JP2015048524A - Recovery method of au adsorbed to active carbon - Google Patents

Recovery method of au adsorbed to active carbon Download PDF

Info

Publication number
JP2015048524A
JP2015048524A JP2013182590A JP2013182590A JP2015048524A JP 2015048524 A JP2015048524 A JP 2015048524A JP 2013182590 A JP2013182590 A JP 2013182590A JP 2013182590 A JP2013182590 A JP 2013182590A JP 2015048524 A JP2015048524 A JP 2015048524A
Authority
JP
Japan
Prior art keywords
gold
eluent
activated carbon
thiosulfate
adsorbed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013182590A
Other languages
Japanese (ja)
Inventor
和浩 波多野
Kazuhiro Hatano
和浩 波多野
晴絵 今川
Harue Imagawa
晴絵 今川
浩至 勝川
Koji Katsukawa
浩至 勝川
瑛基 小野
Eiki Ono
瑛基 小野
佐野 正樹
Masaki Sano
正樹 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2013182590A priority Critical patent/JP2015048524A/en
Publication of JP2015048524A publication Critical patent/JP2015048524A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

PROBLEM TO BE SOLVED: To inexpensively and efficiently recover Au adsorbed to an active carbon.SOLUTION: A recovery method of Au adsorbed to an active carbon includes a step in which Au adsorbed to an active carbon is eluted by an eluent being an acidic solution including thiosulfate, thereby an eluent which is an acidic concentrated Au solution is obtained, then the Au is recovered by electrowinning using the eluent being an acidic concentrated Au solution.

Description

本発明は、活性炭に吸着された金の回収方法に関する。   The present invention relates to a method for recovering gold adsorbed on activated carbon.

金は非常に価値の高い金属の一つであり、天然鉱脈中には単体微粒子として存在する。金は、金鉱脈ではなくとも黄鉄鉱や黄銅鉱、その他硫化金属鉱の随伴物として微量含まれることも多く、金はその主成分を製錬する際に分離され、別途金属金に製錬される場合が多い。   Gold is one of very valuable metals and exists as simple particles in natural veins. Gold is often contained in small amounts as an accompaniment of pyrite, chalcopyrite, and other sulfide metal ores, not gold veins, and gold is separated when smelting its main component and separately smelted into metal gold There are many cases.

硫化金属鉱に随伴して産出される金、例えば黄銅鉱を処理する場合、一般的には、金は乾式銅製錬工程でアノードへ移行し、次いで電解精製工程では電解スライム中に濃縮する。電解スライム中の金は、湿式製錬法(特許文献1、2)や乾式製錬法によって金属金として回収される。   When processing gold produced with metal sulfide ore, such as chalcopyrite, gold is generally transferred to the anode in a dry copper smelting process and then concentrated in the electrolytic slime in the electrolytic refining process. Gold in the electrolytic slime is recovered as metallic gold by a wet smelting method (Patent Documents 1 and 2) or a dry smelting method.

近年、環境負荷や精鉱中の不純物を考慮して、乾式法を用いずに各種金属精鉱を湿式法で処理する製錬技術が研究されており、貴金属を溶かすために十分な酸化電位を有する強力な酸で金を浸出する方法が提案されている(特許文献3)。   In recent years, considering the environmental impact and impurities in concentrates, smelting technology that treats various metal concentrates by a wet method without using a dry method has been studied, and a sufficient oxidation potential to dissolve noble metals has been studied. A method of leaching gold with a strong acid having been proposed (Patent Document 3).

こうして酸で溶解した金を含有する溶液は、吸着材に吸着させて濃縮する場合が多く、金の吸着剤としては活性炭、機能性樹脂等が知られているが、最も一般的で汎用性が高い吸着材は活性炭である。   The solution containing gold dissolved in acid in this manner is often adsorbed on an adsorbent and concentrated. Activated carbon, functional resin, etc. are known as gold adsorbents, but the most general and versatile are known. A high adsorbent is activated carbon.

活性炭に金を吸着した後、これを回収する方法としては、吸着後に活性炭を燃焼するか、シアン化物溶液で溶離し、その溶離液を電解採取もしくは化学還元する方法がある(特許文献3)。   As a method for recovering gold after adsorbing gold on activated carbon, there is a method in which activated carbon is burned after adsorption or eluted with a cyanide solution, and the eluate is electrocollected or chemically reduced (Patent Document 3).

特開平9−316561号公報JP-A-9-316561 特開2001−316735号公報JP 2001-316735 A 特表2006−512484号公報JP 2006-512484 A

高木誠司、定性分析化学中巻、イオン反応編、南江堂Seiji Takagi, Qualitative Analytical Chemistry Volume 1, Ion Reaction, Nanedo

上述のように吸着材が活性炭である場合、これを燃焼して金を回収するとコスト高になるという問題がある。もしくはシアンを用いて吸着された金を溶離するならばシアンの毒性という問題がある。   As described above, when the adsorbent is activated carbon, there is a problem that the cost is increased if gold is recovered by burning the adsorbent. Alternatively, if cyan is used to elute the adsorbed gold, there is a problem of cyan toxicity.

機能性樹脂等、その他の吸着材を使用した場合でも、金の吸着容量や吸着速度は申し分ないものの、樹脂の官能基と金が強力に相互作用するために溶離に適当な方法が無く、広くは普及していない。   Even when other adsorbents such as functional resins are used, although the gold adsorption capacity and adsorption speed are satisfactory, there is no suitable method for elution because the resin functional groups and gold interact strongly, and there is a wide range. Is not popular.

溶媒抽出に供する場合では抽出、セットリング、逆抽出の設備が必要となり、また金のみを選択的に回収できるとは限らない。金の溶媒抽出でもストリップが問題になり、シュウ酸で還元して固体の粗金として還元する方法が一般的である。しかしながら、還元する際に金に選択性が無いことが問題である。そのため、より簡便に操作できる金の濃縮方法が好ましい。   In the case of subjecting to solvent extraction, equipment for extraction, settling and back extraction is required, and it is not always possible to selectively recover only gold. Stripping also becomes a problem in gold solvent extraction, and a method of reducing to solid crude gold by reduction with oxalic acid is common. However, the problem is that gold is not selective when it is reduced. Therefore, a gold concentration method that can be operated more easily is preferable.

本発明者らは上記課題を解決するために研究を重ねたところ、活性炭に吸着された金を溶離する時、チオ硫酸塩を含む酸性水溶液である溶離液を用いること、及び、溶離後に、当該溶離液を用いて金の電解採取を行うことで、安価に効率良く金を回収することができることを見出した。   The inventors of the present invention have made researches to solve the above-mentioned problems. When elution of gold adsorbed on activated carbon, an eluent that is an acidic aqueous solution containing thiosulfate is used, and after elution, It has been found that gold can be efficiently recovered at low cost by performing electrowinning of gold using an eluent.

以上の知見を背景にして完成した本発明は一側面において、活性炭に吸着された金を、チオ硫酸塩を含む酸性水溶液である溶離液で溶離して、酸性の濃厚金溶液である溶離液を得た後、前記酸性の濃厚金溶液である溶離液を電解液として金を電解採取する工程を備えた金の回収方法である。   The present invention completed on the background of the above knowledge, in one aspect, elutes the gold adsorbed on the activated carbon with an eluent that is an acidic aqueous solution containing thiosulfate, and provides an eluent that is an acidic concentrated gold solution. A method for recovering gold, comprising a step of electrolytically collecting gold using an eluent that is an acidic concentrated gold solution as an electrolytic solution after being obtained.

本発明に係る金の回収方法は別の一実施形態において、前記電解採取後の電解液を前記活性炭に吸着された金を溶離するための溶離液に再利用する。   In another embodiment of the gold recovery method according to the present invention, the electrolytic solution after electrolytic collection is reused as an eluent for eluting gold adsorbed on the activated carbon.

本発明に係る金の回収方法は更に別の一実施形態において、前記溶離液がpH4〜7である。   In still another embodiment of the gold recovery method according to the present invention, the eluent has a pH of 4-7.

本発明に係る金の回収方法は更に別の一実施形態において、前記チオ硫酸塩が、チオ硫酸ナトリウム、チオ硫酸、及び、チオ硫酸カリウムから選択された少なくとも一種である。   In still another embodiment of the gold recovery method according to the present invention, the thiosulfate is at least one selected from sodium thiosulfate, thiosulfate, and potassium thiosulfate.

本発明に係る金の回収方法は更に別の一実施形態において、前記溶離液中のチオ硫酸塩の濃度が0.01mol/L以上である。   In still another embodiment of the gold recovery method according to the present invention, the concentration of thiosulfate in the eluent is 0.01 mol / L or more.

本発明に係る金の回収方法は更に別の一実施形態において、前記溶離液中のチオ硫酸塩の濃度が0.01〜1.0mol/Lである。   In still another embodiment of the method for recovering gold according to the present invention, the concentration of thiosulfate in the eluent is 0.01 to 1.0 mol / L.

本発明に係る金の回収方法は更に別の一実施形態において、前記電解採取において、電流密度を0.0003〜0.10A/cm2、電解温度を10〜95℃として電解を行う。 In yet another embodiment of the method for recovering gold according to the present invention, electrolysis is performed at a current density of 0.0003 to 0.10 A / cm 2 and an electrolysis temperature of 10 to 95 ° C. in the electrowinning.

本発明によれば、活性炭に吸着された金を安価に効率良く回収することができる。   According to the present invention, gold adsorbed on activated carbon can be efficiently recovered at low cost.

本発明に係る溶離工程から電解工程を経て金を回収する方法のフローである。It is a flow of the method of collect | recovering gold | metal | money through an electrolysis process from the elution process which concerns on this invention. 実施例1、比較例1に係る、各pHにおいて溶離液にチオ硫酸を添加したときと、添加しなかったときの溶離液中の金濃度の経時変化を示すグラフである。It is a graph which shows the time-dependent change of the gold | metal density | concentration in an eluent when thiosulfuric acid is added to an eluent in each pH based on Example 1 and Comparative Example 1, and when not adding. 実施例1〜3に係る、pH4の時の各温度及びチオ硫酸濃度で溶離したときの、溶離液中の金濃度から換算した溶離率の経時変化を示すグラフである。It is a graph which shows the time-dependent change of the elution rate converted from the gold | metal density | concentration in an eluent when eluting at each temperature and pH thiosulfate density | concentration at pH 4 based on Examples 1-3. 実施例4に係る通液量と活性炭中の金品位を示すグラフである。It is a graph which shows the amount of liquids which concerns on Example 4, and the gold quality in activated carbon. 実施例5で用いた試験装置の模式図である。6 is a schematic diagram of a test apparatus used in Example 5. FIG. 実施例5に係る活性炭中金品位推移を示すグラフである。It is a graph which shows the gold quality transition in activated carbon which concerns on Example 5. FIG. 実施例5に係る液中金濃度推移を示すグラフである。10 is a graph showing changes in gold concentration in liquid according to Example 5.

本発明は、活性炭に吸着された金を、チオ硫酸塩を含む酸性水溶液である溶離液で溶離して、酸性の濃厚金溶液である溶離液(溶離後液)を得た後、前記酸性の濃厚金溶液である溶離液を電解液として金を電解採取する工程を備えた金の回収方法に係る。図1に、本発明に係る溶離工程から電解工程を経て金を回収する方法のフローを示す。   In the present invention, gold adsorbed on activated carbon is eluted with an eluent that is an acidic aqueous solution containing thiosulfate to obtain an eluent that is an acidic concentrated gold solution (post-elution liquid). The present invention relates to a gold recovery method including a step of electrolytically collecting gold using an eluent that is a concentrated gold solution as an electrolyte. FIG. 1 shows a flow of a method for recovering gold through an electrolysis process from an elution process according to the present invention.

金は、輝銅鉱、斑銅鉱、銅藍、黄銅鉱、黄鉄鉱、硫砒銅鉱、硫砒鉄鉱等の硫化金属鉱に単体として極微量含まれることが多い。このため、これを回収するには、まず硫化金属鉱を破砕した後に浮遊選鉱法により精鉱とすることで濃縮することが好ましい。また、この精鉱から酸性浸出液を用いて主成分金属である銅又は鉄を80%以上浸出した後に、固液分離すれば、浸出残渣に金をさらに濃縮することも可能であり、処理効率が良好となる。   Gold is often contained in trace amounts as a simple substance in sulfide metal ores such as chalcocite, chalcopyrite, copper indigo, chalcopyrite, pyrite, arsenite, arsenite. For this reason, in order to collect this, it is preferable to first concentrate the metal sulfide ore by crushing and then concentrating it by a flotation method. In addition, it is possible to further concentrate gold to the leaching residue by solid-liquid separation after leaching 80% or more of copper or iron as a main component metal from this concentrate using an acidic leaching solution. It becomes good.

この硫化金属鉱に含まれた金、又は、より好ましい形態として上述の精鉱あるいは主要金属成分を浸出した後の浸出残渣に濃縮された金を浸出する方法としては、王水等の強酸化性の酸で浸出する方法、シアンで浸出する方法等が公知であるが、いずれも環境負荷や安全性の面で問題がある。特にシアン浸出は、シアンの毒性の高さから使用が制限されることも珍しく無いため、回避される手法である。   As a method for leaching gold contained in this metal sulfide or gold concentrated in the leaching residue after leaching the concentrate or the main metal component as a more preferable form, strong oxidizing properties such as aqua regia A method of leaching with acid and a method of leaching with cyanide are known, but both have problems in terms of environmental load and safety. In particular, cyan leaching is a technique that can be avoided because its use is not limited by the high toxicity of cyan.

強酸化性の酸で浸出した場合は、前述のように金の含有量が微量であることから濃縮する必要がある。しかしながら、溶解した金をさらに濃縮する際に適当な方法がなく、よく知られた吸着材である活性炭や機能性樹脂等の吸着材に金を吸着すると溶離に問題があり、吸着材ごと焼却して回収することになればコストが著しく上昇する。   When leaching with a strong oxidizing acid, it is necessary to concentrate because the gold content is very small as described above. However, there is no appropriate method for further concentrating dissolved gold, and there is a problem in elution when gold is adsorbed on an adsorbent such as activated carbon or functional resin, which is a well-known adsorbent. If it is collected, the cost will increase significantly.

強酸化性の酸とは王水、過酸化水素+塩酸等の混酸が知られるが、ルイス酸と金イオンを安定化するハロゲン化物イオンの混合酸でも溶解することは可能である。金の溶解に関しては金イオンを安定化させる配位子が重要であり、一般的にはハロゲン化物イオンやシアンが知られる。   As the strong oxidizing acid, a mixed acid such as aqua regia, hydrogen peroxide + hydrochloric acid or the like is known, but it is possible to dissolve even a mixed acid of a Lewis ion and a halide ion that stabilizes a gold ion. For gold dissolution, a ligand that stabilizes gold ions is important, and halide ions and cyan are generally known.

これに対し、本発明では、活性炭に吸着された金を安価に効率良く回収する。すなわち、本発明においては、まず、強酸化性浸出液で金を溶解し、活性炭に金を吸着させる。活性炭はヤシガラ活性炭、コークス活性炭等各種あるものの、いずれの原料に由来するものでも良い。金を吸着する方法は活性炭を添加した回分式でも、吸着塔に活性炭を充填して金を浸出した液を連続的に通液しても良い。十分に金を吸着した活性炭を回収し、チオ硫酸塩を含む酸性水溶液である溶離液を用いて金の溶離を行う。ここで、当該溶離液は、チオ硫酸塩又はチオ硫酸水溶液と、酸性水溶液とを混合して調整することができる。   On the other hand, in the present invention, gold adsorbed on the activated carbon is efficiently recovered at a low cost. That is, in the present invention, first, gold is dissolved with a strong oxidizing leach solution, and gold is adsorbed on activated carbon. Although there are various kinds of activated carbon such as coconut shell activated carbon and coke activated carbon, those derived from any raw material may be used. The method for adsorbing gold may be a batch method in which activated carbon is added or a solution in which activated carbon is filled in an adsorption tower and gold is leached may be continuously passed. The activated carbon that has sufficiently adsorbed gold is recovered, and gold is eluted using an eluent that is an acidic aqueous solution containing thiosulfate. Here, the eluent can be adjusted by mixing a thiosulfate or thiosulfate aqueous solution with an acidic aqueous solution.

チオ硫酸塩の濃度は0.01mol/L以上とすることが好ましい。また、チオ硫酸塩の濃度0.1mol/L(金の100モル倍)で溶離効果は飽和するため、コストの点からは、チオ硫酸塩の濃度は0.01〜1.0mol/Lとするのがより好ましい。当然、活性炭に吸着されている金量により必要なチオ硫酸量は変化するが、上述のように溶離が不十分であっても金を逸損する訳ではない。大過剰なチオ硫酸の添加は活性炭の表面を硫黄が被覆して溶離を阻害するため現実的なチオ硫酸の濃度は0.01〜0.5mol/Lである。チオ硫酸塩は、チオ硫酸ナトリウム、チオ硫酸、及び、チオ硫酸カリウムから選択された少なくとも一種を含む。   The concentration of thiosulfate is preferably 0.01 mol / L or more. In addition, since the elution effect is saturated at a thiosulfate concentration of 0.1 mol / L (100 mol times gold), the thiosulfate concentration is 0.01 to 1.0 mol / L from the viewpoint of cost. Is more preferable. Naturally, the amount of thiosulfuric acid required varies depending on the amount of gold adsorbed on the activated carbon, but gold is not lost even if the elution is insufficient as described above. Addition of a large excess of thiosulfuric acid inhibits elution by covering the surface of the activated carbon with sulfur, so the realistic thiosulfuric acid concentration is 0.01 to 0.5 mol / L. The thiosulfate includes at least one selected from sodium thiosulfate, thiosulfate, and potassium thiosulfate.

溶離液のpHは4〜7であるのが好ましい。弱酸により、チオ硫酸塩は徐々に分解して亜硫酸(空気酸化で硫酸となる)とポリスルフィドに分解する。従って、このような弱酸性の溶離液を用いることで、チオ硫酸塩が良好に分解され、後述のような金の溶離を促進させるポリスルフィドを発生させる。また、このように溶離液が弱酸性であるため、取り扱いの安全性やコストが良好となる。   The pH of the eluent is preferably 4-7. By weak acid, thiosulfate is gradually decomposed into sulfurous acid (which is converted into sulfuric acid by air oxidation) and polysulfide. Therefore, by using such a weakly acidic eluent, the thiosulfate is satisfactorily decomposed to generate a polysulfide that promotes gold elution as described below. Further, since the eluent is weakly acidic as described above, handling safety and cost are improved.

溶離工程は、溶離温度を20〜100℃として回分式反応器を用いて行うのが好ましい。また、溶離温度を60〜85℃とするのがより好ましい。溶離温度は100℃に近づけば近づくほど溶離速度が上昇する。溶離温度が25℃になると溶離速度は著しく低下する。しかしながら、活性炭は溶離操作の後、繰り返して使用されるため、金の溶離が不完全であってもこれを逸損するわけではない。エネルギーコストと昇温の効率を考慮すると60〜85℃が適当である。   The elution step is preferably performed using a batch reactor at an elution temperature of 20 to 100 ° C. The elution temperature is more preferably 60 to 85 ° C. As the elution temperature approaches 100 ° C., the elution rate increases. When the elution temperature reaches 25 ° C., the elution rate decreases significantly. However, since activated carbon is repeatedly used after the elution operation, even if the elution of gold is incomplete, it is not lost. Considering the energy cost and the efficiency of temperature increase, 60 to 85 ° C. is appropriate.

チオ硫酸イオンは酸性条件下では不安定であり(式1)のように分解して硫黄と亜硫酸を生じ、亜硫酸に限っては最終的に硫酸となる。溶離の際に吸着塔を利用した連続通液法を採用した場合、生成した硫黄により目詰まりを起こす虞があるため、回分式反応器で溶離を行うことが好ましい。
23 2- ⇔ S+SO3 2- → 酸化、加水分解 → H2SO4 (式1)
The thiosulfate ion is unstable under acidic conditions and decomposes as shown in (Formula 1) to produce sulfur and sulfurous acid, and finally only sulfuric acid becomes sulfuric acid. When a continuous liquid flow method using an adsorption tower is employed for elution, there is a risk of clogging due to the generated sulfur, so it is preferable to perform elution in a batch reactor.
S 2 O 3 2- ⇔ S + SO 3 2- → oxidation, hydrolysis → H 2 SO 4 (Formula 1)

チオ硫酸イオンは配位子としても機能することが知られているが、本件の場合は(式1)における硫黄と亜硫酸に分解する際に生成する、反応中間体であるポリスルフィドが金の溶離を促進していると考えられる。   Although thiosulfate ion is known to function as a ligand, in this case, polysulfide, which is a reaction intermediate produced when decomposing into sulfur and sulfurous acid in (Formula 1), elutes gold. It is thought to promote.

ポリスルフィドイオンが金の溶解浸出に大きな影響を与える。具体的に述べると、まず、硫化金属鉱に含まれる金を本発明の方法で浸出した場合、溶液中の金はポリスルフィド型錯体として存在する。この錯体は活性炭に吸着されても還元をうけて不活性な単体の金とはならない。金のポリスルフィド型錯体が活性炭に吸着される形態は、硫化金、もしくは下記の形態であると考えられる。
Au(HSnH)m
(Xはハロゲン、mは1〜4の整数、nは1〜9の整数)
前者の形態(硫化金)の場合はS2-と反応して溶解することで溶離される(非特許文献1)。後者の形態の場合、NaOHと配位しているポリ硫化水素のHが反応して錯体が負電荷を帯びることで溶離される。
Polysulfide ions have a great influence on the dissolution and leaching of gold. Specifically, first, when gold contained in the sulfide metal ore is leached by the method of the present invention, the gold in the solution exists as a polysulfide type complex. Even if this complex is adsorbed on activated carbon, it is not reduced to an inactive simple substance. The form in which the gold polysulfide complex is adsorbed on the activated carbon is considered to be gold sulfide or the following form.
Au (HS n H) m X
(X is halogen, m is an integer of 1-4, n is an integer of 1-9)
The former form (gold sulfide) is eluted by reacting with S 2− and dissolving (Non-patent Document 1). In the case of the latter form, elution occurs when H of polyhydrogen sulfide coordinated with NaOH reacts and the complex is negatively charged.

このように、ポリスルフィドイオンが金の溶解浸出に大きな影響を与えるため、チオ硫酸イオンを分解させながら金を溶離するが、析出する硫黄が活性炭表面を被覆する場合は適当な方法でこれを除くことが好ましい。例えば強アルカリや有機溶剤で硫黄を溶解する方法、超音波で物理的に活性炭表面から剥離する方法が一般的である。   In this way, since polysulfide ions have a great influence on the dissolution and leaching of gold, gold is eluted while decomposing thiosulfate ions, but if the precipitated sulfur coats the activated carbon surface, this should be removed by an appropriate method. Is preferred. For example, a method of dissolving sulfur with a strong alkali or an organic solvent, and a method of physically peeling from the activated carbon surface with ultrasonic waves are common.

活性炭からの溶離により酸性の濃厚金溶液を得ることができる。ここで、「濃厚金溶液」とは、金を50〜5000mg/L含む溶液を示す。本発明では、この酸性の濃厚金溶液である溶離液を得た後、前記酸性の濃厚金溶液である溶離液を電解液として金を電解採取する。このような構成によれば、得られた濃厚金溶液である溶離液をそのまま金を採取するための電解液として用いるため、製造効率及び製造コストが良好となる。   An acidic concentrated gold solution can be obtained by elution from activated carbon. Here, the “concentrated gold solution” refers to a solution containing 50 to 5000 mg / L of gold. In the present invention, after obtaining an eluent that is an acidic concentrated gold solution, gold is electrolyzed using the eluent that is the acidic concentrated gold solution as an electrolytic solution. According to such a configuration, since the eluent that is the concentrated gold solution obtained is used as an electrolytic solution for collecting gold as it is, the production efficiency and the production cost are improved.

上記金の電解採取条件としては、以下のように設定することが好ましい:
・電流密度(アノード換算):0.0003〜0.10A/cm2(チオ硫酸の分解抑制の点でより好ましくは0.0003〜0.06A/cm2
・電解温度:10〜95℃(チオ硫酸の分解抑制の点でより好ましくは20〜60℃)
・アノード:グラファイト、ステンレス、チタンなどを素材とした電極
・カソード:グラファイト、ステンレス、チタンなどを素材とした電極、またはステンレス上にスチールウールを付着させた電極
・電極間距離:数cm〜数十cm程度、好ましくは3〜50cm程度
The electrowinning conditions for the gold are preferably set as follows:
Current density (in terms of anode): 0.0003 to 0.10 A / cm 2 (more preferably 0.0003 to 0.06 A / cm 2 in terms of inhibiting decomposition of thiosulfuric acid)
Electrolysis temperature: 10 to 95 ° C. (more preferably 20 to 60 ° C. in terms of inhibiting decomposition of thiosulfuric acid)
・ Anode: Electrode made of graphite, stainless steel, titanium, etc. ・ Cathode: Electrode made of graphite, stainless steel, titanium, etc., or electrode with steel wool attached on stainless steel ・ Distance between electrodes: several centimeters to several tens About cm, preferably about 3-50 cm

吸着材である活性炭は繰り返し金の吸着に使用することが可能であり、製造コスト面で有利である。また、前記電解採取を行った後、前記溶離後液を前記活性炭に吸着された金を溶離するための溶離液に再利用することが製造コスト面で好ましい。なお、電解採取後の電解液について、チオ硫酸塩の濃度が活性炭に吸着された金の溶離に不十分である場合は、新たに適切な量のチオ硫酸塩を添加して再利用することが好ましい。一方、電解採取後の電解液について、チオ硫酸塩の濃度が活性炭に吸着された金の溶離に十分である場合は、新たなチオ硫酸塩の添加は必要なく、このまま電解液を再利用することができる。   Activated carbon, which is an adsorbent, can be used repeatedly to adsorb gold, which is advantageous in terms of manufacturing cost. In addition, it is preferable in terms of manufacturing cost that after the electrolytic collection is performed, the post-elution liquid is reused as an eluent for eluting gold adsorbed on the activated carbon. In addition, if the concentration of thiosulfate is insufficient for elution of gold adsorbed on activated carbon, the electrolyte solution after electrolytic collection may be reused by adding a new appropriate amount of thiosulfate. preferable. On the other hand, if the concentration of thiosulfate is sufficient for elution of gold adsorbed on activated carbon after electrolytic collection, it is not necessary to add new thiosulfate and reuse the electrolyte as it is. Can do.

以下に本発明の実施例を示すが、これらの実施例は本発明及びその利点をよりよく理解するために提供するものであり、発明が限定されることを意図するものではない。   Examples of the present invention are shown below, but these examples are provided for better understanding of the present invention and its advantages, and are not intended to limit the invention.

・例1:活性炭に吸着された金の溶離
(実施例1)
金を含む硫化金属精鉱(Cu:17質量%、Fe:27質量%、S:25質量%、Au:90ppm)を、浸出液に対し35g/Lとなるよう秤量した。浸出液は、Cl:180g/L、Br:20g/L、Cu:18g/L、Fe:2g/Lを含有し、pHは1.5とした。浸出液を85℃に加温し、空気を1分当たり0.1L吹き込みながら攪拌した。こうして得た金濃度が2mg/L以上の浸出液をヤシ殻由来活性炭(太平化学産業社製ヤシコールMC)を充填したカラムに通し、金を活性炭に吸着させた。適当に金を吸着させたところで活性炭を取り出し、金濃度を定量したところ9000g/ton程度であった。金の濃度は灰吹き法で濃縮した後に王水に溶解し、ICP−AESにより定量した。
塩酸と水酸化ナトリウムでpHを4、8、12に調整した水溶液にチオ硫酸ナトリウムを0.5mol/L(チオ硫酸イオンとして56g/L)となるように添加した溶離液を調製した。この金を吸着した活性炭を20g/Lの割合で溶離液に浸漬して80℃で攪拌して溶離を行った。金の濃度は過酸化水素を2mL添加し、さらに塩酸で希釈して100mLに規正した後に上澄みをICP−AESにより定量した。
Example 1: Elution of gold adsorbed on activated carbon (Example 1)
Metal sulfide concentrate containing gold (Cu: 17% by mass, Fe: 27% by mass, S: 25% by mass, Au: 90 ppm) was weighed so as to be 35 g / L with respect to the leachate. The leachate contained Cl: 180 g / L, Br: 20 g / L, Cu: 18 g / L, Fe: 2 g / L, and the pH was 1.5. The leachate was heated to 85 ° C. and stirred while blowing 0.1 L per minute. The leachate having a gold concentration of 2 mg / L or more thus obtained was passed through a column packed with coconut shell-derived activated carbon (coconut MC manufactured by Taihei Chemical Sangyo Co., Ltd.) to adsorb gold onto the activated carbon. When the gold was adsorbed appropriately, the activated carbon was taken out and the gold concentration was quantified to be about 9000 g / ton. The gold concentration was concentrated by ash blowing, dissolved in aqua regia, and quantified by ICP-AES.
An eluent was prepared by adding sodium thiosulfate to an aqueous solution adjusted to pH 4, 8, 12 with hydrochloric acid and sodium hydroxide so that the concentration of sodium thiosulfate was 0.5 mol / L (56 g / L as thiosulfate ion). The activated carbon adsorbed with gold was immersed in an eluent at a rate of 20 g / L, and stirred at 80 ° C. for elution. The gold concentration was adjusted to 100 mL by adding 2 mL of hydrogen peroxide and further diluted with hydrochloric acid, and then the supernatant was quantified by ICP-AES.

(比較例1)
実施例1と同様にして調整した活性炭を用いてpH4の希硫酸を溶離液とし、活性炭を20g/Lの割合で溶離液に浸漬して80℃で攪拌して溶離を行った。
(Comparative Example 1)
Using activated carbon prepared in the same manner as in Example 1, dilute sulfuric acid having a pH of 4 was used as an eluent, and activated carbon was immersed in the eluent at a rate of 20 g / L and stirred at 80 ° C. for elution.

実施例1と比較例1で溶離した時の溶離液中の金濃度の経時変化を図2に示す。チオ硫酸を添加した場合は明白に効率よく金の溶離が達成され、弱酸性のpH4の場合が最も効果が高いことが解る。pH12の強アルカリ域で溶離した方が中性域のpH8より効率が高いが、本方法で調整した活性炭は強アルカリでも浸出され、チオ硫酸の添加効果よりはアルカリの影響が強く反映したものである。   FIG. 2 shows the change over time of the gold concentration in the eluent when elution is performed in Example 1 and Comparative Example 1. It can be seen that when thiosulfuric acid is added, elution of gold is clearly and efficiently achieved, and a weakly acidic pH 4 is most effective. The elution in the strong alkaline region of pH 12 is more efficient than the neutral pH of 8, but the activated carbon prepared by this method is leached even in the strong alkali, which reflects the influence of alkali more strongly than the effect of adding thiosulfuric acid. is there.

(実施例2)
実施例1と同様にして調整した活性炭を用いてチオ硫酸ナトリウムを0.1mol/L(チオ硫酸イオンとして11.2g/L)となるように添加した溶離液を調製した。溶離液のpHは4とした。この金を吸着した活性炭を20g/Lの割合で溶離液に浸漬して80℃で攪拌して溶離を行った。溶離液中の金濃度から換算した溶離率の経時変化を図3に示す。
(Example 2)
Using an activated carbon prepared in the same manner as in Example 1, an eluent was prepared by adding sodium thiosulfate to 0.1 mol / L (11.2 g / L as thiosulfate ion). The pH of the eluent was 4. The activated carbon adsorbed with gold was immersed in an eluent at a rate of 20 g / L, and stirred at 80 ° C. for elution. FIG. 3 shows the change over time in the elution rate converted from the gold concentration in the eluent.

(実施例3)
実施例1と同様にして調整した活性炭を用いてチオ硫酸ナトリウムを0.1mol/L(チオ硫酸イオンとして11.2g/L)となるように添加した溶離液を調製した。溶離液のpHは4とした。この金を吸着した活性炭を20g/Lの割合で溶離液に浸漬して25℃で攪拌して溶離を行った。溶離液中の金濃度の経時変化を図3に示す。
Example 3
Using an activated carbon prepared in the same manner as in Example 1, an eluent was prepared by adding sodium thiosulfate to 0.1 mol / L (11.2 g / L as thiosulfate ion). The pH of the eluent was 4. The activated carbon adsorbed with gold was immersed in an eluent at a rate of 20 g / L, and stirred at 25 ° C. for elution. FIG. 3 shows the change over time in the gold concentration in the eluent.

実施例の結果より、チオ硫酸の濃度0.1〜0.5mol/Lでは効果はほとんど変わらなかった。しかしながら、温度が25℃になると溶離速度は著しく低下するものの、活性炭は溶離操作の後、繰り返して使用されるため金の溶離が不完全であってもこれを逸損するわけではない。   From the results of Examples, the effect was hardly changed at a thiosulfuric acid concentration of 0.1 to 0.5 mol / L. However, although the elution rate is remarkably reduced at a temperature of 25 ° C., activated carbon is repeatedly used after the elution operation, so that even if the elution of gold is incomplete, this is not lost.

金の濃度は最大で0.91mmol/L(活性炭に吸着した金が全て溶出すると考えた時の濃度)であるため、チオ硫酸はおよそ100モル倍添加されているが、反応機構から10モル倍でも効果は極端に減じることは無いと考えられる。ポリスルフィドイオンは一般に硫黄原子が2〜6個程度連なる二価のアニオンであり、金に対して2分子配位してもチオ硫酸は最大でも12モル倍であるため、10モル倍程度でも効果は表れると推察される。   Since the maximum gold concentration is 0.91 mmol / L (concentration when all the gold adsorbed on the activated carbon is expected to elute), thiosulfuric acid is added approximately 100 mol times. However, the effect is not expected to decrease drastically. The polysulfide ion is generally a divalent anion having about 2 to 6 sulfur atoms, and even if two molecules are coordinated to gold, the thiosulfuric acid is at most 12 mole times, so even if it is about 10 mole times, the effect is Presumed to appear.

チオ硫酸塩の濃度は0.1〜0.5mol/Lでは溶離効果はほとんど変わらない。すなわち、チオ硫酸塩の濃度0.1mol/L(金の100モル倍)で溶離効果は飽和している。当然、活性炭に吸着されている金量により必要なチオ硫酸量は変化するが、上述のように溶離が不十分であっても金を逸損する訳ではない。   When the concentration of thiosulfate is 0.1 to 0.5 mol / L, the elution effect hardly changes. That is, the elution effect is saturated at a thiosulfate concentration of 0.1 mol / L (100 mol times gold). Naturally, the amount of thiosulfuric acid required varies depending on the amount of gold adsorbed on the activated carbon, but gold is not lost even if the elution is insufficient as described above.

(実施例4)
金を9800g/t吸着した活性炭(太平化学産業社製:CC−202)19mLを内径11mm、高さ200mmのコックつきガラスカラムに充填した。活性炭はあらかじめHClにより洗浄しておいた。次に、純水に濃度:0.01mol/L、0.1mol/L、0.5mol/L、又は、1.0mol/Lとなるようチオ硫酸ナトリウムを添加し、pHを硫酸で5に調整し、これを溶離液とした。続いて、活性炭を充填したカラムに溶離液を4.1mL/分で供給して通液後液を5〜7mLごとに分画して採取した。カラム内部温度は70℃とした。カラム通液のSV:空間速度は13(1/h)とし、LV:線速度は2.6(m/h)とし、BV:通液量は156(mL)とした。次に、分画液中の金濃度をICP−AESで測定し、活性炭に含まれる金の品位を算出した。上記試験条件を表1に示し、得られた通液量と活性炭中の金品位との関係を表2に示し、そのグラフを図4に示す。
Example 4
19 mL of activated carbon (produced by Taihei Chemical Sangyo Co., Ltd .: CC-202) adsorbing 9800 g / t of gold was packed in a glass column with a cock having an inner diameter of 11 mm and a height of 200 mm. The activated carbon was previously washed with HCl. Next, sodium thiosulfate is added to pure water so that the concentration is 0.01 mol / L, 0.1 mol / L, 0.5 mol / L, or 1.0 mol / L, and the pH is adjusted to 5 with sulfuric acid. This was used as an eluent. Subsequently, the eluent was supplied to the column filled with activated carbon at 4.1 mL / min, and after passing through the solution, the solution was fractionated every 5 to 7 mL and collected. The column internal temperature was 70 ° C. SV of column liquid flow: The space velocity was 13 (1 / h), LV: linear velocity was 2.6 (m / h), and BV: liquid flow rate was 156 (mL). Next, the gold concentration in the fraction solution was measured by ICP-AES, and the quality of gold contained in the activated carbon was calculated. The test conditions are shown in Table 1, the relationship between the obtained liquid flow rate and the gold quality in the activated carbon is shown in Table 2, and the graph is shown in FIG.

・例2:溶離した金の電解採取
(実施例5)
・実施例5で用いた試験装置の模式図を図5に示す。予めpHを調整したチオ硫酸ナトリウム溶液を溶離液としてバッファー槽に準備しておく。次に、金が吸着された活性炭をカラムに充填し、バッファー槽からの溶離液で溶離し、続いて溶離後液から金を電解で回収した後、当該溶離後液を再度活性炭に通液されるようにし、溶離と電解とを一体として実施した。試験条件を以下に示す。
・溶離時温度:55℃
・チオ硫酸ナトリウム溶液:0.1M
・pH:4〜6
・LV=0.9m3/L/min.
・SV=3/h
・電流密度(アノード換算):0.0003〜0.03A/cm2
・電解温度:40℃
・アノード:カーボン(10mm×10mm)
・カソード:ステンレス板上にスチールウールを付着したもの
・電極間距離:50mm
なお、吸着、溶離条件、金濃度の分析条件等は、実施例1と同様とした。
上記溶離・電解によって活性炭中の金品位および工程液中金濃度が低下した。試験結果を図6及び図7に示す。図6は、実施例5に係る活性炭中金品位推移を示すグラフである。図7は、実施例5に係る液中金濃度推移を示すグラフである。なお、図7の「カラム出口」はカラム出口で採取した液中の金濃度、すなわち溶離直後の金濃度を示す。また、図7の「バッファー槽」はバッファー槽内で採取した液中の金濃度、すなわち電解採取を行った後の金濃度を示す。
図6及び7に示すように金単体の金が採取され、当該採取量は、活性炭1kg当たり4.7gであった。
Example 2: Electrolytic collection of eluted gold (Example 5)
-The schematic diagram of the test apparatus used in Example 5 is shown in FIG. A sodium thiosulfate solution whose pH has been adjusted in advance is prepared in a buffer tank as an eluent. Next, the activated carbon on which gold is adsorbed is packed into a column and eluted with an eluent from a buffer tank. Subsequently, gold is electrolyzed from the eluate and then the eluate is passed through activated carbon again. Thus, elution and electrolysis were performed as a unit. Test conditions are shown below.
-Elution temperature: 55 ° C
-Sodium thiosulfate solution: 0.1M
・ PH: 4-6
LV = 0.9 m 3 / L / min.
・ SV = 3 / h
Current density (as anode): 0.0003 to 0.03 A / cm 2
Electrolysis temperature: 40 ° C
・ Anode: Carbon (10mm × 10mm)
・ Cathode: Stainless steel plate with steel wool attached ・ Distance between electrodes: 50 mm
The adsorption, elution conditions, gold concentration analysis conditions, and the like were the same as in Example 1.
The elution and electrolysis lowered the gold quality in the activated carbon and the gold concentration in the process liquid. The test results are shown in FIGS. FIG. 6 is a graph showing the transition of gold quality in activated carbon according to Example 5. FIG. 7 is a graph showing changes in gold concentration in liquid according to Example 5. “Column outlet” in FIG. 7 indicates the gold concentration in the liquid collected at the column outlet, that is, the gold concentration immediately after elution. In addition, “buffer tank” in FIG. 7 indicates the gold concentration in the solution collected in the buffer tank, that is, the gold concentration after electrolytic collection.
As shown in FIGS. 6 and 7, gold was collected as a simple substance, and the amount collected was 4.7 g per kg of activated carbon.

Claims (7)

活性炭に吸着された金を、チオ硫酸塩を含む酸性水溶液である溶離液で溶離して、酸性の濃厚金溶液である溶離液を得た後、前記酸性の濃厚金溶液である溶離液を電解液として金を電解採取する工程を備えた金の回収方法。   The gold adsorbed on the activated carbon is eluted with an eluent that is an acidic aqueous solution containing thiosulfate to obtain an eluent that is an acidic concentrated gold solution, and then the eluent that is the acidic concentrated gold solution is electrolyzed. A method for recovering gold, comprising a step of electrolytically collecting gold as a liquid. 前記電解採取後の電解液を前記活性炭に吸着された金を溶離するための溶離液に再利用する請求項1に記載の金の回収方法。   The gold recovery method according to claim 1, wherein the electrolytic solution after electrolytic collection is reused as an eluent for eluting gold adsorbed on the activated carbon. 前記溶離液はpH4〜7である請求項1又は2に記載の金の回収方法。   The method for recovering gold according to claim 1 or 2, wherein the eluent has a pH of 4 to 7. 前記チオ硫酸塩はチオ硫酸ナトリウム、チオ硫酸、及び、チオ硫酸カリウムから選択された少なくとも一種である請求項1〜3のいずれか一項に記載の金の回収方法。   The gold recovery method according to any one of claims 1 to 3, wherein the thiosulfate is at least one selected from sodium thiosulfate, thiosulfuric acid, and potassium thiosulfate. 前記溶離液中のチオ硫酸塩の濃度が0.01mol/L以上である請求項1〜4のいずれか一項に記載の金の回収方法。   The gold recovery method according to claim 1, wherein the concentration of thiosulfate in the eluent is 0.01 mol / L or more. 前記溶離液中のチオ硫酸塩の濃度が0.01〜1.0mol/Lである請求項5に記載の金の回収方法。   The gold recovery method according to claim 5, wherein the concentration of thiosulfate in the eluent is 0.01 to 1.0 mol / L. 前記電解採取において、電流密度を0.0003〜0.10A/cm2、電解温度を10〜95℃として電解を行う請求項1〜6のいずれか一項に記載の金の回収方法。 The gold recovery method according to any one of claims 1 to 6, wherein in the electrowinning, electrolysis is performed with a current density of 0.0003 to 0.10 A / cm 2 and an electrolysis temperature of 10 to 95 ° C.
JP2013182590A 2013-09-03 2013-09-03 Recovery method of au adsorbed to active carbon Pending JP2015048524A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013182590A JP2015048524A (en) 2013-09-03 2013-09-03 Recovery method of au adsorbed to active carbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013182590A JP2015048524A (en) 2013-09-03 2013-09-03 Recovery method of au adsorbed to active carbon

Publications (1)

Publication Number Publication Date
JP2015048524A true JP2015048524A (en) 2015-03-16

Family

ID=52698786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013182590A Pending JP2015048524A (en) 2013-09-03 2013-09-03 Recovery method of au adsorbed to active carbon

Country Status (1)

Country Link
JP (1) JP2015048524A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018168054A (en) * 2017-03-29 2018-11-01 住友金属鉱山株式会社 Method for storing and quantifying solution containing thionic acid, and sample solution containing thionic acid and method for making the same
CN112375911A (en) * 2020-11-02 2021-02-19 昆明理工大学 Direct recovery of (Au (S) with active carbon2O3)23-) Method (2)
JP6902678B1 (en) * 2021-01-04 2021-07-14 小川香料株式会社 Method for recovering hetero element-containing compound

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018168054A (en) * 2017-03-29 2018-11-01 住友金属鉱山株式会社 Method for storing and quantifying solution containing thionic acid, and sample solution containing thionic acid and method for making the same
JP7062996B2 (en) 2017-03-29 2022-05-09 住友金属鉱山株式会社 A method for storing and quantifying a solution containing thionic acid, and a method for preparing a sample solution containing thionic acid and its preparation.
CN112375911A (en) * 2020-11-02 2021-02-19 昆明理工大学 Direct recovery of (Au (S) with active carbon2O3)23-) Method (2)
CN112375911B (en) * 2020-11-02 2022-07-05 昆明理工大学 Direct recovery of (Au (S) with active carbon2O3)23-) Method (2)
JP6902678B1 (en) * 2021-01-04 2021-07-14 小川香料株式会社 Method for recovering hetero element-containing compound

Similar Documents

Publication Publication Date Title
Ashiq et al. Hydrometallurgical recovery of metals from e-waste
Rao et al. Challenges and opportunities in the recovery of gold from electronic waste
Aylmore Alternative lixiviants to cyanide for leaching gold ores
WO2013108478A1 (en) Gold recovery method, and gold production method using same
JP5840761B2 (en) Method for recovering gold adsorbed on activated carbon and method for producing gold using the same
CN103114202B (en) Comprehensive recovery process for environment-friendly type refractory gold-silver ore multi-metals
US9683277B2 (en) Process for preparing a ferric nitrate reagent from copper raffinate solution and use of such reagent in the leaching and/or curing of copper substances
CA3028584A1 (en) Methods, materials and techniques for precious metal recovery
WO2015102865A1 (en) Process for dissolving or extracting at least one precious metal from a source material containing the same
JP6038279B2 (en) Method for eluting gold and silver and method for recovering gold and silver using the same
Jafari et al. Improvement of chalcopyrite atmospheric leaching using controlled slurry potential and additive treatments
JP6437352B2 (en) Methods for leaching copper from copper sulfide ores and for evaluating iodine loss in column leaching tests for copper sulfide ores
JP2015048524A (en) Recovery method of au adsorbed to active carbon
KR102243077B1 (en) Critical metal recovering method from waste/discarded printed circuit boards
WO2021085023A1 (en) Method for treating ore or refining intermediate
Parga et al. Copper recovery from barren cyanide solution by using electrocoagulation iron process
Nakazawa et al. The effect of carbon black on the oxidative leaching of enargite by manganese (IV) dioxide in sulfuric acid media
Ubaldini et al. Application of innovative processes for gold recovery from Romanian mining wastes
Radulescu et al. New hydrometallurgical process for gold recovery
Xiao et al. An environmentally friendly system for high efficient silver recovery from anode slime
US20100012502A1 (en) Process for recovery of metal-containing values from minerals and ores
Salimi Extraction and recovery of gold from both primary and secondary sources by employing a simultaneous leaching and solvent extraction technique and gold leaching in acidified organic solvents
CA3075464C (en) Method for recovering cu and method of preparing electrolytic copper
Panayotova et al. Recovery of valuable metals from mining and mineral processing waste
Ilyas et al. Thiourea leaching of gold