JP2018100452A - Dissolution method of scrap, and metal recovery method using dissolution method - Google Patents

Dissolution method of scrap, and metal recovery method using dissolution method Download PDF

Info

Publication number
JP2018100452A
JP2018100452A JP2018044490A JP2018044490A JP2018100452A JP 2018100452 A JP2018100452 A JP 2018100452A JP 2018044490 A JP2018044490 A JP 2018044490A JP 2018044490 A JP2018044490 A JP 2018044490A JP 2018100452 A JP2018100452 A JP 2018100452A
Authority
JP
Japan
Prior art keywords
scrap
metal
leaching
acid
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018044490A
Other languages
Japanese (ja)
Inventor
寿文 河村
Hisafumi Kawamura
寿文 河村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2018044490A priority Critical patent/JP2018100452A/en
Publication of JP2018100452A publication Critical patent/JP2018100452A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a dissolution method of scrap capable of dissolving scrap effectively; and to provide a metal recovery method from scrap by using the method.SOLUTION: There is provided a method for dissolving scrap of a metal or a metal oxide. In the dissolution method of scrap, when performing acid leach with mineral acid, a compound of a transition metal which is less noble than all the leaching object metals is added, and the leaching object metals are dissolved into leaching liquid as much as 90 wt% or more to the amount contained in the scrap, and the compound of the transition metal becomes insoluble.SELECTED DRAWING: None

Description

本発明は、スクラップの溶解方法およびこの溶解方法を用いた金属回収方法に関する。   The present invention relates to a scrap melting method and a metal recovery method using the melting method.

金属および金属化合物から金属を回収するのに、通常酸による化学溶解処理を用いることは非常に一般的である。この場合、金属の回収率を上げるためには、可能な限り多くの金属、好ましくは全量の金属を溶解させることが求められる。そのため、強酸下で理論当量の数倍量の酸を使用したり、電位(ORP)平坦化のための過酸化水素水等の助剤を添加するなどの工夫が必要となる。   It is very common to use chemical dissolution treatment with acids to recover metals from metals and metal compounds. In this case, in order to increase the metal recovery rate, it is required to dissolve as much metal as possible, preferably the entire amount of metal. Therefore, it is necessary to devise such as using an acid several times the theoretical equivalent amount under strong acid, or adding an auxiliary agent such as hydrogen peroxide solution for leveling the potential (ORP).

例えば、特許文献1に記載された技術では、リチウムイオン二次電池用正極活物質を代表する物質であるコバルト酸リチウムから効率よくコバルトを回収する技術が開示されている。この技術によれば、重量比でコバルト酸リチウムを1に対し、硫酸を1.47〜1.67、水を0.67〜4.0の割合で希釈した硫酸を用いて、リチウムイオン二次電池用正極活物質を溶解させ、その溶解液を60℃以上に保持し、さらに過酸化水素水を添加して電位をさげ、そこへ硫酸を添加してpHを0.4〜0.8に調整して、全量溶解させている。その後、冷却して硫酸コバルトを析出させている。   For example, the technique described in Patent Document 1 discloses a technique for efficiently recovering cobalt from lithium cobaltate, which is a substance that represents a positive electrode active material for a lithium ion secondary battery. According to this technique, lithium ion secondary is obtained by using sulfuric acid diluted by a ratio of 1.47 to 1.67 for sulfuric acid and 0.67 to 4.0 for water with respect to 1 lithium cobaltate by weight ratio. The positive electrode active material for a battery is dissolved, the solution is kept at 60 ° C. or higher, hydrogen peroxide is added to lower the potential, and sulfuric acid is added thereto to adjust the pH to 0.4 to 0.8. Adjust and dissolve all. Then, it cools and cobalt sulfate is deposited.

特開2005−022887号公報JP 2005-022887 A

ところで、実際のスクラップから所望の金属を回収する場合、特に回収しようとする金属を全量溶解させることが困難であり、溶解しきれなかった分が回収されずロスとなる。全量溶解させるために、過剰量の酸を使用したり、過酸化水素水などの助剤を用いることは、高価な薬剤を用いることになり、経済的な方法とはいえない。しかも、それでもなお、金属の全量回収という目標には達していない。   By the way, when recovering a desired metal from an actual scrap, it is particularly difficult to dissolve the entire amount of metal to be recovered, and a portion that cannot be completely dissolved is not recovered and is lost. In order to dissolve the total amount, using an excessive amount of acid or using an auxiliary agent such as hydrogen peroxide solution uses an expensive drug and is not an economical method. And yet, the goal of recovering all of the metal has not been reached.

そこで、本発明は、スクラップを有効に溶解させることを可能にするスクラップの溶解方法およびこの方法を用いたスクラップからの金属の回収方法を提供することを目的とする。   SUMMARY OF THE INVENTION An object of the present invention is to provide a scrap melting method that enables the scrap to be effectively melted and a method for recovering metal from the scrap using this method.

スクラップの浸出を行うという観点から、浸出液に回収対象となる金属の全量を溶解させることは全量回収という目標を達成するためには重要である。そこで、本発明者が鋭意検討した結果、回収対象とする金属よりも卑な金属からなる遷移金属化合物を浸出液に添加することにより、回収対象金属が非常によく溶解することを見出し、本発明を完成させた。   From the viewpoint of leaching scrap, it is important to dissolve the entire amount of metal to be recovered in the leachate in order to achieve the goal of total recovery. Therefore, as a result of intensive studies by the present inventors, it was found that the metal to be recovered dissolves very well by adding a transition metal compound made of a base metal rather than the metal to be recovered to the leachate. Completed.

すなわち、本発明は以下のとおりである。
(1)金属または金属酸化物のスクラップを溶解させる方法であって、
鉱酸にて酸浸出を行うに際して、浸出対象の金属のすべてよりも卑な遷移金属の化合物を添加し、前記浸出対象の金属が、前記スクラップに含有される量に対して90重量%以上、浸出液に溶解し、前記遷移金属の化合物が不溶となることを特徴とするスクラップの溶解方法。
(2)前記遷移金属の化合物の金属元素が、Fe、Ni、Co、Mnの一種であることを特徴とする(1)に記載の方法。
(3)前記スクラップがLi、Ni、Co、Mnを少なくとも二種類含むリチウムイオン二次電池用正極材であることを特徴とする(1)または(2)に記載の方法。
(4)前記スクラップが破砕されていることを特徴とする(1)〜(3)のいずれかに記載の方法。
(5)(1)〜(4)のいずれかに記載の方法によりスクラップを浸出液に溶解させた後、前記遷移金属の化合物を不溶物として除去し、浸出後液から金属を回収することを特徴とするスクラップからの金属の回収方法。
That is, the present invention is as follows.
(1) A method of dissolving scrap of metal or metal oxide,
When performing acid leaching with a mineral acid, a compound of a transition metal that is less basic than all of the metal to be leached is added, and the metal to be leached is 90% by weight or more based on the amount contained in the scrap, A method for dissolving scrap, which dissolves in a leachate and makes the transition metal compound insoluble.
(2) The method according to (1), wherein the metal element of the transition metal compound is one of Fe, Ni, Co, and Mn.
(3) The method according to (1) or (2), wherein the scrap is a positive electrode material for a lithium ion secondary battery containing at least two types of Li, Ni, Co, and Mn.
(4) The method according to any one of (1) to (3), wherein the scrap is crushed.
(5) The scrap is dissolved in the leachate by the method according to any one of (1) to (4), then the transition metal compound is removed as an insoluble matter, and the metal is recovered from the liquor after the leaching. Recovering metal from scrap.

本発明によれば、スクラップを有効に溶解させることを可能にし、これにより高回収率でスクラップから金属を回収することが可能になる。   According to the present invention, it is possible to effectively dissolve scrap, and it is possible to recover metal from scrap with a high recovery rate.

実施例1と比較例1とを比較するためのグラフである。4 is a graph for comparing Example 1 and Comparative Example 1. FIG.

一つの側面から、本発明は、スクラップの溶解方法を提供する。
すなわち、本発明は、金属または金属酸化物のスクラップを溶解させる方法であって、鉱酸にて酸浸出を行うに際して、浸出対象の金属よりも卑な金属からなる遷移金属化合物を添加することを特徴とするスクラップの溶解方法である。
From one aspect, the present invention provides a scrap melting method.
That is, the present invention is a method of dissolving scrap of metal or metal oxide, and when performing acid leaching with a mineral acid, adding a transition metal compound composed of a base metal rather than a metal to be leached. This is a scrap melting method.

本発明の対象となるスクラップは、金属または金属酸化物を含むものであれば特に限定されないが、Li、Ni、Co、Mnを少なくとも二種類含む電子材料、例えば半導体及び電子部品、液晶ディスプレイ、工具コーティング、ガラスコーティング、光ディスク、ハードディスク、太陽電池、リチウムイオン2次電池用正極材や当該正極材等由来のスクラップが挙げられる。また、このスクラップは、溶解の効率を考慮すると、予め破砕して粉状にしておくことが好ましい。   The scrap that is the subject of the present invention is not particularly limited as long as it contains a metal or metal oxide, but an electronic material containing at least two types of Li, Ni, Co, and Mn, such as a semiconductor and an electronic component, a liquid crystal display, a tool, and the like. Examples thereof include scraps derived from coatings, glass coatings, optical disks, hard disks, solar cells, positive electrode materials for lithium ion secondary batteries, positive electrode materials and the like. In addition, this scrap is preferably crushed and powdered in advance in consideration of melting efficiency.

また、酸浸出に用いる鉱酸は、硫酸、塩酸、硝酸などが挙げられ、中でも硫酸が好ましい。また、酸浸出の条件であるが、pHが1以下、温度が60℃以上であることが好ましい。   Further, examples of the mineral acid used for acid leaching include sulfuric acid, hydrochloric acid, nitric acid, and sulfuric acid is preferable. Moreover, although it is the conditions of acid leaching, it is preferable that pH is 1 or less and temperature is 60 degreeC or more.

また、酸浸出に際して、浸出対象の金属よりも卑な遷移金属化合物であるが、金属元素は浸出対象となる金属に応じて、適宜選択される。具体的には、Fe、Ni、Co、Mnのいずれかから選択される。
例えば、浸出対象の金属がLi、Ni、Coである場合、これらよりも卑であるMnが遷移金属化合物の金属元素として用いることができる。また、遷移金属化合物は、この金属元素の硫酸塩、塩酸塩、硝酸塩、酢酸塩、酸化物などが挙げられる。
Further, during acid leaching, the transition metal compound is baser than the metal to be leached, but the metal element is appropriately selected according to the metal to be leached. Specifically, it is selected from any of Fe, Ni, Co, and Mn.
For example, when the metal to be leached is Li, Ni, or Co, Mn, which is lower than these, can be used as the metal element of the transition metal compound. Examples of the transition metal compound include sulfates, hydrochlorides, nitrates, acetates and oxides of the metal elements.

遷移金属化合物は、(目標浸出率−酸のみによる浸出率)分の遷移金属となるように添加することが好ましい。この割合で遷移金属化合物を使用することにより、浸出対象の金属が浸出液に効率よく溶解する。その溶解する割合は、各金属について正極材原料に含まれる重量に対して90重量%以上であることが好ましく、さらに好ましくは99重量%以上である。
酸浸出に際して、浸出液にスクラップを溶解させる際に、浸出対象の金属よりも卑な遷移金属化合物を添加することにより、浸出対象の金属が効率よく溶解する理由は明らかではないが、おそらく添加した遷移金属化合物が、対象金属からなる化合物において、酸化還元反応により対象金属と置換して、対象金属を塩の形とすることで効率よく溶解するものと考えられる。
このようにして、従来において、多量の酸を用いた酸浸出だけでは溶解が難しかった金属分を効率よく溶解することができる。これにより、酸浸出に要する酸を減らすことが可能になり、浸出時間も短縮される。
The transition metal compound is preferably added so as to be a transition metal corresponding to (target leaching rate−leaching rate due to acid alone). By using the transition metal compound at this ratio, the metal to be leached dissolves efficiently in the leaching solution. The dissolution ratio is preferably 90% by weight or more, more preferably 99% by weight or more, based on the weight contained in the positive electrode material for each metal.
During acid leaching, when the scrap is dissolved in the leachate, it is not clear why the metal to be leached dissolves efficiently by adding a base metal compound that is less leached than the metal to be leached. It is considered that a metal compound is dissolved in a compound composed of a target metal by replacing the target metal by an oxidation-reduction reaction to form the target metal in a salt form.
In this way, it is possible to efficiently dissolve a metal component that has been difficult to dissolve only by acid leaching using a large amount of acid. Thereby, it becomes possible to reduce the acid required for acid leaching, and the leaching time is also shortened.

例えば、リチウムイオン二次電池用正極材を例に挙げると、浸出対象の金属の合計の2当量という大量の硫酸で溶解させても100%の溶解はしないが、マンガン化合物、例えば硫酸マンガンを添加することにより1当量の硫酸を用いるだけで100%近い浸出対象の金属が短時間で溶解できるようになる。   For example, taking a positive electrode material for a lithium ion secondary battery as an example, even if it is dissolved with a large amount of sulfuric acid of 2 equivalents of the total metal to be leached, it does not dissolve 100%, but a manganese compound such as manganese sulfate is added. By doing so, the metal to be leached nearly 100% can be dissolved in a short time only by using 1 equivalent of sulfuric acid.

他の側面から、本発明は、スクラップからの金属の回収方法を提供する。
すなわち、本発明は、上述した方法によりスクラップを浸出液に溶解させた後、前記遷移金属化合物を不溶物として除去し、浸出後液から金属を回収することを特徴とするスクラップからの金属の回収方法である。
From another aspect, the present invention provides a method for recovering metal from scrap.
That is, the present invention is a method for recovering metal from scrap, characterized in that after the scrap is dissolved in the leachate by the method described above, the transition metal compound is removed as an insoluble matter, and the metal is recovered from the liquor after leaching. It is.

浸出後液から金属を回収する方法としては、溶媒抽出法、電解法などが挙げられ、金属として分離するか、あるいは合金として回収することが可能である。
溶媒抽出法では、通常の金属抽出に用いられる抽出剤、例えばジ(2−エチルヘキシル)ホスホリックアシッド(D2EHPA)や、2−エチルヘキシル 2−エチルヘキシルホスホン酸(PC88A)などの有機リン酸型の酸性抽出剤を適宜pHを調整して有機相に各金属イオンを抽出し、任意の酸で逆抽出を行うことで、分離回収が可能である。
また、電解法では、浸出後液をそのまま電解液として用いて、カソードとアノードとを設置し、定電流にて電解を行うことで、カソードまたはアノード表面に電析させることで回収が可能である。
Examples of the method for recovering the metal from the solution after leaching include a solvent extraction method and an electrolysis method, which can be separated as a metal or recovered as an alloy.
In the solvent extraction method, an organic phosphoric acid type acidic extraction agent such as di (2-ethylhexyl) phosphoric acid (D2EHPA) or 2-ethylhexyl 2-ethylhexylphosphonic acid (PC88A) used for usual metal extraction is used. The pH of the agent is appropriately adjusted, each metal ion is extracted into the organic phase, and separation and recovery can be performed by performing back extraction with an arbitrary acid.
In the electrolysis method, the solution after leaching is directly used as an electrolyte, and a cathode and an anode are installed, and electrolysis is performed at a constant current, so that it can be recovered by electrodeposition on the cathode or anode surface. .

以下、本発明の実施例を示すが、本発明は実施例に限定されるものではない。
(実施例1)
Li、Ni、Co、Mnの酸化物からなる3元系正極材のスクラップ粉1kgを1当量分の硫酸を含有した硫酸水溶液10Lに懸濁させた。続いてその懸濁液に硫酸マンガン200gを添加した。80℃で20時間浸出した結果、正極材スクラップに含まれる各金属の含有量に対して、Liは100重量%、Niは100重量%、Coは99重量%溶解した。Mnは不溶となった。この系で特に価値の高い、NiとCoを効率よく溶解することができた。
なお、この液を通常の条件で電解採取することで、NiとCoを析出分離することが出来る。
Examples of the present invention will be described below, but the present invention is not limited to the examples.
Example 1
1 kg of ternary positive electrode scrap powder composed of oxides of Li, Ni, Co, and Mn was suspended in 10 L of an aqueous sulfuric acid solution containing 1 equivalent of sulfuric acid. Subsequently, 200 g of manganese sulfate was added to the suspension. As a result of leaching at 80 ° C. for 20 hours, Li was 100% by weight, Ni was 100% by weight, and Co was 99% by weight with respect to the content of each metal contained in the positive electrode material scrap. Mn became insoluble. Ni and Co, which are particularly valuable in this system, could be efficiently dissolved.
In addition, Ni and Co can be deposited and separated by electrolytically collecting this solution under normal conditions.

(実施例2)
Li、Ni、Co、Mnの酸化物からなる3元系正極材のスクラップ粉1kgを1当量分の硫酸を含有した硫酸水溶液10Lに懸濁させた。続いてその懸濁液に硫酸マンガン500gを添加した。80℃で5時間浸出した結果、正極材スクラップに含まれる各金属の含有量に対して、Liは100重量%、Niは100重量%、Coは99重量%溶解した。Mnは不溶となった。この系で特に価値の高い、NiとCoを効率よく溶解することができた。なお、この液を電解採取することで、NiとCoを析出分離することが出来る。
(Example 2)
1 kg of ternary positive electrode scrap powder composed of oxides of Li, Ni, Co, and Mn was suspended in 10 L of an aqueous sulfuric acid solution containing 1 equivalent of sulfuric acid. Subsequently, 500 g of manganese sulfate was added to the suspension. As a result of leaching at 80 ° C. for 5 hours, Li was 100% by weight, Ni was 100% by weight, and Co was 99% by weight with respect to the content of each metal contained in the positive electrode material scrap. Mn became insoluble. Ni and Co, which are particularly valuable in this system, could be efficiently dissolved. It should be noted that Ni and Co can be precipitated and separated by electrolytically collecting this solution.

(比較例1)
実施例1で、硫酸マンガンを添加しない以外は、同様に酸浸出した。80℃で20時間浸出した結果、正極材スクラップに含まれる各金属の含有量に対して、Liは100重量%、Niは60重量%、Coは60重量%溶解した。Mnは不溶となった。この系で特に価値の高い、NiとCoは全量溶解することができなかった。
(Comparative Example 1)
In Example 1, acid leaching was performed in the same manner except that manganese sulfate was not added. As a result of leaching for 20 hours at 80 ° C., 100% by weight of Li, 60% by weight of Ni and 60% by weight of Co were dissolved with respect to the content of each metal contained in the positive electrode material scrap. Mn became insoluble. Ni and Co, which are particularly valuable in this system, could not be completely dissolved.

(比較例2)
実施例1で、硫酸マンガンを添加しない以外は、同様に酸浸出した。酸濃度は3当量分を加えた。80℃で20時間浸出した結果、正極材スクラップに含まれる各金属の含有量に対して、Liは100重量%、Niは80重量%、Coは80重量%溶解した。Mnは不溶となった。この系で特に価値の高い、NiとCoは全量溶解することができなかった。
(Comparative Example 2)
In Example 1, acid leaching was performed in the same manner except that manganese sulfate was not added. The acid concentration was 3 equivalents. As a result of leaching for 20 hours at 80 ° C., 100% by weight of Li, 80% by weight of Ni, and 80% by weight of Co were dissolved with respect to the content of each metal contained in the positive electrode material scrap. Mn became insoluble. Ni and Co, which are particularly valuable in this system, could not be completely dissolved.

ここで、実施例1と比較例1について、Li、Ni、Coの浸出率の時間変化を、図1のグラフに示す。
図1によれば、Li、Ni、Co、Mnを含む正極材スクラップに、硫酸マンガンを添加した場合(実施例1)と、しなかった場合(比較例1)とで、Li、Ni、Coに有意な差が見られた。特に、実施例1においては、比較的速い段階で80%以上が溶解し、時間が経つと100%近くの金属が溶解するに至った。一方で、比較例1では、時間をかけたとしても実施例1にて実現された高い割合の溶解は起こらないと予測された。
Here, with respect to Example 1 and Comparative Example 1, the time change of the leaching rate of Li, Ni, and Co is shown in the graph of FIG.
According to FIG. 1, Li, Ni, Co, and Mn were added to the positive electrode material scrap containing Li, Ni, Co, and Mn (Example 1) and not (Comparative Example 1). A significant difference was observed. In particular, in Example 1, 80% or more was dissolved at a relatively fast stage, and nearly 100% of the metal was dissolved over time. On the other hand, in Comparative Example 1, it was predicted that the high proportion of dissolution realized in Example 1 would not occur even if time was spent.

Claims (5)

金属または金属酸化物のスクラップを溶解させる方法であって、
鉱酸にて酸浸出を行うに際して、浸出対象の金属のすべてよりも卑な遷移金属の化合物を添加し、前記浸出対象の金属が、前記スクラップに含有される量に対して90重量%以上、浸出液に溶解し、前記遷移金属の化合物が不溶となることを特徴とするスクラップの溶解方法。
A method for melting metal or metal oxide scrap,
When performing acid leaching with a mineral acid, a compound of a transition metal that is less basic than all of the metal to be leached is added, and the metal to be leached is 90% by weight or more based on the amount contained in the scrap, A method for dissolving scrap, which dissolves in a leachate and makes the transition metal compound insoluble.
前記遷移金属の化合物の金属元素が、Fe、Ni、Co、Mnの一種であることを特徴とする請求項1に記載の方法。   The method according to claim 1, wherein the metal element of the transition metal compound is one of Fe, Ni, Co, and Mn. 前記スクラップがLi、Ni、Co、Mnを少なくとも二種類含むリチウムイオン二次電池用正極材であることを特徴とする請求項1又は2に記載の方法。   The method according to claim 1 or 2, wherein the scrap is a positive electrode material for a lithium ion secondary battery containing at least two types of Li, Ni, Co, and Mn. 前記スクラップが破砕されていることを特徴とする請求項1〜3のいずれか一項に記載の方法。   The method according to claim 1, wherein the scrap is crushed. 請求項1〜4のいずれか一項に記載の方法によりスクラップを浸出液に溶解させた後、前記遷移金属の化合物を不溶物として除去し、浸出後液から金属を回収することを特徴とするスクラップからの金属の回収方法。   After the scrap is dissolved in the leachate by the method according to any one of claims 1 to 4, the transition metal compound is removed as an insoluble matter, and the metal is recovered from the liquor after the leaching. For recovering metals from water.
JP2018044490A 2018-03-12 2018-03-12 Dissolution method of scrap, and metal recovery method using dissolution method Pending JP2018100452A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018044490A JP2018100452A (en) 2018-03-12 2018-03-12 Dissolution method of scrap, and metal recovery method using dissolution method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018044490A JP2018100452A (en) 2018-03-12 2018-03-12 Dissolution method of scrap, and metal recovery method using dissolution method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2014055314A Division JP6518404B2 (en) 2014-03-18 2014-03-18 Method of melting scrap and method of metal recovery using this melting method

Publications (1)

Publication Number Publication Date
JP2018100452A true JP2018100452A (en) 2018-06-28

Family

ID=62715084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018044490A Pending JP2018100452A (en) 2018-03-12 2018-03-12 Dissolution method of scrap, and metal recovery method using dissolution method

Country Status (1)

Country Link
JP (1) JP2018100452A (en)

Similar Documents

Publication Publication Date Title
JP6271964B2 (en) Method for recovering metal from cathode material for lithium ion battery
KR102189661B1 (en) Lithium ion battery scrap treatment method
JP6334450B2 (en) Method for recovering metals from recycled lithium-ion battery materials
JP6258890B2 (en) Method for removing copper and scrap metal from lithium ion battery scrap
WO2020212587A1 (en) Process for the preparation of battery precursors
EP3702481A1 (en) Method for separating copper from nickel and cobalt
JP5647750B2 (en) Rare earth recovery method from rare earth element containing alloys
JP2008231522A (en) Method for recovering precious metal from battery slag containing cobalt, nickel and manganese
JP2009193778A (en) Valuable metal recovery method from lithium battery slag containing co, nickel, and mn
KR102078445B1 (en) Removal of iron from iron-containing solution and recovery of valuable metals
JP5004106B2 (en) Method for separating and recovering nickel and lithium
CN103509952B (en) The technique of recovering rare earth in a kind of electron wastes permanent magnet spent material
JP6798080B2 (en) How to dispose of waste lithium-ion batteries
JP2013112859A (en) Method for manufacturing manganese sulfate
JP2021070843A (en) Recovery method of copper, nickel, cobalt from waste lithium ion secondary battery
CN110129572B (en) Method for preparing high-purity ammonium rhenate by using waste nickel-based high-temperature alloy
JP2021161496A (en) Lithium-ion battery waste treatment method
JP6363459B2 (en) Metal leaching method and metal recovery method using the same
JP6996723B1 (en) Metal recovery method from lithium-ion batteries
JP6960070B1 (en) How to recover valuable metals
JP6298002B2 (en) Lithium-ion battery scrap leaching method and valuable metal recovery method
JP7341830B2 (en) Manganese leaching method and metal recovery method from lithium ion secondary batteries
JP6397111B2 (en) Lithium-ion battery scrap leaching method and valuable metal recovery method
KR102211986B1 (en) Method for recovering metal from scrap
JP2018100452A (en) Dissolution method of scrap, and metal recovery method using dissolution method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190226

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190423

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190903