JP2011058016A - Method for separating rhenium from solution containing perrhenic acid - Google Patents

Method for separating rhenium from solution containing perrhenic acid Download PDF

Info

Publication number
JP2011058016A
JP2011058016A JP2009205509A JP2009205509A JP2011058016A JP 2011058016 A JP2011058016 A JP 2011058016A JP 2009205509 A JP2009205509 A JP 2009205509A JP 2009205509 A JP2009205509 A JP 2009205509A JP 2011058016 A JP2011058016 A JP 2011058016A
Authority
JP
Japan
Prior art keywords
rhenium
acid
solution
concentration
arsenic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009205509A
Other languages
Japanese (ja)
Other versions
JP5633129B2 (en
Inventor
Satoshi Asano
聡 浅野
Takashi Kudo
敬司 工藤
Naoki Kubota
直樹 窪田
Kazunori Takeda
和典 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2009205509A priority Critical patent/JP5633129B2/en
Publication of JP2011058016A publication Critical patent/JP2011058016A/en
Application granted granted Critical
Publication of JP5633129B2 publication Critical patent/JP5633129B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inexpensive method, even if the content of rhenium in raw material is remarkably varied, which can stably and efficiently separate rhenium. <P>SOLUTION: In the method for separating rhenium from a solution containing one or more elements selected from copper, zinc, cadmium and arsenic, and perrhenic acid, the method comprises: a first stage 1 where alkali such as sodium hydroxide is added to the solution so as to produce precipitates, and the solution containing the precipitates is subjected to solid-liquid separation by a separation process such as filtration; a second stage 2 where acid such as sulfuric acid is added to a separated liquid obtained by the solid-liquid separation, and the concentration of the acid is regulated to a range satisfying the equivalent concentration of 1.0 to 4.0 normal; and a third stage 3 where a sulfurizing agent such as sodium hydrogensulfide is added to the regulation liquid obtained by the addition of the acid so as to produce sulfide precipitates, and the sulfide precipitations are separated from the liquid after the sulfurization. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、非鉄金属の硫化鉱物を製錬する過程で生成したレニウムと非鉄金属イオンとを含有する混合水溶液から、レニウムを分離する方法に関する。特に、レニウムが混合水溶液中で過レニウム酸として存在する場合におけるレニウムの分離方法に関する。   The present invention relates to a method for separating rhenium from a mixed aqueous solution containing rhenium and non-ferrous metal ions produced in the process of smelting a non-ferrous metal sulfide mineral. In particular, the present invention relates to a method for separating rhenium when rhenium is present as perrhenic acid in a mixed aqueous solution.

レニウム(Re)は、天然には主として輝水鉛鉱(Molybdenite、MoS)に含有されて存在することが知られている。かかる輝水鉛鉱からモリブデンを製錬する工程においては、モリブデンを可溶性化する目的で、輝水鉛鉱の酸化焙焼処理が行われるが、その際、輝水鉛鉱に含有されているレニウムは、揮発性酸化物Reとして輝水鉛鉱から分離され、スクラバー等で回収されて精製される。 It is known that rhenium (Re) exists in nature by being mainly contained in molybdenite (MoS 2 ). In the process of smelting molybdenum from such molybdenite, oxidation roasting treatment of molybdenite ore is performed for the purpose of solubilizing molybdenum. It is separated from molybdenite as a reactive oxide Re 2 O 7 , recovered with a scrubber or the like and purified.

また、輝水鉛鉱は、例えば黄銅鉱(Chalcopyrite、CuFeS)など銅の鉱物と共存することも知られている。そして、輝水鉛鉱が黄銅鉱と共存する場合、浮遊選鉱などの方法によってこれらを互いに分離することは困難であることも知られている。 In addition, it is also known that pyroxenite coexists with copper minerals such as chalcopyrite (CuFeS 2 ). It is also known that when pyroxenite coexists with chalcopyrite, it is difficult to separate them from each other by a method such as flotation.

したがって、乾式製錬法を用いて黄銅鉱から銅を得る場合は、黄銅鉱を炉に装入して熔融して製錬する際に、輝水鉛鉱も同時に炉に装入されてしまうので、輝水鉛鉱に含有されているレニウムは揮発し、発生したガスを回収する排ガス洗浄工程で洗浄液の中に捕集される。その際、銅鉱石に共存するヒ素や銅、亜鉛、カドミウムなど金属ヒュームも揮発若しくは飛散して上記の洗浄工程で捕集されるため、洗浄液は多種多様な不純物を含有した状態となる。   Therefore, when copper is obtained from chalcopyrite using dry smelting method, when chalcopyrite is charged into the furnace and melted and smelted, hydropyrite ore is also charged into the furnace at the same time. Rhenium contained in molybdenite is volatilized and is collected in the cleaning liquid in the exhaust gas cleaning process for recovering the generated gas. At that time, metal fumes such as arsenic, copper, zinc, and cadmium coexisting in the copper ore are also volatilized or scattered and collected in the above-described cleaning process, so that the cleaning liquid contains various impurities.

ところで、溶液からレニウムを分離する場合には、例えば、溶液に硫化剤を加えてレニウムを硫化し、硫化物の沈殿を得て回収する方法がある。しかし、前述したような多種多様な不純物を含有する洗浄液の場合は、洗浄液中に同時に存在する亜鉛や銅などの不純物も硫化物を生成しやすい。したがって、多種多様な不純物を含有する洗浄液からレニウムだけを選択的に分離して効率よく回収することは困難であった。   By the way, in the case of separating rhenium from a solution, for example, there is a method of adding a sulfurizing agent to the solution to sulfidize rhenium to obtain a sulfide precipitate and recover it. However, in the case of the cleaning liquid containing a wide variety of impurities as described above, impurities such as zinc and copper which are simultaneously present in the cleaning liquid tend to generate sulfides. Accordingly, it has been difficult to selectively recover only rhenium from cleaning liquids containing various impurities and efficiently recover them.

そこで、従来、複数の元素が共存する溶液からレニウムを選択的に分離するために、イオン交換樹脂を用いてレニウムあるいは不純物を吸着させて分離する方法が用いられてきた。例えば、特許文献1には、レニウムを含有する水溶液を陰イオン交換物質に接触させてレニウムを選択的に吸着することによって、非鉄金属製錬工程からのレニウムを回収する方法が示されている。   Therefore, conventionally, in order to selectively separate rhenium from a solution in which a plurality of elements coexist, a method of separating rhenium or impurities by using an ion exchange resin has been used. For example, Patent Document 1 discloses a method for recovering rhenium from a non-ferrous metal smelting process by selectively adsorbing rhenium by bringing an aqueous solution containing rhenium into contact with an anion exchange material.

具体的には、非鉄金属製製錬工程から発生する亜硫酸ガス洗浄液の硫酸濃度を70g/l以上に保持し、該亜硫酸ガス洗浄液に硫化水素ガスを吹き込むか、又は可溶性の硫化物を添加して、酸化還元電位120〜150mV(対銀−塩化銀電極)の条件下でレニウムを含む硫化物沈殿を生成させる。次に、該硫化物沈殿を酸性水溶液中で硫酸銅と混合することによりレニウムを含む水溶液とし、得られた該含レニウム水溶液を第4級アンモニウム塩陰イオン交換物質に接触させてレニウムを選択的に吸着して回収する方法が開示されている。   Specifically, the sulfuric acid concentration of the sulfurous acid gas cleaning solution generated from the non-ferrous metal smelting process is maintained at 70 g / l or more, and hydrogen sulfide gas is blown into the sulfurous acid gas cleaning solution or a soluble sulfide is added. Then, a sulfide precipitate containing rhenium is generated under the condition of a redox potential of 120 to 150 mV (vs. silver-silver chloride electrode). Next, the sulfide precipitate is mixed with copper sulfate in an acidic aqueous solution to obtain an aqueous solution containing rhenium, and the obtained rhenium-containing aqueous solution is contacted with a quaternary ammonium salt anion exchange material to selectively select rhenium. Discloses a method of adsorbing and recovering.

また、特許文献2には、白金及びレニウムを含む廃触媒をアルカリ溶液によって浸出処理して得たアルカリ性水溶液から白金とレニウムを回収する方法が示されている。具体的には、レニウム及び白金を含有するアルカリ性水溶液を硫酸第一鉄で還元して白金を分離し、得られた水溶液を陰イオン交換樹脂と接触させてレニウムを吸着して分離する。次に、レニウムが吸着した該陰イオン交換樹脂に7mol/l以上の濃度の塩酸溶液を通液してレニウムを陰イオン交換樹脂から溶離し、得られた溶離液の塩酸濃度を5〜6.5mol/lに調整する。最後に、硫化水素をレニウムに対して1.5倍等量添加し、生成するレニウム硫化物としてレニウムを分離する方法が開示されている。   Patent Document 2 discloses a method for recovering platinum and rhenium from an alkaline aqueous solution obtained by leaching a waste catalyst containing platinum and rhenium with an alkaline solution. Specifically, platinum is separated by reducing an alkaline aqueous solution containing rhenium and platinum with ferrous sulfate, and the resulting aqueous solution is contacted with an anion exchange resin to adsorb and separate rhenium. Next, a hydrochloric acid solution having a concentration of 7 mol / l or more is passed through the anion exchange resin adsorbed with rhenium to elute rhenium from the anion exchange resin, and the hydrochloric acid concentration of the obtained eluent is 5 to 6. Adjust to 5 mol / l. Finally, a method is disclosed in which rhenium is separated as a rhenium sulfide produced by adding 1.5 times the equivalent amount of hydrogen sulfide to rhenium.

特開平7−286221号公報JP 7-286221 A 特開2006−130387号公報JP 2006-130387 A

しかしながら、これらイオン交換法を用いたプロセスは、一般に設備投資額が比較的大きくなるという課題がある。このため、処理する対象によっては、設備能力の最適化など生産効率を高める設計や操業が難しくなる。具体的に例示すると、モリブデンの製錬工程やレニウムを含有する廃触媒をリサイクルする場合などでは、原料中のレニウム品位が比較的高く、かつ含有量が安定しているので大きな問題とはならないが、一方、銅製錬の副産物として産出するレニウムを回収する場合などは、原料となる銅鉱石中のレニウム品位が不安定で大きく変動するため、効率よく低コストに操業する設備を設計し運転することは容易でない。   However, the process using these ion exchange methods generally has a problem that the amount of capital investment is relatively large. For this reason, depending on the object to be processed, it is difficult to design and operate to increase production efficiency such as optimization of facility capacity. Specifically, in the case of recycling the smelting process of molybdenum or the waste catalyst containing rhenium, the rhenium quality in the raw material is relatively high and the content is stable, so this is not a big problem. On the other hand, when recovering rhenium produced as a by-product of copper smelting, the quality of rhenium in the copper ore used as a raw material is unstable and fluctuates greatly, so facilities that operate efficiently and at low cost should be designed and operated. Is not easy.

更に、特許文献1の方法では、陰イオン交換樹脂に吸着したレニウムを溶離する際にチオシアン化アンモニウム水溶液を用いるため、チオシアン化アンモニウムが分解して有毒なシアン化物イオンが生成するおそれがある。また、チオシアン化アンモニウムが分解した化合物を含む排水は、化学的酸素要求量(COD)や窒素濃度が高くなるなど環境に与える負荷が大きく、排水を処理するのに必要な薬品のコストが高くつくという問題も有している。このように、特許文献1の方法は、工業的には必ずしも有利ではない。   Furthermore, in the method of Patent Document 1, an ammonium thiocyanide aqueous solution is used when eluting rhenium adsorbed on the anion exchange resin, so that ammonium thiocyanide may decompose to generate toxic cyanide ions. In addition, wastewater containing a compound in which ammonium thiocyanide is decomposed has a large impact on the environment such as high chemical oxygen demand (COD) and nitrogen concentration, and the cost of chemicals required to treat the wastewater is high. It also has the problem. Thus, the method of Patent Document 1 is not necessarily advantageous industrially.

特許文献2の方法は、陰イオン交換樹脂からレニウムを溶離する際に7mol/lの濃度の塩酸を用いており、特許文献1で用いた方法に比べると環境に与える負荷は小さい。しかしながら、特許文献2の方法もイオン交換法を中核とするプロセスである上、溶離や硫化に高い濃度の塩酸を使用しているため、設備には耐食性の高い材料を用いる必要があるなど、コスト的な課題は依然として解消していない。   The method of Patent Document 2 uses hydrochloric acid having a concentration of 7 mol / l when eluting rhenium from the anion exchange resin, and the load on the environment is small compared to the method used in Patent Document 1. However, the method of Patent Document 2 is also a process centered on the ion exchange method, and since high concentration hydrochloric acid is used for elution and sulfidation, it is necessary to use materials with high corrosion resistance for the equipment. Challenges still remain.

以上述べたように、特に製錬工程などレニウムの含有量が変動する条件下において、レニウムを安定かつ高効率に分離し回収することは困難であった。本発明はこのような従来の事情に鑑み、原料中のレニウムの含有量が大きく変動しても、安定して効率よくレニウムを分離できる低コストな方法を提供することを目的としている。   As described above, it was difficult to separate and recover rhenium stably and highly efficiently, particularly under conditions where the rhenium content fluctuates, such as a smelting process. In view of such conventional circumstances, an object of the present invention is to provide a low-cost method capable of stably and efficiently separating rhenium even if the content of rhenium in the raw material varies greatly.

上記の課題を解決するため、本発明が提供するレニウムの分離方法は、銅、亜鉛、カドミウム、ヒ素のいずれか1種類以上の元素及び過レニウム酸を含有する溶液からレニウムを分離する方法であって、前記溶液にアルカリを添加して沈殿物を生成し、該沈殿物を含む溶液を固液分離する第1工程と、前記固液分離によって得た分離液に酸を添加し、当量濃度1.0規定以上4.0規定以下の範囲に酸の濃度を調整する第2工程と、前記酸の添加によって得た調整液に硫化剤を添加して硫化殿物を生成し、該硫化殿物を硫化後液から分離する第3工程とを有することを特徴としている。   In order to solve the above problems, the rhenium separation method provided by the present invention is a method for separating rhenium from a solution containing one or more elements of copper, zinc, cadmium and arsenic and perrhenic acid. Then, an alkali is added to the solution to form a precipitate, and the solution containing the precipitate is subjected to solid-liquid separation, and an acid is added to the separated liquid obtained by the solid-liquid separation to obtain an equivalent concentration of 1 A second step of adjusting the concentration of the acid within a range of not less than 0.0 N and not more than 4.0 N, and adding a sulfiding agent to the adjustment liquid obtained by the addition of the acid to form a sulfide, And a third step of separating the solution from the liquid after sulfidation.

上記本発明のレニウムの分離方法においては、前記過レニウム酸を含有する溶液にヒ素が共存する場合、予め銅、亜鉛、カドミウムのいずれか1種以上の元素を含有する化合物を、ヒ素のモル濃度以上となる濃度まで添加した後、前記第1工程〜第3工程を行うことが好ましい。   In the rhenium separation method of the present invention, when arsenic coexists in the perrhenic acid-containing solution, a compound containing one or more elements of copper, zinc, and cadmium in advance is added at a molar concentration of arsenic. It is preferable to carry out the first to third steps after adding the above concentration.

また、上記本発明のレニウムの分離方法においては、前記第1工程において、前記溶液のpHが8以上となるように前記アルカリの添加量を調整することが好ましく、前記第3工程において、前記調整液の酸化還元電位が銀−塩化銀電極の参照電極での測定値において0mV以上50mV以下の範囲となるように前記硫化剤の添加量を調整することが好ましい。   In the rhenium separation method of the present invention, it is preferable to adjust the amount of the alkali added so that the pH of the solution is 8 or more in the first step, and the adjustment in the third step. It is preferable to adjust the addition amount of the sulfiding agent so that the oxidation-reduction potential of the liquid is in the range of 0 mV or more and 50 mV or less as measured at the reference electrode of the silver-silver chloride electrode.

本発明によれば、複雑な工程を経ることなく、基本的にはアルカリによる中和処理及び硫化処理によって選択的にレニウムを分離できる。また、イオン交換塔など多大な投資や手間を要する設備が不要となって、排水処理などにおける環境負荷が低減できる上、設備の材質には汎用材料が使用できるので、コストを低減することができる。更に、原料中のレニウム品位の変動に対して安定的かつ効率よくレニウムを分離することができる。   According to the present invention, rhenium can be selectively separated basically by a neutralization treatment with an alkali and a sulfuration treatment without going through complicated steps. In addition, facilities that require significant investment and labor, such as ion exchange towers, are not required, and environmental burdens in wastewater treatment can be reduced. In addition, general-purpose materials can be used as the material of the equipment, so that costs can be reduced. . Furthermore, rhenium can be separated stably and efficiently against fluctuations in the rhenium quality in the raw material.

本発明に係るレニウムの分離方法の一具体例を示す概略フロー図である。It is a schematic flowchart which shows one specific example of the separation method of rhenium based on this invention.

以下、本発明に係るレニウムの分離方法の一具体例を、図1の概略フロー図を参照しながら説明する。一般に金属を前述した乾式製錬法によって製錬する場合、原料等に含有されているレニウムは酸化されて酸化レニウム(VII)即ち七酸化レニウムとなり容易に揮発する。揮発した酸化レニウム(VII)は、他のガス成分と共に排ガスとしてスクラバーなどの湿式処理装置において洗浄液中に捕集される。この洗浄液中では、酸化レニウム(VII)は溶解して安定な過レニウム酸として存在することが知られている。   Hereinafter, a specific example of the method for separating rhenium according to the present invention will be described with reference to the schematic flow chart of FIG. In general, when a metal is smelted by the above-described dry smelting method, rhenium contained in a raw material or the like is oxidized to rhenium oxide (VII), that is, rhenium heptoxide, and volatilizes easily. Volatilized rhenium oxide (VII) is collected in a cleaning liquid in a wet processing apparatus such as a scrubber as an exhaust gas together with other gas components. In this cleaning solution, it is known that rhenium (VII) oxide dissolves and exists as a stable perrhenic acid.

一般に、銅、亜鉛、カドミウムや鉛などの金属イオンを含有する水溶液は、硫化剤を添加すると水に溶解しにくい硫化物を形成する。また、該水溶液にアルカリを添加しても難溶性の水酸化物を形成する。このように、上記金属イオンを含有する水溶液は、硫化物、水酸化物いずれに対しても難溶性の沈殿を生成する性質がある。   In general, an aqueous solution containing metal ions such as copper, zinc, cadmium and lead forms a sulfide which is difficult to dissolve in water when a sulfurizing agent is added. Further, even when an alkali is added to the aqueous solution, a hardly soluble hydroxide is formed. As described above, the aqueous solution containing the metal ions has a property of generating a hardly soluble precipitate for both sulfides and hydroxides.

これに対して、レニウムが上述の過レニウム酸の形態で存在している場合には、過レニウム酸イオンは酸の共存下では陽イオン化し、硫化物の沈殿を形成する性質があるが、本発明者は、過レニウム酸については水酸化物または過レニウム酸塩の沈殿を形成しない性質があることを見出した。更に、本発明者は、これらの性質を利用した処理を組み合わせることによって、レニウム以外のすべての共存元素からレニウムだけを選択分離することができることを見出した。   In contrast, when rhenium is present in the form of the above-mentioned perrhenic acid, the perrhenic acid ion cationizes in the presence of the acid and forms a sulfide precipitate. The inventor has found that perrhenic acid has the property of not forming a precipitate of hydroxide or perrhenate. Furthermore, the present inventor has found that only rhenium can be selectively separated from all coexisting elements other than rhenium by combining treatments utilizing these properties.

即ち、上記洗浄液に代表されるような、銅、亜鉛、カドミウム、ヒ素のいずれか1種類以上の元素及び過レニウム酸を含有する過レニウム酸含有溶液に、アルカリを添加することによって水酸化物等の難溶性の沈殿物を生成し、この沈殿物を含む溶液を濾過などの固液分離法によって固液分離する第1工程1と、該第1工程1の固液分離によって得た分離液に酸を添加し、当量濃度1.0規定以上4.0規定以下の範囲に酸の濃度を調整する第2工程2と、該第2工程2の酸の添加によって得た調整液に硫化剤を添加することによって硫化殿物を生成し、この硫化殿物を硫化後液から分離する第3工程3とを組み合わせることによって、上記レニウム酸含有溶液からレニウムを効率よく分離することができる。   That is, by adding an alkali to a perrhenic acid-containing solution containing at least one element of copper, zinc, cadmium, and arsenic and perrhenic acid, as typified by the cleaning solution, hydroxides and the like Of the first step 1 in which the solution containing the precipitate is solid-liquid separated by a solid-liquid separation method such as filtration, and the separation liquid obtained by the solid-liquid separation in the first step 1 A second step 2 in which an acid is added to adjust the concentration of the acid within an equivalent concentration range of 1.0 N to 4.0 N, and a sulfiding agent is added to the adjustment liquid obtained by the addition of the acid in the second step 2. By adding the sulfurized precipitate by addition and the third step 3 for separating the sulfided precipitate from the post-sulfurized solution, rhenium can be efficiently separated from the rhenic acid-containing solution.

なお、上述の排ガスが強還元性であって、スクラバーなどの洗浄液中のレニウムが酸化されていない場合は、上述の第1工程1〜第3工程3の処理を行う前に、洗浄液に空気などの酸化剤を吹き込むなどの酸化処理を行って洗浄液を酸化することで、過レニウム酸の形態に容易に変換することができる。   In addition, when the above-mentioned exhaust gas is strongly reducing and rhenium in the cleaning liquid such as a scrubber is not oxidized, before performing the processing of the above-described first step 1 to third step 3, air or the like is added to the cleaning liquid. By oxidizing the cleaning solution by performing an oxidation treatment such as blowing an oxidizing agent, it can be easily converted into a perrhenic acid form.

これに関し、レニウム酸を完全に過レニウム酸に酸化するのに必要な酸化還元電位などの程度は液性により一義的には定義できないが、たとえばpH値が0となる強酸性付近では、銀−塩化銀電極を参照電極とする酸化還元電位で500mV程度以上に維持すれば酸化することができる。したがって、上記のスクラバーの洗浄液の酸化還元電位がはじめからこの電位以上の範囲にあれば、新たに酸化する処理を行う必要はない。   In this regard, the degree of redox potential and the like necessary to completely oxidize rhenic acid to perrhenic acid cannot be uniquely defined by liquidity. For example, in the vicinity of strong acidity where the pH value is 0, silver − Oxidation can be achieved by maintaining an oxidation-reduction potential of about 500 mV or higher with a silver chloride electrode as a reference electrode. Therefore, if the oxidation-reduction potential of the scrubber cleaning liquid is within this range from the beginning, there is no need to perform a new oxidation treatment.

また、銅鉱石などはレニウムと共にヒ素などの不純物も含有する場合が多い。特に、ヒ素はレニウムと同じように乾式製錬工程で揮発し、スクラバーで洗浄液に捕集されるなどレニウムと挙動が同じであるため、ヒ素とレニウムとを分離する処理を施すのが好ましい。なお、捕集されたヒ素は、液中ではヒ酸又は亜ヒ酸の形態として存在することが知られているが、これらのヒ素化合物は、過レニウム酸の場合と同様に、アルカリ領域では水酸化物の沈殿が生じず、酸性領域で硫化物の沈殿を形成する性質がある。   Copper ore often contains impurities such as arsenic as well as rhenium. In particular, arsenic is volatilized in the dry smelting process in the same manner as rhenium, and since it has the same behavior as rhenium, such as being collected in a cleaning solution by a scrubber, it is preferable to perform a process for separating arsenic and rhenium. The collected arsenic is known to exist in the form of arsenic acid or arsenous acid in the liquid, but these arsenic compounds are water in the alkaline region as in the case of perrhenic acid. Oxide precipitation does not occur, and it has the property of forming sulfide precipitates in the acidic region.

ところで、ヒ酸は共存する金属イオンとの比率により、生成する塩の形態が異なることが知られている。例えば、銅、亜鉛、カドミウムなどの2価の金属イオンMとヒ素は、ヒ酸二水素塩(M(HAsO)、ヒ酸一水素塩(MHAsO)、ヒ酸塩(M(AsO)等の形態を持つが、これらの形態は、ヒ素に対する上記の金属イオンとのモル比により決定される。 By the way, it is known that arsenic acid differs in the form of the generated salt depending on the ratio of the coexisting metal ions. For example, divalent metal ions M such as copper, zinc, cadmium and arsenic are dihydrogen arsenate (M (H 2 AsO 4 ) 2 ), monohydrogen arsenate (MHAsO 4 ), arsenate (M 3 (AsO 4 ) 2 ) and the like, which are determined by the molar ratio of the above metal ions to arsenic.

上記した化合物の中で、ヒ酸一水素塩とヒ酸塩は、水に溶解しにくい性質がある。したがってヒ素が存在する場合は、上述のアルカリの添加を行う前に、ヒ素1mol/lに対して2価の金属イオンを1mol/l以上となる濃度に添加すれば、ヒ素が上述のヒ酸一水素塩(MHAsO)やヒ酸塩(M(AsO)等の難溶性の形態を形成し、ヒ素を分離することができる。ヒ素との化合物の形成に用いられなかった金属イオンは、アルカリを添加すると沈殿するのでレニウムと分離することができる。 Among the compounds described above, monohydrogen arsenate and arsenate have a property that they are difficult to dissolve in water. Therefore, when arsenic is present, before adding the above-mentioned alkali, if divalent metal ions are added to a concentration of 1 mol / l or more with respect to 1 mol / l of arsenic, the arsenic will become one of the above-mentioned arsenic acids. A hardly soluble form such as hydrogen salt (MHAsO 4 ) or arsenate (M 3 (AsO 4 ) 2 ) can be formed, and arsenic can be separated. Metal ions that have not been used to form compounds with arsenic precipitate when alkali is added and can be separated from rhenium.

アルカリの添加によって過レニウム酸含有溶液は中和されるが、その際、所定のpH値を維持するようにアルカリの添加量を調整するのが好ましい。例えば、レニウムと共存しやすいカドミウムを完全に分離させる場合、pHを8以上に維持することが必要である。また、pHが10を超えると沈殿物からヒ素が溶出するため、例えばカドミウムとヒ素が存在する場合は、pHを8以上10以下の範囲に調整することで上記の不純物を確実にレニウムと分離できる。このように、中和の際に好適に維持すべきpH値は、ヒ素以外に共存する元素により若干異なる。   Although the perrhenic acid-containing solution is neutralized by the addition of alkali, it is preferable to adjust the amount of alkali added so as to maintain a predetermined pH value. For example, when completely separating cadmium that easily coexists with rhenium, it is necessary to maintain the pH at 8 or more. Moreover, since arsenic elutes from the precipitate when the pH exceeds 10, for example, when cadmium and arsenic are present, the above impurities can be reliably separated from rhenium by adjusting the pH to a range of 8 to 10. . Thus, the pH value that should be suitably maintained during neutralization varies slightly depending on the coexisting elements other than arsenic.

上記アルカリの種類は特に問わず、アルカリ金属やアルカリ土類金属の水酸化物、炭酸塩、アンモニア、炭酸アンモニウムなどが使用できる。ただし、過レニウム酸濃度が高い場合、カリウム、ルビジウム、セシウム、アンモニウムイオンとは過レニウム酸塩の沈殿を形成しやすく、また、カルシウム、ストロンチウム、バリウム化合物では、しばしば共存する硫酸イオンと硫酸塩の沈殿を形成し、沈殿体積が増加する課題がある。また、マグネシウム化合物や炭酸塩の添加では溶液のpHを8以上や、特に8以上10以下のような比較的狭い範囲に調整するのは容易ではない。このため、水酸化ナトリウムを用いるのが容易であり最も適している。   The type of alkali is not particularly limited, and alkali metal or alkaline earth metal hydroxides, carbonates, ammonia, ammonium carbonate, and the like can be used. However, when the perrhenic acid concentration is high, potassium, rubidium, cesium, and ammonium ions tend to form perrhenate precipitates, and calcium, strontium, and barium compounds often contain sulfate ions and sulfates that coexist. There is a problem of forming a precipitate and increasing the precipitation volume. Moreover, it is not easy to adjust the pH of the solution to a relatively narrow range such as 8 or more, particularly 8 or more and 10 or less, by adding a magnesium compound or carbonate. For this reason, it is easy and most suitable to use sodium hydroxide.

上記アルカリの添加によって生成した水酸化物等の難溶性の沈殿物は、濾過、遠心分離、重力沈降などの固液分離法によって溶液から分離される。この固液分離によって得られる分離液に硫化処理が施される。   Slightly soluble precipitates such as hydroxides produced by the addition of the alkali are separated from the solution by solid-liquid separation methods such as filtration, centrifugation, and gravity sedimentation. The separation liquid obtained by this solid-liquid separation is subjected to sulfurization treatment.

硫化処理では、添加される硫化剤に対してレニウム硫化物を定量的に得るために酸を共存させることが必要となる。これは、過レニウム酸イオンは陰イオンの形態を有しているため、硫化させ沈殿を生じさせるには、以下の化1及び化2に示すように、過レニウム酸イオンをまず陽イオンの形態に変化させる必要があるためと考えられる。   In the sulfiding treatment, it is necessary to coexist an acid in order to quantitatively obtain rhenium sulfide with respect to the added sulfiding agent. This is because the perrhenate ion has an anion form, and therefore, in order to cause sulfidation and precipitation, the perrhenate ion is first formed into a cation form as shown in the following chemical formulas 1 and 2. It is thought that it is necessary to change to.

[化1]
HReO+7H → Re7++4H
[Chemical 1]
HReO 4 + 7H + → Re 7+ + 4H 2 O

[化2]
2Re7++7S2− → Re
[Chemical 2]
2Re 7+ + 7S 2- → Re 2 S 7

本発明のレニウムの分離方法では、前述したように、第1工程1で中和処理が行われるため、上記化1の反応に関与する酸は新たに添加する必要がある。そこで、第3工程3で硫化処理を施す前に、第2工程2において酸の添加が行われる。添加する酸の種類としては、過レニウム酸が安定に存在するように、強酸であって、かつ硫化物を分解しない非酸化性の酸を用いるのが好ましい。具体的には、硫酸、塩酸などの酸を用いることができるが、コストや装置材質の腐食性、あるいは揮発性などを考慮すると、硫酸を用いるのが最適である。   In the rhenium separation method of the present invention, as described above, since the neutralization treatment is performed in the first step 1, it is necessary to newly add an acid involved in the reaction of the above-mentioned chemical formula 1. Therefore, the acid is added in the second step 2 before the sulfiding treatment in the third step 3. As the kind of acid to be added, it is preferable to use a non-oxidizing acid which is a strong acid and does not decompose sulfides so that perrhenic acid is stably present. Specifically, an acid such as sulfuric acid or hydrochloric acid can be used. However, it is optimal to use sulfuric acid in consideration of cost, corrosiveness of apparatus material, volatility, and the like.

硫酸の場合は、硫酸濃度が0.5mol/l未満では反応が進まないので0.5mol/l以上は必要である。一方、2.0mol/lを越えた硫酸濃度では生成した硫化レニウムの酸溶解も進行しやすくなるため適さない。塩酸の場合は、同様に、塩酸濃度が1.0mol/l未満では反応が進みにくくなり、4.0mol/lを越えた塩酸濃度では生成した硫化レニウムの酸溶解も進行しやすくなる。したがって、当量濃度で1.0規定以上4.0規定以下の範囲、好ましくは2.0規定以上3.0規定以下の範囲に酸の濃度を維持することがよい。   In the case of sulfuric acid, since the reaction does not proceed when the sulfuric acid concentration is less than 0.5 mol / l, 0.5 mol / l or more is necessary. On the other hand, a sulfuric acid concentration exceeding 2.0 mol / l is not suitable because acid dissolution of the produced rhenium sulfide tends to proceed. In the case of hydrochloric acid, similarly, when the hydrochloric acid concentration is less than 1.0 mol / l, the reaction does not proceed easily, and when the hydrochloric acid concentration exceeds 4.0 mol / l, the acid dissolution of the produced rhenium sulfide is likely to proceed. Therefore, it is preferable to maintain the acid concentration in the range of 1.0 N to 4.0 N, preferably 2.0 N to 3.0 N in terms of equivalent concentration.

第3工程3では、上記酸の添加により得られる調整液に硫化剤を添加し、レニウムを硫化物として沈殿させた後、濾過、遠心分離、重力沈降などの固液分離によって該硫化殿物を硫化後液から分離する。かかる硫化処理に使用する硫化剤としては、例えば、硫化水素、アルカリ金属又はアルカリ土類金属の硫化物、硫化水素塩など水溶性の硫化物を用いることができる。コスト的や取り扱いの容易さの点で硫化水素ナトリウムあるいは水硫化ナトリウムを用いることが好ましい。   In the third step 3, a sulfurizing agent is added to the adjustment solution obtained by the addition of the acid to precipitate rhenium as a sulfide, and then the sulfide precipitate is separated by solid-liquid separation such as filtration, centrifugation, and gravity sedimentation. Separate from the liquid after sulfidation. Examples of the sulfiding agent used in the sulfiding treatment include water-soluble sulfides such as hydrogen sulfide, alkali metal or alkaline earth metal sulfides, and hydrogen sulfide salts. Sodium hydrogen sulfide or sodium hydrosulfide is preferably used from the viewpoint of cost and ease of handling.

硫化時に生成する硫化物の濃度は、硫化剤の添加に伴う酸化還元電位(ORP)の変化を指標として制御できる。一般に酸濃度が高いほど反応は進行しやすく、溶液の酸化還元電位が充分に高くても沈殿を生成するが、前述したように、硫酸濃度が概ね0.5mol/l以上2.0mol/l以下の範囲では、例えば、銀−塩化銀電極を参照電極とする電位で0mV以上50mV以下の範囲に維持することで、レニウムを硫化レニウムの沈殿として溶液中から良好に分離できる。なお、酸化還元電位を必要以上に下げすぎると、硫化剤が過剰に必要となりコスト及び作業環境の点で好ましくなく、一般には銀−塩化銀電極を参照電極とする電位で48〜50mV程度に維持することが適当である。   The concentration of sulfide generated during sulfidation can be controlled by using a change in redox potential (ORP) accompanying the addition of a sulfiding agent as an index. In general, the higher the acid concentration, the easier the reaction proceeds, and even if the redox potential of the solution is sufficiently high, a precipitate is formed. As described above, the sulfuric acid concentration is generally 0.5 mol / l or more and 2.0 mol / l or less. In the above range, for example, by maintaining the silver-silver chloride electrode as a reference electrode in a range of 0 mV to 50 mV, rhenium can be favorably separated from the solution as rhenium sulfide precipitates. If the oxidation-reduction potential is lowered too much, an excessive amount of sulfiding agent is required, which is not preferable in terms of cost and working environment, and generally maintained at about 48 to 50 mV at a potential using a silver-silver chloride electrode as a reference electrode. It is appropriate to do.

[実施例1]
銅濃度36.2g/l、亜鉛濃度0.52g/l、ヒ素濃度5.72g/l、及びカドミウム濃度2.64g/lとなるように各々を硫酸塩として添加すると共に、レニウム濃度0.75g/lとなるように調製した水溶液を準備した。この水溶液は、銅と亜鉛とカドミウムの含有量の合計とヒ素の含有量のモル比((Cu+Zn+Cd)/As)が約8となる。かかる水溶液(過レニウム酸含有溶液)を元液に用いた。
[Example 1]
Each was added as a sulfate to have a copper concentration of 36.2 g / l, a zinc concentration of 0.52 g / l, an arsenic concentration of 5.72 g / l, and a cadmium concentration of 2.64 g / l, and a rhenium concentration of 0.75 g. An aqueous solution prepared to be / l was prepared. In this aqueous solution, the molar ratio ((Cu + Zn + Cd) / As) of the total content of copper, zinc, and cadmium to the content of arsenic is about 8. Such an aqueous solution (perrhenic acid-containing solution) was used as the original solution.

この元液1リットルに、室温で攪拌しながら濃度8mol/lの水酸化ナトリウム水溶液を添加してpHを9に維持するようにpH調整した。pHが安定した後、ろ紙とヌッチェを用いて濾過し、濾液と沈殿物とに分離した。得られた沈殿物を濾液量の2倍の水を用いて洗浄し、濾液とは別に回収した。   To 1 liter of the original solution, an aqueous solution of sodium hydroxide having a concentration of 8 mol / l was added while stirring at room temperature, and the pH was adjusted to maintain the pH at 9. After the pH was stabilized, it was filtered using a filter paper and Nutsche, and separated into a filtrate and a precipitate. The obtained precipitate was washed with twice the amount of filtrate and collected separately from the filtrate.

これら沈殿物、濾液及び洗浄液の分析値と、それぞれの物量から各成分のpH調整前後での沈殿率を算出した。算出した結果を下記の表1に示す。   Precipitation ratios before and after pH adjustment of each component were calculated from the analytical values of these precipitates, filtrate and washing solution, and the respective quantities. The calculated results are shown in Table 1 below.

Figure 2011058016
Figure 2011058016

この表1に示すように、銅、亜鉛、カドミウムの沈殿率はいずれも99%を越え、ヒ素の沈殿率は99%であった。一方、レニウムの沈殿率は3.9%にとどまり、銅、亜鉛、カドミウム、ヒ素を選択的に沈殿させてレニウムと分離出来ることが分かった。   As shown in Table 1, the precipitation rates of copper, zinc and cadmium all exceeded 99%, and the precipitation rate of arsenic was 99%. On the other hand, the precipitation rate of rhenium was only 3.9%, and it was found that copper, zinc, cadmium and arsenic can be selectively precipitated and separated from rhenium.

次に、上記濾過で得た濾液に濃度70重量%の硫酸を添加し、硫酸濃度が1.4mol/l(当量濃度2.8規定)となるように調整した。更に、この硫酸添加後の調整液に、濃度10重量%の硫化水素ナトリウム水溶液を添加して、酸化還元電位を銀−塩化銀電極を用いた測定値で42〜50mVの範囲に調整し、硫化処理を行った。該硫化処理済の調整液をろ紙とヌッチェを用いて濾過し、硫化殿物と硫化後液とに分離した。   Next, sulfuric acid with a concentration of 70% by weight was added to the filtrate obtained by the above filtration to adjust the sulfuric acid concentration to 1.4 mol / l (equivalent concentration 2.8 N). Further, an aqueous solution of sodium hydrogen sulfide having a concentration of 10% by weight is added to the adjustment solution after the addition of sulfuric acid, and the oxidation-reduction potential is adjusted to a range of 42 to 50 mV as measured using a silver-silver chloride electrode. Processed. The sulfidized adjustment liquid was filtered using a filter paper and Nutsche, and separated into a sulfided product and a sulfidized solution.

これら硫化後液及び硫化殿物を分析すると、上記のpH調整後の濾液に含まれたレニウムの99%を硫化殿物として回収できたことを確かめた。これは、上記の元液に含まれたレニウムの95%を硫化殿物として回収できたことになる。   Analysis of these post-sulfurized solution and sulfide sulfide confirmed that 99% of the rhenium contained in the filtrate after pH adjustment was recovered as sulfide precipitate. This means that 95% of the rhenium contained in the above original solution could be recovered as sulfide deposits.

[実施例2]
上記実施例1と同様にpH調整及び濾過して得た濾液に対して、濃度70重量%の硫酸の添加量を様々に変化させて試料1〜5の調整液を作製した。これら調整液に対して、硫化時の酸化還元電位を、銀−塩化銀電極の参照電極で50mVに維持しながら実施例1と同じ硫化水素ナトリウムを添加した。更に、試料6、7として、それぞれ試料3、5と同様にして硫酸濃度0.83及び1.42mol/lの調整液を作製し、これら試料6、7に、硫化水素ナトリウムを大過剰に添加して酸化還元電位を45mV以下となるまで低下させる処理を行った。以降は、実施例1と同様にして硫化殿物と硫化後液とに分離した後、レニウムの沈殿率すなわち回収率を測定した。その測定結果を下記表2に示す。
[Example 2]
In the same manner as in Example 1 above, adjustment liquids of Samples 1 to 5 were prepared by changing the addition amount of sulfuric acid having a concentration of 70% by weight with respect to the filtrate obtained by pH adjustment and filtration. To these adjustment solutions, the same sodium hydrogen sulfide as in Example 1 was added while maintaining the oxidation-reduction potential during sulfidization at 50 mV with a silver-silver chloride electrode reference electrode. Further, as Samples 6 and 7, preparation solutions of sulfuric acid concentrations of 0.83 and 1.42 mol / l were prepared in the same manner as Samples 3 and 5, respectively, and sodium hydrogen sulfide was added to these Samples 6 and 7 in a large excess. Then, a treatment for reducing the oxidation-reduction potential to 45 mV or less was performed. Thereafter, in the same manner as in Example 1, after separation into a sulfided product and a solution after sulfidation, the precipitation rate of rhenium, that is, the recovery rate was measured. The measurement results are shown in Table 2 below.

Figure 2011058016
Figure 2011058016

上記表2の結果から、酸化還元電位(ORP)を50mVとした場合、硫酸濃度が高いほどレニウムの沈殿率が上昇することがわかる。特に、硫酸濃度を1.4mol/l以上にした場合には98%以上の充分な沈殿率を得ることができた。硫化剤を追加して添加し、酸化還元電位を44mVまで低下させると、レニウム沈殿率は99%以上にまで上昇した。更に硫化剤を過剰に添加し、2mVまで低下させた場合には、硫酸濃度が0.83mol/lであっても充分なレニウム沈殿率を得ることができた。   From the results in Table 2, it can be seen that when the oxidation-reduction potential (ORP) is 50 mV, the precipitation rate of rhenium increases as the sulfuric acid concentration increases. In particular, when the sulfuric acid concentration was 1.4 mol / l or more, a sufficient precipitation rate of 98% or more could be obtained. When an additional sulfurizing agent was added and the oxidation-reduction potential was lowered to 44 mV, the rhenium precipitation rate increased to 99% or more. Furthermore, when the sulfurizing agent was added excessively and lowered to 2 mV, a sufficient rhenium precipitation rate could be obtained even if the sulfuric acid concentration was 0.83 mol / l.

[実施例3]
実施例1と同じ元液を1リットルずつ4種類準備し、それぞれpH調整時のpH値を7、8、10及び11に維持した以外は上記実施例1と同様にして沈殿物、濾液及び洗浄液を得た。この場合のレニウム及び不純物の沈殿率を下記表3に示す。
[Example 3]
Four types of the same original solution as in Example 1 were prepared for each liter, and the precipitate, filtrate and washing solution were the same as in Example 1 except that the pH values during pH adjustment were maintained at 7, 8, 10 and 11, respectively. Got. The rhenium and impurity precipitation rates in this case are shown in Table 3 below.

Figure 2011058016
Figure 2011058016

この表3から分かるように、pH値が7〜11であっても実施例1と同様にレニウムを選択的に分離できることが分かった。但し、pH7ではカドミウムの沈殿率が97%まで低下し、pH11ではヒ素の沈殿率が97%まで低下した。この結果から、pH8以上に調整することでカドミウムを含む不純物をほぼ完全にレニウムから分離でき、カドミウムに加えてヒ素が含有されるときはpHを8以上10以下に調整すれば、レニウムをより選択的に回収できることが分かる。   As can be seen from Table 3, it was found that even when the pH value is 7 to 11, rhenium can be selectively separated as in Example 1. However, at pH 7, the cadmium precipitation rate decreased to 97%, and at pH 11, the arsenic precipitation rate decreased to 97%. From this result, it is possible to almost completely separate cadmium-containing impurities from rhenium by adjusting the pH to 8 or higher. When arsenic is contained in addition to cadmium, the rhenium is more selected by adjusting the pH to 8 to 10 It can be recovered.

1 第1工程
2 第2工程
3 第3工程
1 1st process 2 2nd process 3 3rd process

Claims (4)

銅、亜鉛、カドミウム、ヒ素のいずれか1種類以上の元素及び過レニウム酸を含有する溶液からレニウムを分離する方法であって、
前記溶液にアルカリを添加して沈殿物を生成し、該沈殿物を含む溶液を固液分離する第1工程と、
前記固液分離によって得た分離液に酸を添加し、当量濃度1.0規定以上4.0規定以下の範囲に酸の濃度を調整する第2工程と、
前記酸の添加によって得た調整液に硫化剤を添加して硫化殿物を生成し、該硫化殿物を硫化後液から分離する第3工程とを有することを特徴とするレニウムの分離方法。
A method for separating rhenium from a solution containing one or more elements of copper, zinc, cadmium, and arsenic and perrhenic acid,
A first step of adding an alkali to the solution to form a precipitate, and solid-liquid separating the solution containing the precipitate;
A second step of adding an acid to the separation liquid obtained by the solid-liquid separation and adjusting the concentration of the acid within an equivalent concentration range of 1.0 N to 4.0 N;
A rhenium separation method comprising: a third step of adding a sulfiding agent to the adjustment liquid obtained by the addition of the acid to produce a sulfide precipitate, and separating the sulfide precipitate from the solution after sulfidation.
前記過レニウム酸を含有する溶液にヒ素が共存する場合、予め銅、亜鉛、カドミウムのいずれか1種以上の元素を含有する化合物を、ヒ素のモル濃度以上となる濃度まで添加した後、前記第1工程〜第3工程を行うことを特徴とする、請求項1に記載のレニウムの分離方法。   When arsenic coexists in the solution containing perrhenic acid, a compound containing at least one element of copper, zinc, and cadmium is added in advance to a concentration equal to or higher than the molar concentration of arsenic, The method for separating rhenium according to claim 1, wherein the first step to the third step are performed. 前記第1工程において、前記溶液のpHが8以上となるように前記アルカリの添加量を調整することを特徴とする、請求項1又は2に記載のレニウムの分離方法。   The method for separating rhenium according to claim 1 or 2, wherein, in the first step, the addition amount of the alkali is adjusted so that the pH of the solution is 8 or more. 前記第3工程において、前記調整液の酸化還元電位が銀−塩化銀電極の参照電極での測定値において0mV以上50mV以下の範囲となるように前記硫化剤の添加量を調整することを特徴とする、請求項1〜3のいずれかに記載のレニウムの分離方法。   In the third step, the addition amount of the sulfiding agent is adjusted so that the oxidation-reduction potential of the adjustment liquid is in the range of 0 mV to 50 mV in the measured value at the reference electrode of the silver-silver chloride electrode. The method for separating rhenium according to any one of claims 1 to 3.
JP2009205509A 2009-09-07 2009-09-07 Method for separating rhenium from solutions containing perrhenic acid Active JP5633129B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009205509A JP5633129B2 (en) 2009-09-07 2009-09-07 Method for separating rhenium from solutions containing perrhenic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009205509A JP5633129B2 (en) 2009-09-07 2009-09-07 Method for separating rhenium from solutions containing perrhenic acid

Publications (2)

Publication Number Publication Date
JP2011058016A true JP2011058016A (en) 2011-03-24
JP5633129B2 JP5633129B2 (en) 2014-12-03

Family

ID=43945974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009205509A Active JP5633129B2 (en) 2009-09-07 2009-09-07 Method for separating rhenium from solutions containing perrhenic acid

Country Status (1)

Country Link
JP (1) JP5633129B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103233129A (en) * 2013-05-08 2013-08-07 金川集团股份有限公司 Wet-process open treatment method of arsenic in copper ashes
WO2013129130A1 (en) 2012-03-02 2013-09-06 住友金属鉱山株式会社 Method for separating rhenium and arsenic, and method for purifying rhenium
JP2014019898A (en) * 2012-07-17 2014-02-03 Toshiba Corp Method for recovering rhenium
JP2015094013A (en) * 2013-11-13 2015-05-18 住友金属鉱山株式会社 Method of producing rhenium-containing solution
CN109897967A (en) * 2019-04-01 2019-06-18 中南大学 A method of separating and recovering zinc from complicated chloride system
US10480048B2 (en) 2015-07-24 2019-11-19 Kanagawa University Method for recovering rhenium, method for selectively recovering rhenium from solution including rhenium and other metals, and method for increasing content ratio of rhenium in solution including rhenium and other metals
CN115645983A (en) * 2022-10-15 2023-01-31 湘南学院 Process for directly recovering silver and copper from waste acid

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107354300B (en) * 2017-07-19 2019-06-04 福州大学 A method of the enriching rhenium from Copper making spent acid

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60131829A (en) * 1983-12-16 1985-07-13 Nippon Mining Co Ltd Method for recovering rhenium
JPS61232222A (en) * 1985-04-05 1986-10-16 Sumitomo Chem Co Ltd Recovery of rhenium
JPS62119115A (en) * 1985-11-15 1987-05-30 Nippon Mining Co Ltd Production of potassium perrhenate
JPH07286221A (en) * 1994-04-15 1995-10-31 Sumitomo Metal Mining Co Ltd Method for recovering rhenium from nonferrous metal refining process

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60131829A (en) * 1983-12-16 1985-07-13 Nippon Mining Co Ltd Method for recovering rhenium
JPS61232222A (en) * 1985-04-05 1986-10-16 Sumitomo Chem Co Ltd Recovery of rhenium
JPS62119115A (en) * 1985-11-15 1987-05-30 Nippon Mining Co Ltd Production of potassium perrhenate
JPH07286221A (en) * 1994-04-15 1995-10-31 Sumitomo Metal Mining Co Ltd Method for recovering rhenium from nonferrous metal refining process

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013129130A1 (en) 2012-03-02 2013-09-06 住友金属鉱山株式会社 Method for separating rhenium and arsenic, and method for purifying rhenium
JP5382269B1 (en) * 2012-03-02 2014-01-08 住友金属鉱山株式会社 Method for separating rhenium and arsenic, and method for purifying rhenium
AU2013227632B2 (en) * 2012-03-02 2014-08-21 Sumitomo Metal Mining Co., Ltd. Method for separating rhenium and arsenic, and method for purification of rhenium
US8956583B2 (en) 2012-03-02 2015-02-17 Sumitomo Metal Mining Co., Ltd. Method for separating rhenium and arsenic, and method for purification of rhenium
JP2014019898A (en) * 2012-07-17 2014-02-03 Toshiba Corp Method for recovering rhenium
CN103233129A (en) * 2013-05-08 2013-08-07 金川集团股份有限公司 Wet-process open treatment method of arsenic in copper ashes
JP2015094013A (en) * 2013-11-13 2015-05-18 住友金属鉱山株式会社 Method of producing rhenium-containing solution
US10480048B2 (en) 2015-07-24 2019-11-19 Kanagawa University Method for recovering rhenium, method for selectively recovering rhenium from solution including rhenium and other metals, and method for increasing content ratio of rhenium in solution including rhenium and other metals
CN109897967A (en) * 2019-04-01 2019-06-18 中南大学 A method of separating and recovering zinc from complicated chloride system
CN109897967B (en) * 2019-04-01 2020-04-21 中南大学 Method for separating and recovering zinc from complex chloride system
CN115645983A (en) * 2022-10-15 2023-01-31 湘南学院 Process for directly recovering silver and copper from waste acid

Also Published As

Publication number Publication date
JP5633129B2 (en) 2014-12-03

Similar Documents

Publication Publication Date Title
JP5633129B2 (en) Method for separating rhenium from solutions containing perrhenic acid
FI117941B (en) A process for dissolving metal sulfide minerals
CA3127820C (en) Process for leaching metal sulfides with reagents having thiocarbonyl functional groups
JP5382269B1 (en) Method for separating rhenium and arsenic, and method for purifying rhenium
Aylmore Thiosulfate as an alternative lixiviant to cyanide for gold ores
JP2009242224A (en) Method of treating nonferrous smelting intermediate product containing arsenic
AU2021202669A1 (en) Process for selective recovery of chalcophile group elements
WO2013108478A1 (en) Gold recovery method, and gold production method using same
MXPA04006156A (en) High temperature pressure oxidation of ore and ore concentrates containing silver using controlled precipiation of sulfate species.
JP6139990B2 (en) Arsenic solution treatment method
JP7016463B2 (en) How to collect tellurium
JP2015113503A (en) Method of separating and collecting selenium and tellurium in transition metal-containing aqueous solution
JP6233177B2 (en) Method for producing rhenium sulfide
JP2007092124A (en) Method for treating copper converter dust
JP5696688B2 (en) Rhenium recovery method
JP6060877B2 (en) Method for producing rhenium-containing solution
CN1823173A (en) Method for producing concentrates
JP7337209B2 (en) Iridium recovery method
JP2006116469A (en) Treatment method for selenium-containing water
JP6790561B2 (en) Heavy metal recovery method
JP2024031675A (en) Ruthenium and iridium recovery method
JP2016069690A (en) Method for producing rhenium sulfide
JP2015094013A (en) Method of producing rhenium-containing solution
JP2019077902A (en) Method for removing selenium from acidic solution containing the same
OA18658A (en) Process for selective recovery of Chalcophile Group Elements.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120814

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140916

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140929

R150 Certificate of patent or registration of utility model

Ref document number: 5633129

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150