JP6518404B2 - Method of melting scrap and method of metal recovery using this melting method - Google Patents

Method of melting scrap and method of metal recovery using this melting method Download PDF

Info

Publication number
JP6518404B2
JP6518404B2 JP2014055314A JP2014055314A JP6518404B2 JP 6518404 B2 JP6518404 B2 JP 6518404B2 JP 2014055314 A JP2014055314 A JP 2014055314A JP 2014055314 A JP2014055314 A JP 2014055314A JP 6518404 B2 JP6518404 B2 JP 6518404B2
Authority
JP
Japan
Prior art keywords
metal
scrap
leaching
acid
melting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014055314A
Other languages
Japanese (ja)
Other versions
JP2015178642A (en
Inventor
寿文 河村
寿文 河村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2014055314A priority Critical patent/JP6518404B2/en
Publication of JP2015178642A publication Critical patent/JP2015178642A/en
Application granted granted Critical
Publication of JP6518404B2 publication Critical patent/JP6518404B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Secondary Cells (AREA)

Description

本発明は、スクラップの溶解方法およびこの溶解方法を用いた金属回収方法に関する。   The present invention relates to a method of melting scrap and a method of metal recovery using this melting method.

金属および金属化合物から金属を回収するのに、通常酸による化学溶解処理を用いることは非常に一般的である。この場合、金属の回収率を上げるためには、可能な限り多くの金属、好ましくは全量の金属を溶解させることが求められる。そのため、強酸下で理論当量の数倍量の酸を使用したり、電位(ORP)平坦化のための過酸化水素水等の助剤を添加するなどの工夫が必要となる。   It is very common to use a chemical dissolution process, usually with an acid, to recover the metal from the metal and metal compound. In this case, in order to increase the metal recovery rate, it is required to dissolve as much metal as possible, preferably the whole amount of metal. Therefore, it is necessary to use an acid several times the theoretical equivalent under a strong acid, or add an auxiliary agent such as hydrogen peroxide water for potential (ORP) planarization.

例えば、特許文献1に記載された技術では、リチウムイオン二次電池用正極活物質を代表する物質であるコバルト酸リチウムから効率よくコバルトを回収する技術が開示されている。この技術によれば、重量比でコバルト酸リチウムを1に対し、硫酸を1.47〜1.67、水を0.67〜4.0の割合で希釈した硫酸を用いて、リチウムイオン二次電池用正極活物質を溶解させ、その溶解液を60℃以上に保持し、さらに過酸化水素水を添加して電位をさげ、そこへ硫酸を添加してpHを0.4〜0.8に調整して、全量溶解させている。その後、冷却して硫酸コバルトを析出させている。   For example, in the technology described in Patent Document 1, a technology for efficiently recovering cobalt from lithium cobaltate, which is a substance representing a positive electrode active material for a lithium ion secondary battery, is disclosed. According to this technique, a lithium ion secondary is prepared using sulfuric acid in which lithium cobaltate is diluted by 1 to 1 by weight ratio, sulfuric acid is diluted by 1.47 to 1.67, and water is diluted by 0.67 to 4.0. Dissolve the positive electrode active material for battery, keep the solution at 60 ° C or more, add hydrogen peroxide solution to lower the potential, add sulfuric acid to it, and adjust the pH to 0.4 to 0.8 Adjusted and completely dissolved. Thereafter, it is cooled to precipitate cobalt sulfate.

特開2005−022887号公報JP, 2005-022887, A

ところで、実際のスクラップから所望の金属を回収する場合、特に回収しようとする金属を全量溶解させることが困難であり、溶解しきれなかった分が回収されずロスとなる。全量溶解させるために、過剰量の酸を使用したり、過酸化水素水などの助剤を用いることは、高価な薬剤を用いることになり、経済的な方法とはいえない。しかも、それでもなお、金属の全量回収という目標には達していない。   By the way, when a desired metal is recovered from actual scraps, it is difficult to dissolve the entire amount of the metal to be recovered in particular, and the portion which can not be dissolved is not recovered but is lost. The use of an excess amount of acid or the use of an auxiliary agent such as hydrogen peroxide solution to dissolve the whole amount leads to the use of expensive chemicals and is not an economical method. And yet, they still have not reached the goal of recovering all the metals.

そこで、本発明は、スクラップを有効に溶解させることを可能にするスクラップの溶解方法およびこの方法を用いたスクラップからの金属の回収方法を提供することを目的とする。   Therefore, an object of the present invention is to provide a method of melting scrap that enables scrap to be effectively melted, and a method of recovering metal from scrap using this method.

スクラップの浸出を行うという観点から、浸出液に回収対象となる金属の全量を溶解させることは全量回収という目標を達成するためには重要である。そこで、本発明者が鋭意検討した結果、回収対象とする金属よりも卑な金属からなる遷移金属化合物を浸出液に添加することにより、回収対象金属が非常によく溶解することを見出し、本発明を完成させた。   From the viewpoint of scrap leaching, dissolving all the metals to be recovered in the leaching solution is important to achieve the goal of recovering all the metals. Therefore, as a result of intensive investigations conducted by the present inventor, it is found that the metal to be recovered is dissolved very well by adding a transition metal compound consisting of a metal inferior to the metal to be recovered to the leaching solution. It was completed.

すなわち、本発明は以下のとおりである。
(1)金属または金属酸化物のスクラップを溶解させる方法であって、
鉱酸にて酸浸出を行うに際して、浸出対象の金属よりも卑な金属からなる遷移金属化合物を添加することを特徴とするスクラップの溶解方法。
(2)前記浸出対象の金属が、前記スクラップに含有される量に対して90重量%以上、浸出液に溶解することを特徴とする(1)に記載の方法。
(3)前記遷移金属化合物の金属元素が、Fe、Ni、Co、Mnの一種であることを特徴とする(1)または(2)に記載の方法。
(4)前記スクラップがLi、Ni、Co、Mnを少なくとも二種類含むリチウムイオン二次電池用正極材であることを特徴とする(1)〜(3)のいずれかに記載の方法。
(5)前記スクラップが破砕されていることを特徴とする(1)〜(4)のいずれかに記載の方法。
(6)(1)〜(5)のいずれかに記載の方法によりスクラップを浸出液に溶解させた後、前記遷移金属化合物を不溶物として除去し、浸出後液から金属を回収することを特徴とするスクラップからの金属の回収方法。
That is, the present invention is as follows.
(1) A method of dissolving scraps of metal or metal oxide,
What is claimed is: 1. A method of dissolving scrap comprising adding a transition metal compound consisting of a metal lower than the metal to be leached when performing acid leaching with a mineral acid.
(2) The method according to (1), wherein the metal to be leached dissolves in the leachate by at least 90% by weight based on the amount contained in the scrap.
(3) The method according to (1) or (2), wherein the metal element of the transition metal compound is one of Fe, Ni, Co and Mn.
(4) The method according to any one of (1) to (3), wherein the scrap is a positive electrode material for a lithium ion secondary battery including at least two types of Li, Ni, Co and Mn.
(5) The method according to any one of (1) to (4), wherein the scrap is crushed.
(6) The scrap is dissolved in the leaching solution by the method according to any one of (1) to (5), and then the transition metal compound is removed as an insoluble matter, and the metal is recovered from the leaching solution. To recover metals from scraps.

本発明によれば、スクラップを有効に溶解させることを可能にし、これにより高回収率でスクラップから金属を回収することが可能になる。   According to the present invention, it is possible to effectively dissolve scrap, which makes it possible to recover metal from scrap with a high recovery rate.

実施例1と比較例1とを比較するためのグラフである。It is a graph for comparing Example 1 and Comparative Example 1.

一つの側面から、本発明は、スクラップの溶解方法を提供する。
すなわち、本発明は、金属または金属酸化物のスクラップを溶解させる方法であって、鉱酸にて酸浸出を行うに際して、浸出対象の金属よりも卑な金属からなる遷移金属化合物を添加することを特徴とするスクラップの溶解方法である。
In one aspect, the invention provides a method of melting scrap.
That is, the present invention is a method of dissolving scraps of metal or metal oxide, which comprises adding a transition metal compound consisting of a metal more noble than the metal to be leached when performing acid leaching with a mineral acid. It is a melting method of scrap characterized.

本発明の対象となるスクラップは、金属または金属酸化物を含むものであれば特に限定されないが、Li、Ni、Co、Mnを少なくとも二種類含む電子材料、例えば半導体及び電子部品、液晶ディスプレイ、工具コーティング、ガラスコーティング、光ディスク、ハードディスク、太陽電池、リチウムイオン2次電池用正極材や当該正極材等由来のスクラップが挙げられる。また、このスクラップは、溶解の効率を考慮すると、予め破砕して粉状にしておくことが好ましい。   The scrap to which the present invention is applied is not particularly limited as long as it contains metal or metal oxide, but electronic materials containing at least two of Li, Ni, Co and Mn, such as semiconductors and electronic components, liquid crystal displays, tools Coating, glass coating, an optical disk, a hard disk, a solar cell, the positive electrode material for lithium ion secondary batteries, the scrap derived from the said positive electrode material etc. are mentioned. In addition, in consideration of the efficiency of melting, it is preferable that the scrap be crushed and powdered in advance.

また、酸浸出に用いる鉱酸は、硫酸、塩酸、硝酸などが挙げられ、中でも硫酸が好ましい。また、酸浸出の条件であるが、pHが1以下、温度が60℃以上であることが好ましい。   Further, as a mineral acid used for acid leaching, sulfuric acid, hydrochloric acid, nitric acid and the like can be mentioned, and among these, sulfuric acid is preferable. Moreover, although it is the conditions of acid leaching, it is preferable that pH is 1 or less and temperature is 60 degreeC or more.

また、酸浸出に際して、浸出対象の金属よりも卑な遷移金属化合物であるが、金属元素は浸出対象となる金属に応じて、適宜選択される。具体的には、Fe、Ni、Co、Mnのいずれかから選択される。
例えば、浸出対象の金属がLi、Ni、Coである場合、これらよりも卑であるMnが遷移金属化合物の金属元素として用いることができる。また、遷移金属化合物は、この金属元素の硫酸塩、塩酸塩、硝酸塩、酢酸塩、酸化物などが挙げられる。
Moreover, in acid leaching, although it is a transition metal compound more noble than the metal to be leached, the metal element is suitably selected according to the metal to be leached. Specifically, it is selected from any of Fe, Ni, Co, and Mn.
For example, when the metal to be leached is Li, Ni, or Co, Mn which is more noble than these can be used as the metal element of the transition metal compound. Further, as the transition metal compound, sulfates, hydrochlorides, nitrates, acetates, oxides and the like of this metal element can be mentioned.

遷移金属化合物は、(目標浸出率−酸のみによる浸出率)分の遷移金属となるように添加することが好ましい。この割合で遷移金属化合物を使用することにより、浸出対象の金属が浸出液に効率よく溶解する。その溶解する割合は、各金属について正極材原料に含まれる重量に対して90重量%以上であることが好ましく、さらに好ましくは99重量%以上である。
酸浸出に際して、浸出液にスクラップを溶解させる際に、浸出対象の金属よりも卑な遷移金属化合物を添加することにより、浸出対象の金属が効率よく溶解する理由は明らかではないが、おそらく添加した遷移金属化合物が、対象金属からなる化合物において、酸化還元反応により対象金属と置換して、対象金属を塩の形とすることで効率よく溶解するものと考えられる。
このようにして、従来において、多量の酸を用いた酸浸出だけでは溶解が難しかった金属分を効率よく溶解することができる。これにより、酸浸出に要する酸を減らすことが可能になり、浸出時間も短縮される。
The transition metal compound is preferably added so as to be a transition metal of (target leaching rate-leaching rate by acid only). By using the transition metal compound at this ratio, the metal to be leached efficiently dissolves in the leachate. The dissolution rate is preferably 90% by weight or more, and more preferably 99% by weight or more based on the weight contained in the positive electrode material raw material for each metal.
In acid leaching, when dissolving scraps in the leachate, adding a transition metal compound more noble than the metal to be leached does not reveal why the metal to be leached is efficiently dissolved, but probably the transition added The metal compound is considered to be efficiently dissolved by substituting the target metal by a redox reaction in the compound consisting of the target metal and converting the target metal into the form of a salt.
In this way, metal components that have been difficult to dissolve by acid leaching with a large amount of acid can be efficiently dissolved in the prior art. This makes it possible to reduce the acid required for acid leaching and also reduces the leaching time.

例えば、リチウムイオン二次電池用正極材を例に挙げると、浸出対象の金属の合計の2当量という大量の硫酸で溶解させても100%の溶解はしないが、マンガン化合物、例えば硫酸マンガンを添加することにより1当量の硫酸を用いるだけで100%近い浸出対象の金属が短時間で溶解できるようになる。   For example, taking a positive electrode material for a lithium ion secondary battery as an example, even if it is dissolved in a large amount of sulfuric acid such as 2 equivalents of the total of metals to be leached, it does not dissolve 100%, but a manganese compound such as manganese sulfate is added As a result, the metal to be leached close to 100% can be dissolved in a short time by using only one equivalent of sulfuric acid.

他の側面から、本発明は、スクラップからの金属の回収方法を提供する。
すなわち、本発明は、上述した方法によりスクラップを浸出液に溶解させた後、前記遷移金属化合物を不溶物として除去し、浸出後液から金属を回収することを特徴とするスクラップからの金属の回収方法である。
In another aspect, the present invention provides a method of recovering metal from scrap.
That is, according to the present invention, after the scrap is dissolved in the leaching liquid by the above-mentioned method, the transition metal compound is removed as an insoluble matter, and the metal is recovered from the liquid after leaching. It is.

浸出後液から金属を回収する方法としては、溶媒抽出法、電解法などが挙げられ、金属として分離するか、あるいは合金として回収することが可能である。
溶媒抽出法では、通常の金属抽出に用いられる抽出剤、例えばジ(2−エチルヘキシル)ホスホリックアシッド(D2EHPA)や、2−エチルヘキシル 2−エチルヘキシルホスホン酸(PC88A)などの有機リン酸型の酸性抽出剤を適宜pHを調整して有機相に各金属イオンを抽出し、任意の酸で逆抽出を行うことで、分離回収が可能である。
また、電解法では、浸出後液をそのまま電解液として用いて、カソードとアノードとを設置し、定電流にて電解を行うことで、カソードまたはアノード表面に電析させることで回収が可能である。
As a method of recovering the metal from the solution after leaching, a solvent extraction method, an electrolysis method and the like can be mentioned, and it is possible to separate as a metal or recover as an alloy.
In the solvent extraction method, acidic extraction of organic phosphoric acid types such as di (2-ethylhexyl) phosphoric acid (D2EHPA) and organic ethyl phosphate such as 2-ethylhexyl 2-ethylhexylphosphonic acid (PC88A) used for ordinary metal extraction It is possible to separate and recover the agent by appropriately adjusting the pH and extracting each metal ion in the organic phase and performing back extraction with any acid.
Further, in the electrolytic method, the solution after leaching is used as it is as an electrolytic solution, and the cathode and the anode are disposed, and electrolysis is performed with a constant current, whereby it is possible to recover by performing electrodeposition on the cathode or the anode surface. .

以下、本発明の実施例を示すが、本発明は実施例に限定されるものではない。
(実施例1)
Li、Ni、Co、Mnの酸化物からなる3元系正極材のスクラップ粉1kgを1当量分の硫酸を含有した硫酸水溶液10Lに懸濁させた。続いてその懸濁液に硫酸マンガン200gを添加した。80℃で20時間浸出した結果、正極材スクラップに含まれる各金属の含有量に対して、Liは100重量%、Niは100重量%、Coは99重量%溶解した。Mnは不溶となった。この系で特に価値の高い、NiとCoを効率よく溶解することができた。
なお、この液を通常の条件で電解採取することで、NiとCoを析出分離することが出来る。
Examples of the present invention will be shown below, but the present invention is not limited to the examples.
Example 1
1 kg of scrap powder of a ternary positive electrode material composed of oxides of Li, Ni, Co and Mn was suspended in 10 L of an aqueous sulfuric acid solution containing sulfuric acid for 1 equivalent. Subsequently, 200 g of manganese sulfate was added to the suspension. As a result of leaching at 80 ° C. for 20 hours, 100% by weight of Li, 100% by weight of Ni and 99% by weight of Co were dissolved with respect to the content of each metal contained in the positive electrode material scrap. Mn became insoluble. In this system, particularly valuable Ni and Co could be dissolved efficiently.
In addition, Ni and Co can be precipitated and separated by electrolytically collecting this solution under ordinary conditions.

(実施例2)
Li、Ni、Co、Mnの酸化物からなる3元系正極材のスクラップ粉1kgを1当量分の硫酸を含有した硫酸水溶液10Lに懸濁させた。続いてその懸濁液に硫酸マンガン500gを添加した。80℃で5時間浸出した結果、正極材スクラップに含まれる各金属の含有量に対して、Liは100重量%、Niは100重量%、Coは99重量%溶解した。Mnは不溶となった。この系で特に価値の高い、NiとCoを効率よく溶解することができた。なお、この液を電解採取することで、NiとCoを析出分離することが出来る。
(Example 2)
1 kg of scrap powder of a ternary positive electrode material composed of oxides of Li, Ni, Co and Mn was suspended in 10 L of an aqueous sulfuric acid solution containing sulfuric acid for 1 equivalent. Subsequently, 500 g of manganese sulfate was added to the suspension. As a result of leaching at 80 ° C. for 5 hours, 100 wt% of Li, 100 wt% of Ni and 99 wt% of Co were dissolved with respect to the content of each metal contained in the positive electrode material scrap. Mn became insoluble. In this system, particularly valuable Ni and Co could be dissolved efficiently. In addition, Ni and Co can be deposited and separated by electrolytically collecting this solution.

(比較例1)
実施例1で、硫酸マンガンを添加しない以外は、同様に酸浸出した。80℃で20時間浸出した結果、正極材スクラップに含まれる各金属の含有量に対して、Liは100重量%、Niは60重量%、Coは60重量%溶解した。Mnは不溶となった。この系で特に価値の高い、NiとCoは全量溶解することができなかった。
(Comparative example 1)
Acid leaching was carried out in the same manner as in Example 1 except that manganese sulfate was not added. As a result of leaching at 80 ° C. for 20 hours, 100 wt% of Li, 60 wt% of Ni and 60 wt% of Co were dissolved with respect to the content of each metal contained in the positive electrode material scrap. Mn became insoluble. Particularly valuable in this system, Ni and Co could not be totally dissolved.

(比較例2)
実施例1で、硫酸マンガンを添加しない以外は、同様に酸浸出した。酸濃度は3当量分を加えた。80℃で20時間浸出した結果、正極材スクラップに含まれる各金属の含有量に対して、Liは100重量%、Niは80重量%、Coは80重量%溶解した。Mnは不溶となった。この系で特に価値の高い、NiとCoは全量溶解することができなかった。
(Comparative example 2)
Acid leaching was carried out in the same manner as in Example 1 except that manganese sulfate was not added. The acid concentration added 3 equivalent minutes. As a result of leaching at 80 ° C. for 20 hours, 100 wt% of Li, 80 wt% of Ni and 80 wt% of Co were dissolved with respect to the content of each metal contained in the positive electrode material scrap. Mn became insoluble. Particularly valuable in this system, Ni and Co could not be totally dissolved.

ここで、実施例1と比較例1について、Li、Ni、Coの浸出率の時間変化を、図1のグラフに示す。
図1によれば、Li、Ni、Co、Mnを含む正極材スクラップに、硫酸マンガンを添加した場合(実施例1)と、しなかった場合(比較例1)とで、Li、Ni、Coに有意な差が見られた。特に、実施例1においては、比較的速い段階で80%以上が溶解し、時間が経つと100%近くの金属が溶解するに至った。一方で、比較例1では、時間をかけたとしても実施例1にて実現された高い割合の溶解は起こらないと予測された。
Here, the time change of the leaching rate of Li, Ni and Co for Example 1 and Comparative Example 1 is shown in the graph of FIG.
According to FIG. 1, when manganese sulfate is added to the positive electrode material scrap containing Li, Ni, Co, and Mn (Example 1) and when not added (Comparative Example 1), Li, Ni, Co There was a significant difference in In particular, in Example 1, 80% or more was dissolved at a relatively early stage, and over 100% of the metal was dissolved with time. On the other hand, in Comparative Example 1, it was predicted that the high percentage of dissolution realized in Example 1 would not occur even if time was taken.

Claims (4)

属酸化物のスクラップを溶解させる方法であって、
鉱酸にて酸浸出を行うに際して、少なくともNi及びCoを含む浸出対象の金属よりも卑なMの化合物を添加し、前記浸出対象の金属、前記スクラップに含有される量に対して90重量%以上、浸出液に溶解させMnの酸化物が不溶となることを特徴とするスクラップの溶解方法。
A method for dissolving the scrap metals oxides,
In performing acid leaching with mineral acid, the amount to be contained by adding at least Ni and of compounds of the metals by Rimo卑a M n of leaching target containing Co, the metal of the leaching object, the scrap And dissolving at least 90% by weight in the leaching solution to make the oxides of Mn insoluble.
前記スクラップがLi、Ni、Co、Mnを少なくとも二種類含むリチウムイオン二次電池用正極材であることを特徴とする請求項1に記載の方法。   The method according to claim 1, wherein the scrap is a positive electrode material for a lithium ion secondary battery including at least two types of Li, Ni, Co, and Mn. 前記スクラップが破砕されていることを特徴とする請求項1又は2に記載の方法。   The method according to claim 1, wherein the scrap is crushed. 請求項1〜3のいずれか一項に記載の方法によりスクラップを浸出液に溶解させた後、前記Mnの酸化物を不溶物として除去し、浸出後液から金属を回収することを特徴とするスクラップからの金属の回収方法。 A scrap characterized in that after dissolving scrap in a leachate by the method according to any one of claims 1 to 3, the oxide of Mn is removed as an insoluble matter and metal is recovered from the leachate. How to recover metals from
JP2014055314A 2014-03-18 2014-03-18 Method of melting scrap and method of metal recovery using this melting method Active JP6518404B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014055314A JP6518404B2 (en) 2014-03-18 2014-03-18 Method of melting scrap and method of metal recovery using this melting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014055314A JP6518404B2 (en) 2014-03-18 2014-03-18 Method of melting scrap and method of metal recovery using this melting method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2018044490A Division JP2018100452A (en) 2018-03-12 2018-03-12 Dissolution method of scrap, and metal recovery method using dissolution method

Publications (2)

Publication Number Publication Date
JP2015178642A JP2015178642A (en) 2015-10-08
JP6518404B2 true JP6518404B2 (en) 2019-05-22

Family

ID=54262896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014055314A Active JP6518404B2 (en) 2014-03-18 2014-03-18 Method of melting scrap and method of metal recovery using this melting method

Country Status (1)

Country Link
JP (1) JP6518404B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5577926B2 (en) * 2010-08-03 2014-08-27 住友金属鉱山株式会社 Method for leaching nickel and cobalt, and method for recovering valuable metals from lithium ion batteries

Also Published As

Publication number Publication date
JP2015178642A (en) 2015-10-08

Similar Documents

Publication Publication Date Title
KR102189661B1 (en) Lithium ion battery scrap treatment method
KR102202646B1 (en) Lithium ion battery scrap treatment method
JP6271964B2 (en) Method for recovering metal from cathode material for lithium ion battery
CN107429313B (en) The method of copper and the method for recycling metal are removed from lithium ion battery waste material
JP6334450B2 (en) Method for recovering metals from recycled lithium-ion battery materials
CN101886178B (en) Comprehensive recovery method for nickel-hydrogen waste battery
EP3702481A1 (en) Method for separating copper from nickel and cobalt
JP6363578B2 (en) Method for leaching lithium ion battery scrap and method for recovering metal from lithium ion battery scrap
KR102078445B1 (en) Removal of iron from iron-containing solution and recovery of valuable metals
WO2020212587A1 (en) Process for the preparation of battery precursors
JP6798080B2 (en) How to dispose of waste lithium-ion batteries
EP3702482A1 (en) Method for separating copper, nickel, and cobalt
JP7317761B2 (en) How to dispose of lithium-ion battery waste
TWI644468B (en) Method for recycling cobalt in waste lithium battery
JP6363459B2 (en) Metal leaching method and metal recovery method using the same
JP2021070843A (en) Recovery method of copper, nickel, cobalt from waste lithium ion secondary battery
JP6298002B2 (en) Lithium-ion battery scrap leaching method and valuable metal recovery method
JP6571123B2 (en) Method for leaching lithium ion battery scrap and method for recovering metal from lithium ion battery scrap
JP2022170169A (en) Method for recovering valuable metal
JP6397111B2 (en) Lithium-ion battery scrap leaching method and valuable metal recovery method
JP6518404B2 (en) Method of melting scrap and method of metal recovery using this melting method
KR102211986B1 (en) Method for recovering metal from scrap
JP2018100452A (en) Dissolution method of scrap, and metal recovery method using dissolution method
KR20150075247A (en) Method For Recovering Manganese From Lithium Secondary Battery Cathode
JP6121359B2 (en) Metal oxide leaching method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170925

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20171212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180312

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20180423

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20180601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190311

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190422

R150 Certificate of patent or registration of utility model

Ref document number: 6518404

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250