレスで固液分離することにより第1硫化澱物を回収した(第1脱水工程43)。上記の第1清澄液に炭酸カルシウムを添加してpH2.3に調整し、石膏を析出させた(石膏製造工程5)。この石膏を含むスラリーを石膏と石膏終液とに固液分離した。 Waste acid of pH 0 containing heavy metals and sulfuric acid discharged from the copper smelting plant was treated according to the flow shown in FIG. Specifically, the waste acid is supplied to the reaction vessel at a flow rate of 300 L / min, and sodium sulfide having a concentration of 25% by mass is added thereto so that the redox potential is 150 mV (based on the silver-silver chloride electrode). The first slurry containing the first sulfurized starch was obtained (first sulfurization reaction step 41). This first slurry was introduced into a thickener for solid-liquid separation, and the first concentrate that had been settled and concentrated while overflowing the first clear liquid was extracted from the bottom (first solid-liquid separation step 42). The first sulfide starch was recovered by solid-liquid separation of the first concentrate with a filter press (first dehydration step 43). Calcium carbonate was added to the above-mentioned first clarification solution to adjust the pH to 2.3, and gypsum was precipitated (gypsum manufacturing step 5). The slurry containing this gypsum was solid-liquid separated into gypsum and gypsum final solution.

上記の石膏終液を反応槽に受け入れ、ここに水硫化ソーダを添加することで第2硫化澱物を含む第2スラリーを得た(第2硫化反応工程61)。第2スラリーの酸化還元電位は+20~+30mV(銀-塩化銀電極基準)であった。この第2スラリーをシックナーに導入して固液分離し、上部から第2清澄液をオーバーフローさせながら沈降濃縮した第2濃縮物を底部から抜き出した(第2固液分離工程62)。この第2濃縮物をフィルタープレスで固液分離することで試料1の第2硫化澱物を回収した(第2脱水工程63)。 The above gypsum final solution was received in a reaction tank, and sodium hydrosulfide was added thereto to obtain a second slurry containing a second sulfurized starch (second sulfurized reaction step 61). The redox potential of the second slurry was +20 to +30 mV (based on the silver-silver chloride electrode). This second slurry was introduced into a thickener for solid-liquid separation, and the second concentrate that had been settled and concentrated while overflowing the second clear liquid was extracted from the bottom (second solid-liquid separation step 62). The second sulfide starch of Sample 1 was recovered by solid-liquid separation of this second concentrate with a filter press (second dehydration step 63).

更に、水硫化ソーダを増量することにより、第2硫化反応工程61の酸化還元電位を低下させた以外は上記試料1の場合と同様にして試料2~4の第2硫化澱物を回収した。水硫化ソーダを増量するにつれ、試料2、3、4と酸化還元電位は徐々に低下した。なお、第2スラリーの酸化還元電位を+10mV(銀-塩化銀電極基準)で安定させたときに得られたのが試料2である。 Further, the second sulfurized starches of Samples 2 to 4 were recovered in the same manner as in the case of Sample 1 except that the redox potential of the second sulfurization reaction step 61 was lowered by increasing the amount of sodium hydrosulfide. As the amount of sodium hydrogen sulfide was increased, the redox potentials of Samples 2, 3 and 4 gradually decreased. Sample 2 was obtained when the redox potential of the second slurry was stabilized at +10 mV (based on the silver-silver chloride electrode).

続いて、試料4よりも水硫化ソーダの添加を控えめにして、第2スラリーの酸化還元電位を0mV(銀-塩化銀電極基準)で安定させた以外は上記試料4の場合と同様にして試料5の第2硫化澱物を回収した。これら試料1~5の第2硫化澱物のカドミウム品位及び水分をそれぞれICP発光分光法及び乾燥減量法に基づいて測定した。その結果を下記表1に示す。 Subsequently, the sample was the same as in the case of sample 4 except that the addition of sodium hydrosulfide was less than that of sample 4 and the redox potential of the second slurry was stabilized at 0 mV (based on the silver-silver chloride electrode). The second sulfide starch of No. 5 was recovered. The cadmium grade and water content of the second sulfide starch of these samples 1 to 5 were measured based on ICP emission spectroscopy and dry weight loss method, respectively. The results are shown in Table 1 below.

Figure 0007031207000001
Figure 0007031207000001

上記表1から分かるように、第二硫化反応工程において、硫化剤の添加量を増やして酸化還元電位を低下させることによりカドミウム品位を高めると共に含水率を低下させることができ、逆に硫化剤の添加量を減らして酸化還元電位を上昇させることによりカドミウム品位を低下させると共に含水率を高めることができる。すなわち、第2硫化反応工程において硫化剤の添加量を調整することにより、第2硫化澱物のカドミウム品位及び水分を所望の範囲内に間接的に調整できること分かる。また、第2硫化澱物のカドミウム品位を40~50質量%程度にすることで、その含水率を30~40質量%程度に抑え得ることが分かる。 As can be seen from Table 1 above, in the second sulfurization reaction step, by increasing the amount of the sulfurizing agent added to lower the redox potential, the cadmium grade can be improved and the water content can be lowered, and conversely, the sulfurizing agent can be used. By reducing the amount added and increasing the redox potential, the cadmium grade can be lowered and the water content can be increased. That is, it can be seen that the cadmium grade and water content of the second sulfurized starch can be indirectly adjusted within a desired range by adjusting the amount of the sulfurizing agent added in the second sulfurization reaction step. Further, it can be seen that the water content can be suppressed to about 30 to 40% by mass by setting the cadmium grade of the second sulfide starch to about 40 to 50% by mass.

1 銅製錬工程
2 ガス精製工程
3 硫酸製造工程
4 第1硫化工程
5 石膏製造工程
6 第2硫化工程
7 有価金属回収工程
8 排水処理工程
41 第1硫化反応工程
42 第1固液分離工程
43 第1脱水工程
61 第2硫化反応工程
62 第2固液分離工程
63 第2脱水工程
1 Copper smelting process 2 Gas refining process 3 Sulfuric acid production process 4 1st sulphurization process 5 Gypsum production process 6 2nd sulphurization process 7 Valuable metal recovery process 8 Wastewater treatment process 41 1st sulphurization reaction process 42 1st solid-liquid separation process 43rd 1 Dewatering step 61 Second sulfide reaction step 62 Second solid-liquid separation step 63 Second dewatering step

Claims (3)

銅製錬工程で発生する排ガスの水洗処理の際に排出される重金属としての銅、砒素、カドミウム及び亜鉛並びに硫酸分を含む廃酸に硫化剤を添加して酸化還元電位80mV以上160mV以下(銀-塩化銀電極基準)の条件で該重金属のうち銅及び砒素を選択的に硫化させた後、得られたスラリーから第1清澄液を固液分離することで得た第1硫化澱物を該銅製錬工程に繰り返す第1硫化工程と、前記第1清澄液にカルシウム系中和剤を添加して前記硫酸分から石膏を生成させた後、この石膏を含むスラリーを石膏と石膏終液に固液分離する石膏製造工程と、前記石膏終液に硫化剤を添加して残存する重金属を酸化還元電位-10mV以上+10mV以下(銀-塩化銀電極基準)の条件で硫化させた後、得られたスラリーから第2清澄液を固液分離することでカドミウムを第2硫化澱物として回収する第2硫化工程とを有し、
前記第2硫化澱物のカドミウム品位が40質量%を下回る場合は第2硫化工程で前記硫化剤の添加量を増加させ、前記第2硫化澱物のカドミウム品位が50質量%を上回る場合は第2硫化工程で前記硫化剤の添加量を減少させることを特徴とする廃酸の処理方法。
Redox potential 80 mV or more and 160 mV or less ( silver- The first sulfurized starch obtained by selectively sulfurizing copper and arsenic among the heavy metals under the conditions of silver chloride electrode standard) and then solid-liquid separating the first clarification solution from the obtained slurry is made of the copper. After the first sulfurization step repeated in the smelting step and the calcium-based neutralizing agent being added to the first clarification solution to generate gypsum from the sulfuric acid, the slurry containing the gypsum is solid-liquid separated into gypsum and gypsum final solution. From the slurry obtained after sulfurizing the remaining heavy metals by adding a sulfurizing agent to the gypsum final solution under the conditions of redox potential of -10 mV or more and +10 mV or less (based on silver-silver chloride electrode). It has a second sulfurization step of recovering cadmium as a second sulfurized starch by solid-liquid separation of the second clear liquid .
When the cadmium grade of the second sulfurized starch is less than 40% by mass, the amount of the sulfurizing agent added is increased in the second sulfurizing step, and when the cadmium grade of the second sulfurized starch exceeds 50% by mass, the second sulfurizing agent is added. 2. A method for treating waste acid, which comprises reducing the amount of the sulfurizing agent added in the sulfurization step.
銅製錬工程で発生する排ガスの水洗処理の際に排出される重金属としての銅、砒素、カドミウム及び亜鉛並びに硫酸分を含む廃酸に硫化剤を添加して酸化還元電位80mV以上160mV以下(銀-塩化銀電極基準)の条件で該重金属のうち銅及び砒素を選択的に硫化させた後、得られたスラリーから第1清澄液を固液分離することで得た第1硫化澱物を該銅製錬工程に繰り返す第1硫化工程と、前記第1清澄液にカルシウム系中和剤を添加して前記硫酸分から石膏を生成させた後、この石膏を含むスラリーを石膏と石膏終液に固液分離する石膏製造工程と、前記石膏終液に硫化剤を添加して残存する重金属を酸化還元電位-10mV以上+10mV以下(銀-塩化銀電極基準)の条件で硫化させた後、得られたスラリーから第2清澄液を固液分離することでカドミウムを第2硫化澱物として回収する第2硫化工程とを有し、
前記第2硫化工程における前記硫化剤の添加量によって前記第2硫化澱物の含水率を調整することを特徴とする廃酸の処理方法。
Redox potential 80 mV or more and 160 mV or less ( silver- The first sulfurized starch obtained by selectively sulfurizing copper and arsenic among the heavy metals under the conditions of silver chloride electrode standard) and then solid-liquid separating the first clarification solution from the obtained slurry is made of the copper. After the first sulfurization step repeated in the smelting step and the calcium-based neutralizing agent being added to the first clarification solution to generate gypsum from the sulfuric acid, the slurry containing the gypsum is solid-liquid separated into gypsum and gypsum final solution. From the slurry obtained after sulfurizing the remaining heavy metals by adding a sulfurizing agent to the gypsum final solution under the conditions of redox potential of -10 mV or more and +10 mV or less (based on silver-silver chloride electrode). It has a second sulfurization step of recovering cadmium as a second sulfurized starch by solid-liquid separation of the second clear liquid .
A method for treating waste acid, which comprises adjusting the water content of the second sulfurized starch according to the amount of the sulfurizing agent added in the second sulfurizing step.
前記第2硫化澱物は、カドミウム品位が40~50質量%であって且つ含水率が30~40質量%であることを特徴とする、請求項1又は2に記載の廃酸の処理方法。 The method for treating waste acid according to claim 1 or 2 , wherein the second sulfide starch has a cadmium grade of 40 to 50% by mass and a water content of 30 to 40% by mass.
JP2017195142A 2017-10-05 2017-10-05 Treatment method of waste acid generated in copper smelting Active JP7031207B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017195142A JP7031207B2 (en) 2017-10-05 2017-10-05 Treatment method of waste acid generated in copper smelting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017195142A JP7031207B2 (en) 2017-10-05 2017-10-05 Treatment method of waste acid generated in copper smelting

Publications (2)

Publication Number Publication Date
JP2019063781A JP2019063781A (en) 2019-04-25
JP7031207B2 true JP7031207B2 (en) 2022-03-08

Family

ID=66338704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017195142A Active JP7031207B2 (en) 2017-10-05 2017-10-05 Treatment method of waste acid generated in copper smelting

Country Status (1)

Country Link
JP (1) JP7031207B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003137545A (en) 2001-10-25 2003-05-14 Sumitomo Metal Mining Co Ltd Method for manufacturing waste acid gypsum
JP2005154196A (en) 2003-11-26 2005-06-16 Sumitomo Metal Mining Co Ltd Method for producing waste acid gypsum
CN101234826A (en) 2007-08-29 2008-08-06 大冶有色金属公司 Sulfuration recovery processing method and device for high-acidity high-arsenic high-cadmium waste water
JP2011026687A (en) 2009-07-29 2011-02-10 Pan Pacific Copper Co Ltd Method for treating copper converter dust
JP2015020103A (en) 2013-07-18 2015-02-02 住友金属鉱山株式会社 Method for removing heavy metal
JP2015182052A (en) 2014-03-26 2015-10-22 住友金属鉱山株式会社 Method of treating waste acid generated in copper smelting

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4432880A (en) * 1981-12-10 1984-02-21 Richard S. Talbot And Associates Process for the removal of heavy metals from aqueous solution

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003137545A (en) 2001-10-25 2003-05-14 Sumitomo Metal Mining Co Ltd Method for manufacturing waste acid gypsum
JP2005154196A (en) 2003-11-26 2005-06-16 Sumitomo Metal Mining Co Ltd Method for producing waste acid gypsum
CN101234826A (en) 2007-08-29 2008-08-06 大冶有色金属公司 Sulfuration recovery processing method and device for high-acidity high-arsenic high-cadmium waste water
JP2011026687A (en) 2009-07-29 2011-02-10 Pan Pacific Copper Co Ltd Method for treating copper converter dust
JP2015020103A (en) 2013-07-18 2015-02-02 住友金属鉱山株式会社 Method for removing heavy metal
JP2015182052A (en) 2014-03-26 2015-10-22 住友金属鉱山株式会社 Method of treating waste acid generated in copper smelting

Also Published As

Publication number Publication date
JP2019063781A (en) 2019-04-25

Similar Documents

Publication Publication Date Title
JP6743491B2 (en) Waste acid treatment method
JP7073759B2 (en) Treatment method of waste acid generated in copper smelting
JP5138737B2 (en) Method for producing waste acid gypsum
JP6364716B2 (en) Heavy metal removal method
KR102556133B1 (en) Wastewater Treatment Method
BG62180B1 (en) Chloride assisted hydrometallurgical extraction of nickel and cobalt from sulphide ores
JP6206287B2 (en) Treatment method of waste acid generated in copper smelting
JP7016463B2 (en) How to collect tellurium
CN107673374A (en) Steel mill sinters flue dust and desulfurization waste liquor method of comprehensive utilization
JP2005511891A (en) Treatment method for molybdenum concentrate
JP7031207B2 (en) Treatment method of waste acid generated in copper smelting
JP3945216B2 (en) Waste acid gypsum manufacturing method
JP6962017B2 (en) Waste acid treatment method
KR102543786B1 (en) Wastewater Treatment Method
JP6233177B2 (en) Method for producing rhenium sulfide
JP4239801B2 (en) Method for producing waste acid gypsum
JP6742596B2 (en) High-quality gypsum manufacturing method
JP6724433B2 (en) Wastewater treatment method
JP3549560B2 (en) Method for recovering valuable metals and calcium fluoride from waste solution of pickling process
JP6842041B2 (en) How to recover high-purity rhenium sulfide
JP7102876B2 (en) Fluorine removal method
EA005523B1 (en) A method for the precipitation of silica in connection with zinc ore leaching
WO2005092528A1 (en) Method for treatment of fly ash using sulfur dioxide
JP3937273B2 (en) Method for treating slurry containing colloidal silica
JP2024060408A (en) Silver powder manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200717

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210511

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220207

R150 Certificate of patent or registration of utility model

Ref document number: 7031207

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150