JP2014019898A - Method for recovering rhenium - Google Patents

Method for recovering rhenium Download PDF

Info

Publication number
JP2014019898A
JP2014019898A JP2012159070A JP2012159070A JP2014019898A JP 2014019898 A JP2014019898 A JP 2014019898A JP 2012159070 A JP2012159070 A JP 2012159070A JP 2012159070 A JP2012159070 A JP 2012159070A JP 2014019898 A JP2014019898 A JP 2014019898A
Authority
JP
Japan
Prior art keywords
rhenium
iron ions
containing liquid
recovery method
precipitate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012159070A
Other languages
Japanese (ja)
Other versions
JP5881551B2 (en
Inventor
Shohei Kanemura
祥平 金村
Koji Mizuguchi
浩司 水口
Yuya Takahashi
優也 高橋
Takeo Yamashita
雄生 山下
Yumi Yaita
由美 矢板
Tetsuo Osato
哲夫 大里
Takashi Omori
孝 大森
Takashi Yazawa
孝 矢澤
Reiko Fujita
玲子 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2012159070A priority Critical patent/JP5881551B2/en
Publication of JP2014019898A publication Critical patent/JP2014019898A/en
Application granted granted Critical
Publication of JP5881551B2 publication Critical patent/JP5881551B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for recovering rhenium not using an ion exchange resin or a solvent extraction method.SOLUTION: The method for recovering rhenium comprises: a step (S11) of adding bivalent iron ions (Fe)to a rhenium-containing liquid 1a; a step (S12) of adding a Ph regulator 3 to precipitate rhenium; a step (S13) of recovering precipitates 5 from a mother liquid 4 by solid-liquid separation; and a step of adding acid to the precipitates 5 to dissolve rhenium (S14) and producing a rhenium-concentrated liquid 6.

Description

本発明は、含有濃度が低いレニウムの回収方法に関する。   The present invention relates to a method for recovering rhenium having a low content concentration.

近年、航空機タービンに用いられ耐高温材料であるNi基スーパーアロイの原料として、レニウムの需要が高まっている。
一般的にレニウムは、モリブデンや銅鉱石中に微少量含まれており、鉱石溶解後のレニウムは、過レニウム酸イオン(ReO4-)として他の不純物元素と共に溶液中に存在している。
従来の回収プロセスは、溶媒抽出法やイオン交換法を用い、これら他の不純物元素からレニウムを分離し、精製濃縮を行っていた。
そして、この精製濃縮させた過レニウム酸イオン溶液に塩化カリウムを加え、析出させた過レニウム酸カリウムを、ろ過して水素還元を行うことで金属レニウムを得ることができる。
In recent years, demand for rhenium has been increasing as a raw material for Ni-based superalloys, which are high-temperature resistant materials used in aircraft turbines.
Generally, rhenium is contained in a very small amount in molybdenum or copper ore, and rhenium after ore dissolution is present in the solution together with other impurity elements as perrhenate ion (ReO 4− ).
Conventional recovery processes used solvent extraction and ion exchange methods to separate rhenium from these other impurity elements and perform purification and concentration.
Then, rhenium metal can be obtained by adding potassium chloride to the purified perrhenate ion solution and filtering the precipitated potassium perrhenate to perform hydrogen reduction.

昨今、レアメタルの需要が急増しており、レアメタル濃度の高い高品位鉱石からだけでなく、レアメタル濃度の低い低品位鉱石や従来は廃棄していた残渣から、レアメタルを回収することが試みられている。
また、レニウムを含むタービンや触媒からのリサイクルも行われている。このような含有濃度が低いレアメタルを回収するためには、レアメタルの濃縮が必須であり、濃縮方法としてイオン交換法や溶媒抽出法が用いられている(例えば、非特許文献1)。
In recent years, the demand for rare metals has increased rapidly, and attempts have been made to recover rare metals not only from high-grade ores with a high concentration of rare metals, but also from low-grade ores with a low concentration of rare metals and residues that were previously discarded. .
Recycling from rhenium-containing turbines and catalysts is also performed. In order to recover such a rare metal having a low content concentration, it is essential to concentrate the rare metal, and an ion exchange method or a solvent extraction method is used as a concentration method (for example, Non-Patent Document 1).

原子力学会Vo124.No2,p150(1982)Atomic Energy Society Vo124. No2, p150 (1982)

従来では廃棄されるような低品位鉱石や廃液から低濃度のレニウムを回収する場合、不純物の影響によりイオン交換樹脂や溶媒抽出法を適用できず、濃縮が困難であった。   Conventionally, when low-level rhenium is recovered from low-grade ore or waste liquid that is discarded, ion exchange resins and solvent extraction methods cannot be applied due to the influence of impurities, making concentration difficult.

本発明はこのような事情を考慮してなされたもので、イオン交換樹脂又は溶媒抽出法を用いないレニウムの回収方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and an object thereof is to provide a method for recovering rhenium without using an ion exchange resin or a solvent extraction method.

レニウム回収方法は、レニウム含有液に二価鉄イオンを添加する工程と、pH調整剤を添加してレニウムを沈殿させる工程と、固液分離により沈殿物を回収する工程と、前記沈殿物に酸を添加してレニウムを溶解しレニウム濃縮液を生成する工程と、を含むことを特徴とする。   The rhenium recovery method includes a step of adding divalent iron ions to a rhenium-containing liquid, a step of adding rhedium to precipitate a rhenium, a step of recovering the precipitate by solid-liquid separation, and an acid in the precipitate. And a step of dissolving rhenium to produce a rhenium concentrate.

本発明により、イオン交換樹脂又は溶媒抽出法を用いないレニウムの回収方法が提供される。   According to the present invention, a method for recovering rhenium without using an ion exchange resin or a solvent extraction method is provided.

本発明に係るレニウムの回収方法の第1実施形態を示す工程図。1 is a process diagram showing a first embodiment of a rhenium recovery method according to the present invention. レニウム含有溶液において調整された水素イオン濃度(pH)に対するレニウムの沈殿率を示すグラフ。The graph which shows the precipitation rate of rhenium with respect to the hydrogen ion concentration (pH) adjusted in the rhenium containing solution. 本発明に係るレニウムの回収方法の第2実施形態を示す工程図。Process drawing which shows 2nd Embodiment of the collection | recovery method of rhenium based on this invention. 本発明に係るレニウムの回収方法の第3実施形態を示す工程図。Process drawing which shows 3rd Embodiment of the collection | recovery method of rhenium based on this invention. 第3実施形態に適用される電解槽の構成図。The block diagram of the electrolytic cell applied to 3rd Embodiment.

(第1実施形態)
以下、本発明の実施形態を添付図面に基づいて説明する。
図1に示すように、第1実施形態に係るレニウムの回収方法は、レニウム含有液1aに二価鉄イオン(Fe2+)を添加する工程(S11)と、pH調整剤3を添加してレニウムを沈殿させる工程(S12)と、固液分離により母液4から沈殿物5を回収する工程(S13)と、この沈殿物5に酸を添加してレニウムを溶解し(S14)、レニウム濃縮液6を生成する工程と、を含んでいる。
(First embodiment)
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
As shown in FIG. 1, the rhenium recovery method according to the first embodiment includes a step (S11) of adding divalent iron ions (Fe 2+ ) to the rhenium-containing liquid 1a and a pH adjuster 3 added. A step of precipitating rhenium (S12), a step of recovering the precipitate 5 from the mother liquor 4 by solid-liquid separation (S13), an acid is added to the precipitate 5 to dissolve rhenium (S14), and a rhenium concentrate 6 is generated.

鉄イオン添加工程(S11)において、レニウム含有液1aに添加される二価の鉄イオンFe2+の形態としては、硫酸鉄(II)や塩化鉄(II)などの2価のFe塩が挙げられる。
レニウム沈殿工程(S12)において、Fe2+が添加されたレニウム含有液1aの水素イオン濃度を、pH調整剤3の添加によりpH7よりも大きく設定する。このように、溶液をアルカリ性に設定すると、イオンとして存在するレニウム(VII)が、Fe2+により還元されて酸化レニウム(IVまたはVI)に変化し、水酸化鉄とともに共沈し沈殿物5に移行する。
pH調整剤3としては、一般的に用いられる水酸化ナトリウムやアンモニア水が使用可能であるが、特に限定はない。
In the iron ion addition step (S11), examples of the form of the divalent iron ion Fe 2+ added to the rhenium-containing liquid 1a include divalent Fe salts such as iron (II) sulfate and iron (II) chloride. It is done.
In the rhenium precipitation step (S12), the hydrogen ion concentration of the rhenium-containing liquid 1a to which Fe 2+ is added is set to be higher than pH 7 by the addition of the pH adjuster 3. Thus, when the solution is set to be alkaline, rhenium (VII) existing as ions is reduced by Fe 2+ to change to rhenium oxide (IV or VI), and coprecipitated with iron hydroxide to precipitate 5. Transition.
As the pH adjuster 3, commonly used sodium hydroxide or aqueous ammonia can be used, but there is no particular limitation.

固液分離工程(S13)において母液から分離回収された沈殿物5は、さらに酸溶解工程(S14)において添加される少量の酸(例えば、硝酸、塩酸、硫酸の中から選択される少なくとも1種の化合物)に溶解し、レニウム濃縮液6を得る。   The precipitate 5 separated and recovered from the mother liquor in the solid-liquid separation step (S13) is at least one selected from a small amount of acid (for example, nitric acid, hydrochloric acid, sulfuric acid) added in the acid dissolution step (S14). To obtain rhenium concentrate 6.

図2のグラフは、レニウム含有溶液において調整された水素イオン濃度(pH)に対するレニウムの沈殿率を示している。
この図2より、二価鉄イオン(Fe2+)を含むレニウム(Re)含有溶液では、水素イオン濃度をpH7以上に設定することにより、レニウム(Re)の沈殿回収が可能であることが示される。
The graph of FIG. 2 shows the rhenium precipitation rate versus the adjusted hydrogen ion concentration (pH) in the rhenium-containing solution.
FIG. 2 shows that in the rhenium (Re) -containing solution containing divalent iron ions (Fe 2+ ), the precipitation recovery of rhenium (Re) is possible by setting the hydrogen ion concentration to pH 7 or higher. It is.

(第2実施形態)
図3に示すように第2実施形態に係るレニウムの回収方法は、レニウム含有液1bは、鉄イオンを固有に含有し、二価鉄イオン(Fe2+)の添加工程(S11;図1)は、このレニウム含有液1bに還元剤7を投入し含有する鉄イオンの価数調整を行う工程(S21)で実行される。
なお、図2において図1と共通の工程は、同一符号で示し、重複する説明を省略する。
(Second Embodiment)
As shown in FIG. 3, in the method for recovering rhenium according to the second embodiment, the rhenium-containing liquid 1b inherently contains iron ions, and a divalent iron ion (Fe 2+ ) addition step (S11; FIG. 1). Is performed in the step (S21) of adjusting the valence of the iron ions contained in the rhenium-containing liquid 1b by introducing the reducing agent 7 therein.
In FIG. 2, steps common to FIG. 1 are denoted by the same reference numerals, and redundant description is omitted.

図2のグラフで示されるように、レニウム(Re)の沈殿は三価鉄イオン(Fe3+)の存在下では、ほとんど生じない。
しかし、金属製品からレニウム(Re)を回収すると、この三価鉄イオン(Fe3+)が含まれている場合が多分にある。
As shown in the graph of FIG. 2, the precipitation of rhenium (Re) hardly occurs in the presence of trivalent iron ions (Fe 3+ ).
However, when rhenium (Re) is recovered from a metal product, this trivalent iron ion (Fe 3+ ) is often included.

そこで、鉄イオン価数調整工程(S21)において、鉄を含むレニウム含有液1bに、例えばヒドラジンなどの還元剤7を添加し、含まれる三価鉄イオン(Fe3+)を二価鉄イオン(Fe2+)に調整する。
これにより、その後のレニウム沈殿工程(S12)において、イオンとして存在するレニウム(VII)を、酸化レニウム(IVまたはVI)として沈殿物5に移行させることが可能となる。
Therefore, in the iron ion valence adjusting step (S21), a reducing agent 7 such as hydrazine is added to the rhenium-containing liquid 1b containing iron, and the contained trivalent iron ions (Fe 3+ ) are converted to divalent iron ions (Fe 3+ ). To Fe 2+ ).
Thereby, in the subsequent rhenium precipitation step (S12), rhenium (VII) existing as ions can be transferred to the precipitate 5 as rhenium oxide (IV or VI).

(第3実施形態)
図4に示すように第3実施形態に係るレニウムの回収方法は、レニウム含有液1bは、鉄イオンを固有に含有し、二価鉄イオン(Fe2+)の添加(図1;S11)は、レニウム含有液1bを電解して含有する鉄イオンの価数調整を行う工程(S31)で実行される。
なお、図2において図3と共通の工程は、同一符号で示し、重複する説明を省略する。
(Third embodiment)
As shown in FIG. 4, in the rhenium recovery method according to the third embodiment, the rhenium-containing liquid 1b inherently contains iron ions, and the addition of divalent iron ions (Fe 2+ ) (FIG. 1; S11) This is carried out in the step (S31) of adjusting the valence of the iron ion containing the rhenium-containing liquid 1b by electrolysis.
In FIG. 2, steps common to FIG. 3 are denoted by the same reference numerals, and redundant description is omitted.

鉄を含むレニウム含有液1bがレニウムの回収対象として多量に存在するときは、第2実施形態のように還元剤7を添加することが困難である。
このような場合には、鉄イオン電解価数調整工程(S31)において、含まれる三価鉄イオン(Fe3+)を二価鉄イオン(Fe2+)に還元するとよい。
When the rhenium-containing liquid 1b containing iron is present in a large amount as a rhenium recovery target, it is difficult to add the reducing agent 7 as in the second embodiment.
In such a case, in the iron ion electrolytic valence adjustment step (S31), the contained trivalent iron ions (Fe 3+ ) may be reduced to divalent iron ions (Fe 2+ ).

図5に示すように、この鉄イオン電解価数調整工程(S31)に適用される電解槽10は、隔膜15により隔離された陰極11と陽極12が、それぞれ直流電源13の両端に接続されている。   As shown in FIG. 5, the electrolytic cell 10 applied to the iron ion electrolytic valence adjusting step (S31) has a cathode 11 and an anode 12 separated by a diaphragm 15 connected to both ends of a DC power supply 13, respectively. Yes.

陰極11に鉄を含むレニウム含有液16(1b)を装荷した状態で、直流電源13から電圧を印加し電解すると、陰極11及び陽極12において、それぞれ次の電解反応が起きる。
陰極:Fe3+ + e- → Fe2+
陽極:2H2O → 2H2 + O2 + 4e-
When the rhenium-containing liquid 16 (1b) containing iron is loaded on the cathode 11 and a voltage is applied from the DC power source 13 to perform electrolysis, the following electrolytic reaction occurs at the cathode 11 and the anode 12, respectively.
Cathode: Fe 3+ + e → Fe 2+
Anode: 2H 2 O → 2H 2 + O 2 + 4e

なお、この電解反応は、参照電極14と陰極11との間の陰極電位が0.77V vs SHEより卑な電位に設定することにより、陰極11において三価鉄イオン(Fe3+)を二価鉄イオン(Fe2+)に還元することができる。
さらに、この陰極電位を水素発生が起きる電位よりも貴な電位に設定することにより、高い電流効率で三価鉄イオン(Fe3+)を二価鉄イオン(Fe2+)に還元することができる。
In this electrolytic reaction, the cathode potential between the reference electrode 14 and the cathode 11 is set to a potential lower than 0.77 V vs SHE, whereby trivalent iron ions (Fe 3+ ) are divalently converted at the cathode 11. It can be reduced to iron ions (Fe 2+ ).
Furthermore, by setting this cathode potential to a potential more noble than the potential at which hydrogen generation occurs, trivalent iron ions (Fe 3+ ) can be reduced to divalent iron ions (Fe 2+ ) with high current efficiency. it can.

このように電解反応を利用することにより、還元剤7等を用いることなく、三価鉄イオン(Fe3+)を二価鉄イオン(Fe2+)に還元することができる。
そして、その後のレニウム沈殿工程(S12)において、イオンとして存在するレニウム(VII)を、酸化レニウム(IVまたはVI)として沈殿物5に移行させることが可能となる。
By using the electrolytic reaction in this way, trivalent iron ions (Fe 3+ ) can be reduced to divalent iron ions (Fe 2+ ) without using the reducing agent 7 or the like.
In the subsequent rhenium precipitation step (S12), rhenium (VII) existing as ions can be transferred to the precipitate 5 as rhenium oxide (IV or VI).

以上述べた少なくともひとつの実施形態のレニウムの回収方法によれば、レニウム含有液に二価鉄イオンを存在させることにより、イオン交換樹脂又は溶媒抽出法を用いずに、低濃度のレニウムを溶液から高効率的で回収することが可能となる。   According to the method for recovering rhenium of at least one embodiment described above, by allowing divalent iron ions to be present in the rhenium-containing liquid, a low concentration of rhenium can be removed from the solution without using an ion exchange resin or a solvent extraction method. It is highly efficient and can be recovered.

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更、組み合わせを行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。   Although several embodiments of the present invention have been described, these embodiments are presented by way of example and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions, replacements, changes, and combinations can be made without departing from the scope of the invention. These embodiments and their modifications are included in the scope and gist of the invention, and are also included in the invention described in the claims and the equivalents thereof.

1a,1b…レニウム含有液、3…pH調整剤、4…母液、5…沈殿物、6…レニウム濃縮液、7…還元剤、10…電解槽、11…陰極、12…陽極、13…直流電源、14…参照電極、15…隔膜、16…鉄を含むレニウム含有液。   DESCRIPTION OF SYMBOLS 1a, 1b ... Rhenium containing liquid, 3 ... pH adjuster, 4 ... Mother liquor, 5 ... Precipitate, 6 ... Rhenium concentrate, 7 ... Reducing agent, 10 ... Electrolyzer, 11 ... Cathode, 12 ... Anode, 13 ... DC Power source, 14 ... reference electrode, 15 ... diaphragm, 16 ... rhenium-containing liquid containing iron.

Claims (7)

レニウム含有液に二価鉄イオンを添加する工程と、
pH調整剤を添加してレニウムを沈殿させる工程と、
固液分離により母液から沈殿物を回収する工程と、
前記沈殿物に酸を添加してレニウムを溶解しレニウム濃縮液を生成する工程と、を含むことを特徴とするレニウム回収方法。
Adding divalent iron ions to the rhenium-containing liquid;
adding a pH adjuster to precipitate rhenium;
Collecting the precipitate from the mother liquor by solid-liquid separation;
Adding an acid to the precipitate to dissolve rhenium to form a rhenium concentrate, and a method for recovering rhenium.
前記レニウム含有液は、鉄イオンを固有に含有し、
前記二価鉄イオンの添加は、前記レニウム含有液に還元剤を投入し含有する前記鉄イオンの価数調整を行うことによる請求項1に記載のレニウム回収方法。
The rhenium-containing liquid inherently contains iron ions,
The rhenium recovery method according to claim 1, wherein the addition of the divalent iron ion is performed by adjusting the valence of the iron ion contained in the rhenium-containing liquid by introducing a reducing agent.
前記レニウム含有液は、鉄イオンを固有に含有し、
前記二価鉄イオンの添加は、前記レニウム含有液を電解して含有する前記鉄イオンの価数調整を行うことによる請求項1に記載のレニウム回収方法。
The rhenium-containing liquid inherently contains iron ions,
The rhenium recovery method according to claim 1, wherein the addition of the divalent iron ions is performed by adjusting the valence of the iron ions contained by electrolyzing the rhenium-containing liquid.
前記pH調整剤は、水素イオン濃度がpH7以上になるように添加される請求項1から請求項3のいずれか1項に記載のレニウム回収方法。   The rhenium recovery method according to any one of claims 1 to 3, wherein the pH adjuster is added so that a hydrogen ion concentration becomes pH 7 or more. 前記酸は、塩酸、硝酸及び硫酸の中から選択される少なくとも1種の化合物である請求項1から請求項4のいずれか1項に記載のレニウム回収方法。   The rhenium recovery method according to any one of claims 1 to 4, wherein the acid is at least one compound selected from hydrochloric acid, nitric acid, and sulfuric acid. 前記電解は、隔膜により陰極と陽極が隔離された電解槽を用い、前記陰極室において前記鉄イオンの価数調整を行う請求項3から請求項5のいずれか1項に記載のレニウム回収方法。   The rhenium recovery method according to any one of claims 3 to 5, wherein the electrolysis uses an electrolytic cell in which a cathode and an anode are separated by a diaphragm, and valence adjustment of the iron ions is performed in the cathode chamber. 前記電解は、陰極電位が0.77V vs SHEより卑かつ水素発生が起きる電位よりも貴な電位で行う請求項3から請求項6のいずれか1項に記載のレニウム回収方法。   The rhenium recovery method according to any one of claims 3 to 6, wherein the electrolysis is performed at a cathode potential lower than 0.77V vs SHE and a potential higher than a potential at which hydrogen generation occurs.
JP2012159070A 2012-07-17 2012-07-17 Rhenium recovery method Active JP5881551B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012159070A JP5881551B2 (en) 2012-07-17 2012-07-17 Rhenium recovery method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012159070A JP5881551B2 (en) 2012-07-17 2012-07-17 Rhenium recovery method

Publications (2)

Publication Number Publication Date
JP2014019898A true JP2014019898A (en) 2014-02-03
JP5881551B2 JP5881551B2 (en) 2016-03-09

Family

ID=50195151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012159070A Active JP5881551B2 (en) 2012-07-17 2012-07-17 Rhenium recovery method

Country Status (1)

Country Link
JP (1) JP5881551B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112593260A (en) * 2020-11-26 2021-04-02 金川集团股份有限公司 Method for enriching and recovering rhenium by electrolytic process

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010285680A (en) * 2009-06-15 2010-12-24 Toshiba Corp Method and system for producing rare metal
JP2011058016A (en) * 2009-09-07 2011-03-24 Sumitomo Metal Mining Co Ltd Method for separating rhenium from solution containing perrhenic acid
JP2012087344A (en) * 2010-10-18 2012-05-10 Toshiba Corp Method and device for recovering rare metal

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010285680A (en) * 2009-06-15 2010-12-24 Toshiba Corp Method and system for producing rare metal
JP2011058016A (en) * 2009-09-07 2011-03-24 Sumitomo Metal Mining Co Ltd Method for separating rhenium from solution containing perrhenic acid
JP2012087344A (en) * 2010-10-18 2012-05-10 Toshiba Corp Method and device for recovering rare metal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112593260A (en) * 2020-11-26 2021-04-02 金川集团股份有限公司 Method for enriching and recovering rhenium by electrolytic process

Also Published As

Publication number Publication date
JP5881551B2 (en) 2016-03-09

Similar Documents

Publication Publication Date Title
US8221609B2 (en) Process for producing rare metal and production system thereof
CN112522527B (en) Electrolytic-based method for selectively recovering rare earth elements from Nd-Fe-B magnet scrap
JP5329615B2 (en) Tungsten recovery method
WO2001090445A1 (en) Method of producing a higher-purity metal
WO2014112198A1 (en) Method for recovering indium-tin alloy from ito target scrap and methods for producing indium oxide-tin oxide powder and ito target
CN102304620A (en) Comprehensive recovery and treatment method of waste nickel-hydrogen battery
JP2019218622A (en) Recovery method of copper indium gallium selenium waste
JP5881551B2 (en) Rhenium recovery method
TWI592519B (en) Method of making tungsten
KR102023265B1 (en) Method of Making Tungsten Carbide
CN111826527A (en) Method for recovering copper indium gallium selenide material
JP2015086436A (en) Method for recovering valuable material
CN107429412B (en) Method for recovering useful substance containing tungsten
CN111099652B (en) Method for separating silver and copper in silver electrolysis waste liquid
JP6373772B2 (en) Method for recovering indium and gallium
JP6784510B2 (en) Method for producing alcohol amine polytungstate
KR101795888B1 (en) Method for fabricating byproduct from nickel extraction
CN108588430A (en) A kind of recovery method of the material containing copper indium gallium selenide
CN113106255B (en) Method for separating and recycling cobalt, zirconium and tantalum from cobalt-zirconium-tantalum target cutting material
JP6017876B2 (en) A method for recovering gallium from waste copper gallium.
JP2013006718A (en) Method for producing manganese oxide
JP6518404B2 (en) Method of melting scrap and method of metal recovery using this melting method
MX2021010944A (en) A process for recovering gold from ores.
CN115505742A (en) Samarium cobalt recovery method for samarium cobalt magnetic material
JP2018100452A (en) Dissolution method of scrap, and metal recovery method using dissolution method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151006

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160202

R151 Written notification of patent or utility model registration

Ref document number: 5881551

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151