JP6842041B2 - How to recover high-purity rhenium sulfide - Google Patents

How to recover high-purity rhenium sulfide Download PDF

Info

Publication number
JP6842041B2
JP6842041B2 JP2017058863A JP2017058863A JP6842041B2 JP 6842041 B2 JP6842041 B2 JP 6842041B2 JP 2017058863 A JP2017058863 A JP 2017058863A JP 2017058863 A JP2017058863 A JP 2017058863A JP 6842041 B2 JP6842041 B2 JP 6842041B2
Authority
JP
Japan
Prior art keywords
rhenium
sulfide
slurry
renium
washing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017058863A
Other languages
Japanese (ja)
Other versions
JP2018162479A (en
Inventor
泰輔 鶴見
泰輔 鶴見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2017058863A priority Critical patent/JP6842041B2/en
Publication of JP2018162479A publication Critical patent/JP2018162479A/en
Application granted granted Critical
Publication of JP6842041B2 publication Critical patent/JP6842041B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Treating Waste Gases (AREA)

Description

本発明は、非鉄金属製錬工程で回収されるレニウム、カドミウム、ヒ素などを含む硫化物から純度の高い硫化レニウムを回収する方法に関するものである。 The present invention relates to a method for recovering high-purity rhenium sulfide from a sulfide containing rhenium, cadmium, arsenic, etc. recovered in a non-ferrous metal smelting process.

レニウムは特殊合金の添加元素や触媒などに利用される希少金属であり、天然には主としてモリブデンの原料となる輝水鉛鉱(Molybdenite、MoS)の中に含まれている。モリブデンの製錬工程では、モリブデンを可溶性化するために輝水鉛鉱の酸化焙焼が行われる。この酸化焙焼の際、輝水鉛鉱に含まれるレニウムは、揮発性酸化物Reとして輝水鉛鉱から分離され、スクラバー等の洗浄工程で回収された後、精製される。 Rhenium is a rare metal used as an additive element for special alloys and catalysts, and is naturally contained in molybdenite (MoS 2), which is mainly a raw material for molybdenum. In the molybdenum smelting process, molybdenite is oxidatively roasted in order to make molybdenum soluble. During this oxidative roasting, rhenium contained in molybdenite is separated from molybdenite as volatile oxide Re 2 O 7 , recovered in a washing step of scrubber and the like, and then refined.

また、輝水鉛鉱は例えば黄銅鉱(Chalcopyrite、CuFeS)などの銅鉱物と共存することが知られているが、これら輝水鉛鉱と黄銅鉱とは浮遊選鉱などの一般的な方法では分離するのは困難である。そのため、浮遊選鉱の後段に位置する溶鉱炉などの炉を用いて乾式製錬により黄銅鉱から銅を得る場合は、輝水鉛鉱も同時に炉に装入されてしまう。その結果、炉から排出される主に亜硫酸ガスからなる排ガスには揮発したレニウムが混入する。 Molybdenite is known to coexist with copper minerals such as chalcopyrite (CuFeS 2 ), but these molybdenite and chalcopyrite are separated by a general method such as flotation. Is difficult. Therefore, when copper is obtained from chalcopyrite by pyrometallurgy using a furnace such as a blast furnace located after the flotation, molybdenite is also charged into the furnace at the same time. As a result, volatilized rhenium is mixed in the exhaust gas mainly composed of sulfurous acid gas discharged from the furnace.

硫酸製造プラントに原料ガスとして送られるこの排ガスには、上記レニウムのほか、銅鉱石に含まれるヒ素やカドミウム、亜鉛などが固体状または液体状の微粒子(フュームとも称される)の形で浮遊している。これら不純物を除去するため、排ガスは硫酸製造工程の前処理としてスクラバー等による洗浄処理が施される。排ガスに含まれるレニウムもこの洗浄処理で分離されるため、上記した多くの種類の元素からレニウムだけを選択的に回収することが必要となる。 In addition to the above-mentioned renium, arsenic, cadmium, zinc, etc. contained in copper ore are suspended in the form of solid or liquid fine particles (also called fumes) in this exhaust gas sent to the sulfuric acid production plant as a raw material gas. ing. In order to remove these impurities, the exhaust gas is cleaned with a scrubber or the like as a pretreatment for the sulfuric acid production process. Since rhenium contained in the exhaust gas is also separated by this cleaning treatment, it is necessary to selectively recover only rhenium from the above-mentioned many kinds of elements.

レニウムを選択的に回収する方法の一つとして、特許文献1には亜硫酸ガスを含んだ排ガスを硫化処理して得られるレニウムとヒ素とを少なくとも含む硫化物に対して酸化浸出を行い、得られた浸出液をアルカリで中和することで不純物であるヒ素を安定な形態で分離除去してヒ素品位の低い硫化レニウムを得る方法が開示されている。 As one of the methods for selectively recovering rhenium, Patent Document 1 describes oxidative leaching of sulfide containing at least rhenium and arsenic obtained by sulfurizing an exhaust gas containing sulfurous acid gas. A method has been disclosed in which arsenic, which is an impurity, is separated and removed in a stable form by neutralizing the leachate with alkali to obtain rhenium sulfide having a low arsenic grade.

具体的には、非鉄金属製錬工場の熔錬工程から排出される亜硫酸ガスを含んだ排ガスを洗浄工程において水洗し、この洗浄工程から排出される、レニウム、ヒ素、カドミウムなどの様々な不純物元素を含んだ洗浄排液を硫化処理してこれら不純物元素を硫化澱物として回収する。そして、この硫化澱物に対して下記に示す浸出工程、中和浄液工程、及びレニウム回収工程で処理を行ってレニウムを硫化レニウムとして回収するものである。 Specifically, the exhaust gas containing sulfurous acid gas discharged from the smelting process of a non-ferrous metal smelting factory is washed with water in the cleaning process, and various impurity elements such as renium, arsenic, and cadmium discharged from this cleaning process are washed. The washing effluent containing the above is smelted to recover these impurity elements as sulfide starch. Then, the sulfide starch is treated in the leaching step, the neutralizing liquid purification step, and the rhenium recovery step shown below to recover rhenium as rhenium sulfide.

(浸出工程)
浸出工程では、硫化澱物に対して硫酸を主成分とする液体を加えてレパルプする。レパルプにより得たスラリーに高温の空気を吹き込んで酸化浸出を行う。これによりレニウムとその他の様々な元素の一部を含んだpHがおよそ0の浸出液が得られる。同時に、この酸化浸出では浸出されなかった元素が濃縮された浸出残渣が得られる。浸出残渣は、澱物処理工程に送られ、そこで残渣と廃液とに分けられる。分けた残渣は熔錬工程に繰り返され、廃液は排水処理工程で処理される。
(Leaching process)
In the leaching step, a liquid containing sulfuric acid as a main component is added to the sulfide starch to repulp. Oxidative leaching is performed by blowing high-temperature air into the slurry obtained by repulp. This gives a leachate with a pH of approximately 0 containing rhenium and some of the other various elements. At the same time, an leaching residue is obtained in which the elements that were not leached by this oxidative leaching are concentrated. The leaching residue is sent to a starch treatment step where it is separated into a residue and a effluent. The separated residue is repeated in the melting step, and the waste liquid is treated in the wastewater treatment step.

(中和浄液工程)
中和浄液工程では、上記浸出液に中和剤として例えば苛性ソーダを添加し、およそpH7で中和処理する。これを濾過することにより、レニウムが濃縮された中和濾液と、レニウム以外の元素を含む中和澱物が得られる。この中和澱物は熔錬工程に繰り返される。
(Neutralization purification process)
In the neutralization purification step, for example, caustic soda is added as a neutralizing agent to the leachate, and the neutralization treatment is performed at about pH 7. By filtering this, a neutralized filtrate containing concentrated rhenium and a neutralized starch containing an element other than rhenium can be obtained. This neutralized starch is repeated in the melting process.

(レニウム回収工程)
レニウム回収工程では、上記中和濾液に硫酸を添加してpHをほぼ0に調整すると共に、水硫化ナトリウムを添加する。これら中和濾液の液張り、pH調整、及び水硫化ソーダ添加からなる硫化処理と称する一連の操作により中和濾液中のレニウムが硫化レニウムとして析出する。この硫化レニウムを含むスラリーを固液分離して硫化レニウムが回収される。スラリーから硫化レニウムが除かれた後の溶液は廃液として排水処理工程で処理される。
(Rhenium recovery process)
In the rhenium recovery step, sulfuric acid is added to the neutralization filtrate to adjust the pH to almost 0, and sodium hydrosulfide is added. Rhenium in the neutralization filtrate is precipitated as rhenium sulfide by a series of operations called sulfurization treatment consisting of liquid filling of the neutralization filtrate, pH adjustment, and addition of sodium hydrosulfide. The slurry containing rhenium sulfide is solid-liquid separated to recover rhenium sulfide. After the rhenium sulfide is removed from the slurry, the solution is treated as a waste liquid in the wastewater treatment step.

また、特許文献2には、上記と同様の浸出工程、中和洗浄工程、及びレニウム回収工程からなる方法によりヒ素品位の低い硫化レニウムを製造する方法において、該硫化レニウム中のカドミウム品位も同時に低く抑える方法が開示されている。具体的には、この方法は上記中和浄液工程において、苛性ソーダ添加後にカルシウム系中和剤を添加し、より高いpHで中和するものである。 Further, in Patent Document 2, in a method for producing rhenium sulfide having a low arsenic grade by a method consisting of a leaching step, a neutralizing cleaning step, and a rhenium recovery step similar to the above, the cadmium grade in the rhenium sulfide is also low at the same time. A method of suppressing it is disclosed. Specifically, in this method, in the neutralization purification step, a calcium-based neutralizer is added after the addition of caustic soda to neutralize at a higher pH.

国際公開第2013/129130号International Publication No. 2013/129130 特開2015−212401号公報Japanese Unexamined Patent Publication No. 2015-212401

上記文献1及び2の方法によりヒ素品位の低い硫化レニウムを回収することができるものの、いずれの方法においても、中和浄液工程において硫酸を含む浸出液を苛性ソーダで中和する際、硫酸ナトリウムが多量に生成して後工程のレニウム回収工程において硫化レニウムに混入し、そのまま硫化レニウム製品中に残存するので問題になることがあった。そこで、硫化レニウム中の硫酸ナトリウムの含有率を20質量%以下に抑えることが求められていた。 Although rhenium sulfide having a low arsenic grade can be recovered by the methods of Documents 1 and 2 above, in any of the methods, when the leachate containing sulfuric acid is neutralized with caustic soda in the neutralization purification step, a large amount of sodium sulfate is contained. In the rhenium recovery step of the subsequent step, it is mixed with rhenium sulfide and remains in the rhenium sulfide product as it is, which may cause a problem. Therefore, it has been required to suppress the content of sodium sulfate in rhenium sulfide to 20% by mass or less.

硫酸ナトリウム含有率を上記の通り低く抑える方法として、レニウム回収工程における硫酸および水硫化ソーダの添加量を規定量より低くすることが考えられる。この方法は、硫化レニウムへの硫酸ナトリウムの混入をある程度抑えることができるものの、レニウムの回収率が低下する問題を生ずることがあった。また、他の方法としてレニウム回収工程で得た硫化レニウムを水で洗浄することが考えられる。この方法により硫化レニウム中の硫酸ナトリウムの含有率を上記の規定値より低くすることができるが、レニウムが洗浄液に溶解してレニウムの回収率が低下する問題を生ずることがあった。 As a method of suppressing the sodium sulfate content to a low level as described above, it is conceivable to reduce the amount of sulfuric acid and sodium hydrosulfide added in the rhenium recovery step to a value lower than the specified amount. Although this method can suppress the mixing of sodium sulfate into rhenium sulfide to some extent, it may cause a problem that the recovery rate of rhenium is lowered. Further, as another method, it is conceivable to wash the rhenium sulfide obtained in the rhenium recovery step with water. By this method, the content of sodium sulfate in rhenium sulfide can be made lower than the above-mentioned specified value, but there is a problem that rhenium is dissolved in the cleaning liquid and the recovery rate of rhenium is lowered.

本発明は、上記した従来の硫化レニウムの製造方法が抱える問題点に鑑みてなされたものであり、硫化澱物などのレニウムを含む物質に対して浸出工程、中和洗浄工程、及びレニウム回収工程からなる一連の工程で処理して硫化レニウムを作製する硫化レニウムの製造方法において、該レニウム回収工程の硫化処理によって得た硫化レニウムを含むスラリーから硫酸ナトリウムを選択的に取り除いて高純度の硫化レニウム製品を作製することが可能な硫化レニウムの製造方法を提供することを目的とする。 The present invention has been made in view of the problems of the above-mentioned conventional method for producing rhenium sulfide, and is a rhenium-containing substance such as sulfide starch, a leaching step, a neutralizing cleaning step, and a rhenium recovery step. In the method for producing rhenium sulfide to produce rhenium sulfide by treating it in a series of steps consisting of, sodium sulfate is selectively removed from the slurry containing rhenium sulfide obtained by the rhenium disulfide treatment in the rhenium recovery step to obtain high-purity rhenium sulfide. It is an object of the present invention to provide a method for producing rhenium sulfide capable of producing a product.

上記目的を達成するため、本発明の硫化レニウム回収方法は、レニウム、ヒ素及びカドミウムを含む処理対象物を酸化浸出して浸出液を得る浸出工程と、前記浸出液をアルカリで中和してヒ素及びカドミウムを含有する中和沈殿物を生成し、レニウムを含有する中和濾液から該中和沈殿物を除去する中和浄液工程と、前記中和濾液を硫化処理して該中和濾液に含まれるレニウムを硫化レニウムとして回収するレニウム回収工程とを含む硫化レニウムの回収方法であって、前記レニウム回収工程において、前記硫化レニウムを回収する前にそのスラリーに洗浄液を加えて、2.0規定以下で且つpH7.0以下の酸濃度および酸化還元電位(銀−塩化銀参照電極)が−0.5V以上0.2V以下の条件下で洗浄することを特徴とする硫化レニウムの回収方法。 In order to achieve the above object, the method for recovering rhenium sulfide of the present invention includes a leaching step of oxidatively leaching an object to be treated containing renium, arsenic and cadmium to obtain a leachate, and neutralizing the leachate with alkali to neutralize arsenic and cadmium. A neutralization purification step of producing a neutralized precipitate containing the above-mentioned material and removing the neutralized precipitate from the neutralized filtrate containing renium, and a sulfurization treatment of the neutralized filtrate to be contained in the neutralized filtrate. A method for recovering rhenium sulfide, which comprises a renium recovery step of recovering renium as renium sulfide. In the renium recovery step, a cleaning liquid is added to the slurry before the renium sulfide is recovered, and the value is 2.0 or less. A method for recovering rhenium sulfide, which comprises washing under conditions of an acid concentration of pH 7.0 or less and an oxidation-reduction potential (silver-silver chloride reference electrode) of −0.5 V or more and 0.2 V or less.

本発明によれば、レニウムの回収率をほとんど低下させることなく硫化レニウム製品中の硫酸ナトリウム等の不純物の濃度を低減することができる。 According to the present invention, the concentration of impurities such as sodium sulfate in rhenium sulfide products can be reduced without reducing the recovery rate of rhenium.

本発明の一具体例のレニウム回収方法の工程フロー図である。It is a process flow chart of the rhenium recovery method of one specific example of this invention. 図1の工程フローのうちレニウム回収工程を詳細に示した工程フロー図である。It is a process flow diagram which showed the rhenium recovery process in detail in the process flow of FIG.

以下、本発明の硫化レニウムの回収方法の一具体例について説明する。この本発明の一具体例の硫化レニウムの回収方法は、非鉄金属製錬工場の熔練炉からの排ガスを水洗した時に排出される洗浄排水に対して、硫化処理を施すことによって生じる硫化澱物などのレニウム、ヒ素及びカドミウムを含む物質を処理対象物としており、この処理対象物を酸化浸出して浸出液を得る浸出工程と、得られた浸出液をアルカリで中和してヒ素及びカドミウムを含有する中和沈殿物を生成し、レニウムを含有する中和濾液からこの中和沈殿物を除去する中和浄液工程と、得られた中和濾液を硫化処理して該中和濾液に含まれるレニウムを硫化レニウムとして回収するレニウム回収工程とからなる。以下、これら工程の各々について、図1の工程フロー図を参照しながら具体的に説明する。 Hereinafter, a specific example of the method for recovering rhenium sulfide of the present invention will be described. The method for recovering rhenium sulfide, which is a specific example of the present invention, is a sulfurized starch produced by subjecting the washing wastewater discharged when the exhaust gas from the smelting furnace of a non-ferrous metal smelting plant is washed with water to sulfurization treatment. Substances containing rhenium, arsenic, and cadmium, such as, are treated as objects to be treated, and the leaching step of oxidatively leaching this object to obtain a leachate and neutralizing the obtained leachate with alkali to contain arsenic and cadmium. A neutralizing solution step of producing a neutralizing precipitate and removing the neutralizing precipitate from the neutralizing filtrate containing renium, and sulfurizing the obtained neutralizing filtrate to contain renium contained in the neutralizing filtrate. Consists of a renium recovery step of recovering as renium sulfide. Hereinafter, each of these steps will be specifically described with reference to the process flow chart of FIG.

(浸出工程)
浸出工程1では、回収対象元素のレニウムのほか、カドミウムやヒ素などの不純物を含む上記の硫化澱物などの処理対象物に対して硫酸を主成分とする水溶液を加えてレパルプする。このレパルプにより生成されるスラリーに高温の空気又は空気及び水蒸気を吹き込んで酸化浸出を行う。酸化浸出後は必要に応じて固液分離を行うことで、上記処理対象物に含まれるほとんどのレニウム及びその他の様々な元素の一部を含んだpHがおよそ0の浸出液と、上記酸化浸出1では浸出されなかった元素が濃縮された浸出残渣とが得られる。浸出液は後述する中和洗浄工程2に送られ、浸出残渣は澱物処理工程4に送られる。この澱物処理工程4では遠心分離などにより固液分離が行われ、残渣と廃液とに分けられる。残渣は熔錬工程5に繰り返され、廃液は排水処理工程6で処理される。
(Leaching process)
In the leaching step 1, in addition to rhenium, which is an element to be recovered, an aqueous solution containing sulfuric acid as a main component is added to a treatment target such as the above-mentioned sulfide starch containing impurities such as cadmium and arsenic to repulp. High temperature air or air and water vapor are blown into the slurry produced by this repulp to perform oxidative leaching. After oxidative leaching, solid-liquid separation is performed as necessary to obtain a leachate having a pH of about 0 containing most of rhenium and some other various elements contained in the object to be treated, and the oxidative leaching 1 Then, an leaching residue in which the elements that have not been leached is concentrated is obtained. The leaching solution is sent to the neutralization washing step 2 described later, and the leaching residue is sent to the starch treatment step 4. In this starch treatment step 4, solid-liquid separation is performed by centrifugation or the like, and the residue and waste liquid are separated. The residue is repeated in the melting step 5, and the waste liquid is treated in the wastewater treatment step 6.

(中和浄液工程)
中和浄液工程2では、上記の浸出液に中和剤として例えば苛性ソーダを添加し、およそpH7で中和処理する。この中和処理後はフィルタープレスなどの固液分離を行うことでレニウムが濃縮された中和濾液と、レニウム以外の元素からなる中和澱物とが得られる。この中和澱物は回収された後、上記の澱物処理工程4の残渣の場合と同様に熔錬工程5に繰り返される。
(Neutralization purification process)
In the neutralization purification step 2, for example, caustic soda is added as a neutralizing agent to the above-mentioned leachate, and the neutralization treatment is performed at about pH 7. After this neutralization treatment, solid-liquid separation such as a filter press is performed to obtain a neutralized filtrate in which rhenium is concentrated and a neutralized starch composed of elements other than rhenium. After the neutralized starch is recovered, it is repeated in the melting step 5 in the same manner as in the case of the residue in the starch treatment step 4 described above.

(レニウム回収工程)
レニウム回収工程3では、上記中和洗浄工程2で得た中和濾液を硫化処理して該中和濾液に含まれるレニウムが硫化レニウムとして回収される。このレニウム回収工程3について図2を参照しながらより詳細に説明する。図2に示すように、レニウム回収工程3は硫化工程31、スラリー洗浄工程32、及び固液分離工程33の一連の工程からなる。
(Rhenium recovery process)
In the rhenium recovery step 3, the neutralization filtrate obtained in the neutralization washing step 2 is subjected to sulfurization treatment, and the rhenium contained in the neutralization filtrate is recovered as rhenium sulfide. This rhenium recovery step 3 will be described in more detail with reference to FIG. As shown in FIG. 2, the rhenium recovery step 3 comprises a series of steps of a sulfurization step 31, a slurry cleaning step 32, and a solid-liquid separation step 33.

先ず硫化工程で31では、上記の中和濾液に酸および硫化剤を添加して該中和濾液に含まれるレニウムを硫化レニウムとして沈殿させる。酸の添加では、反応液のpHが約0程度になるように添加量を調整する。添加する酸には硫酸または塩酸を用いることができるが、反応槽等の設備機器に用いる材質の選択の自由度や揮発性などの観点から硫酸の使用が望ましい。 First, in the sulfurization step 31, an acid and a sulfurizing agent are added to the above neutralization filtrate to precipitate rhenium contained in the neutralization filtrate as rhenium sulfide. When adding an acid, the amount added is adjusted so that the pH of the reaction solution becomes about 0. Sulfuric acid or hydrochloric acid can be used as the acid to be added, but it is desirable to use sulfuric acid from the viewpoint of freedom of selection of materials used for equipment such as reaction tanks and volatility.

一方、硫化剤としては、水硫化ナトリウムなどの水硫化アルカリ、硫化ナトリウムなどの硫化アルカリ、硫化カルシウムなどの硫化アルカリ土類、硫化水素等を用いることができるが、これらの中では水硫化ナトリウムや硫化水素が入手しやすいので好適であり、取り扱いやすさの点で水硫化ナトリウムがより好適である。この反応により生成した硫化レニウムを含む懸濁液は、好ましくは静置(デカンテーション)により上澄み液を除くことで、沈降した硫化レニウムを含むスラリー(以、下硫化レニウムスラリー又は単にスラリーと称する)が得られる。 On the other hand, as the sulfide agent, alkali hydrosulfide such as sodium hydrosulfide, alkali sulfide such as sodium sulfide, alkaline earth sulfide such as calcium sulfide, hydrogen sulfide and the like can be used. Hydrogen sulfide is preferable because it is easily available, and sodium hydrosulfide is more preferable in terms of ease of handling. The suspension containing rhenium sulfide produced by this reaction is preferably a slurry containing precipitated rhenium sulfide by removing the supernatant by standing (decantation) (hereinafter, referred to as a lower rhenium sulfide slurry or simply a slurry). Is obtained.

次のスラリー洗浄工程32では、上記スラリーに対して、体積基準で5倍以上の洗浄液を添加混合して洗浄する。その際、酸濃度が2.0規定以下で且つpH7.0以下であって、酸化還元電位(銀−塩化銀電極を参照電極としたときの測定値であり、以降の酸化還元電位においても同じである)が−0.5V以上0.2V以下の条件下で硫化レニウムを洗浄する。この酸濃度が2.0規定を超えると、硫化レニウムが再溶解する。また酸性の硫化レニウムスラリーに洗浄液として水を添加して洗浄を繰り返しても、pHは7を超えることがないので、pH7を上限にしている。酸化還元電位が0.2Vを超えると、硫化レニウムは過レニウム酸イオンとなり再溶解する。強い還元剤を添加すれば、酸化還元電位を低くすることができるが、経済的でないため、酸化還元電位の下限は−0.5Vで十分である。なお、上記の酸濃度の上限については、2.0規定に代えて当該2.0規定のときのpH値で限定してもよい。このpH値は一般的にはpH=−log[酸濃度]から導きだすことができ、上記の場合ではpH−0.3程度になるが、pHが0未満になるとpH計での測定が困難になるので酸濃度の上限は規定で限定するのが好ましい。 In the next slurry cleaning step 32, a cleaning liquid having a volume of 5 times or more is added and mixed with the slurry for cleaning. At that time, the acid concentration is 2.0 or less and the pH is 7.0 or less, and the oxidation-reduction potential (measured value when the silver-silver chloride electrode is used as a reference electrode, and the same applies to the subsequent oxidation-reduction potentials. The renium sulfide is washed under the condition of −0.5 V or more and 0.2 V or less. When this acid concentration exceeds 2.0 specifications, rhenium sulfide is redissolved. Further, even if water is added as a cleaning liquid to the acidic rhenium sulfide slurry and the cleaning is repeated, the pH does not exceed 7, so the pH is set to 7 as the upper limit. When the redox potential exceeds 0.2 V, renium sulfide becomes perrhenic acid ion and redissolves. The redox potential can be lowered by adding a strong reducing agent, but since it is not economical, a lower limit of the redox potential of −0.5 V is sufficient. The upper limit of the acid concentration may be limited to the pH value at the time of the 2.0 regulation instead of the 2.0 regulation. This pH value can generally be derived from pH = -log [acid concentration], and in the above case it is about pH-0.3, but when the pH is less than 0, it is difficult to measure with a pH meter. Therefore, it is preferable to limit the upper limit of the acid concentration by regulation.

上記の洗浄では、洗浄液の量がスラリーの量に対して体積基準で5倍未満では、洗浄中の洗浄液に含まれる硫酸ナトリウム濃度が高くなりすぎて洗浄不足のリスクが高くなるうえ、硫酸ナトリウムが硫化レニウムの付着液に伴って後工程の濾過器へキャリーオーバーする量が増加するおそれがある。洗浄液の量の上限については特に制約はないが、15倍程度を超えるとそれ以上効果が上昇しなくなるので不経済である。なお、洗浄不足を防ぐため、30分以上撹拌することが好ましい。 In the above cleaning, if the amount of the cleaning liquid is less than 5 times the amount of the slurry on a volume basis, the concentration of sodium sulfate contained in the cleaning liquid during cleaning becomes too high, and the risk of insufficient cleaning increases, and sodium sulfate is used. The amount of carryover to the filter in the subsequent process may increase with the adhering liquid of renium sulfide. There is no particular restriction on the upper limit of the amount of cleaning liquid, but if it exceeds about 15 times, the effect will not increase any more, which is uneconomical. In addition, in order to prevent insufficient cleaning, it is preferable to stir for 30 minutes or more.

上記の洗浄中の酸濃度は、硫酸または塩酸を用いることで上記範囲内に調整することができるが、反応槽等の設備器機に用いる材質の選択の自由度や揮発性などの観点から硫酸を用いるのが望ましい。一方、酸化還元電位は、アルカリ金属またはアルカリ土類金属の硫化物、硫化水素、水素等の還元剤などを用いて調整することができる。これらの中では、入手しやすく且つ硫化レニウムがレニウムイオンと硫黄イオンに分解することを抑制できるので、水硫化ナトリウム又は硫化水素を用いるのが望ましく、取り扱いやすさの点で水硫化ナトリウムがより望ましい。 The acid concentration during the above cleaning can be adjusted within the above range by using sulfuric acid or hydrochloric acid, but sulfuric acid should be used from the viewpoint of freedom of selection of materials used for equipment such as reaction tanks and volatility. It is desirable to use it. On the other hand, the oxidation-reduction potential can be adjusted by using a sulfide of an alkali metal or an alkaline earth metal, a reducing agent such as hydrogen sulfide or hydrogen. Among these, sodium hydrosulfide or hydrogen sulfide is desirable because it is easily available and can suppress the decomposition of rhenium sulfide into rhenium ions and sulfur ions, and sodium hydrosulfide is more preferable in terms of ease of handling. ..

上記のスラリーの洗浄後は、固液分離のため上記の洗浄液を含むスラリーを2時間以上静置する。この静置時間が2時間よりも短いと固液分離が不十分となり、スラリーに含まれる硫化レニウムが上澄み液側に排出されてロスになる可能性が高まる。このロスを減らすため、後述する上澄み液の抜出量を減らすことが考えられるが、この場合は上澄み液の抜出し後に残存するスラリーの濃度が低くなり、後工程の固液分離工程33において濾過時間が長くなるので生産効率が低下する。 After cleaning the above slurry, the slurry containing the above cleaning solution is allowed to stand for 2 hours or more for solid-liquid separation. If the standing time is shorter than 2 hours, the solid-liquid separation becomes insufficient, and the possibility that rhenium sulfide contained in the slurry is discharged to the supernatant liquid side increases the possibility of loss. In order to reduce this loss, it is conceivable to reduce the withdrawal amount of the supernatant liquid, which will be described later. In this case, the concentration of the slurry remaining after the withdrawal of the supernatant liquid becomes low, and the filtration time in the solid-liquid separation step 33 of the subsequent step. Therefore, the production efficiency decreases.

このスラリー洗浄工程32の静置においても上記の洗浄中の場合と同様に、スラリーの酸濃度を2.0規定以下で且つpHを7.0以下とし、酸化還元電位を−0.5V以上0.2V以下となるようにするのが好ましい。なお、上記の洗浄中や静置している間は、スラリーの酸化還元電位が0.2Vを超えないようにするのが好ましい。酸化還元電位の具体的な調整方法としては、洗浄中や静置している間の洗浄槽や静置槽内の酸化還元電位を測定し、酸化還元電位が0.2Vを超えそうになったら還元剤を添加する。あるいは、酸化還元電位が0.2Vを超えないように、あらかじめ還元剤を多めに洗浄水に添加しておく。また、槽内は窒素パージし、空気中の酸素が洗浄液を含むスラリーにできるだけ混入しないようにする。 Even in the standing state of the slurry cleaning step 32, the acid concentration of the slurry is 2.0 specified or less, the pH is 7.0 or less, and the oxidation-reduction potential is −0.5 V or more and 0, as in the case of the above-mentioned cleaning. It is preferable that the voltage is .2 V or less. It is preferable that the redox potential of the slurry does not exceed 0.2 V during the above-mentioned washing or standing. As a specific adjustment method of the redox potential, measure the redox potential in the washing tank or the standing tank during washing or standing, and when the redox potential is about to exceed 0.2V, Add a reducing agent. Alternatively, a large amount of reducing agent is added to the washing water in advance so that the redox potential does not exceed 0.2 V. In addition, the inside of the tank is purged with nitrogen so that oxygen in the air does not mix with the slurry containing the cleaning liquid as much as possible.

静置後は上記洗浄液を含むスラリーの体積の80%以上を上澄み液として抜き出す。上澄み液の抜き出しにより残存する硫化レニウム濃度の高い濃縮スラリーは、次に固液分離工程33においてフィルタープレス等の濾過器に通液して濾過が行われる。この濃縮スラリーの濾過後は、濾過器に通液した濃縮スラリーの量と同体積以上の洗浄液を濾過器に通液するのが好ましい。これにより濾過ケーキが洗浄されるので、硫化レニウムに含まれる硫酸ナトリウム等の不純物の濃度をより一層低減することができる。洗浄後は濾過器内から濾過ケーキを回収し、必要に応じて乾燥することで硫化レニウム製品となる。 After standing, 80% or more of the volume of the slurry containing the cleaning liquid is extracted as the supernatant liquid. The concentrated slurry having a high concentration of rhenium sulfide remaining by extracting the supernatant liquid is then passed through a filter such as a filter press in the solid-liquid separation step 33 for filtration. After filtering the concentrated slurry, it is preferable to pass a cleaning solution having the same volume or more as the amount of the concentrated slurry passed through the filter through the filter. As a result, the filtered cake is washed, so that the concentration of impurities such as sodium sulfate contained in rhenium sulfide can be further reduced. After washing, the filtered cake is collected from the inside of the filter and dried as necessary to obtain a rhenium sulfide product.

硫化レニウム製品の純度をより一層高めるため、上記の固液分離工程33で得た濾過ケーキを再度スラリー洗浄工程32に戻して上記の洗浄とその後の固液分離とを繰り返してもよい。この場合は、洗浄中および静置している間のスラリーの酸濃度および酸化還元電位を上記した範囲内に維持することで、レニウムの再溶解による損失を抑えることができる。以上説明した硫化レニウムの回収方法により、非鉄金属製錬工場の熔錬炉から排出される排ガスに随伴するレニウムの硫化物等のレニウムを含む物質から高純度の硫化レニウムを効率よく回収ことができる。 In order to further increase the purity of the rhenium sulfide product, the filtered cake obtained in the solid-liquid separation step 33 may be returned to the slurry cleaning step 32 again, and the above-mentioned washing and the subsequent solid-liquid separation may be repeated. In this case, by maintaining the acid concentration and the redox potential of the slurry during washing and standing still within the above ranges, the loss due to the redissolution of rhenium can be suppressed. By the method for recovering rhenium sulfide described above, high-purity rhenium sulfide can be efficiently recovered from a substance containing rhenium such as sulfide of rhenium accompanying exhaust gas discharged from a smelting furnace of a non-ferrous metal smelting plant. ..

[実施例1]
銅製錬工場で発生した亜硫酸ガスを含む排ガスを水洗する洗浄塔からの洗浄排液に対して水硫化ソーダを用いて硫化処理し、レニウムを含む硫化澱物を回収した。この硫化澱物に対して、図1の工程フローに沿って処理し、硫化レニウムを回収した。具体的には、先ず硫化澱物に濃度150g/Lの硫酸水溶液を加えてレパルプし、得られたスラリーの温度が70℃になるように空気と共に蒸気を吹き込み、酸化浸出を行った。これによりpHがおよそ0の浸出液を得た(浸出工程1)。この浸出液を25℃でpHが6.8になるように、20質量%の苛性ソーダを添加して中和処理をして中和澱物を生成させた。この中和澱物を濾紙を敷いたヌッチェを用いて除去し、中和濾液を得た(中和浄液工程2)。
[Example 1]
Sulfide treatment with sodium hydrosulfide was performed on the cleaning wastewater from the scrubber that washes the exhaust gas containing sulfurous acid gas generated in the copper smelting plant with water, and the sulfide starch containing renium was recovered. The sulfide starch was treated according to the process flow of FIG. 1 to recover rhenium sulfide. Specifically, first, a sulfuric acid aqueous solution having a concentration of 150 g / L was added to the sulfide starch for repulping, and steam was blown together with air so that the temperature of the obtained slurry became 70 ° C., and oxidative leaching was performed. As a result, a leachate having a pH of about 0 was obtained (leaching step 1). This leachate was neutralized by adding 20% by mass of caustic soda so that the pH became 6.8 at 25 ° C. to produce a neutralized starch. This neutralized starch was removed using a nutche covered with filter paper to obtain a neutralized filtrate (neutralization purification step 2).

上記の中和濾液に対して、図2に示す工程フローに沿ってレニウム回収工程を行った。具体的には、先ず酸濃度が1.0規定となるように70%硫酸を添加した。この時、反応液のpHはおよそ0であった。次に中和濾液に含まれるレニウムから硫化レニウムを生成するのに必要な化学量論量の1.05倍の水硫化ナトリウムを添加して硫化処理を行い、硫化レニウムを生成し、そのまま2時間静置した(硫化工程31)。 The above neutralized filtrate was subjected to a rhenium recovery step according to the step flow shown in FIG. Specifically, first, 70% sulfuric acid was added so that the acid concentration became 1.0 specified. At this time, the pH of the reaction solution was about 0. Next, sodium hydrosulfide, which is 1.05 times the stoichiometric amount required to produce rhenium sulfide from the rhenium contained in the neutralized filtrate, is added to perform sulfurization treatment to produce rhenium sulfide, which is left as it is for 2 hours. It was allowed to stand (sulfurization step 31).

上記の2時間の経過後、全体の85体積%に相当する量を上澄み液として上部から抜き取った。残部の硫化レニウムを含むスラリーに対して、体積で10倍量の洗浄水を添加し、40分攪拌した(スラリー洗浄工程32)。この洗浄水には70%硫酸と水硫化ナトリウムを用いて酸濃度1.0規定、銀−塩化銀電極を参照電極とした酸化還元電位0.14Vに調整したものを用いた。撹拌後はそのまま3時間静置した。静置中は容器内を窒素パージし、空気による酸化が生じないようにした。 After the lapse of the above 2 hours, an amount corresponding to 85% by volume of the whole was withdrawn from the upper part as a supernatant liquid. To the slurry containing the remaining renium sulfide, 10 times the volume of washing water was added, and the mixture was stirred for 40 minutes (slurry washing step 32). As the washing water, 70% sulfuric acid and sodium hydroxide were used to adjust the acid concentration to 1.0 and the oxidation-reduction potential to 0.14 V using the silver-silver chloride electrode as a reference electrode. After stirring, the mixture was allowed to stand for 3 hours. During standing, the inside of the container was purged with nitrogen to prevent oxidation by air.

尚、上記の撹拌中及び静置を行っている間は、スラリーの酸化還元電位を測定し、酸化還元電位(銀−塩化銀参照電極)が0.15Vを超えたら水硫化ナトリウム溶液を添加する用意をしたが、0.15Vを超えることはなかった。すなわち、上記の撹拌中および静置している間のスラリーの酸濃度は1.0規定(pHは0)、酸化還元電位は0.14Vであった。 During the above stirring and standing, the redox potential of the slurry is measured, and when the redox potential (silver-silver chloride reference electrode) exceeds 0.15 V, a sodium hydroxide solution is added. I prepared it, but it did not exceed 0.15V. That is, the acid concentration of the slurry during the stirring and standing still was 1.0 regulation (pH is 0), and the redox potential was 0.14V.

上記3時間の静置後、全体の85%に相当する量を上澄み液として上部から抜き取り、残部の硫化レニウムがより濃縮した濃縮スラリーを濾過器に通液して濾過した(固液分離工程33)。この濃縮スラリーの濾過により得られた濾過ケーキを洗浄するため、上記の酸濃度及び酸化還元電位が調整された洗浄水を、濾過器に通液した上記濃縮スラリーと同体積だけ濾過器に通液した。この濾過ケーキを乾燥機で乾燥することにより実施例1の硫化レニウム製品を作製した。 After standing for the above 3 hours, an amount corresponding to 85% of the whole was withdrawn as a supernatant from the upper part, and a concentrated slurry in which the remaining rhenium sulfide was more concentrated was passed through a filter and filtered (solid-liquid separation step 33). ). In order to wash the filtered cake obtained by filtering the concentrated slurry, wash water having the acid concentration and oxidation-reduction potential adjusted is passed through the filter in the same volume as the concentrated slurry. did. The rhenium sulfide product of Example 1 was prepared by drying this filtered cake with a dryer.

[実施例2]
弱塩基性で且つ酸化還元電位の高い洗浄水を用いて硫化レニウムを含むスラリーを洗浄して実施例2の硫化レニウム製品を作製した。具体的には、中和濾液に対して硫酸添加時の酸濃度が1.0規定に代えて2.5規定になるようにすること、水硫化ナトリウムの添加量を化学量論量の1.05倍に代えて1.1倍量にすること、硫化レニウムを含むスラリー及び濃縮スラリーを得るための上澄み液の抜き出し量を各々85%に代えて80%にすること、洗浄水としてpH7.5、酸化還元電位0.4Vのイオン交換水を用い、これをスラリーに対して体積基準で5倍添加したことを除いて上記試料1の場合と同様にして試料2の硫化レニウム製品を作製した。尚、攪拌および静置している間のスラリーの酸濃度は0.5規定(pHは0.3)、酸化還元電位は0.11Vであった。
[Example 2]
The slurry containing renium sulfide was washed with washing water that was weakly basic and had a high redox potential to prepare the renium sulfide product of Example 2. Specifically, the acid concentration at the time of adding sulfuric acid to the neutralized filtrate should be 2.5 specified instead of 1.0, and the amount of sodium hydrosulfide added should be 1. The amount should be 1.1 times instead of 05 times, the amount of supernatant extracted to obtain the slurry containing rhenium sulfide and the concentrated slurry should be 80% instead of 85%, and the pH of the washing water should be 7.5. The rhenium sulfide product of Sample 2 was prepared in the same manner as in Sample 1 above, except that ion-exchanged water having an oxidation-reduction potential of 0.4 V was added to the slurry 5 times by volume. The acid concentration of the slurry during stirring and standing was 0.5 (pH was 0.3), and the redox potential was 0.11 V.

[実施例3]
実施例1の方法により得られた硫化レニウム製品を原料として、スラリー洗浄工程32のスラリー洗浄を再度行った。スラリー洗浄条件は、実施例2の条件を適用した。攪拌中および静置している間の酸濃度はおよそpH3であった。酸化還元電位は−0.07Vを超えた段階で水硫化ナトリウムを添加して、酸化還元電位を−0.07V以下とした。静置中の酸化還元電位は、−0.07V未満であった。静置後、濾過器でスラリーを濾過し、さらに希硫酸で酸濃度pH3、水硫化ナトリウムで酸化還元電位を−0.07Vに調整した前記スラリーと同体積の洗浄液を濾過器に通液して、実施例3の硫化レニウム製品を得た。
[Example 3]
Using the rhenium sulfide product obtained by the method of Example 1 as a raw material, the slurry cleaning in the slurry cleaning step 32 was performed again. As the slurry cleaning conditions, the conditions of Example 2 were applied. The acid concentration during stirring and standing was approximately pH 3. When the redox potential exceeded −0.07V, sodium hydrosulfide was added to bring the redox potential to −0.07V or less. The redox potential during standing was less than -0.07V. After standing, the slurry is filtered with a filter, and the same volume of cleaning liquid as the slurry whose acid concentration is pH 3 with dilute sulfuric acid and the oxidation-reduction potential is adjusted to -0.07V with sodium hydroxide is passed through the filter. , The renium sulfide product of Example 3 was obtained.

[実施例4]
実施例3の方法により得られた硫化レニウム製品を原料として、スラリー洗浄工程32のスラリー洗浄を再度行った。スラリー洗浄条件は、実施例2の条件を適用した。攪拌中および静置している間の酸濃度はおよそpH6であった。酸化還元電位は−0.3Vを超えた段階で水硫化ナトリウムを添加して、酸化還元電位を−0.3V以下とした。静置中の酸化還元電位は、−0.3V未満であった。静置後、濾過器でスラリーを濾過し、さらに希硫酸で酸濃度pH6、水硫化ナトリウムで酸化還元電位を−0.3Vに調整した前記スラリーと同体積の洗浄液を濾過器に通液して、実施例4の硫化レニウム製品を得た。
[Example 4]
Using the rhenium sulfide product obtained by the method of Example 3 as a raw material, the slurry cleaning in the slurry cleaning step 32 was performed again. As the slurry cleaning conditions, the conditions of Example 2 were applied. The acid concentration during stirring and standing was approximately pH 6. When the redox potential exceeded −0.3 V, sodium hydrosulfide was added to bring the redox potential to −0.3 V or less. The redox potential during standing was less than -0.3 V. After standing, the slurry is filtered with a filter, and the same volume of cleaning liquid as the slurry whose acid concentration is pH 6 with dilute sulfuric acid and the oxidation-reduction potential is adjusted to -0.3 V with sodium hydroxide is passed through the filter. , The renium sulfide product of Example 4 was obtained.

[実施例5]
実施例1の方法により得られた硫化レニウム製品を原料として、スラリー洗浄工程32のスラリー洗浄を再度行った。スラリー洗浄条件は、実施例2の条件を適用した。攪拌中および静置している間の酸濃度はおよそpH3であった。酸化還元電位は−0.3Vを超えた段階で水硫化ナトリウムを添加して、酸化還元電位を−0.3V以下とした。静置中の酸化還元電位は、−0.3V未満であった。静置後、濾過器でスラリーを濾過し、さらに希硫酸で酸濃度pH3、水硫化ナトリウムで酸化還元電位を−0.3Vに調整した前記スラリーと同体積の洗浄液を濾過器に通液して、実施例5の硫化レニウム製品を得た。
[Example 5]
Using the rhenium sulfide product obtained by the method of Example 1 as a raw material, the slurry cleaning in the slurry cleaning step 32 was performed again. As the slurry cleaning conditions, the conditions of Example 2 were applied. The acid concentration during stirring and standing was approximately pH 3. When the redox potential exceeded −0.3 V, sodium hydrosulfide was added to bring the redox potential to −0.3 V or less. The redox potential during standing was less than -0.3 V. After standing, the slurry is filtered with a filter, and the same volume of cleaning liquid as the slurry whose acid concentration is pH 3 with dilute sulfuric acid and the oxidation-reduction potential is adjusted to −0.3 V with sodium hydroxide is passed through the filter. , The renium sulfide product of Example 5 was obtained.

[比較例1]
硫化工程31までは実施例1と同様にして硫化レニウムを含むスラリーを生成し、これを2時間静置後、全体の85体積%に相当する量を上澄み液として上部から抜き取り、残部の硫化レニウムを含むスラリーに対して、体積で10倍量の希硫酸で酸濃度1規定とした洗浄液を添加し、40分攪拌した。攪拌中の酸濃度は1.0規定であった。撹拌時および静置の間は酸化還元電位の調整は行わなかった。そのため、酸化還元電位は当初0.16Vであったが、徐々に酸化して攪拌終了時には酸化還元電位は0.4Vとなった。攪拌後はそのまま3時間静置した。攪拌中および静置中は、容器内の窒素パージをしなかった。
[Comparative Example 1]
Up to the sulfurization step 31, a slurry containing renium sulfide was produced in the same manner as in Example 1, and after allowing this to stand for 2 hours, an amount corresponding to 85% by volume of the whole was withdrawn as a supernatant liquid from the upper part, and the remaining renium sulfide was extracted. To the slurry containing the above, a cleaning solution having an acid concentration of 1 specified with 10 times the volume of dilute sulfuric acid was added, and the mixture was stirred for 40 minutes. The acid concentration during stirring was 1.0. The redox potential was not adjusted during stirring and standing. Therefore, the redox potential was initially 0.16 V, but gradually oxidized and the redox potential became 0.4 V at the end of stirring. After stirring, the mixture was allowed to stand for 3 hours. Nitrogen was not purged in the container during stirring and standing.

上記3時間の静置後、全体の85%に相当する量を上澄み液として上部から抜き取り、硫化レニウムがより濃縮した残部の濃縮スラリーを濾過器に通液して濾過した。得られた濾過ケーキを洗浄するため、希硫酸で酸濃度を1.0規定に調製した洗浄液を濾過器に通液した上記濃縮スラリーと同体積だけ濾過器に通液した。洗浄液の酸化還元電位は、0.4Vであった。この濾過ケーキを乾燥機で乾燥することにより比較例1の硫化レニウム製品を作製した。 After standing for 3 hours, an amount corresponding to 85% of the whole was withdrawn from the upper part as a supernatant, and the remaining concentrated slurry in which rhenium sulfide was more concentrated was passed through a filter and filtered. In order to wash the obtained filtered cake, a washing solution prepared with dilute sulfuric acid having an acid concentration of 1.0 was passed through the filter in the same volume as the above-mentioned concentrated slurry. The redox potential of the cleaning solution was 0.4V. The rhenium sulfide product of Comparative Example 1 was prepared by drying this filtered cake with a dryer.

[比較例2]
硫化工程31までは実施例2と同様にして硫化レニウムを含むスラリーを生成した後、スラリー洗浄工程32では実施例2と同様のイオン交換水を実施例2と同じ量添加し、40分に代えて1時間攪拌した。その後3時間静置した。攪拌中の酸濃度はおよそpH3であった。撹拌時および静置の間は酸化還元電位の調整を行わなかった。そのため、酸化還元電位は当初0.01Vであったが、徐々に参加して攪拌終了時には酸化還元電位は0.4Vとなった。攪拌後はそのまま3時間静置した。攪拌中および静置中は、容器内の窒素パージをしなかった。
[Comparative Example 2]
Up to the sulfurization step 31, a slurry containing rhenium sulfide was produced in the same manner as in Example 2, and then in the slurry cleaning step 32, the same amount of ion-exchanged water as in Example 2 was added in the same amount as in Example 2 and replaced with 40 minutes. Stirred for 1 hour. After that, it was allowed to stand for 3 hours. The acid concentration during stirring was approximately pH 3. The redox potential was not adjusted during stirring and standing. Therefore, the redox potential was initially 0.01 V, but gradually participated and the redox potential became 0.4 V at the end of stirring. After stirring, the mixture was allowed to stand for 3 hours. Nitrogen was not purged in the container during stirring and standing.

静置後、濾過器でスラリーを濾過し、さらに希硫酸で酸濃度pH3に調整した前記スラリーと同体積の洗浄液を濾過器に通液して、比較例2の硫化レニウム製品を得た。洗浄液の酸化還元電位は0.4Vであった。この濾過ケーキを乾燥機で乾燥することにより比較例2の硫化レニウム製品を作製した。 After standing, the slurry was filtered with a filter, and a washing solution having the same volume as the slurry adjusted to an acid concentration of pH 3 with dilute sulfuric acid was passed through the filter to obtain a rhenium sulfide product of Comparative Example 2. The redox potential of the cleaning solution was 0.4V. The rhenium sulfide product of Comparative Example 2 was prepared by drying this filtered cake with a dryer.

[比較例3]
硫化工程31までは上記実施例1と同様にして硫化レニウムを含むスラリーを生成した後、そのスラリーをスラリー洗浄工程32で処理することなく固液分離工程33において濾過器に直接通液して硫化レニウムの濾過ケーキを得た。この濾過ケーキを乾燥機で乾燥することにより比較例3の硫化レニウム製品を作製した。
[Comparative Example 3]
Up to the sulphurization step 31, a slurry containing rhenium sulfide is produced in the same manner as in Example 1 above, and then the slurry is directly passed through a filter in the solid-liquid separation step 33 without being treated in the slurry cleaning step 32 to sulphurize. A filtered cake of rhenium was obtained. The rhenium sulfide product of Comparative Example 3 was prepared by drying this filtered cake with a dryer.

上記実施例1〜5および比較例1〜3の硫化レニウムの作製の際、洗浄後の上澄み液(比較例3の場合を除く)、濾液および硫化レニウム製品に含まれるレニウムの含有量をICP分析装置で測定してレニウム品位及びレニウム回収率を得た。その際、硫化レニウム製品中の硫化レニウムがすべて七硫化二レニウム(VII)(Re)として換算した。また、硫化レニウム比率および硫化ナトリウム比率は硫化レニウム製品の質量および硫化レニウム製品中の七硫化二レニウムの質量および硫化ナトリウムの質量から求めた。これら実施例1〜5および比較例1〜3のレニウム品位、硫化レニウム比率および回収率を下記表1に示す。 During the production of rhenium sulfide of Examples 1 to 5 and Comparative Examples 1 to 3, the content of rhenium contained in the supernatant liquid (excluding the case of Comparative Example 3), the filtrate and the rhenium sulfide product after washing was analyzed by ICP. The rhenium grade and the rhenium recovery rate were obtained by measuring with the device. At that time, all the rhenium sulfide in the rhenium sulfide product was converted as direnium heptasulfide (VII) (Re 2 S 7). The rhenium sulfide ratio and the sodium sulfide ratio were determined from the mass of the rhenium sulfide product, the mass of direnium heptasulfide in the rhenium sulfide product, and the mass of sodium sulfide. The rhenium grades, rhenium sulfide ratios and recovery rates of Examples 1 to 5 and Comparative Examples 1 to 3 are shown in Table 1 below.

Figure 0006842041
Figure 0006842041

上記表1の結果から、本発明の要件を満たす条件で硫化レニウムを洗浄した実施例1〜5では、レニウム品位の高い硫化レニウム製品を高い回収率で回収することができた。これに対して、硫化レニウムの洗浄は行ったものの酸化還元電位の調整を行わなかった比較例1および2では、硫化レニウム製品のレニウム品位は高くなったが回収率が悪かった。また、比較例3では硫化レニウムを洗浄しなかったため、レニウム回収率は高かったが硫化レニウム製品中のレニウム品位が低くなった。 From the results in Table 1 above, in Examples 1 to 5 in which rhenium sulfide was washed under the conditions satisfying the requirements of the present invention, rhenium sulfide products having high rhenium grade could be recovered with a high recovery rate. On the other hand, in Comparative Examples 1 and 2 in which the rhenium sulfide was washed but the redox potential was not adjusted, the rhenium grade of the rhenium sulfide product was high, but the recovery rate was poor. Further, in Comparative Example 3, since the rhenium sulfide was not washed, the rhenium recovery rate was high, but the rhenium grade in the rhenium sulfide product was low.

1 浸出工程
2 中和浄液工程
3 レニウム回収工程
31 硫化工程
32 スラリー洗浄工程
33 固液分離工程
1 Leaching process 2 Neutralization purification process 3 Rhenium recovery process 31 Sulfurization process 32 Slurry cleaning process 33 Solid-liquid separation process

Claims (4)

レニウム、ヒ素及びカドミウムを含む処理対象物を酸化浸出して浸出液を得る浸出工程と、前記浸出液をアルカリで中和してヒ素及びカドミウムを含有する中和沈殿物を生成し、レニウムを含有する中和濾液から該中和沈殿物を除去する中和浄液工程と、前記中和濾液を硫化処理して該中和濾液に含まれるレニウムを硫化レニウムとして回収するレニウム回収工程とを含む硫化レニウムの回収方法であって、
前記レニウム回収工程において、前記硫化レニウムを回収する前にそのスラリーに洗浄液を加えて、2.0規定以下で且つpH7.0以下の酸濃度、および酸化還元電位(銀−塩化銀参照電極)が−0.5V以上0.2V以下の条件下で洗浄することを特徴とする硫化レニウムの回収方法。
A leaching step of oxidatively leaching an object to be treated containing renium, arsenic and cadmium to obtain a leachate, and neutralizing the leachate with an alkali to produce a neutralized precipitate containing arsenic and cadmium. Rhenium sulfide including a neutralization purification step of removing the neutralized precipitate from the sum filtrate and a rhenium recovery step of sulphurizing the neutralized filtrate to recover the renium contained in the neutralized filtrate as renium sulfide. It ’s a collection method,
In the renium recovery step, a cleaning solution is added to the slurry before recovering the rhenium sulfide to obtain an acid concentration of 2.0 or less and a pH of 7.0 or less, and an oxidation-reduction potential (silver-silver chloride reference electrode). A method for recovering rhenium sulfide, which comprises washing under conditions of −0.5 V or more and 0.2 V or less.
前記レニウム回収工程において前記硫化処理後にデカンテーションを行い、得られた上澄み液を除去した後の硫化レニウムを含むスラリーに前記洗浄液を加え、前記酸濃度および酸化還元電位の条件下で撹拌してから静置することにより洗浄することを特徴とする、請求項1に記載の硫化レニウムの回収方法。 In the rhenium recovery step, decantation is performed after the sulfurization treatment, the washing liquid is added to the slurry containing rhenium sulfide after removing the obtained supernatant liquid, and the mixture is stirred under the conditions of the acid concentration and the oxidation-reduction potential. The method for recovering rhenium sulfide according to claim 1, wherein the rhenium is washed by allowing it to stand. 前記洗浄液で洗浄された後の硫化レニウムを含むスラリーを濾過器に通液して濾過した後、該濾過器内の濾過ケーキに前記酸濃度および酸化還元電位を有する洗浄液を通液することにより洗浄することを特徴とする、請求項2に記載の硫化レニウムの回収方法。 The slurry containing rhenium sulfide after being washed with the washing liquid is passed through a filter to be filtered, and then the washing liquid having the acid concentration and the oxidation-reduction potential is passed through the filter cake in the filter for washing. The method for recovering rhenium sulfide according to claim 2, wherein the method is characterized by the above. 前記レニウム、ヒ素及びカドミウムを含む原料が、非鉄金属製錬工場から発生する亜硫酸ガスを含む排ガスを水洗する洗浄工程から排出される洗浄排液から回収したものであることを特徴とする、請求項1〜3のいずれか1項に記載の硫化レニウムの製造方法。


The claim is characterized in that the raw material containing renium, arsenic and cadmium is recovered from the washing waste liquid discharged from the washing step of washing the exhaust gas containing sulfur dioxide gas generated from the non-ferrous metal smelting factory with water. The method for producing renium sulfide according to any one of 1 to 3.


JP2017058863A 2017-03-24 2017-03-24 How to recover high-purity rhenium sulfide Active JP6842041B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017058863A JP6842041B2 (en) 2017-03-24 2017-03-24 How to recover high-purity rhenium sulfide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017058863A JP6842041B2 (en) 2017-03-24 2017-03-24 How to recover high-purity rhenium sulfide

Publications (2)

Publication Number Publication Date
JP2018162479A JP2018162479A (en) 2018-10-18
JP6842041B2 true JP6842041B2 (en) 2021-03-17

Family

ID=63860858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017058863A Active JP6842041B2 (en) 2017-03-24 2017-03-24 How to recover high-purity rhenium sulfide

Country Status (1)

Country Link
JP (1) JP6842041B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111004917A (en) * 2019-10-25 2020-04-14 湖南腾驰环保科技有限公司 Process for comprehensively recovering arsenic sulfide slag

Also Published As

Publication number Publication date
JP2018162479A (en) 2018-10-18

Similar Documents

Publication Publication Date Title
JP6304530B2 (en) Tellurium separation and recovery method
JP6743491B2 (en) Waste acid treatment method
JP5138737B2 (en) Method for producing waste acid gypsum
JP5176053B2 (en) Wet treatment method for zinc leaching residue
JPH0237414B2 (en)
NO161510B (en) PROCEDURE FOR THE RECOVERY OF ZINC FROM SINCULATED SULPHIDIC MATERIALS.
JP7016463B2 (en) How to collect tellurium
JP2011058016A (en) Method for separating rhenium from solution containing perrhenic acid
NO160528B (en) ZINC RECOVERY FROM ZINCULATED SULFIDIC MATERIAL.
JP2004307965A (en) Method for removing arsenic and antimony by separation from slag fuming dust
JP6828359B2 (en) Wet smelting method of nickel oxide ore
JP6193603B2 (en) Method for producing scorodite from non-ferrous smelting ash
JP5843069B2 (en) Tellurium separation and recovery method
JP6842041B2 (en) How to recover high-purity rhenium sulfide
JPH0625763A (en) Treatment of intermediate product of smelting
JP2020105587A (en) Treatment method of acidic solution containing noble metal, selenium and tellurium
WO2017110572A1 (en) Method for removing sulfidizing agent
JP6233177B2 (en) Method for producing rhenium sulfide
US20040200730A1 (en) Hydrometallurgical copper recovery process
JP4457864B2 (en) Method for recovering nickel and / or cobalt sulfide
JP6962017B2 (en) Waste acid treatment method
RU2353679C2 (en) Metals extraction from sulfide materials
JP6724351B2 (en) How to remove sulfiding agent
JP6163392B2 (en) Germanium recovery method
JP7147362B2 (en) Method for reducing odor in hydrometallurgy of nickel oxide ore

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210201

R150 Certificate of patent or registration of utility model

Ref document number: 6842041

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150