WO2013108478A1 - Gold recovery method, and gold production method using same - Google Patents

Gold recovery method, and gold production method using same Download PDF

Info

Publication number
WO2013108478A1
WO2013108478A1 PCT/JP2012/079856 JP2012079856W WO2013108478A1 WO 2013108478 A1 WO2013108478 A1 WO 2013108478A1 JP 2012079856 W JP2012079856 W JP 2012079856W WO 2013108478 A1 WO2013108478 A1 WO 2013108478A1
Authority
WO
WIPO (PCT)
Prior art keywords
gold
leaching
solution
metal
activated carbon
Prior art date
Application number
PCT/JP2012/079856
Other languages
French (fr)
Japanese (ja)
Inventor
和浩 波多野
浩至 勝川
瑛基 小野
佐野 正樹
Original Assignee
Jx日鉱日石金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx日鉱日石金属株式会社 filed Critical Jx日鉱日石金属株式会社
Priority to CA2861419A priority Critical patent/CA2861419C/en
Priority to AU2013200572A priority patent/AU2013200572B8/en
Publication of WO2013108478A1 publication Critical patent/WO2013108478A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/22Treatment or purification of solutions, e.g. obtained by leaching by physical processes, e.g. by filtration, by magnetic means, or by thermal decomposition
    • C22B3/24Treatment or purification of solutions, e.g. obtained by leaching by physical processes, e.g. by filtration, by magnetic means, or by thermal decomposition by adsorption on solid substances, e.g. by extraction with solid resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • B01J20/3416Regenerating or reactivating of sorbents or filter aids comprising free carbon, e.g. activated carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • B01J20/345Regenerating or reactivating using a particular desorbing compound or mixture
    • B01J20/3475Regenerating or reactivating using a particular desorbing compound or mixture in the liquid phase
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B11/00Obtaining noble metals
    • C22B11/04Obtaining noble metals by wet processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a method for collecting gold and a method for producing gold using the same.
  • Gold is one of the most valuable metals and exists as simple particles in natural veins.
  • As the smelting method a method of leaching with cyan and a method of recovering as mercury amalgam are known.
  • gold is dissolved in the solution as a cyano complex.
  • Gold cyano complexes are known to be very stable compared to other gold complex ions.
  • the leached gold is generally adsorbed on activated carbon and eluted with an aqueous solution containing caustic soda as a main component. Thereafter, gold is recovered from the eluent containing gold by electrolytic collection.
  • Patent Document 1 As a method of preferentially eluting gold from activated carbon that adsorbs both gold and silver in a cyanide solution containing both gold and silver, there is known a method of eluting with a solution in which sodium sulfide is mixed with an aqueous caustic soda solution. (Patent Document 1).
  • Gold is often contained as a by-product in pyrite, chalcopyrite, and other sulfide metal ores, not gold veins, and gold is separated when smelting its main component and separately smelted into metal gold There are many.
  • the gold is transferred to the anode in the dry copper smelting process, and then concentrated in the electrolytic slime in the electrolytic purification process.
  • Gold in the electrolytic slime is recovered as metallic gold by a wet smelting method (Patent Documents 2 and 3) or a dry smelting method.
  • Patent Document 4 A method of leaching gold with a simple acid has been proposed (Patent Document 4).
  • Patent Document 4 when an acid halide solution is used to leach gold, the halide forms a stable complex with a noble metal such as gold, but it may be a weaker ligand than cyanide. It is shown (paragraph 0017 in the specification of Patent Document 4).
  • a solution containing a noble metal can be recovered by adsorbing it on activated carbon, and further shows a method of recovering the noble metal by electrowinning the activated carbon by burning the activated carbon or eluting it with a cyanide solution.
  • a gold adsorbent an adsorbent using a lignin derivative as a raw material is also known (Patent Document 5).
  • Gold leached using a halide solution forms a complex with a halide, but is more unstable than a cyanide complex. Therefore, when adsorbed on activated carbon, it is reduced and exists in the activated carbon as metallic gold. Therefore, it is not possible to elute with only caustic soda, but it is necessary to elute with a cyanide solution.
  • the method of leaching gold with a cyan solution is increasingly used due to the toxicity of cyan. Therefore, a method capable of leaching gold with high efficiency without using cyan is desired.
  • the acid leaching method which is one of the proposals, requires a strong oxidizing agent because gold is inactive, and the leaching cost is high.
  • the concentration of gold leached into the solution is considerably lower than when cyan is used.
  • activated carbon is known as an adsorbent, but it is necessary to use cyan for elution of gold adsorbed by gold alone. When cyan is not used, the activated carbon is incinerated to recover gold, which is more expensive than the case of elution. Further, the adsorbent as shown in Patent Document 5 is not put into practical use due to problems such as high cost or inability to repeatedly use it.
  • the present inventors conducted leaching of metal sulfide ore in a halogen bath, leached gold together with the main component metal, adsorbed the gold leaching solution on activated carbon, and then eluted with caustic soda. Then, it was found that gold contained in the metal sulfide ore can be efficiently recovered at low cost by adjusting the concentrated gold solution.
  • the present invention completed on the background of the above knowledge, in one aspect, uses an acid leaching solution containing chloride ions and / or bromide ions as anions and copper and iron as cations, to obtain gold from a metal sulfide containing metal ore.
  • Gold comprising a step of warm leaching in the acidic leachate, a step of adsorbing gold in the acidic leachate to activated carbon, and a step of eluting the gold adsorbed on the activated carbon with an alkaline solution to obtain a concentrated gold solution This is a recovery method.
  • the metal-containing sulfide ore is selected from the group consisting of chalcocite, chalcopyrite, copper indigo, chalcopyrite, pyrite, arsenite, and arsenite. It is a concentrate containing at least one kind.
  • the metal-containing metal sulfide ore leaches 80% or more of copper, iron, or arsenic that is a main component metal from the concentrate using an acidic leachate. After that, it is a leaching residue containing gold obtained by solid-liquid separation.
  • the acidic leachate contains 40 to 200 g / L of chloride ions, 20 to 100 g / L of bromide ions, 5 to 25 g / L of copper, and 0. It contains 01-10 g / L of iron and has a pH of 0-1.9.
  • the warming leaching is performed at 60 to 100 ° C.
  • the alkaline solution contains 0.05 to 1M sodium hydroxide.
  • the alkaline solution contains sodium hydroxide and 0.1 to 10 moles of sodium sulfide with respect to sodium hydroxide.
  • the elution is performed under atmospheric pressure.
  • a gold manufacturing method in which single gold is produced by reduction from a concentrated gold solution obtained by the gold recovery method of the present invention.
  • gold contained in the sulfide metal ore can be efficiently recovered at low cost.
  • FIG. 1 shows a flowchart of a gold recovery method according to an embodiment of the present invention.
  • FIG. 1 is a flowchart showing an outline of a gold recovery method according to an embodiment of the present invention.
  • Gold is often contained as a simple substance in sulfide metal ores such as chalcocite, porphyry, copper indigo, chalcopyrite, pyrite, arsenite, arsenite, and the like. For this reason, in order to collect this, it is preferable to first concentrate the metal sulfide ore by crushing and then concentrating it by a floatation method. In addition, it is possible to further concentrate gold in the leaching residue by solid-liquid separation after leaching 80% or more of copper, iron, or arsenic which is the main component metal from this concentrate using acidic leachate, Processing efficiency is improved.
  • cyan leaching is a technique that can be avoided because its use is not limited by the high toxicity of cyan.
  • Non-Patent Document 1 a polysulfide complex is formed when gold is leached under special conditions.
  • Non-Patent Document 1 M. E. Berndt, T. Buttram, D. Earley III, W. E. Seyfried Jr., Geochimica et Cosmochimica Acta, 58, (2), 587-594, 1994 Gold polysulfide complexes are more stable than halogen complexes and are not easily reduced to single gold even when adsorbed on an adsorbent.
  • the present invention does not require special conditions such as those described in Non-Patent Document 1, and gold is leached with a polysulfide complex that is easily adsorbed on activated carbon, and the gold adsorbed on activated carbon is easily eluted with caustic soda. And recovered.
  • gold is heated and leached from a metal-containing metal sulfide ore into an acidic leachate using an acidic leachate containing chloride ions and / or bromide ions as anions and copper and iron as cations.
  • the leaching temperature is preferably 60 to 100 ° C.
  • the pH of the acidic leachate is preferably 0 to 1.9. If the leaching temperature and the pH of the leaching solution are within such ranges, gold leaching is better.
  • the acidic leaching solution preferably contains 20 to 200 g / L of chloride ions and bromide ions, and 0.01 to 30 g / L of copper and iron, respectively. Further, the acidic leachate preferably contains 40-200 g / L chloride ions, 20-100 g / L bromide ions, 5-25 g / L copper, and 0.01-10 g / L iron. .
  • the composition of the acidic leaching solution in this way, it is possible to satisfactorily dissolve chalcopyrite, arsenite, etc. that are difficult to dissolve in acid. Further, when bromine is contained, there is an effect that the dissolved gold is stabilized by Au (I).
  • the valuable metal is leached by dissolving the metal sulfide ore in the acid leaching solution by the warming leaching process. Trace amounts of gold are leached together with the main metal. If necessary, after the solid-liquid separation, the gold contained in the residue is leached with an acidic solution having the same composition.
  • gold in the acidic leachate is adsorbed by contacting with activated carbon.
  • the contact of gold with activated carbon may be performed by batch batch type or by continuously passing acidic leachate through an adsorption tower packed with activated carbon.
  • the gold form In order to facilitate elution after adsorbing gold on activated carbon, the gold form must be adsorbed as a polysulfide complex.
  • the presence of S (-II) is essential during leaching.
  • various metal sulfide species correspond to this.
  • Gold adsorbed on the activated carbon is eluted with an alkaline solution, preferably NaOH, or a mixture of NaOH and Na 2 S.
  • an alkaline solution preferably NaOH, or a mixture of NaOH and Na 2 S.
  • the concentration is preferably 0.05 to 1M, more preferably 0.1 to 0.5M.
  • Na 2 S is preferably used in a lower amount because of its price and difficulty in handling, but the lower the concentration of Na 2 S, the lower the gold elution effect.
  • the concentration is too high, the effect is saturated, and the processing load of Na 2 S increases.
  • the amount of Na 2 S added is preferably 0.1 to 10 moles of NaOH, preferably 0.5 to 1.5. The molar amount is more preferable.
  • the gold in the solution exists as a polysulfide type complex. Even if this complex is adsorbed on activated carbon, it is not reduced to an inactive simple substance.
  • the form in which the gold polysulfide complex is adsorbed on the activated carbon is considered to be gold sulfide or the following form.
  • Au (HS n H) m X (X is halogen, m is an integer of 1 to 4, and n is an integer of 1 to 9)
  • the former form (gold sulfide) is eluted by reacting with S 2 ⁇ and dissolving (Non-patent Document 2). In the case of the latter form, elution occurs when H of polyhydrogen sulfide coordinated with NaOH reacts and the complex is negatively charged.
  • Non-Patent Document 2 Seiji Takagi, Qualitative Analytical Chemistry Volume 1, Ion Reaction, Nanedo
  • Elution may be batch batch type or continuous water flow type, but in order to prevent charge from being lost due to oxidation of sulfide by oxygen and preventing gold from being re-adsorbed on activated carbon and deposited in the reactor, it is eluted in batch mode.
  • it is preferable not to stir vigorously. If stirring is required, the air is replaced with a non-oxidizing gas and stirred. Alternatively, set a larger amount of sodium sulfide or add it in a timely manner.
  • Elution is preferably performed under atmospheric pressure.
  • concentrated gold solution can be obtained by elution from activated carbon.
  • concentrated gold solution refers to a solution containing 50 to 5000 mg / L of gold.
  • reduction with sodium oxalate, chemical reduction with sulfur dioxide, or solvent extraction-electrolytic collection method is known. Obtainable.
  • Example 1 35 g of gold sulfide-containing concentrate (Cu: 17% by mass, Fe: 27% by mass, S: 25% by mass, Au: 90 ppm, main ore species are chalcopyrite and pyrotite Fe 1-x S) / L.
  • the leachate contained Cl: 180 g / L, Br: 20 g / L, Cu: 18 g / L, Fe: 2 g / L, and the pH was 1.5.
  • the leachate was heated to 85 ° C. and stirred while blowing air of 0.1 L per minute.
  • the leachate having a gold concentration of 2 mg / L or more thus obtained was passed through a column packed with coconut shell-derived activated carbon (coconut MC manufactured by Taihei Chemical Sangyo Co., Ltd.) to adsorb gold onto the activated carbon.
  • the gold concentration of the leachate after passing through the column was less than 0.1 mg / L.
  • the amount of gold adsorbed was quantified by an ash blowing method and ICP-AES to be 7500 g / ton.
  • the activated carbon adsorbed with gold was immersed in an eluent at a rate of 20 g / L and eluted under atmospheric pressure (first stage).
  • an eluent a 0.1 M NaOH solution at 85 ° C. was used.
  • the eluent was changed, and elution was repeated again under atmospheric pressure under the same conditions (second stage).
  • the test results are shown in Table 1.
  • the gold adsorbed on the activated carbon after leaching by the above method can be eluted with only NaOH. Moreover, the total elution rate is improved by repeating elution.
  • Example 2 Gold was eluted from the activated carbon adsorbed with gold prepared in Example 1 at atmospheric pressure using an eluent containing equimolar Na 2 S in 0.1 M NaOH solution.
  • the treatment temperature was room temperature, and the gold concentration in the solution was quantified by ICP-AES at regular intervals.
  • the test results are shown in Table 2.
  • Example 3 Gold was eluted at atmospheric pressure from the activated carbon adsorbed with gold prepared in Example 1 using an eluent containing equimolar Na 2 S in 0.1 M NaOH solution.
  • the treatment temperature was room temperature, and unlike in Example 2, elution was continued while stirring.
  • the gold concentration in the solution was quantified by ICP-AES at regular intervals. The test results are shown in Table 3.
  • the composition of the leaching solution is Cl: using cupric chloride, copper bromide, ferric chloride, and sodium chloride. 180 g / L, Br: 20 g / L, Cu: 18 g / L, Fe: 2 g / L. The gold concentration of the exudate after the adjustment was about 5 mg / L.
  • This leachate was passed through a column packed with coconut shell-derived activated carbon (Yacoal MC manufactured by Taihei Chemical Sangyo Co., Ltd.), and gold was adsorbed onto the activated carbon.
  • the amount of gold adsorbed was determined to be 42000 g / ton by the ash blowing method and ICP-AES.
  • the activated carbon adsorbed with gold was immersed in a 0.1 M NaOH solution at a rate of 20 g / L, and the temperature was kept at 85 ° C., and elution was performed under atmospheric pressure.
  • the gold concentration in the solution was quantified by ICP-AES at regular intervals. The test results are shown in Table 4.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

The purpose of the present invention is to efficiently recover gold in metal sulfide ores at low cost. This gold recovery method uses an acidic leaching solution including a chloride ion and/or a bromide ion as an anion and copper and iron as a cation, and includes: a step for heating and leaching gold from a base metal sulfide ore into the acidic leaching solution; a step for causing the adsorption of gold in the acidic leaching solution onto activated carbon; and a step for obtaining a concentrated gold solution by eluting with an alkaline solution the gold adsorbed onto the activated carbon.

Description

金の回収方法及びそれを用いた金の製造方法Method for collecting gold and method for producing gold using the same
 本発明は、金の回収方法及びそれを用いた金の製造方法に関する。 The present invention relates to a method for collecting gold and a method for producing gold using the same.
 金は非常に価値の高い金属の一つであり、天然鉱脈中には単体微粒子として存在する。その製錬法としては、シアンで浸出する方法や水銀アマルガムとして回収する方法が知られている。 Gold is one of the most valuable metals and exists as simple particles in natural veins. As the smelting method, a method of leaching with cyan and a method of recovering as mercury amalgam are known.
 金をシアンで浸出する方法では、金はシアノ錯体として溶液中に溶解している。金のシアノ錯体は他の金の錯イオンと比べて非常に安定であることが知られている。浸出した金は、一般的には活性炭に吸着し、苛性ソーダを主成分とする水溶液で溶離する。その後、金を含む溶離液から電解採取法にて金を回収している。 In the method of leaching gold with cyanide, gold is dissolved in the solution as a cyano complex. Gold cyano complexes are known to be very stable compared to other gold complex ions. The leached gold is generally adsorbed on activated carbon and eluted with an aqueous solution containing caustic soda as a main component. Thereafter, gold is recovered from the eluent containing gold by electrolytic collection.
 金は活性炭にシアノ錯体として吸着されるため、苛性ソーダのみでの溶離も可能であるが、一般的には活性炭からの金の溶離成績を向上させる目的で、苛性ソーダ水溶液に若干のシアンイオンを添加している。 Since gold is adsorbed on activated carbon as a cyano complex, elution with only caustic soda is possible, but in general, for the purpose of improving the elution performance of gold from activated carbon, some cyan ions are added to the aqueous caustic soda solution. ing.
 また、金及び銀の両方を含むシアン化物溶液の金及び銀の両方を吸着させた活性炭から、金を優先的に溶離する方法として、苛性ソーダ水溶液に硫化ナトリウムを混合した溶液で溶離する方法が知られている(特許文献1)。 In addition, as a method of preferentially eluting gold from activated carbon that adsorbs both gold and silver in a cyanide solution containing both gold and silver, there is known a method of eluting with a solution in which sodium sulfide is mixed with an aqueous caustic soda solution. (Patent Document 1).
 金は、金鉱脈ではなくとも黄鉄鉱や黄銅鉱、その他硫化金属鉱に副産物として微量含まれることも多く、金はその主成分を製錬する際に分離され、別途金属金に製錬される場合が多い。 Gold is often contained as a by-product in pyrite, chalcopyrite, and other sulfide metal ores, not gold veins, and gold is separated when smelting its main component and separately smelted into metal gold There are many.
 硫化金属鉱に副産物として含まれる金、例えば黄銅鉱の場合、一般的には、金は乾式銅製錬工程でアノードへ移行し、次いで電解精製工程では電解スライム中に濃縮する。電解スライム中の金は、湿式製錬法(特許文献2、3)や乾式製錬法によって金属金として回収される。 In the case of gold contained in the metal sulfide ore as a by-product, such as chalcopyrite, generally, the gold is transferred to the anode in the dry copper smelting process, and then concentrated in the electrolytic slime in the electrolytic purification process. Gold in the electrolytic slime is recovered as metallic gold by a wet smelting method (Patent Documents 2 and 3) or a dry smelting method.
 近年、環境負荷や精鉱中の不純物を考慮して、乾式法を用いずに精鉱を湿式法で処理する製錬技術が研究されており、貴金属を溶かすために十分な酸化電位を有する強力な酸で金を浸出する方法が提案されている(特許文献4)。特許文献4に記載の方法では、酸性ハロゲン化物溶液を用いて金を浸出した場合、ハロゲン化物が金などの貴金属と安定な錯体を形成するが、シアン化物よりも弱い配位子であることが示されている(特許文献4の明細書の段落0017)。また、貴金属を含有する溶液は、活性炭にこれを吸着して回収できることが示され、さらに活性炭を燃焼するか、シアン化物溶液で溶離し、その溶離液を電解採取により貴金属を回収する方法が示されている(特許文献4の明細書の段落0019)。また、金の吸着剤としては、リグニン誘導体を原料とする吸着剤も知られている(特許文献5)。 In recent years, considering the environmental impact and impurities in concentrates, smelting technology that treats concentrates by a wet method without using a dry method has been studied, and it has a strong oxidation potential sufficient to dissolve precious metals. A method of leaching gold with a simple acid has been proposed (Patent Document 4). In the method described in Patent Document 4, when an acid halide solution is used to leach gold, the halide forms a stable complex with a noble metal such as gold, but it may be a weaker ligand than cyanide. It is shown (paragraph 0017 in the specification of Patent Document 4). In addition, it has been shown that a solution containing a noble metal can be recovered by adsorbing it on activated carbon, and further shows a method of recovering the noble metal by electrowinning the activated carbon by burning the activated carbon or eluting it with a cyanide solution. (Paragraph 0019 in the specification of Patent Document 4). Further, as a gold adsorbent, an adsorbent using a lignin derivative as a raw material is also known (Patent Document 5).
米国特許第2579531号明細書US Pat. No. 2,579,531 特開平9-316561号公報JP-A-9-316561 特開2001-316735号公報JP 2001-316735 A 特開2006-512484号公報JP 2006-512484 A 特開2005-305329号公報JP 2005-305329 A
 ハロゲン化物溶液を用いて浸出した金は、ハロゲン化物と錯体を形成するが、シアン化物錯体よりも不安定であるため、活性炭に吸着させた場合、還元されて金属金として活性炭中に存在する。そのため苛性ソーダのみでは溶離できず、シアン化物溶液で溶離する必要がある。 Gold leached using a halide solution forms a complex with a halide, but is more unstable than a cyanide complex. Therefore, when adsorbed on activated carbon, it is reduced and exists in the activated carbon as metallic gold. Therefore, it is not possible to elute with only caustic soda, but it is necessary to elute with a cyanide solution.
 金をシアン溶液で浸出する方法は、シアンの毒性から使用が規制されるケースが増えている。そのためシアンを用いないで、金を高効率で浸出できる方法が望まれている。その一案である酸による浸出法は、金が不活性であるため強力な酸化剤が必要であり、浸出にコストがかかる。加えて含金硫化金属鉱中の金を浸出するには、主成分の硫化金属鉱を十分に浸出して、金及び浸出液が十分に接触できるようにしておく必要がある。そのようにして初生硫化銅鉱や黄鉄鉱中の金を溶解しても、シアンを用いた場合と比較して、溶液中に浸出される金の濃度はかなり低くなる。 The method of leaching gold with a cyan solution is increasingly used due to the toxicity of cyan. Therefore, a method capable of leaching gold with high efficiency without using cyan is desired. The acid leaching method, which is one of the proposals, requires a strong oxidizing agent because gold is inactive, and the leaching cost is high. In addition, in order to leach gold in the metal-containing sulfide metal ore, it is necessary to sufficiently leach the main component metal sulfide ore so that the gold and the leachate can sufficiently come into contact with each other. Thus, even if gold in primary copper sulfide or pyrite is dissolved, the concentration of gold leached into the solution is considerably lower than when cyan is used.
 そのため、酸浸出した場合でも、その後工程で吸着法や溶媒抽出法により金をさらに濃縮する必要がある。吸着法では吸着材として活性炭が知られるが、金単体で吸着している金の溶離には、シアンを使用する必要がある。シアンを用いない場合は、活性炭を焼却して金を回収することとなり、溶離した場合と比べコスト高となる。また、特許文献5に示すような吸着材はコスト高になる、もしくは繰り返し使用することが出来ない等の問題があり実用化されていない。 Therefore, even in the case of acid leaching, it is necessary to further concentrate gold by an adsorption method or a solvent extraction method in the subsequent process. In the adsorption method, activated carbon is known as an adsorbent, but it is necessary to use cyan for elution of gold adsorbed by gold alone. When cyan is not used, the activated carbon is incinerated to recover gold, which is more expensive than the case of elution. Further, the adsorbent as shown in Patent Document 5 is not put into practical use due to problems such as high cost or inability to repeatedly use it.
 溶媒抽出に供する場合では抽出、セットリング、逆抽出の設備が必要となり、また金濃度は極めて低いのに対し金以外の不純物が多いことから金の選択的抽出率が問題であり、より簡便に操作できる吸着法が好ましい。 In the case of solvent extraction, extraction, settling and back-extraction facilities are required, and the gold concentration is very low, but there are many impurities other than gold, so the selective extraction rate of gold is a problem, making it easier An operable adsorption method is preferred.
 本発明者らは上記課題を解決するために研究を重ねたところ、硫化金属鉱の浸出をハロゲン浴で行い、主成分金属と共に金を浸出し、その金浸出液を活性炭に吸着した後に苛性ソーダで溶離して濃厚金溶液を調整することで、硫化金属鉱に含まれる金を安価に効率良く回収することができることを見出した。 As a result of repeated researches to solve the above problems, the present inventors conducted leaching of metal sulfide ore in a halogen bath, leached gold together with the main component metal, adsorbed the gold leaching solution on activated carbon, and then eluted with caustic soda. Then, it was found that gold contained in the metal sulfide ore can be efficiently recovered at low cost by adjusting the concentrated gold solution.
 以上の知見を背景にして完成した本発明は一側面において、アニオンとして塩化物イオン及び/又は臭化物イオンを含み、カチオンとして銅及び鉄を含む酸性浸出液を用いて、含金硫化金属鉱から金を前記酸性浸出液に加温浸出する工程と、前記酸性浸出液中の金を活性炭に吸着させる工程と、前記活性炭に吸着させた金をアルカリ液で溶離して濃厚金溶液を得る工程とを備えた金の回収方法である。 The present invention completed on the background of the above knowledge, in one aspect, uses an acid leaching solution containing chloride ions and / or bromide ions as anions and copper and iron as cations, to obtain gold from a metal sulfide containing metal ore. Gold comprising a step of warm leaching in the acidic leachate, a step of adsorbing gold in the acidic leachate to activated carbon, and a step of eluting the gold adsorbed on the activated carbon with an alkaline solution to obtain a concentrated gold solution This is a recovery method.
 本発明に係る金の回収方法は一実施形態において、前記含金硫化金属鉱が、輝銅鉱、斑銅鉱、銅藍、黄銅鉱、黄鉄鉱、硫砒銅鉱、及び、硫砒鉄鉱からなる群から選択された少なくとも一種を含む精鉱である。 In one embodiment of the gold recovery method according to the present invention, the metal-containing sulfide ore is selected from the group consisting of chalcocite, chalcopyrite, copper indigo, chalcopyrite, pyrite, arsenite, and arsenite. It is a concentrate containing at least one kind.
 本発明に係る金の回収方法は別の一実施形態において、前記含金硫化金属鉱が、前記精鉱から酸性浸出液を用いて主成分金属である銅、鉄、又は、ヒ素を80%以上浸出した後に固液分離することで得られた金を含む浸出残渣である。 In another embodiment of the gold recovery method according to the present invention, the metal-containing metal sulfide ore leaches 80% or more of copper, iron, or arsenic that is a main component metal from the concentrate using an acidic leachate. After that, it is a leaching residue containing gold obtained by solid-liquid separation.
 本発明に係る金の回収方法は一実施形態において、前記酸性浸出液が、40~200g/Lの塩化物イオン、20~100g/Lの臭化物イオン、5~25g/Lの銅、及び、0.01~10g/Lの鉄を含み、pHが0~1.9である。 In one embodiment of the gold recovery method according to the present invention, the acidic leachate contains 40 to 200 g / L of chloride ions, 20 to 100 g / L of bromide ions, 5 to 25 g / L of copper, and 0. It contains 01-10 g / L of iron and has a pH of 0-1.9.
 本発明に係る金の回収方法は別の一実施形態において、前記加温浸出を60~100℃で行う。 In another embodiment of the gold recovery method according to the present invention, the warming leaching is performed at 60 to 100 ° C.
 本発明に係る金の回収方法は更に別の一実施形態において、前記アルカリ液が0.05~1Mの水酸化ナトリウムを含む。 In another embodiment of the method for recovering gold according to the present invention, the alkaline solution contains 0.05 to 1M sodium hydroxide.
 本発明に係る金の回収方法は更に別の一実施形態において、前記アルカリ液が、水酸化ナトリウムと、水酸化ナトリウムに対して0.1~10モル倍量の硫化ナトリウムとを含む。 In still another embodiment of the method for recovering gold according to the present invention, the alkaline solution contains sodium hydroxide and 0.1 to 10 moles of sodium sulfide with respect to sodium hydroxide.
 本発明に係る金の回収方法は更に別の一実施形態において、前記溶離を大気圧下で行う。 In another embodiment of the method for recovering gold according to the present invention, the elution is performed under atmospheric pressure.
 本発明は別の一側面において、本発明の金の回収方法で得られた濃厚金溶液から還元によって単体の金を作製する金の製造方法である。 In another aspect of the present invention, there is provided a gold manufacturing method in which single gold is produced by reduction from a concentrated gold solution obtained by the gold recovery method of the present invention.
 本発明によれば、硫化金属鉱に含まれる金を安価に効率良く回収することができる。 According to the present invention, gold contained in the sulfide metal ore can be efficiently recovered at low cost.
図1は、本発明の実施形態に係る金の回収方法のフローチャートを示す。FIG. 1 shows a flowchart of a gold recovery method according to an embodiment of the present invention.
 図1に本発明の実施形態に係る金の回収方法の概略を表すフローチャートを示す。
 金は、輝銅鉱、斑銅鉱、銅藍、黄銅鉱、黄鉄鉱、硫砒銅鉱、硫砒鉄鉱等の硫化金属鉱に単体として極微量含まれることが多い。このため、これを回収するには、まず硫化金属鉱を破砕後に浮遊選鉱法により精鉱とすることで濃縮することが好ましい。また、この精鉱から酸性浸出液を用いて主成分金属である銅、鉄、又は、ヒ素を80%以上浸出した後に固液分離すれば、浸出残渣に金をさらに濃縮することも可能であり、処理効率が良好となる。
FIG. 1 is a flowchart showing an outline of a gold recovery method according to an embodiment of the present invention.
Gold is often contained as a simple substance in sulfide metal ores such as chalcocite, porphyry, copper indigo, chalcopyrite, pyrite, arsenite, arsenite, and the like. For this reason, in order to collect this, it is preferable to first concentrate the metal sulfide ore by crushing and then concentrating it by a floatation method. In addition, it is possible to further concentrate gold in the leaching residue by solid-liquid separation after leaching 80% or more of copper, iron, or arsenic which is the main component metal from this concentrate using acidic leachate, Processing efficiency is improved.
 この硫化金属鉱に含まれた金、又は、より好ましい形態として上述の精鉱あるいは主要金属成分を浸出した後の浸出残渣に濃縮された金を浸出する方法としては、王水等の強酸化性の酸で浸出する方法、シアンで浸出する方法等が公知であるが、いずれも環境負荷や安全性の面で問題がある。特にシアン浸出は、シアンの毒性の高さから使用が制限されることも珍しく無いため、回避される手法である。 As a method for leaching gold contained in this metal sulfide or gold concentrated in the leaching residue after leaching the concentrate or the main metal component as a more preferable form, strong oxidizing properties such as aqua regia A method of leaching with acid and a method of leaching with cyanide are known, but both have problems in terms of environmental load and safety. In particular, cyan leaching is a technique that can be avoided because its use is not limited by the high toxicity of cyan.
 強酸化性の酸で浸出した場合は、溶解した金をさらに濃縮する際に適当な方法がなく、よく知られた吸着材である活性炭や機能性樹脂等の吸着材に金を吸着すると溶離に問題があり、吸着材ごと焼却して回収することになればコストが著しく上昇する。この溶離が不調な理由として、金が強酸で浸出された時のハロゲン化錯体は、活性炭に吸着された際に単体まで還元されることが原因であるといわれている。 When leaching with a strong oxidizing acid, there is no appropriate method for further concentrating the dissolved gold, and elution occurs when gold is adsorbed on an adsorbent such as activated carbon or functional resin, which is a well-known adsorbent. There is a problem, and if the entire adsorbent is incinerated and collected, the cost will rise significantly. It is said that the reason for this elution failure is that the halogenated complex when gold is leached with a strong acid is reduced to a simple substance when adsorbed on activated carbon.
 ところが、金を特殊な条件下で浸出するとポリスルフィド錯体となることが下記の非特許文献1に記載されている。
 (非特許文献1)M. E. Berndt, T. Buttram, D. Earley III, W. E. Seyfried Jr., Geochimica et Cosmochimica Acta, 58,(2), 587-594, 1994
 金のポリスルフィド錯体はハロゲン錯体より安定であり、吸着材に吸着されても容易に単体の金まで還元されない。
However, it is described in Non-Patent Document 1 below that a polysulfide complex is formed when gold is leached under special conditions.
(Non-Patent Document 1) M. E. Berndt, T. Buttram, D. Earley III, W. E. Seyfried Jr., Geochimica et Cosmochimica Acta, 58, (2), 587-594, 1994
Gold polysulfide complexes are more stable than halogen complexes and are not easily reduced to single gold even when adsorbed on an adsorbent.
 これに対し、本発明では非特許文献1に見られるような特殊な条件を必要とせず、金を活性炭に吸着され易いポリスルフィド型錯体で浸出し、しかも活性炭に吸着した金は苛性ソーダで容易に溶離して回収される。 On the other hand, the present invention does not require special conditions such as those described in Non-Patent Document 1, and gold is leached with a polysulfide complex that is easily adsorbed on activated carbon, and the gold adsorbed on activated carbon is easily eluted with caustic soda. And recovered.
 本発明においては、まず、アニオンとして塩化物イオン及び/又は臭化物イオンを含み、カチオンとして銅及び鉄を含む酸性浸出液を用いて、含金硫化金属鉱から金を酸性浸出液に加温浸出する。浸出温度は60~100℃が好ましい。酸性浸出液のpHは0~1.9であるのが好ましい。浸出温度及び浸出液のpHがこのような範囲であれば、金の浸出がより良好となる。 In the present invention, first, gold is heated and leached from a metal-containing metal sulfide ore into an acidic leachate using an acidic leachate containing chloride ions and / or bromide ions as anions and copper and iron as cations. The leaching temperature is preferably 60 to 100 ° C. The pH of the acidic leachate is preferably 0 to 1.9. If the leaching temperature and the pH of the leaching solution are within such ranges, gold leaching is better.
 酸性浸出液は、塩化物イオンと臭化物イオンとをそれぞれ20~200g/L、及び、銅と鉄とをそれぞれ0.01~30g/L含むのが好ましい。さらに、酸性浸出液は、40~200g/Lの塩化物イオン、20~100g/Lの臭化物イオン、5~25g/Lの銅、及び、0.01~10g/Lの鉄を含むのがより好ましい。酸性浸出液の組成をこのように限定することで、酸に溶け難い黄銅鉱や硫砒銅鉱等を良好に溶解させることができる。また、臭素が含まれている場合、溶解した金がAu(I)で安定化されるという効果がある。 The acidic leaching solution preferably contains 20 to 200 g / L of chloride ions and bromide ions, and 0.01 to 30 g / L of copper and iron, respectively. Further, the acidic leachate preferably contains 40-200 g / L chloride ions, 20-100 g / L bromide ions, 5-25 g / L copper, and 0.01-10 g / L iron. . By limiting the composition of the acidic leaching solution in this way, it is possible to satisfactorily dissolve chalcopyrite, arsenite, etc. that are difficult to dissolve in acid. Further, when bromine is contained, there is an effect that the dissolved gold is stabilized by Au (I).
 上記加温浸出工程により酸性浸出液に硫化金属鉱を溶解させて有価金属を浸出させる。微量含まれる金は、主要金属と一緒に浸出される。必要があれば固液分離後その残渣に含まれる金を同じくこの組成の酸性液で浸出する。 The valuable metal is leached by dissolving the metal sulfide ore in the acid leaching solution by the warming leaching process. Trace amounts of gold are leached together with the main metal. If necessary, after the solid-liquid separation, the gold contained in the residue is leached with an acidic solution having the same composition.
 次に、酸性浸出液中の金を活性炭に接触させて吸着させる。金の活性炭への接触はバッチ回分式もしくは活性炭を充填した吸着塔に酸性浸出液を連続通水することで行ってもよい。 Next, gold in the acidic leachate is adsorbed by contacting with activated carbon. The contact of gold with activated carbon may be performed by batch batch type or by continuously passing acidic leachate through an adsorption tower packed with activated carbon.
 活性炭に金を吸着した後、溶離を容易為らしめるために金の形態はポリスルフィド錯体として吸着することが必要であるが、そのためには浸出時にS(-II)の存在が必須であり、本発明の場合は各種硫化金属種がこれに該当する。 In order to facilitate elution after adsorbing gold on activated carbon, the gold form must be adsorbed as a polysulfide complex. For this purpose, the presence of S (-II) is essential during leaching. In the case of the invention, various metal sulfide species correspond to this.
 活性炭に吸着された金は、アルカリ液、好ましくはNaOH、もしくはNaOHとNa2Sとを混合した液により溶離する。ここで、アルカリ濃度が低いと金の溶離が困難となり、アルカリ濃度が高いと調製時の発熱の危険がある。このような観点から、NaOHを用いる場合は濃度が0.05~1Mであるのが好ましく、0.1~0.5Mであるのがより好ましい。また、Na2Sは価格と取り扱いの難しさから使用量が低いほうが好ましいが、Na2Sの濃度が低ければそれだけ金の溶離効果が低下する。また、濃度が高すぎると効果が飽和してしまい、さらにNa2Sの処理負担も大きくなる。このような観点から、NaOHとNa2Sとを混合した溶液を用いる場合は、Na2S添加量はNaOHの0.1~10モル倍量とするのが好ましく、0.5~1.5モル倍量とするのがより好ましい。 Gold adsorbed on the activated carbon is eluted with an alkaline solution, preferably NaOH, or a mixture of NaOH and Na 2 S. Here, when the alkali concentration is low, elution of gold becomes difficult, and when the alkali concentration is high, there is a risk of heat generation during preparation. From this point of view, when NaOH is used, the concentration is preferably 0.05 to 1M, more preferably 0.1 to 0.5M. Na 2 S is preferably used in a lower amount because of its price and difficulty in handling, but the lower the concentration of Na 2 S, the lower the gold elution effect. On the other hand, if the concentration is too high, the effect is saturated, and the processing load of Na 2 S increases. From such a viewpoint, when using a solution in which NaOH and Na 2 S are mixed, the amount of Na 2 S added is preferably 0.1 to 10 moles of NaOH, preferably 0.5 to 1.5. The molar amount is more preferable.
 硫化金属鉱に含まれる金を本発明の方法で浸出した場合、溶液中の金はポリスルフィド型錯体として存在する。この錯体は活性炭に吸着されても還元をうけて不活性な単体の金とはならない。 When gold contained in the metal sulfide ore is leached by the method of the present invention, the gold in the solution exists as a polysulfide type complex. Even if this complex is adsorbed on activated carbon, it is not reduced to an inactive simple substance.
 金のポリスルフィド型錯体が活性炭に吸着される形態は、硫化金、もしくは下記の形態であると考えられる。
 Au(HSnH)m
 (Xはハロゲン、mは1~4の整数、nは1~9の整数)
 前者の形態(硫化金)の場合はS2-と反応して溶解することで溶離される(非特許文献2)。後者の形態の場合、NaOHと配位しているポリ硫化水素のHが反応して錯体が負電荷を帯びることで溶離される。
 (非特許文献2)高木誠司、定性分析化学中巻、イオン反応編、南江堂
The form in which the gold polysulfide complex is adsorbed on the activated carbon is considered to be gold sulfide or the following form.
Au (HS n H) m X
(X is halogen, m is an integer of 1 to 4, and n is an integer of 1 to 9)
The former form (gold sulfide) is eluted by reacting with S 2− and dissolving (Non-patent Document 2). In the case of the latter form, elution occurs when H of polyhydrogen sulfide coordinated with NaOH reacts and the complex is negatively charged.
(Non-Patent Document 2) Seiji Takagi, Qualitative Analytical Chemistry Volume 1, Ion Reaction, Nanedo
 特許文献4に開示された方法や、王水あるいは過酸化水素と塩酸との混酸等の強酸化剤を用いて金を浸出すると、硫黄は確実に0価まで酸化され、金の形態はポリスルフィド形錯体ではなくジハロゲン錯体もしくはテトラハロゲン錯体として溶出される。この場合は活性炭に吸着した時に単体に還元されて金属金となり、NaOHでは溶離することができない。 When gold is leached using the method disclosed in Patent Document 4 or a strong oxidizing agent such as aqua regia or a mixed acid of hydrogen peroxide and hydrochloric acid, sulfur is surely oxidized to zero valence, and the form of gold is a polysulfide form. It is eluted as a dihalogen complex or a tetrahalogen complex instead of a complex. In this case, when adsorbed on the activated carbon, it is reduced to a simple substance to become metal gold and cannot be eluted with NaOH.
 溶離はバッチ回分式もしくは連続通水式でもよいが、酸素によりスルフィドが酸化されることにより電荷を失い、金が活性炭に再吸着することや反応器に沈着することを防ぐため、回分式で溶離を行う場合は激しく攪拌しないのが好ましい。攪拌が必要な場合は空気を非酸化性ガスと置換して攪拌する。もしくは硫化ナトリウム添加量を多めに設定するか、適時添加を行う。また、溶離は大気圧下で行うのが好ましい。 Elution may be batch batch type or continuous water flow type, but in order to prevent charge from being lost due to oxidation of sulfide by oxygen and preventing gold from being re-adsorbed on activated carbon and deposited in the reactor, it is eluted in batch mode. When performing, it is preferable not to stir vigorously. If stirring is required, the air is replaced with a non-oxidizing gas and stirred. Alternatively, set a larger amount of sodium sulfide or add it in a timely manner. Elution is preferably performed under atmospheric pressure.
 活性炭からの溶離により濃厚金溶液を得ることができる。ここで、「濃厚金溶液」とは、金を50~5000mg/L含む溶液を示す。この濃厚溶液から還元によって金を作製する方法としてはシュウ酸ナトリウムによる還元や二酸化硫黄による化学還元法、もしくは溶媒抽出-電解採取法が知られており、いずれの手段を用いても単体の金を得ることができる。 A concentrated gold solution can be obtained by elution from activated carbon. Here, “concentrated gold solution” refers to a solution containing 50 to 5000 mg / L of gold. As a method for producing gold by reduction from this concentrated solution, reduction with sodium oxalate, chemical reduction with sulfur dioxide, or solvent extraction-electrolytic collection method is known. Obtainable.
 以下に本発明の実施例を示すが、これらの実施例は本発明及びその利点をよりよく理解するために提供するものであり、発明が限定されることを意図するものではない。 EXAMPLES Examples of the present invention will be described below, but these examples are provided for better understanding of the present invention and its advantages, and are not intended to limit the invention.
(実施例1)
 金を含む硫化金属精鉱(Cu:17質量%、Fe:27質量%、S:25質量%、Au:90ppm、主要鉱種は黄銅鉱及びピロタイトFe1-xS)を、浸出液に対し35g/Lとなるよう秤量した。浸出液は、Cl:180g/L、Br:20g/L、Cu:18g/L、Fe:2g/L含有し、pHは1.5とした。浸出液を85℃に加温し、空気を1分当たり0.1L吹き込みながら攪拌した。こうして得た金濃度が2mg/L以上の浸出液をヤシ殻由来活性炭(太平化学産業社製ヤシコールMC)を充填したカラムに通し、金を活性炭に吸着させた。カラム通過後の浸出液の金濃度は0.1mg/L未満であった。
 カラム中の活性炭の金濃度が7000g/ton程度となったところでカラムから取り出した。金の吸着量を灰吹き法とICP-AESにより定量したところ、7500g/tonであった。
 この金を吸着した活性炭を20g/Lの割合で溶離液に浸漬して大気圧下で溶離を行った(一段目)。溶離液は、85℃の0.1MのNaOH液を用いた。続いて溶離液を入れ替え、同条件で再び大気圧下で溶離を繰返した(二段目)。試験結果を表1に示す。
Example 1
35 g of gold sulfide-containing concentrate (Cu: 17% by mass, Fe: 27% by mass, S: 25% by mass, Au: 90 ppm, main ore species are chalcopyrite and pyrotite Fe 1-x S) / L. The leachate contained Cl: 180 g / L, Br: 20 g / L, Cu: 18 g / L, Fe: 2 g / L, and the pH was 1.5. The leachate was heated to 85 ° C. and stirred while blowing air of 0.1 L per minute. The leachate having a gold concentration of 2 mg / L or more thus obtained was passed through a column packed with coconut shell-derived activated carbon (coconut MC manufactured by Taihei Chemical Sangyo Co., Ltd.) to adsorb gold onto the activated carbon. The gold concentration of the leachate after passing through the column was less than 0.1 mg / L.
When the gold concentration of the activated carbon in the column reached about 7000 g / ton, it was taken out from the column. The amount of gold adsorbed was quantified by an ash blowing method and ICP-AES to be 7500 g / ton.
The activated carbon adsorbed with gold was immersed in an eluent at a rate of 20 g / L and eluted under atmospheric pressure (first stage). As an eluent, a 0.1 M NaOH solution at 85 ° C. was used. Subsequently, the eluent was changed, and elution was repeated again under atmospheric pressure under the same conditions (second stage). The test results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 上記方法で浸出した後に活性炭に吸着した金は、NaOHのみで金の溶離が可能であることがわかる。また、溶離を繰返すことで合計の溶離率は向上している。 It can be seen that the gold adsorbed on the activated carbon after leaching by the above method can be eluted with only NaOH. Moreover, the total elution rate is improved by repeating elution.
(実施例2)
 0.1MのNaOH液に等モルのNa2Sを含有した溶離液を用いて、実施例1で調製した金を吸着した活性炭から金を大気圧下で溶離した。処理温度は室温で実施し、一定時間ごとに液中の金濃度をICP-AESで定量した。試験結果を表2に示す。
(Example 2)
Gold was eluted from the activated carbon adsorbed with gold prepared in Example 1 at atmospheric pressure using an eluent containing equimolar Na 2 S in 0.1 M NaOH solution. The treatment temperature was room temperature, and the gold concentration in the solution was quantified by ICP-AES at regular intervals. The test results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2から、Na2Sを添加すると溶離後液の金濃度が上昇することがわかる。これは、Na2SのSが、溶離した金をポリスルフィド型錯体として溶離後液中に安定的に存在させているためと考えられる。 From Table 2, it can be seen that the addition of Na 2 S increases the gold concentration of the solution after elution. This is considered to be because S of Na 2 S is stably present in the solution after elution as a polysulfide type complex.
(実施例3)
 0.1MのNaOH液に等モルのNa2Sを含有した溶離液を用いて、実施例1で調製した金を吸着した活性炭から大気圧下で金を溶離した。処理温度は室温で実施し、実施例2と異なり攪拌を行いながら溶離を継続した。一定時間ごとに液中の金濃度をICP-AESで定量した。試験結果を表3に示す。
(Example 3)
Gold was eluted at atmospheric pressure from the activated carbon adsorbed with gold prepared in Example 1 using an eluent containing equimolar Na 2 S in 0.1 M NaOH solution. The treatment temperature was room temperature, and unlike in Example 2, elution was continued while stirring. The gold concentration in the solution was quantified by ICP-AES at regular intervals. The test results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3から、攪拌を行いながら金の溶離を行った場合、金は良好に溶離されるものの、攪拌しなかった実施例2と比べると、時間の経過と共に再び活性炭に金が吸着あるいは析出し、溶離液中の金濃度が低下してくることがわかる。これは、ポリスルフィド錯体が空気酸化されて電荷を失うことが原因であると考えられ、密閉した容器内や窒素等の非酸化雰囲気の中で行う、溶離中にNa2Sを添加する、あるいは初めのNa2S量を多めに添加する等の対策で防ぐことができ、特段別の試薬を添加する必要は無い。 From Table 3, when gold was eluted while stirring, gold was eluted well, but compared with Example 2 where stirring was not performed, gold was again adsorbed or deposited on the activated carbon over time, It can be seen that the gold concentration in the eluent decreases. This is considered to be caused by the loss of charge due to air oxidation of the polysulfide complex, which is carried out in a closed container or in a non-oxidizing atmosphere such as nitrogen, Na 2 S is added during elution, or at first This can be prevented by adding a large amount of Na 2 S, and there is no need to add a special reagent.
(比較例1)
 過酸化水素と塩酸との混酸を用いて金をジハロゲン錯体もしくはテトラハロゲン錯体として浸出した後、浸出液の組成について、塩化第二銅、臭化銅、塩化第二鉄、塩化ナトリウムを用いてCl:180g/L、Br:20g/L、Cu:18g/L、Fe:2g/Lに調整した。調整後の浸出液の金濃度は約5mg/Lであった。この浸出液をヤシ殻由来活性炭(太平化学産業社製ヤシコールMC)を充填したカラムに通し、金を活性炭に吸着させた。
 金の吸着量を灰吹き法とICP-AESにより定量したところ42000g/tonであった。
 この金を吸着した活性炭を20g/Lの割合で0.1MのNaOH液に浸漬し、温度を85℃に保ち、大気圧下で溶離を行った。一定時間ごとに液中の金濃度をICP-AESで定量した。試験結果を表4に示す。
(Comparative Example 1)
After leaching gold as a dihalogen complex or a tetrahalogen complex using a mixed acid of hydrogen peroxide and hydrochloric acid, the composition of the leaching solution is Cl: using cupric chloride, copper bromide, ferric chloride, and sodium chloride. 180 g / L, Br: 20 g / L, Cu: 18 g / L, Fe: 2 g / L. The gold concentration of the exudate after the adjustment was about 5 mg / L. This leachate was passed through a column packed with coconut shell-derived activated carbon (Yacoal MC manufactured by Taihei Chemical Sangyo Co., Ltd.), and gold was adsorbed onto the activated carbon.
The amount of gold adsorbed was determined to be 42000 g / ton by the ash blowing method and ICP-AES.
The activated carbon adsorbed with gold was immersed in a 0.1 M NaOH solution at a rate of 20 g / L, and the temperature was kept at 85 ° C., and elution was performed under atmospheric pressure. The gold concentration in the solution was quantified by ICP-AES at regular intervals. The test results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表4から、ハロゲン錯体になっている金は、活性炭に吸着されるものの、NaOH溶液では溶離できないことが明らかである。 From Table 4, it is clear that gold in the halogen complex is adsorbed by activated carbon but cannot be eluted with NaOH solution.

Claims (9)

  1.  アニオンとして塩化物イオン及び/又は臭化物イオンを含み、カチオンとして銅及び鉄を含む酸性浸出液を用いて、含金硫化金属鉱から金を前記酸性浸出液に加温浸出する工程と、
     前記酸性浸出液中の金を活性炭に吸着させる工程と、
     前記活性炭に吸着させた金をアルカリ液で溶離して濃厚金溶液を得る工程と、
    を備えた金の回収方法。
    Using an acidic leachate containing chloride ions and / or bromide ions as anions and copper and iron as cations, and warm leaching gold from the metal-containing metal sulfide to the acidic leachate;
    Adsorbing gold in the acidic leachate to activated carbon;
    Eluting the gold adsorbed on the activated carbon with an alkaline solution to obtain a concentrated gold solution;
    With gold collection.
  2.  前記含金硫化金属鉱が、輝銅鉱、斑銅鉱、銅藍、黄銅鉱、黄鉄鉱、硫砒銅鉱、及び、硫砒鉄鉱からなる群から選択された少なくとも一種を含む精鉱である請求項1に記載の金の回収方法。 2. The concentrate according to claim 1, wherein the metal-containing sulfide metal ore is a concentrate containing at least one selected from the group consisting of chalcocite, chalcopyrite, copper indigo, chalcopyrite, pyrite, arsenite, and arsenite. How to collect gold.
  3.  前記含金硫化金属鉱が、前記精鉱から酸性浸出液を用いて主成分金属である銅、鉄、又は、ヒ素を80%以上浸出した後に固液分離することで得られた金を含む浸出残渣である請求項2に記載の金の回収方法。 The metal-containing sulfide metal ore is a leaching residue containing gold obtained by solid-liquid separation after leaching 80% or more of copper, iron, or arsenic which is a main component metal from the concentrate using an acidic leaching solution. The method for recovering gold according to claim 2.
  4.  前記酸性浸出液が、40~200g/Lの塩化物イオン、20~100g/Lの臭化物イオン、5~25g/Lの銅、及び、0.01~10g/Lの鉄を含み、pHが0~1.9である請求項1~3のいずれかに記載の金の回収方法。 The acidic leachate contains 40 to 200 g / L of chloride ions, 20 to 100 g / L of bromide ions, 5 to 25 g / L of copper, and 0.01 to 10 g / L of iron, and has a pH of 0 to The method for recovering gold according to any one of claims 1 to 3, which is 1.9.
  5.  前記加温浸出を60~100℃で行う請求項1~4のいずれかに記載の金の回収方法。 The method for recovering gold according to any one of claims 1 to 4, wherein the warming leaching is performed at 60 to 100 ° C.
  6.  前記アルカリ液が0.05~1Mの水酸化ナトリウムを含む請求項1~5のいずれかに記載の金の回収方法。 The method for recovering gold according to any one of claims 1 to 5, wherein the alkaline solution contains 0.05 to 1M sodium hydroxide.
  7.  前記アルカリ液が、水酸化ナトリウムと、水酸化ナトリウムに対して0.1~10モル倍量の硫化ナトリウムとを含む請求項1~6のいずれかに記載の金の回収方法。 The method for recovering gold according to any one of claims 1 to 6, wherein the alkaline solution contains sodium hydroxide and sodium sulfide in an amount of 0.1 to 10 mol times with respect to sodium hydroxide.
  8.  前記溶離を大気圧下で行う請求項1~7のいずれかに記載の金の回収方法。 The method for recovering gold according to any one of claims 1 to 7, wherein the elution is performed under atmospheric pressure.
  9.  請求項1~8のいずれかに記載の金の回収方法で得られた濃厚金溶液から還元によって単体の金を作製する金の製造方法。 A method for producing gold, wherein single gold is produced by reduction from the concentrated gold solution obtained by the gold recovery method according to any one of claims 1 to 8.
PCT/JP2012/079856 2012-01-17 2012-11-16 Gold recovery method, and gold production method using same WO2013108478A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CA2861419A CA2861419C (en) 2012-01-17 2012-11-16 Method of recovering gold and method of manufacturing gold using the same
AU2013200572A AU2013200572B8 (en) 2012-01-17 2012-11-16 Method of recovering gold and method of manufacturing gold using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-007493 2012-01-17
JP2012007493A JP2013147685A (en) 2012-01-17 2012-01-17 Gold recovery method, and gold production method using the same

Publications (1)

Publication Number Publication Date
WO2013108478A1 true WO2013108478A1 (en) 2013-07-25

Family

ID=48798915

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/079856 WO2013108478A1 (en) 2012-01-17 2012-11-16 Gold recovery method, and gold production method using same

Country Status (6)

Country Link
JP (1) JP2013147685A (en)
AU (1) AU2013200572B8 (en)
CA (1) CA2861419C (en)
CL (1) CL2014001872A1 (en)
PE (1) PE20142412A1 (en)
WO (1) WO2013108478A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105219958A (en) * 2015-11-16 2016-01-06 湖南城市学院 A kind of alkali oxide leaching is separated the method for selen-tellurjum enriching noble metals
CN108350522A (en) * 2015-10-29 2018-07-31 奥图泰(芬兰)公司 The method for recycling gold
CN111377484A (en) * 2020-03-20 2020-07-07 安庆市长虹化工有限公司 Pyrite resource recovery processing method

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101539458B1 (en) * 2014-01-16 2015-07-28 오세경 Simple structure of the alloy copper manufacturing equipment
KR101539457B1 (en) * 2014-01-16 2015-07-28 오세경 Method for producing a copper alloy copper Properties
JP6195536B2 (en) * 2014-03-31 2017-09-13 Jx金属株式会社 Iron removal method, iron leaching method, and gold recovery method
FI20145949A (en) * 2014-10-29 2016-04-30 Outotec Finland Oy Procedure for gold recovery
JP6462722B2 (en) 2014-12-26 2019-01-30 Jx金属株式会社 How to recover gold from activated carbon
AU2016230060B2 (en) 2015-03-06 2018-05-10 Jx Nippon Mining & Metals Corporation Activated carbon regeneration method and gold recovery method
JP6463175B2 (en) * 2015-03-06 2019-01-30 Jx金属株式会社 Activated carbon regeneration method and gold recovery method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5118991A (en) * 1974-06-28 1976-02-14 Cyprus Metallurg Process Kinzokuryukabutsuno sankaho
JPH03177521A (en) * 1989-09-29 1991-08-01 E I Du Pont De Nemours & Co Improved method for elution of gold absorbed on carbon therefrom
JPH07508073A (en) * 1992-06-26 1995-09-07 インテック プロプライエタリー リミテッド Method of manufacturing metals from minerals

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2007205792B2 (en) * 2006-09-28 2009-02-26 Jx Nippon Mining & Metals Corporation Method for leaching gold

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5118991A (en) * 1974-06-28 1976-02-14 Cyprus Metallurg Process Kinzokuryukabutsuno sankaho
JPH03177521A (en) * 1989-09-29 1991-08-01 E I Du Pont De Nemours & Co Improved method for elution of gold absorbed on carbon therefrom
JPH07508073A (en) * 1992-06-26 1995-09-07 インテック プロプライエタリー リミテッド Method of manufacturing metals from minerals

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108350522A (en) * 2015-10-29 2018-07-31 奥图泰(芬兰)公司 The method for recycling gold
US10907237B2 (en) 2015-10-29 2021-02-02 Outotec (Finland) Oy Method for recovering gold
CN105219958A (en) * 2015-11-16 2016-01-06 湖南城市学院 A kind of alkali oxide leaching is separated the method for selen-tellurjum enriching noble metals
CN111377484A (en) * 2020-03-20 2020-07-07 安庆市长虹化工有限公司 Pyrite resource recovery processing method

Also Published As

Publication number Publication date
AU2013200572B2 (en) 2013-11-14
AU2013200572A1 (en) 2013-08-08
CA2861419A1 (en) 2013-07-25
AU2013200572B8 (en) 2013-12-19
JP2013147685A (en) 2013-08-01
CL2014001872A1 (en) 2014-10-03
PE20142412A1 (en) 2015-01-21
CA2861419C (en) 2016-06-07
AU2013200572A8 (en) 2013-12-19

Similar Documents

Publication Publication Date Title
JP7360507B2 (en) Method for selective leaching and extraction of precious metals in organic solvents
WO2013108478A1 (en) Gold recovery method, and gold production method using same
JP5467133B2 (en) Gold collection method
JP5840761B2 (en) Method for recovering gold adsorbed on activated carbon and method for producing gold using the same
JP6038279B2 (en) Method for eluting gold and silver and method for recovering gold and silver using the same
CA2908688C (en) Method of recovering gold from sulfide ore
JP6195536B2 (en) Iron removal method, iron leaching method, and gold recovery method
JP2015048524A (en) Recovery method of au adsorbed to active carbon
AU2020373621B2 (en) Method for treating ore or refining intermediate
JP6899672B2 (en) How to recover gold from ore or refining intermediates
JP5790408B2 (en) Method for recovering silver from halide aqueous solution
JP6849482B2 (en) How to recover gold from ores containing gold or refining intermediates
JP7007905B2 (en) Copper recovery method and electrolytic copper manufacturing method

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2013200572

Country of ref document: AU

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12866269

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 001098-2014

Country of ref document: PE

ENP Entry into the national phase

Ref document number: 2861419

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2014001872

Country of ref document: CL

122 Ep: pct application non-entry in european phase

Ref document number: 12866269

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE