JP7062996B2 - A method for storing and quantifying a solution containing thionic acid, and a method for preparing a sample solution containing thionic acid and its preparation. - Google Patents

A method for storing and quantifying a solution containing thionic acid, and a method for preparing a sample solution containing thionic acid and its preparation. Download PDF

Info

Publication number
JP7062996B2
JP7062996B2 JP2018024015A JP2018024015A JP7062996B2 JP 7062996 B2 JP7062996 B2 JP 7062996B2 JP 2018024015 A JP2018024015 A JP 2018024015A JP 2018024015 A JP2018024015 A JP 2018024015A JP 7062996 B2 JP7062996 B2 JP 7062996B2
Authority
JP
Japan
Prior art keywords
solution
acid
transition metal
thionic acid
metal ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018024015A
Other languages
Japanese (ja)
Other versions
JP2018168054A (en
Inventor
幸宏 淵本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Publication of JP2018168054A publication Critical patent/JP2018168054A/en
Application granted granted Critical
Publication of JP7062996B2 publication Critical patent/JP7062996B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Description

本発明は、チオン酸を含む溶液の保存方法および定量方法、ならびにチオン酸を含む試料溶液およびその作製方法に関する。 The present invention relates to a method for storing and quantifying a solution containing thionic acid, and a method for preparing a sample solution containing thionic acid and a method for producing the same.

コバルトやニッケルなどの非鉄金属は、例えば硫化物などを含む原料に塩素ガスを吹き込み塩素浸出し、浸出された金属イオンを電界採取して製錬することで得られる(例えば特許文献1を参照)。 Nonferrous metals such as cobalt and nickel can be obtained by blowing chlorine gas into a raw material containing sulfide, for example, leaching chlorine, and collecting the leached metal ions by electric field sampling to smelt them (see, for example, Patent Document 1). ..

この製錬工程では、工程管理の一環としてチオン酸(例えばチオ硫酸や亜硫酸など)の濃度を把握することが重要となっている。このチオン酸の定量方法としては、例えば硫酸酸性下で過剰量のヨウ化カリウムを添加した後、ヨウ素酸カリウム規定液を用いるヨードメトリー法などがある。 In this smelting process, it is important to grasp the concentration of thionic acid (for example, thiosulfate, sulfurous acid, etc.) as a part of process control. As a method for quantifying this thionic acid, for example, there is an iodometry method in which an excessive amount of potassium iodide is added under sulfuric acid acidity and then a potassium iodide regular solution is used.

特開2015-081371号公報JP-A-2015-0813171

しかし、非鉄製錬過程で採取される溶液(浸出液)では、pHが低いため、チオン酸を精度よく定量することが困難となっている。チオン酸は中性からアルカリ性の溶液中では安定的に存在できる一方、酸性溶液中では時間の経過とともに分解して消費されてしまうためである。しかも、非鉄製錬過程で採取される溶液のように溶液に塩素ガスが吹き込まれて遊離酸素(Cl)が存在する場合、チオン酸が還元剤として作用し分解が促進されることから、より早く消費されてしまう。 However, since the pH of the solution (leachate) collected in the non-iron smelting process is low, it is difficult to accurately quantify thionic acid. This is because thionic acid can exist stably in a neutral to alkaline solution, but is decomposed and consumed with the passage of time in an acidic solution. Moreover, when chlorine gas is blown into the solution and free oxygen (Cl 2 ) is present as in the solution collected in the non-iron smelting process, thionic acid acts as a reducing agent and decomposition is promoted. It will be consumed quickly.

一方、チオン酸を安定化させるために溶液のpHを例えば中性からアルカリ性の範囲まで高めることが考えられる。この場合、遊離塩素と平衡状態にある次亜塩素酸(HClO)が増えて遊離塩素が減ることで、遊離塩素による分解が抑制されチオン酸を安定化することができる。しかし、溶液のpHを弱酸性よりも高くすると、非鉄金属イオンが金属塩として沈殿析出するようになり、それに伴ってチオン酸が共沈してしまう。そのため、チオン酸を安定化させたとしても精度よく定量することが困難となっている。 On the other hand, it is conceivable to raise the pH of the solution, for example, from neutral to alkaline in order to stabilize the thionic acid. In this case, hypochlorous acid (HClO) in equilibrium with free chlorine increases and free chlorine decreases, so that decomposition by free chlorine is suppressed and thionic acid can be stabilized. However, when the pH of the solution is higher than that of weakly acidic, non-ferrous metal ions are precipitated as metal salts, and the thionic acid is co-precipitated accordingly. Therefore, even if thionic acid is stabilized, it is difficult to quantify it accurately.

本発明は、上記課題に鑑みてなされたものであり、溶液中で遊離塩素と共存するチオン酸を長期的に安定した状態で保存するとともに精度よく定量する技術を提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a technique for storing thionic acid coexisting with free chlorine in a solution in a stable state for a long period of time and quantifying it with high accuracy.

一般に、遊離塩素は、下記式(1)に示すように溶液中で一部が分解して次亜塩素酸となり、遊離塩素と次亜塩素酸とが平衡状態となっている。この溶液のpHが低くなると、平衡は遊離塩素が生成する方向に偏るのに対して、pHが高くなると、遊離塩素が分解する方向に偏る。具体的には、溶液のpHが高くなる場合、遊離塩素の反応平衡により主に次亜塩素酸が存在することになる。そして、pHが低くなるにつれて、遊離塩素の生成が進み、pHが強酸性の範囲まで低くなると主に遊離塩素となる。そのため、溶液のpHが低くなると、遊離塩素によりチオン酸が分解して消費されやすくなる。
Cl+HO ⇔ HCl+HClO・・・(1)
In general, free chlorine is partially decomposed into hypochlorous acid in a solution as shown in the following formula (1), and free chlorine and hypochlorous acid are in an equilibrium state. When the pH of this solution is low, the equilibrium is biased toward the production of free chlorine, whereas when the pH is high, the equilibrium is biased toward the decomposition of free chlorine. Specifically, when the pH of the solution is high, hypochlorous acid is mainly present due to the reaction equilibrium of free chlorine. Then, as the pH decreases, the production of free chlorine progresses, and when the pH decreases to the range of strong acidity, it becomes mainly free chlorine. Therefore, when the pH of the solution is low, thionic acid is easily decomposed and consumed by free chlorine.
Cl 2 + H 2 O ⇔ HCl + HClO ... (1)

本発明者は、溶液のpHを低くしながらも遊離塩素によるチオン酸の分解を抑制するには、遊離塩素と次亜塩素酸との平衡を、溶液のpHを低くした場合であっても遊離塩素が生成する方向に偏らないようにすればよいと考え、このような方法について検討を行った。その結果、溶液に、次亜塩素酸が配位可能な遷移金属イオンを含有させるとよいことを見出した。遷移金属イオンは溶液中で次亜塩素酸を配位させることで、平衡を、遊離塩素を分解して次亜塩素酸を生成させる方向に偏らせることができる。このように平衡を偏らせることで、溶液のpHを低くしながらも、遊離塩素の生成を抑制することができる。すなわち、溶液のpHを低くすると遊離塩素の生成が進みやすくなるが、遷移金属イオンを溶液に含有させて平衡を移動させることで遊離塩素の生成を抑制し、主に次亜塩素酸の形態で存在させることができる。本発明はこのような知見に基づいて成されたものである。 In order to suppress the decomposition of thionic acid by free chlorine while lowering the pH of the solution, the present inventor makes the equilibrium between free chlorine and hypochlorous acid free even when the pH of the solution is lowered. We thought that it would be better not to be biased toward the direction of chlorine generation, and investigated such a method. As a result, it was found that the solution should contain a transition metal ion to which hypochlorous acid can be coordinated. By coordinating hypochlorous acid in solution, transition metal ions can bias the equilibrium in the direction of decomposing free chlorine to produce hypochlorous acid. By biasing the equilibrium in this way, it is possible to suppress the production of free chlorine while lowering the pH of the solution. That is, if the pH of the solution is lowered, the production of free chlorine is likely to proceed, but the production of free chlorine is suppressed by containing transition metal ions in the solution to move the equilibrium, mainly in the form of hypochlorous acid. Can exist. The present invention has been made based on such findings.

すなわち、本発明の第1の態様は、
遊離塩素および次亜塩素酸とともにチオン酸を含む溶液の保存方法であって、
前記溶液に、前記次亜塩素酸が配位可能な遷移金属イオンを含有させるとともに、前記溶液のpHを2以上、前記遷移金属イオンが水酸化物を形成しないようなpH値以下に調整する、チオン酸を含む溶液の保存方法が提供される。
That is, the first aspect of the present invention is
A method for storing a solution containing thionic acid together with free chlorine and hypochlorous acid.
The solution contains a transition metal ion to which the hypochlorite can be coordinated, and the pH of the solution is adjusted to 2 or more and a pH value or less so that the transition metal ion does not form a hydroxide. A method for storing a solution containing thionic acid is provided.

本発明の第2の態様は、第1の態様のチオン酸を含む溶液の保存方法において、
前記遷移金属イオンの濃度を飽和濃度以下とする。
A second aspect of the present invention is the method for preserving a solution containing thionic acid according to the first aspect.
The concentration of the transition metal ion is set to be equal to or less than the saturation concentration.

本発明の第3の態様は、第1又は第2の態様のチオン酸を含む溶液の保存方法において、
前記遷移金属イオンがニッケルイオンであって、
前記溶液のpHを2以上4未満に調整する。
A third aspect of the present invention is the method for preserving a solution containing thionic acid according to the first or second aspect.
The transition metal ion is a nickel ion,
Adjust the pH of the solution to 2 or more and less than 4.

本発明の第4の態様は、
チオン酸、遊離塩素および次亜塩素酸を含む溶液中のチオン酸を定量する定量方法であって、
前記溶液に前記次亜塩素酸と配位可能な遷移金属イオンを含有させるとともに前記溶液のpHを2以上、前記遷移金属イオンが水酸化物を形成しないようなpH値以下に調整して試料溶液を作製する作製工程と、
前記試料溶液に含まれる前記チオン酸を定量する定量工程と、を有するチオン酸の定量方法が提供される。
A fourth aspect of the present invention is
A quantification method for quantifying thionic acid in a solution containing thionic acid, free chlorine and hypochlorous acid.
The sample solution is prepared by adding a transition metal ion that can be coordinated with the hypochlorite to the solution and adjusting the pH of the solution to 2 or more and a pH value or less so that the transition metal ion does not form a hydroxide. And the manufacturing process
Provided is a quantification step for quantifying the thionic acid contained in the sample solution, and a method for quantifying the thionic acid.

本発明の第5の態様は、
チオン酸、遊離塩素および次亜塩素酸を含む溶液から試料溶液を作製する作製方法であって、
前記溶液に前記次亜塩素酸と配位可能な遷移金属イオンを含有させるとともに、前記溶液のpHを2以上、前記遷移金属イオンが水酸化物を形成しないようなpH値以下に調整する、チオン酸を含む試料溶液の作製方法が提供される。
A fifth aspect of the present invention is
A method for preparing a sample solution from a solution containing thionic acid, free chlorine and hypochlorous acid.
The solution contains a transition metal ion that can be coordinated with the hypochlorite, and the pH of the solution is adjusted to 2 or more and a pH value or less so that the transition metal ion does not form a hydroxide. A method for preparing a sample solution containing an acid is provided.

本発明の第6の態様は、
チオン酸、遊離塩素および次亜塩素酸を含む溶液から作製される試料溶液であって、
前記溶液と、前記次亜塩素酸と配位可能な遷移金属イオンと、を含有し、
前記溶液のpHが2以上、前記遷移金属イオンが水酸化物を形成しないようなpH値以下であり、
8時間経過後の前記チオン酸の減少率が10%未満である、チオン酸を含む試料溶液が提供される。
A sixth aspect of the present invention is
A sample solution made from a solution containing thionic acid, free chlorine and hypochlorous acid.
It contains the solution and a transition metal ion that can be coordinated with the hypochlorous acid.
The pH of the solution is 2 or more, and the pH value is such that the transition metal ions do not form hydroxides.
A sample solution containing thionic acid is provided, wherein the reduction rate of the thionic acid after 8 hours is less than 10%.

本発明によれば、溶液中で遊離塩素と共存するチオン酸を長期的に安定した状態で保存することができる。 According to the present invention, thionic acid coexisting with free chlorine in a solution can be stored in a stable state for a long period of time.

図1は、pHの違いによるチオン酸の経時変化を説明するための図である。FIG. 1 is a diagram for explaining a change over time of thionic acid due to a difference in pH.

<本発明の一実施形態>
以下、本発明の一実施形態にかかるチオン酸の定量方法について説明する。
<One Embodiment of the present invention>
Hereinafter, a method for quantifying thionic acid according to an embodiment of the present invention will be described.

(準備工程)
まず、定量対象となる溶液を準備する。溶液は、チオン酸、遊離塩素、次亜塩素酸および遷移金属イオンを含む。このような溶液としては、例えば非鉄製錬過程で採取される浸出液などを用いることができる。浸出液としては、例えば遷移金属を含む硫化物から酸性溶液で遷移金属を浸出させた溶液に塩素ガスを吹き込みさらに浸出を行った浸出液を用いることができる。また、浸出液のように遷移金属イオンを含む溶液でない場合は遷移金属イオンを添加するとよい。
(Preparation process)
First, a solution to be quantified is prepared. The solution contains thionic acid, free chlorine, hypochlorous acid and transition metal ions. As such a solution, for example, a leachate collected in a non-iron smelting process can be used. As the leachate, for example, a leachate obtained by blowing chlorine gas into a solution obtained by leaching a transition metal from a sulfide containing a transition metal with an acidic solution and further leaching can be used. If the solution does not contain a transition metal ion such as a leachate, a transition metal ion may be added.

溶液において、チオン酸は例えば亜硫酸イオンやチオ硫酸イオンなどである。遷移金属イオンは、例えばコバルトやニッケルなど次亜塩素酸を配位可能なイオンである。なお、本明細書において、遷移金属イオンは溶液中で2分子以上が会合した会合体も含む。 In solution, the thionic acid is, for example, sulfite ion, thiosulfate ion, or the like. The transition metal ion is an ion capable of coordinating hypochlorous acid such as cobalt and nickel. In addition, in this specification, a transition metal ion also includes an aggregate in which two or more molecules are associated in a solution.

溶液において、遷移金属イオンの濃度は特に限定されないが、遊離塩素と次亜塩素酸との平衡を、遊離塩素が生成しにくい方向に偏らせる観点からは高くするほどよい。具体的には、遷移金属イオンの濃度を飽和濃度以下とすることが好ましい。 In the solution, the concentration of the transition metal ion is not particularly limited, but it is better to increase the equilibrium between free chlorine and hypochlorous acid from the viewpoint of biasing the free chlorine in a direction in which it is difficult to generate. Specifically, it is preferable that the concentration of the transition metal ion is not more than the saturation concentration.

(作製工程)
続いて、定量対象である溶液から定量用の試料溶液を作製する。このとき、溶液中のチオン酸を長期的に安定して保存するために溶液のpHを2以上であって、遷移金属イオンが水酸化物を形成しないようなpH値以下の範囲に調整する。本実施形態では、次亜塩素酸が配位可能な遷移金属イオンを溶液に含有させているので、上式(1)において遊離塩素が分解して次亜塩素酸が生成する方向に平衡を偏らせている。これにより、pHを酸性側の低い値に調整した場合であっても遊離塩素の生成を抑制でき、遊離塩素によるチオン酸の分解を抑制することができる。pHを2未満とすると、遊離塩素が生成してチオン酸が分解しやすくなり、pHを過度に高くすると、例えば金属イオンが水酸化物を形成して沈殿するときにチオン酸が共沈してしまうため、チオン酸を長期的に安定して保存することができなくなる。チオン酸の共沈や分解をさらに抑制する観点からは、遷移金属イオンが水酸化物を形成しないようなpH値以下とすることが好ましい。
(Manufacturing process)
Subsequently, a sample solution for quantification is prepared from the solution to be quantified. At this time, in order to stably store the thionic acid in the solution for a long period of time, the pH of the solution is adjusted to a range of 2 or more and a pH value or less so that the transition metal ion does not form a hydroxide. In the present embodiment, since the solution contains a transition metal ion to which hypochlorous acid can be coordinated, the equilibrium is biased in the direction in which free chlorine is decomposed and hypochlorous acid is produced in the above formula (1). I'm letting you. As a result, the production of free chlorine can be suppressed even when the pH is adjusted to a low value on the acidic side, and the decomposition of thionic acid by free chlorine can be suppressed. If the pH is less than 2, free chlorine is generated and the thionic acid is easily decomposed, and if the pH is excessively high, for example, the thionic acid co-precipitates when metal ions form a hydroxide and precipitate. Therefore, the thionic acid cannot be stably stored for a long period of time. From the viewpoint of further suppressing coprecipitation and decomposition of thionic acid, it is preferable that the pH value is such that transition metal ions do not form hydroxides.

ここで、遷移金属イオンが水酸化物を形成しないようなpH値について説明する。このpH値は、遷移金属イオンの濃度と水酸化物との溶解度積に基づいて求められる。例えば、遷移金属イオンがニッケルイオンである場合、その溶解度積は下記式(2)で示される。式(2)中、nは0~4であり、溶解度積Kはnの値によって異なる値となる。ニッケルイオンの場合、水酸化物が複数の異なる溶存形態をとり得るので、水酸化物の溶存形態に応じた溶解度積Kとニッケルイオンの濃度とからpH値が求められる。ニッケルイオンの場合、水酸化物を形成しないようなpH値は、概ね4未満となる。つまり、ニッケルイオンの場合、溶液のpHを2以上4未満に調整することが好ましい。なお、水酸化物を形成しないようなpH値は遷移金属イオンの種類によって異なるが、その他の遷移金属イオン(例えばコバルトなど)についてもニッケルイオンと同様に、溶解度積と濃度とからpH値を算出するとよい。
=[Ni(OH) 2-n]・[H]/[Ni2+]・・・(2)
Here, the pH value at which the transition metal ion does not form a hydroxide will be described. This pH value is determined based on the concentration product of the transition metal ion and the solubility product with the hydroxide. For example, when the transition metal ion is a nickel ion, its solubility product is represented by the following equation (2). In the formula (2), n is 0 to 4, and the solubility product Kn has a different value depending on the value of n . In the case of nickel ions, since the hydroxide can take a plurality of different dissolved forms, the pH value can be obtained from the solubility product Kn and the concentration of nickel ions according to the dissolved form of the hydroxide. In the case of nickel ions, the pH value that does not form hydroxide is generally less than 4. That is, in the case of nickel ions, it is preferable to adjust the pH of the solution to 2 or more and less than 4. The pH value that does not form hydroxide differs depending on the type of transition metal ion, but for other transition metal ions (for example, cobalt), the pH value is calculated from the solubility product and concentration in the same way as nickel ion. It is good to do.
K n = [Ni (OH) n 2-n ] · [H + ] / [Ni 2+ ] ... (2)

なお、pHの調整方法は特に限定されず、例えば溶液が浸出液のような酸性溶液であれば水酸化ナトリウムなどを添加して中和するとよい。 The method for adjusting the pH is not particularly limited, and for example, if the solution is an acidic solution such as a leachate, sodium hydroxide or the like may be added to neutralize the solution.

作製された試料溶液は、主に次亜塩素酸が生成しており、遊離塩素はチオン酸を大きく分解させないような低い濃度となっている。そのため、試料溶液は、チオン酸の分解速度が遅く、チオン酸を長期的に安定して保存することができ、チオン酸の保存安定性に優れている。すなわち、試料溶液は、pHを調整した段階でのチオン酸の濃度を正確に反映している。具体的には、試料溶液は、8時間経過した後のチオン酸の減少率が10%未満である。このように、試料溶液は、チオン酸、遊離塩素、次亜塩素酸および遷移金属イオンを含み、そのpHが酸性側の低い値であっても、チオン酸の保存安定性に優れている。例えば、遷移金属イオンがニッケルイオンである場合、pHが2以上4未満の範囲であっても、チオン酸を安定して保存することができる。 Hypochlorous acid is mainly produced in the prepared sample solution, and free chlorine has a low concentration so as not to significantly decompose thionic acid. Therefore, the sample solution has a slow decomposition rate of thionic acid, can stably store thionic acid for a long period of time, and is excellent in storage stability of thionic acid. That is, the sample solution accurately reflects the concentration of thionic acid at the stage of adjusting the pH. Specifically, the sample solution has a reduction rate of thionic acid of less than 10% after 8 hours. As described above, the sample solution contains thionic acid, free chlorine, hypochlorous acid and transition metal ions, and is excellent in storage stability of thionic acid even when its pH is low on the acidic side. For example, when the transition metal ion is a nickel ion, thionic acid can be stably stored even if the pH is in the range of 2 or more and less than 4.

(定量工程)
続いて、得られた試料溶液に含まれるチオン酸を定量する。試料溶液ではチオン酸の分解が抑制されているので、pHを調整した段階での溶液に含まれるチオン酸を精度よく定量することができる。なお、定量は、例えばヨードメトリー法など従来公知の方法で行うことができる。
(Quantitative process)
Subsequently, the thionic acid contained in the obtained sample solution is quantified. Since the decomposition of thionic acid is suppressed in the sample solution, the thionic acid contained in the solution at the stage of adjusting the pH can be accurately quantified. The quantification can be performed by a conventionally known method such as an iodometry method.

以上により、遊離塩素および次亜塩素酸とともに含まれるチオン酸を長期的に安定して保存するとともに、その量を精度よく定量することができる。 As described above, the thionic acid contained together with free chlorine and hypochlorous acid can be stably stored for a long period of time, and the amount thereof can be accurately quantified.

以上、本発明の実施形態について説明してきたが、本発明は、上述した実施形態に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々に改変することができる。 Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments and can be variously modified without departing from the gist of the present invention.

以下、本発明をさらに詳細な実施例に基づき説明するが、本発明は、これら実施例に限定されない。 Hereinafter, the present invention will be described based on more detailed examples, but the present invention is not limited to these examples.

(実施例1)
まず、非鉄製錬で採取される浸出液を模擬した溶液を準備した。本実施例では、ニッケル(Ni)イオンを飽和濃度で、遊離塩素および次亜塩素酸を所定濃度で含有するとともに塩酸および硫酸を含む水溶液にチオン酸としてチオ硫酸ナトリウムを溶解させて、浸出液を模擬した溶液を調製した。
(Example 1)
First, a solution simulating the leachate collected by non-iron smelting was prepared. In this example, the leachate is simulated by containing nickel (Ni) ion at a saturated concentration, free chlorine and hypochlorite at a predetermined concentration, and dissolving sodium thiosulfate as thionic acid in an aqueous solution containing hydrochloric acid and sulfuric acid. The solution was prepared.

本実施例では、調製した溶液から一定量を採取するとともに水酸化ナトリウムを添加して中和することでpHを調整し、試料溶液を作製した。本実施例では、pHが2となるように水酸化ナトリウムを添加した。なお、水酸化ナトリウムとしては64重量体積%のものを用いた。 In this example, a sample solution was prepared by collecting a certain amount from the prepared solution and adjusting the pH by adding sodium hydroxide to neutralize the solution. In this example, sodium hydroxide was added so that the pH became 2. As the sodium hydroxide, 64% by weight by weight was used.

作製した試料溶液について、チオン酸の保存安定性を評価するため、所定時間が経過するごとにチオン酸を定量し、チオン酸の経時変化を測定した。チオン酸の定量は、硫酸酸性下で過剰量のヨウ化カリウムを添加した後、ヨウ素酸カリウム規定液を用いたヨードメトリー法により行った。 In order to evaluate the storage stability of thionic acid in the prepared sample solution, thionic acid was quantified after each predetermined time, and the change over time of thionic acid was measured. The quantification of thionic acid was carried out by an iodometry method using a potassium iodide regular solution after adding an excessive amount of potassium iodide under sulfuric acid acidity.

実施例1での測定結果を図1に示す。図1は、pHの違いによるチオン酸の経時変化を説明するための図であり、横軸に経過時間[h]、縦軸にチオン酸(チオ硫酸ナトリウム)の検出量[mg/L]をとって作成した。図1において、pHを2に調整した場合の経時変化を◆プロット(ひし形プロット)で示す。図1のプロットに示すように、pHを2に調整した実施例1では、8時間経過した後でのチオン酸の減少率が約2%であることが確認された。このことから、チオン酸の減少率を10%未満に抑制でき、チオン酸の保存安定性に優れていることが確認された。すなわち、実施例1の試料溶液はpHを調整した時点でのチオン酸の量を正確に反映していることが確認された。 The measurement result in Example 1 is shown in FIG. FIG. 1 is a diagram for explaining the time course of thionic acid due to a difference in pH, in which the horizontal axis represents the elapsed time [h] and the vertical axis represents the detected amount of thionic acid (sodium thiosulfate) [mg / L]. I made it. In FIG. 1, the change with time when the pH is adjusted to 2 is shown by a ◆ plot (diamond plot). As shown in the plot of FIG. 1, in Example 1 in which the pH was adjusted to 2, it was confirmed that the reduction rate of thionic acid after 8 hours had passed was about 2%. From this, it was confirmed that the reduction rate of thionic acid can be suppressed to less than 10% and the storage stability of thionic acid is excellent. That is, it was confirmed that the sample solution of Example 1 accurately reflected the amount of thionic acid at the time when the pH was adjusted.

(実施例2)
実施例2では、実施例1で調製した溶液から一定量を採取するとともに、pHが3となるように水酸化ナトリウムを添加した以外は、実施例1と同様に試料溶液を作製し、チオン酸の経時変化を測定した。図1において□プロット(四角プロット)に示すように、実施例2は実施例1と同様にチオン酸の保存安定性に優れ正確に定量できることが確認された。
(Example 2)
In Example 2, a sample solution was prepared in the same manner as in Example 1 except that a certain amount was taken from the solution prepared in Example 1 and sodium hydroxide was added so that the pH became 3, and thionic acid was prepared. The change over time was measured. As shown in the □ plot (square plot) in FIG. 1, it was confirmed that Example 2 has excellent storage stability of thionic acid and can be accurately quantified as in Example 1.

(比較例1)
比較例1では、実施例1で調製した溶液から一定量を採取して、水酸化ナトリウムを添加せずにそのままの状態としてpHが1の試料溶液を作製し、実施例1と同様にチオン酸の経時変化を測定した。図1において、pHが1の場合の経時変化を▲プロット(三角プロット)で示す。図1に示すように、比較例1は、試料溶液のpHを1として2未満としたため、時間の経過とともにチオン酸が分解されて減少し、8時間経過した後でのチオン酸の減少率が約40%となることが確認された。このことから、試料溶液に遷移金属イオンを飽和濃度で含有させてもpHを2未満とした場合では、平衡が遊離塩素を生成する方向に大きく偏り、多くの遊離塩素が存在するため、チオン酸の分解が促進されてしまうことが考えられる。
(Comparative Example 1)
In Comparative Example 1, a certain amount was taken from the solution prepared in Example 1 to prepare a sample solution having a pH of 1 as it was without adding sodium hydroxide, and thionic acid was prepared in the same manner as in Example 1. The change over time was measured. In FIG. 1, the change with time when the pH is 1 is shown by a ▲ plot (triangular plot). As shown in FIG. 1, in Comparative Example 1, since the pH of the sample solution was set to less than 2, the thionic acid was decomposed and decreased with the passage of time, and the decrease rate of the thionic acid after 8 hours passed. It was confirmed that it was about 40%. From this, when the pH is set to less than 2 even if the sample solution contains transition metal ions at a saturated concentration, the equilibrium is greatly biased toward the generation of free chlorine, and a large amount of free chlorine is present. It is conceivable that the decomposition of chlorine will be promoted.

以上説明したように、遊離塩素および次亜塩素酸とともにチオン酸を含む溶液において、次亜塩素酸が配位可能な遷移金属イオンを含有させるとともに溶液のpHを2以上、遷移金属イオンが水酸化物を形成しないようなpH値以下に調整することにより、遊離塩素によるチオン酸の分解を抑制し、チオン酸を長期的に安定して保存することができる。 As described above, in a solution containing thionic acid together with free chlorine and hypochlorite, the transition metal ion to which hypochlorite can be coordinated is contained, the pH of the solution is 2 or more, and the transition metal ion is hydroxylated. By adjusting the pH value so as not to form a substance, the decomposition of thionic acid by free chlorine can be suppressed, and the thionic acid can be stably stored for a long period of time.

Claims (5)

遊離塩素および次亜塩素酸とともにチオン酸を含む溶液の保存方法であって、
前記溶液に、前記次亜塩素酸が配位可能な遷移金属イオンを含有させ、かつ前記遷移金属イオンの濃度を飽和濃度とするとともに、前記溶液のpHを2以上、前記遷移金属イオンが水酸化物を形成しないようなpH値以下に調整する、チオン酸を含む溶液の保存方法。
A method for storing a solution containing thionic acid together with free chlorine and hypochlorous acid.
The solution contains a transition metal ion to which the hypochlorite can be coordinated , the concentration of the transition metal ion is set to a saturation concentration, the pH of the solution is 2 or more, and the transition metal ion is hydroxylated. A method for storing a solution containing thionic acid, which is adjusted to a pH value or lower so as not to form a substance.
前記遷移金属イオンがニッケルイオンであって、
前記溶液のpHを2以上4未満に調整する、請求項に記載のチオン酸を含む溶液の保存方法。
The transition metal ion is a nickel ion,
The method for storing a solution containing thionic acid according to claim 1 , wherein the pH of the solution is adjusted to 2 or more and less than 4.
チオン酸、遊離塩素および次亜塩素酸を含む溶液中のチオン酸を定量する定量方法であって、
前記溶液に前記次亜塩素酸と配位可能な遷移金属イオンを含有させ、かつ前記遷移金属イオンの濃度を飽和濃度とするとともに、前記溶液のpHを2以上、前記遷移金属イオンが水酸化物を形成しないようなpH値以下に調整して試料溶液を作製する作製工程と、
前記試料溶液に含まれる前記チオン酸を定量する定量工程と、を有するチオン酸の定量方法。
A quantification method for quantifying thionic acid in a solution containing thionic acid, free chlorine and hypochlorous acid.
The solution contains a transition metal ion that can be coordinated with the hypochlorite , the concentration of the transition metal ion is set to a saturation concentration, the pH of the solution is 2 or more, and the transition metal ion is a hydroxide. The preparation process of preparing a sample solution by adjusting the pH value to a value below the pH value that does not form
A method for quantifying thionic acid, which comprises a quantification step for quantifying the thionic acid contained in the sample solution.
チオン酸、遊離塩素および次亜塩素酸を含む溶液から試料溶液を作製する作製方法であって、
前記溶液に前記次亜塩素酸と配位可能な遷移金属イオンを含有させ、かつ前記遷移金属イオンの濃度を飽和濃度とするとともに、前記溶液のpHを2以上、前記遷移金属イオンが水酸化物を形成しないようなpH値以下に調整する、チオン酸を含む試料溶液の作製方法。
A method for preparing a sample solution from a solution containing thionic acid, free chlorine and hypochlorous acid.
The solution contains a transition metal ion that can be coordinated with the hypochlorite , the concentration of the transition metal ion is set to a saturation concentration, the pH of the solution is 2 or more, and the transition metal ion is a hydroxide. A method for preparing a sample solution containing thionic acid, which is adjusted to a pH value or less so as not to form.
チオン酸、遊離塩素および次亜塩素酸を含む溶液から作製される試料溶液であって、
前記溶液と、前記次亜塩素酸と配位可能な遷移金属イオンと、を含有し、
前記溶液のpHが2以上、前記遷移金属イオンが水酸化物を形成しないようなpH値以下であり、
前記遷移金属イオンの濃度が飽和濃度であり、
8時間経過後の前記チオン酸の減少率が10%未満である、チオン酸を含む試料溶液。
A sample solution made from a solution containing thionic acid, free chlorine and hypochlorous acid.
It contains the solution and a transition metal ion that can be coordinated with the hypochlorous acid.
The pH of the solution is 2 or more, and the pH value is such that the transition metal ions do not form hydroxides.
The concentration of the transition metal ion is the saturation concentration.
A sample solution containing thionic acid, wherein the reduction rate of the thionic acid after 8 hours is less than 10%.
JP2018024015A 2017-03-29 2018-02-14 A method for storing and quantifying a solution containing thionic acid, and a method for preparing a sample solution containing thionic acid and its preparation. Active JP7062996B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017064149 2017-03-29
JP2017064149 2017-03-29

Publications (2)

Publication Number Publication Date
JP2018168054A JP2018168054A (en) 2018-11-01
JP7062996B2 true JP7062996B2 (en) 2022-05-09

Family

ID=64019328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018024015A Active JP7062996B2 (en) 2017-03-29 2018-02-14 A method for storing and quantifying a solution containing thionic acid, and a method for preparing a sample solution containing thionic acid and its preparation.

Country Status (1)

Country Link
JP (1) JP7062996B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004509232A (en) 2000-09-18 2004-03-25 インコ、リミテッド Recovery of valuable nickel and cobalt from sulfide flotation concentrate by chloride-assisted oxidative pressure leaching in sulfuric acid
JP2012528243A (en) 2009-05-26 2012-11-12 メタリーチ リミテッド Method for oxidative leaching of sulfide ore and / or sulfide concentrate
JP2013003113A (en) 2011-06-21 2013-01-07 Jx Nippon Mining & Metals Corp Method for quantitating reducing agent in aqueous solution
JP2015048524A (en) 2013-09-03 2015-03-16 Jx日鉱日石金属株式会社 Recovery method of au adsorbed to active carbon
JP2015081371A (en) 2013-10-23 2015-04-27 住友金属鉱山株式会社 Method of exuding nickel and cobalt from mixed sulfide

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50133921A (en) * 1974-04-15 1975-10-23

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004509232A (en) 2000-09-18 2004-03-25 インコ、リミテッド Recovery of valuable nickel and cobalt from sulfide flotation concentrate by chloride-assisted oxidative pressure leaching in sulfuric acid
JP2012528243A (en) 2009-05-26 2012-11-12 メタリーチ リミテッド Method for oxidative leaching of sulfide ore and / or sulfide concentrate
JP2013003113A (en) 2011-06-21 2013-01-07 Jx Nippon Mining & Metals Corp Method for quantitating reducing agent in aqueous solution
JP2015048524A (en) 2013-09-03 2015-03-16 Jx日鉱日石金属株式会社 Recovery method of au adsorbed to active carbon
JP2015081371A (en) 2013-10-23 2015-04-27 住友金属鉱山株式会社 Method of exuding nickel and cobalt from mixed sulfide

Also Published As

Publication number Publication date
JP2018168054A (en) 2018-11-01

Similar Documents

Publication Publication Date Title
JP5495418B2 (en) Method for recovering manganese
JP7062996B2 (en) A method for storing and quantifying a solution containing thionic acid, and a method for preparing a sample solution containing thionic acid and its preparation.
JP7056022B2 (en) Quantitative analysis method of chlorine concentration, chloride ion concentration and hypochlorous acid concentration in a mixture of sodium hypochlorite and chloride ion in a liquid containing metal ions
US10392262B2 (en) Stannous oxide powder and method for producing stannous oxide powder
CA2908364C (en) Method of recovering gold from sulfide ore
Zeng et al. Solubility phenomena involving CaSO4 in hydrometallurgical processes concerning heavy metals
JP2016160526A5 (en)
JP2007270228A (en) Method for recovering rhodium
AU2015368938C1 (en) Method for recovering gold from activated carbon
JP2019035113A5 (en)
WO2014069463A1 (en) Method for collecting silver
JP2006283163A (en) Method for leaching nickel from iron removal precipitate
JP5423592B2 (en) Method for producing low chlorine nickel sulfate / cobalt solution
JP6368672B2 (en) Silver smelting method
JP6034433B2 (en) Method of leaching gold from sulfide ore
KR102320891B1 (en) Method for recovery ruthenium and cobalt from scrap
JP5629167B2 (en) Pt separation and recovery method
RU2489509C1 (en) Processing method of cobalt-containing wastes
FI20031146A0 (en) Process for removing mercury from sulfuric acid by thiosulphate precipitation
CN109196127A (en) The method for producing particle ruthenium
JP2015124134A (en) Nickel carbonate production method in electric nickel production process
Varaksin et al. Electrochemical production of superdispersed and nanosized powders of metal and their carbides
RU2013139368A (en) METHOD FOR PRODUCING DOUBLE SULPHATE AND CHLORIDE HYDROGEN SOLUTION
JP2005089808A (en) Method for refining nickel chloride aqueous solution
Mohamed et al. Preparation and characterization of uniform particles of uric acid and its salts

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220404

R150 Certificate of patent or registration of utility model

Ref document number: 7062996

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150