WO2005092528A1 - Method for treatment of fly ash using sulfur dioxide - Google Patents

Method for treatment of fly ash using sulfur dioxide Download PDF

Info

Publication number
WO2005092528A1
WO2005092528A1 PCT/JP2005/002379 JP2005002379W WO2005092528A1 WO 2005092528 A1 WO2005092528 A1 WO 2005092528A1 JP 2005002379 W JP2005002379 W JP 2005002379W WO 2005092528 A1 WO2005092528 A1 WO 2005092528A1
Authority
WO
WIPO (PCT)
Prior art keywords
fly ash
liquid
residue
treatment
solution
Prior art date
Application number
PCT/JP2005/002379
Other languages
French (fr)
Japanese (ja)
Inventor
Taro Aichi
Hiroshi Asada
Hideki Yatsuduka
Akiyoshi Horiuchi
Tetsuo Dohi
Original Assignee
Dowa Mining Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Mining Co., Ltd. filed Critical Dowa Mining Co., Ltd.
Publication of WO2005092528A1 publication Critical patent/WO2005092528A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/46Sulfates
    • C01F11/464Sulfates of Ca from gases containing sulfur oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • B09B3/70Chemical treatment, e.g. pH adjustment or oxidation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G9/00Compounds of zinc
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B13/00Obtaining lead
    • C22B13/04Obtaining lead by wet processes
    • C22B13/045Recovery from waste materials
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B19/00Obtaining zinc or zinc oxide
    • C22B19/28Obtaining zinc or zinc oxide from muffle furnace residues
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • C22B7/007Wet processes by acid leaching
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/02Working-up flue dust
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention is intended for fly ash collected from combustion exhaust gas at the time of incineration of municipal waste or the like, or fly ash collected from exhaust gas generated at the time of melting and processing ash and dust during incineration.
  • the present invention relates to a wet treatment method for separating and recovering Ca, Zn, pb, gangue components and the like contained in fly ash in a form that can be effectively used.
  • Conventional technology
  • Waste from general establishments and households (referred to as “municipal waste” or “general waste”) is collected and incinerated at municipal waste incineration facilities, industrial waste incineration plants, etc. .
  • the incineration ash and fly ash generated from the incinerator are deposited at the final disposal site through intermediate treatment such as chemical treatment, melting treatment, and cement kiln treatment.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 7-1 Q9533
  • Patent Document 2 Japanese Patent Application Laid-Open No. Hei 8-1 1 7 7 2 4
  • Patent Literature 3 Japanese Patent Application Laid-Open No. H08-14141539
  • Patent Literature 4 Japanese Patent Application Laid-Open No. 2000-1-111 3 2 4 2
  • Patent Literature 5 JP 2 Q 0 1-3 4 8 6 2 7
  • Patent Document 6 Japanese Patent Application Laid-open No. 2003-16664 829 Problems the invention is trying to solve
  • the amount of the residue used is limited by the amount of chlorine that can be accepted in the production process. In order to avoid this limitation, a process for removing the adhering liquid is required. In addition, the treatment using hydrochloric acid leaching is more expensive than the case of sulfuric acid leaching.
  • fly ash contains a large amount of Ca, so it is not possible to obtain in the intermediate process.
  • gypsum C a S 0 4
  • Pb in fly ash is collected in this gangue residue, this residue is to be used for lead production.
  • it contains a large amount of gypsum it should be used as a raw material for lead production.
  • a large amount of Ca in fly ash subjected to sulfuric acid leaching increases the load on the sulfuric acid leaching step, which is not preferable.
  • the present applicant has created a method in which fly ash is washed in a liquid with a very low pulp concentration to remove most of Ca by dissolving it in the washing liquid before subjecting to sulfuric acid leaching.
  • the present invention is a treatment process capable of efficiently recovering valent metals such as Ca, Zn or Pb from fly ash in a form that can be easily used, regardless of the size of the equipment.
  • the purpose is to develop and provide methods that can be implemented in many existing wet treatment sites.
  • the “repulp” refers to a solid that has been once separated by solid-liquid separation and re-mixed with a solvent mainly composed of water to form a slurry.
  • Zn-containing liquid ie the liquid Ca and Zn are dissolved oxidizing agent (e.g., a gas containing oxygen), Oh Rui sulfate To precipitate Ca selectively and leave Zn dissolved in the liquid to separate these elements, that is, Ca and Zn.
  • oxidizing agent e.g., a gas containing oxygen
  • Oh Rui sulfate To precipitate Ca selectively and leave Zn dissolved in the liquid to separate these elements, that is, Ca and Zn.
  • a method for treating fly ash having a step of recovering the fly ash.
  • the Ca by blowing an inert gas into the Zn-containing solution, when precipitated as a tan sulfite Ca and Zn by using a degassed reaction of S 0 2, followed by the action of sulfuric acid, Ca
  • the present invention provides a method for treating fly ash, comprising the steps of selectively precipitating and dissolving Zn in a liquid, and separating and recovering these elements.
  • the Ca separate from the residue by the action of S 0 2 as in Zn-containing liquid separated by selectively precipitate Ca and Zn-containing solution, precipitating Zn by neutralizing by adding an alkali
  • the present invention provides a method for treating fly ash in which the separated liquid is reused as water for fly ash treatment.
  • the method of the present invention has the following advantages.
  • Ca, Zn, or Pb can be separated and recovered from fly ash in a form that is industrially usable simply by reacting it with gas components such as S02 and air. Cost can be reduced by reduction.
  • Ca and Zn can be easily separated by further oxidizing the Ca- and Zn-containing liquid to be separated and recovered.
  • the present invention contributes to the spread of recycling processing for recovering valuable metals and gangue residues from fly ash.
  • FIG. 1 is a flowchart of a fly ash treatment process including the treatment of the present invention.
  • FIG. 2 is a flow chart of a fly ash treatment process including the treatment of the present invention. Preferred embodiments of the invention
  • the fly ash treatment method of the present invention is discharged from an incinerator or a melting furnace of a waste treatment facility or the like. It can be applied to various fly ash or mixed fly ash. Among them, it is particularly effective to apply fly ash having a relatively high Ca content of, for example, 5 to 30% by mass.
  • FIG. 1 shows an example of a fly ash processing flow including the processing of the present invention, and the present invention will be described below with reference to this example.
  • Fly ash should first be washed to remove salts, ie, elements such as Na, K, and CI. Usually, a method of dissolving salts in water by stirring the slurry mixed with water is adopted. If the fly ash is agglomerated and clumped, such as when the fly ash is conditioned, it is desirable to grind it in advance. If the pulp concentration is reduced, the effect of removing salts attached to fly ash is higher, but the wastewater treatment amount increases accordingly.If conditions are adopted to minimize costs according to the actual conditions of the equipment, Good. Generally, it can be carried out at a pulp concentration in the range of 50 to 500 g / L. The C 0 2 during washing has the effect of suppressing the elution of the burn them blown into the slurry one heavy metals, can also be to reduce the load in the subsequent step in the elution of C a is promoted.
  • salts ie, elements such as Na, K, and CI.
  • the pH varies depending on the type of fly ash.
  • the force calms down in the range of approximately 7 to 13. If you put the C 0 2 is about 5-7.
  • Arbitrary pH may be adjusted by adding a mineral acid.
  • the cleaning residence time is about 10 to 120 minutes, which is effective. However, it is generally considered economical to secure the residence time of about 60 minutes by stirring.
  • the slurry after washing may be separated into solid and liquid by a general method.
  • various means such as concentration by a thickener, a filter press, a belt-type vacuum filter, an Oliver, and a screw power center can be selected.
  • care must be taken when only thickener is used, since solid-liquid separation becomes poor and a large amount of salts and the like dissolved by washing may be carried over to the solid content side.
  • good results are obtained with a filter-press.
  • the reaction in S 0 2 process of the present invention is basically Pb is not eluted, Ca, a reaction in which Zn is eluted, although the reaction mechanism often part unexplained, Oyo its "sulfite And the formation of sulfurous acid ”+“ reaction between sulfite and sulfurous acid ”.
  • Sulfites Ca or Zn is CaS 0 3, ZnS 0 3 in the form states, but they are insoluble in pure water either, the sulfite aqueous solution having the property of Ru soluble der. That Ca (HS 0 3) 2 and Zn (HS 0 3) 2 is soluble, it can be recovered in dissolved form is separated from the residual component, such as P, in a liquid.
  • reaction scheme at S 0 2 process is as follows.
  • S 0 2 treatment may be a 5 0 ⁇ 5 0 0 gZL about a pulp consistency of fly ash.
  • thinning is advantageous in increasing the amount of Ca and Zn eluted, it also reduces efficiency and increases the burden of solid-liquid separation work.
  • SO 2 gas may be S 0 2 concentration using those 5-1 0 0%.
  • S0 2 gas generated from the example Eba made ⁇ fee is available.
  • S 0 2 concentration of the not necessarily mean that the reaction is advanced difficulty Kunar low.
  • G / L ratio i.e. "volume of the gas blown into the reaction time (L) / slurry vol (L)"
  • volume of the gas blown into the reaction time (L) / slurry vol (L) is preferably set to 1 or more.
  • a realistic G / L ratio of about 1 to 100 is appropriate.
  • Whether or not the reaction by S02 has proceeded sufficiently can be determined by a change in the pH of the solution. It is desirable to continue the reaction until the pH drops below 3.5. When the pH is higher, it can be seen that considerable amounts of undissolved Ca and Zn still remain. For example using pure S 0 2 gas, G / L ratio 5 0, when the initial temperature and 3 Q ° C, 1 pH at the reaction time of about 0 minutes than decreases to about 2, the dissolution reaction You can see that it has advanced. In this case, the oxidation-reduction potential (based on the Ag / AgCl electrode) is about 100 to 25 OmV. The temperature rises to about 40 ° C after 10 minutes and reaches about 50 ° C after 30 minutes.
  • Such a change in pH or redox potential can be take advantage in the control of the S0 2 processing time.
  • reaction may be terminated after 11 is 3.5 or less, preferably 2.5 or less, after the introduction of SO 2 gas into the slurry.
  • the reaction may be terminated when the oxidation-reduction potential (based on the Ag / AgCl electrode) has settled, for example, between 100 and 200 mV after the introduction of the SO 2 gas into the slurry. Since the oxidation-reduction potential fluctuates depending on the type of fly ash, the processing time can be controlled by, for example, previously defining the potential region at the end of the reaction according to the fly ash to be applied.
  • the slurry having been subjected to the S 0 2 treatment, by solid-liquid separation, can be recovered from the liquid and residue Ca, Zn is dissolved. If the original fly ash contains Pb, this The residue is collected as “Pb-containing residue”.
  • This residue remaining part also Ca, which is intended CaS 0 4 (gypsum) mainly contained in the fly ash from the beginning.
  • CaS 0 4 content is made as significantly less, it can be suitably used as a raw material for Pb made kneaded.
  • the “Ca, Zn-containing liquid” obtained by removing the residue after the S 02 treatment is subjected to, for example, “treatment with an oxidizing agent” (hereinafter referred to as “oxidation treatment”) to separate and recover Ca and Zn. can do.
  • the Ca, the Zn-containing solution believed to be present in the form C a as described above as Ca (HS0 3) 2, also Zn is dissolved in each sulfite aqueous solution as Zn (HS 0 3) 2 Can be When the Ca (HS 0 3) 2 and Zn (HSO 3) is an oxidizing agent to 2, both changes relatively easily sulfate.
  • the sulfate of Ca CaS 0 4 (gypsum) is insoluble, sulfate ZnS_rei_4 of Zn in order to be soluble, it is possible to solid-liquid separation of Ca and Zn. That is, Ca can be selectively precipitated by causing an oxidizing agent to act on the Ca- and Zn-containing liquid.
  • This oxidation reaction is considered to be represented by the following reaction formula.
  • the GZL ratio can usually find an optimum value in the range of 1 to 1000.
  • the temperature is preferably about 20 to 50 ° C.
  • the reaction time it is preferable to control the end point of the reaction by the oxidation-reduction potential.
  • the oxidation-reduction potential was initially 100 to 200 mV (based on the Ag / AgCl electrode, the same applies hereinafter), but since 0 2 was consumed in the initial stage of the reaction, 35 It rises to around O mV, then gradually rises, and calms down at about 400 to 75 O mV. If there is almost no change in the potential, it can be seen that the oxidation reactions of the above equations (7) and (8) are almost completed.
  • Fig. 1 shows the step of precipitating Ca by oxidation.
  • Another method for separating and recovering Ca and Zn is to selectively treat Ca by directing sulfuric acid on the Ca- and Zn-containing liquid.
  • the reaction equation is considered as follows.
  • the liquid after the separation and removal Ca (Zn-containing liquid), Zn is dissolved in the form of ZnS 0 4.
  • This liquid can be directly introduced into the zinc production process, but in consideration of handling properties during transport and recycling of the liquid, neutralization, sulfidation, and solvent extraction are used to recover Zn as a solid. Is desirable.
  • an alkali such as CaO, Ca (OH) 2 , or CaCOa may be added to the Zn-containing liquid as a neutralizing agent.
  • an alkali such as CaO, Ca (OH) 2 , or CaCOa
  • the Zn residue is mainly composed of ⁇ .
  • the use of NaOH or ⁇ ⁇ ⁇ as a neutralizing agent can form Zn precipitates, but if the solution after neutralization is returned to the previous step and used repeatedly, the Na and K sulfates become soluble. Therefore, a crystallization step is required.
  • a Zn-containing residue is recovered.
  • This residue can be used as a raw material for zinc production.
  • the after-liquid can be reused as water for washing or S02 treatment.
  • NaC1 and KC1 will be concentrated due to the carry-in of attached salts. Therefore, it is desirable to bleed off part of the wastewater and treat it.
  • the Figure 2 shows an example of a fly ash treatment flow for carrying out the S0 2 process of the present invention without first washing.
  • the solution after removing the Zn-containing residue has a high salt concentration, it is desirable to send most of the solution to the C1 removal step for wastewater treatment.
  • composition analysis was performed. The results are shown in Table 2. On the other hand, a composition analysis was also performed on the solution after washing. The results are shown in Table 3.
  • Table 7 [S 0 2 processing residue (Pb-containing residue)] one invention embodiment Table 4 (Comparative Example)
  • Table 5 Comparative Example
  • Table 7 Comparative Example
  • the amount of the Pb-containing residue was significantly reduced, and the amount and content of Ca in the residue were reduced. Understand.
  • S 0 2 process according to Sunawa Chi present invention a low Pb-containing residue Pb quality of high Ca quality occurs, since the amount is reduced, the lead made ⁇ process side to reuse the same The load can be greatly reduced.
  • Table 12 [Sulfuric acid replacement solution (Zn-containing solution)]
  • Table 13 [Sulfuric acid substitution residue (Ca-containing residue)]
  • Tables 12 and 13 show that Ca was selectively precipitated by the action of sulfuric acid and that Ca and Zn could be separated and recovered.
  • X-ray diffraction it was confirmed that the cake of the sulfuric acid substitution residue (Ca-containing residue) was gypsum.
  • N 2 + sulfuric acid replacement solution The results of analysis of the resulting solution (referred to as “N 2 + sulfuric acid replacement solution”) are shown in Table 16, and the residue (referred to as “N 2 + sulfuric acid replacement residue”) was sufficiently dried at 105 ° C. The results of the later analysis are shown in Table 17.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Toxicology (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

A method for the treatment of a fly ash which comprises a process wherein a slurry of a fly ash is reacted with SO2, to thereby dissolve Ca and Zn in the fly ash into a solution, and these elements are separated from a residue containing Pb and are recovered in the solution; and the method which further comprises a process wherein the above solution containing Ca and Zn is reacted with an oxidizing agent (for example, a gas containing oxygen) or sulfuric acid, to thereby precipitate Ca selectively and allow Zn to remain in the solution in a dissolved state, and these elements, that is, Ca and Zn are recovered separately.

Description

明細 二酸化硫黄を用いた飛灰の処理方法 技術分野  Description Fly ash treatment method using sulfur dioxide
本発明は、 都市ごみ等の焼却時の燃焼排ガスから採取される飛灰、 あるいは焼 却時の灰分やダスト類を溶融処理等する際に発生する排ガス等から採取される飛 灰を対象とした湿式処理法であって、 その飛灰中に含まれる C a、 Z n、 p b、 脈石成分などを有効利用しやすい形で分離回収する処理方法に関する。 従来技術  The present invention is intended for fly ash collected from combustion exhaust gas at the time of incineration of municipal waste or the like, or fly ash collected from exhaust gas generated at the time of melting and processing ash and dust during incineration. The present invention relates to a wet treatment method for separating and recovering Ca, Zn, pb, gangue components and the like contained in fly ash in a form that can be effectively used. Conventional technology
一般事業所や一般家庭から排出されるごみ ( 「都市ごみ」 または 「一般廃棄物」 と称される) は、 都市ごみ焼却施設や産業廃棄物焼却工場等に集められ、 焼却処 分されている。 その際に焼却炉から発生する焼却灰や飛灰は、 薬液処理, 溶融処 理, セメントキルン処理等の中間処理を経て最終処分場に堆積される。  Waste from general establishments and households (referred to as “municipal waste” or “general waste”) is collected and incinerated at municipal waste incineration facilities, industrial waste incineration plants, etc. . At that time, the incineration ash and fly ash generated from the incinerator are deposited at the final disposal site through intermediate treatment such as chemical treatment, melting treatment, and cement kiln treatment.
しかし、 溶融炉ゃセメントキルン等での中間処理においては、 蒸気圧の高い Z n、 p b、 C d等の重金属が炉内で揮発して排ガスに入り、 その後、 排ガス処 理設備の中で凝縮して再び飛灰となってしまうという問題があつた。 この再度の 飛灰中には、 C I 、 Na、 C a と共に、 Z n、 p b、 C u、 C d 等の重金属が多 量に含まれており、 これらの元素の回収を含めた安定した処理方法が求められて いた。 下記特許文献には種々の飛灰処理方法が提案されている。 '  However, in the intermediate treatment in the melting furnace and cement kiln, heavy metals such as Zn, pb, and Cd with high vapor pressure volatilize in the furnace and enter the exhaust gas, and then condense in the exhaust gas treatment equipment. Then, there was a problem that it became fly ash again. The fly ash contains a large amount of heavy metals such as Zn, pb, Cu, and Cd, as well as CI, Na, and Ca. A way was sought. Various fly ash treatment methods are proposed in the following patent documents. '
特許文献 1 特開平 7— 1 Q 9 5 3 3号公報  Patent Document 1 Japanese Patent Application Laid-Open No. 7-1 Q9533
特許文献 2 特開平 8 - 1 1 7 7 2 4号公報  Patent Document 2 Japanese Patent Application Laid-Open No. Hei 8-1 1 7 7 2 4
特許文献 3 特開平 8 - 1 4 1 5 3 9号公報  Patent Literature 3 Japanese Patent Application Laid-Open No. H08-14141539
特許文献 4 特開 2 0 0 1 - 1 1 3 2 4 2号公報  Patent Literature 4 Japanese Patent Application Laid-Open No. 2000-1-111 3 2 4 2
特許文献 5 特開 2 Q 0 1 - 3 4 8 6 2 7号公報  Patent Literature 5 JP 2 Q 0 1-3 4 8 6 2 7
特許文献 6 特開 2 0 0 3 - 1 6 4 8 2 9号公報 発明が解決しょうとする課題 Patent Document 6 Japanese Patent Application Laid-open No. 2003-16664 829 Problems the invention is trying to solve
上記各特許文献の湿式処理法は、 飛灰に含まれている重金属類を安定な形で分 離回収するうえで有効であると考えられる。 し力、し、 これらの技術は重金属類を 回収することに主眼が置かれており、 C a の有効利用、 および脈石成分の有効利 用の観点に立てば、 更なる改善が望まれるところである。  It is considered that the wet treatment methods disclosed in the above patent documents are effective in separating and recovering heavy metals contained in fly ash in a stable form. These technologies focus on recovering heavy metals, and from the standpoint of effective use of Ca and effective use of gangue components, where further improvements are desired. is there.
一方、 本出願人は、 飛灰中の Z n を湿式亜鉛製鍊工程に供用できる最も好まし い形態で回収することを意図した飛灰処理方法として、 塩酸酸性水溶液で飛灰を 浸出する工程を採用した処理法を特願 2 0 0 3 - 3 6 5 7 0 6号として提案した。 これによれば、 中和殿物残渣として、 Z n リッチでその他の重金属類もリッチに 同伴し、 かつ S i や A 1 がほとんど含まれてこないものを回収することが可能と なる。 この残渣は湿式亜鉛製鍊に供給するための原料として利用価値が高い。 し力、し、 この処理法にも問題がある。 すなわち、 得られる残渣には塩濃度の高 い液が付着するため、 製鍊工程で受け入れ可能な塩素量によって当該残渣の使用 量が制限を受けるのである。 この制限を回避するには付着した液を除去するため の処理が必要となる。 また、 塩酸浸出を用いる処理は硫酸浸出の場合と比べ、 コ ス卜が割高となる。  On the other hand, as a fly ash treatment method intended to recover Zn in fly ash in the most preferable form that can be used in a wet zinc production process, a process of leaching fly ash with an aqueous hydrochloric acid solution is proposed. A processing method that employs the above-mentioned method is proposed as Japanese Patent Application No. 2003-36567706. According to this method, it is possible to collect, as the neutralization residue, those which are rich in Zn and are accompanied by other heavy metals, and which hardly contain Si and A 1. This residue has a high utility value as a raw material for supplying to wet zinc production. There is a problem with this treatment method. That is, since a solution having a high salt concentration adheres to the obtained residue, the amount of the residue used is limited by the amount of chlorine that can be accepted in the production process. In order to avoid this limitation, a process for removing the adhering liquid is required. In addition, the treatment using hydrochloric acid leaching is more expensive than the case of sulfuric acid leaching.
他方、 コスト面で有利な硫酸浸出のプロセスを用いて湿式亜鉛製鍊に供給可能 な Z n 資源を分離回収しょうとすると、 飛灰中には多量の C a が存在するため途 中工程で得られる副産物の脈石残渣中には石膏 ( C a S 0 4 )が多く含まれてしま う。 飛灰中の P b はこの脈石残渣中に回収されるので、 この残渣は鉛製鍊に利用 したいところであるが、 石膏含有量が多いのでこれを鉛製鍊の原料として用いる ことは熱エネルギー上問題がある。 また、 硫酸浸出に供する飛灰中の C a量が多 いことは、 硫酸浸出工程への負荷を増大させ、 好ましくない。 On the other hand, if it is attempted to separate and recover Zn resources that can be supplied to wet zinc production using a sulfuric acid leaching process that is advantageous in terms of cost, fly ash contains a large amount of Ca, so it is not possible to obtain in the intermediate process. is the gangue residue byproducts gypsum (C a S 0 4) many including intends want. Since Pb in fly ash is collected in this gangue residue, this residue is to be used for lead production. However, since it contains a large amount of gypsum, it should be used as a raw material for lead production. There is a problem. Also, a large amount of Ca in fly ash subjected to sulfuric acid leaching increases the load on the sulfuric acid leaching step, which is not preferable.
そこで本出願人は、 硫酸浸出に供する前に、 飛灰を非常に薄いパルプ濃度の液 中で洗浄することにより C a の大部分を洗浄液に溶解させて除去してしまう手法 を創出し、 これを特願 2 0 0 4— 5 9 8 4 7号, 特願 2 0 0 4— 5 9 8 5 2号と して提案した。 この場合、 洗浄時に C 0 2 ガスを吹き込むことにより、 一層効果 的な C a の除去が達成できた。 Therefore, the present applicant has created a method in which fly ash is washed in a liquid with a very low pulp concentration to remove most of Ca by dissolving it in the washing liquid before subjecting to sulfuric acid leaching. Were proposed as Japanese Patent Application No. 2004-595984 and Japanese Patent Application No. 2004-599852. In this case, by blowing C 0 2 gas during cleaning it could be achieved a more effective removal of C a.
し力、し、 この方法では洗浄に多量の水を必要とし、 設備規模の小さい工場では 実施し難いという欠点があつた。 This method requires a large amount of water for cleaning, and in a factory with a small facility, The disadvantage was that it was difficult to implement.
本発明はこのような現状に鑑み、 飛灰から Ca、 Zn あるいは更に Pb 等の有 価金属を利用しやすい形で効率的に回収できる処理プロセスであって、 設備規模 の大小にあまり関係なく、 既存の多くの湿式処理現場において実施可能な方法を 開発し提供することを目的とする。 課題を解決するための手段  In view of such circumstances, the present invention is a treatment process capable of efficiently recovering valent metals such as Ca, Zn or Pb from fly ash in a form that can be easily used, regardless of the size of the equipment. The purpose is to develop and provide methods that can be implemented in many existing wet treatment sites. Means for solving the problem
発明者らは鋭意研究を重ねたところ、 S02 ガスを用いて飛灰スラリーを処理 したとき、 Ca と Zn を同時に溶液中に溶解させた形で回収することができ、 そ の段階で Pb 等の有価金属を含む残渣を、 Ca 品位の低い状態で分離回収できる ことを見出した。 さらに、 この Ca、 Zn が溶解した液に例えば空気を吹き込む といった簡単な酸化処理、 あるいは硫酸を添加するという処理を施すと、 Ca の 硫酸塩 (石膏) は不溶性、 Zn の硫酸塩は可溶性であるという性質を利用して、 Ca と Zn を容易に分離回収できることがわかった。 本発明はこのような知見に 基づ 、て完成したものである。 Where we of extensive research, S0 2 when treated fly ash slurry using a gas, can be recovered in the form dissolved in the same time a solution of Ca and Zn, Pb, etc. in the stage of its It has been found that the residue containing valuable metals can be separated and recovered in a low Ca grade state. Furthermore, when a simple oxidation treatment such as blowing air into the solution in which Ca and Zn are dissolved, or a treatment in which sulfuric acid is added, the sulfate of Ca (gypsum) is insoluble and the sulfate of Zn is soluble. It was found that Ca and Zn can be easily separated and recovered by using the property described above. The present invention has been completed based on such findings.
すなわち、.上記目的は、 飛灰のスラリーに S 02 を作用させることにより、 飛 灰中の Ca および Zn を液中に溶解させ、 これらの元素、 つまり Ca および Zn を、 残渣 (例えば Pb 含有残渣) と分離して液中に回収する工程を有する飛灰の 処理方法によって達成される。 In other words,. The object, by the action of S 0 2 to a slurry of fly ash, dissolved Ca and Zn in carry ash into the liquid, these elements, the words Ca and Zn, the residue (e.g., Pb-containing This is achieved by a method for treating fly ash that has a step of separating it into liquid with the residue.
ここで、 「飛灰のスラリーに S02 を作用させる」 とは、 飛灰スラリーを構成 する固体成分や水と、 S02 とを反応させることをいう。 Here, "the action of S0 2 to a slurry of fly ash" is the solid component and water constituting the fly ash slurry, refers to the reaction of S0 2.
S 02 を作用させる前記の飛灰スラリーとして、 洗浄を経て Na、 K、 C1 の 含有量を減じた飛灰をリパルプしたものを使用することができる。 S 0 2 as the fly ash slurry exerting, Na through washing, which was repulped fly ash obtained by subtracting the content of K, C1 can be used.
ここで、 「リパルプしたもの」 とは、 一旦固液分離して回収された固形分を再 度水を主体とした溶媒と混合してスラリ一化したものをいう。  Here, the “repulp” refers to a solid that has been once separated by solid-liquid separation and re-mixed with a solvent mainly composed of water to form a slurry.
更に、 前記のように S02 を作用させ残渣と分離した Ca、 Zn含有液、 すな わち Ca および Zn が溶解している液に、 酸化剤 (例えば酸素を含む気体) 、 あ るいは硫酸を作用させることにより、 Ca を選択的に沈殿させるとともに Zn を 液中に溶解させた状態で残し、 これらの元素、 すなわち Ca および Zn を、 分離 して回収する工程を有する飛灰の処理方法が提供される。 Furthermore, Ca separate from the residue by the action of S0 2 as described above, Zn-containing liquid, ie the liquid Ca and Zn are dissolved oxidizing agent (e.g., a gas containing oxygen), Oh Rui sulfate To precipitate Ca selectively and leave Zn dissolved in the liquid to separate these elements, that is, Ca and Zn. And a method for treating fly ash having a step of recovering the fly ash.
また、 前記 Ca、 Zn含有液に不活性ガスを吹き込むことにより、 S 02 の脱 気反応を利用して Ca および Zn をいつたん亜硫酸塩として析出させ、 次いで硫 酸を作用させることにより、 Ca を選択的に沈殿させるとともに Zn を液中に溶 解させ、 これらの元素を分離して回収する工程を有する飛灰の処理方法が提供さ れる。 Further, the Ca, by blowing an inert gas into the Zn-containing solution, when precipitated as a tan sulfite Ca and Zn by using a degassed reaction of S 0 2, followed by the action of sulfuric acid, Ca The present invention provides a method for treating fly ash, comprising the steps of selectively precipitating and dissolving Zn in a liquid, and separating and recovering these elements.
更に、 前記のように S 02 を作用させ残渣と分離した Ca、 Zn 含有液から Ca を選択的に沈殿させて分離した Zn含有液に、 アルカリを添加して中和すること により Zn を沈殿させて回収するとともに、 これを分離した后液を飛灰処理の用 水として再利用する飛灰の処理方法が提供される。 Further, the Ca separate from the residue by the action of S 0 2 as in Zn-containing liquid separated by selectively precipitate Ca and Zn-containing solution, precipitating Zn by neutralizing by adding an alkali The present invention provides a method for treating fly ash in which the separated liquid is reused as water for fly ash treatment.
本発明法は以下のようなメリッ トを有するものである。  The method of the present invention has the following advantages.
(1) S 02 や空気といったガス成分と反応させるだけで飛灰から Ca、 Zn あ るいは更に Pb を工業的に利用しやすい形態で分離回収することができるため、 工程簡略化および薬剤購入の削減によるコスト低減が図れる。  (1) Ca, Zn, or Pb can be separated and recovered from fly ash in a form that is industrially usable simply by reacting it with gas components such as S02 and air. Cost can be reduced by reduction.
(2) 分離回収される Pb 含有残渣は Ca 品位が低いため、 Pb 製練で有効利用 しゃすい。  (2) Since the Pb-containing residue separated and recovered has low Ca grade, it can be effectively used in Pb refining.
(3) 分離回収される Ca、 Zn 含有液に更に酸化処理等を施すと容易に C a と Zn とを分離することができる。  (3) Ca and Zn can be easily separated by further oxidizing the Ca- and Zn-containing liquid to be separated and recovered.
(4) 大量の水を循環使用する必要がないため、 設備規模の小さい工場でも比較 的実施化が容易である。  (4) Since there is no need to recycle a large amount of water, it is relatively easy to implement even small-scale factories.
したがって本発明は、 飛灰から有価金属や脈石残渣を回収するリサイクル処理 の普及に寄与するものである。 図面の簡単な説明  Therefore, the present invention contributes to the spread of recycling processing for recovering valuable metals and gangue residues from fly ash. Brief Description of Drawings
第 1図は本発明の処理を含む飛灰処理プロセスのフロー図である。  FIG. 1 is a flowchart of a fly ash treatment process including the treatment of the present invention.
第 2図は本発明の処理を含む飛灰処理プロセスのフロー図である。 発明の好ましい態様  FIG. 2 is a flow chart of a fly ash treatment process including the treatment of the present invention. Preferred embodiments of the invention
本発明の飛灰処理方法は、 廃棄物処理施設等の焼却炉や溶融炉から排出される 種々の飛灰あるいはそれらの混合飛灰に適用できる。 中でも、 C a 含有量が例え ば 5〜 3 0質量%と比較的高い飛灰に適用することが特に効果的である。 The fly ash treatment method of the present invention is discharged from an incinerator or a melting furnace of a waste treatment facility or the like. It can be applied to various fly ash or mixed fly ash. Among them, it is particularly effective to apply fly ash having a relatively high Ca content of, for example, 5 to 30% by mass.
第 1図に本発明の処理を含む飛灰処理フローの一例を示したが、 以下、 この例 に沿って本発明を説明する。  FIG. 1 shows an example of a fly ash processing flow including the processing of the present invention, and the present invention will be described below with reference to this example.
〔洗浄〕  〔Washing〕
飛灰はまず、 塩類つまり Na、 K、 C I 等の元素を除去するために洗浄するこ とが望ましい。 通常、 水と混合したスラリー攪拌して塩類を水に溶解させる手法 が採用される。 飛灰が調湿されている場合など、 凝集して塊状になっているとき は、 予め粉砕しておくことが望ましい。 パルプ濃度は薄く した方が飛灰に付着し ている塩類の除去効果は高いが、 その分、 排水処理量が増加するので、 設備の実 状に応じてコストを最小に抑える条件を採用すればよい。 一般的にはパルプ濃度 を 5 0〜 5 0 0 g / Lの範囲で実施できる。 洗浄の際に C 0 2 をスラリ一中に吹 き込むと重金属類の溶出を抑制する効果があり、 また C a の溶出が促進されるの で後工程での負荷を軽減することもできる。 Fly ash should first be washed to remove salts, ie, elements such as Na, K, and CI. Usually, a method of dissolving salts in water by stirring the slurry mixed with water is adopted. If the fly ash is agglomerated and clumped, such as when the fly ash is conditioned, it is desirable to grind it in advance. If the pulp concentration is reduced, the effect of removing salts attached to fly ash is higher, but the wastewater treatment amount increases accordingly.If conditions are adopted to minimize costs according to the actual conditions of the equipment, Good. Generally, it can be carried out at a pulp concentration in the range of 50 to 500 g / L. The C 0 2 during washing has the effect of suppressing the elution of the burn them blown into the slurry one heavy metals, can also be to reduce the load in the subsequent step in the elution of C a is promoted.
p Hは、 飛灰の種類によってまちまちである力 およそ 7〜1 3の範囲で落ち 着く。 C 0 2を入れた場合は 5〜 7程度になる。 鉱酸を添加することで任意の p H に調整してもよい。 洗浄の滞留時間は 1 0〜1 2 0分程度で効果があるが、 一般 的には攪拌を行って 6 0分程度の滞留時間を確保することが経済的であると考え られる。 The pH varies depending on the type of fly ash. The force calms down in the range of approximately 7 to 13. If you put the C 0 2 is about 5-7. Arbitrary pH may be adjusted by adding a mineral acid. The cleaning residence time is about 10 to 120 minutes, which is effective. However, it is generally considered economical to secure the residence time of about 60 minutes by stirring.
洗浄後のスラリーは一般的な手法で固液分離すればよい。 例えば、 シックナー による濃縮, フィルタープレス, ベルト式真空濾過器, オリバ一, スクリユー力 ゥンターなど、 種々の手段が選択できる。 ただし、 シックナ一のみとすると固液 分離性が悪くなり、 洗浄によつて溶解した塩類等が固形分側に多く持ち越される 場合があるので注意を要する。 通常、 フィルタ一プレスを使用すると良好な結果 が得られる。  The slurry after washing may be separated into solid and liquid by a general method. For example, various means such as concentration by a thickener, a filter press, a belt-type vacuum filter, an Oliver, and a screw power center can be selected. However, care must be taken when only thickener is used, since solid-liquid separation becomes poor and a large amount of salts and the like dissolved by washing may be carried over to the solid content side. In general, good results are obtained with a filter-press.
〔 S 0 2 処理〕  [S02 processing]
このようにして Na、 K、 C 1 の含有量が低減された飛灰 (洗浄残渣) は、 リ パルプされ、 本発明の 「S 0 2 を作用させる処理」 (以下 「S 0 2 処理」 という) に供される。 飛灰のスラリーに S 0 2 を作用させるには、 スラリー中に直接 S 0 2 ガスを吹き込む方法が最も簡単である。 設備仕様によっては用水に S 02 ガスを 入れ、 H2S03 液相当のものをスラリーに供給する方が実施しやすい場合もあ る。 このように間接的に S 02 を作用させても飛灰中の Ca および Zn を液中に 溶解させることは可能である。 In this way Na, K, fly ash content of C 1 is reduced (cleaning residue) is re pulp, referred to as "process for applying a S 0 2" (hereinafter "S 0 2 process" of the present invention ). To exert S 0 2 The slurry of fly ash directly into the slurry S 0 2 The simplest way is to blow gas. Put S 0 2 gas into water by equipment specifications, Ru mower when the easily performed better to supply those H 2 S0 3 solution corresponds to the slurry. Thus it is indirectly possible to dissolve the Ca and Zn in the fly ash be allowed to act S 0 2 in the solution.
本発明の S 02 処理における反応は、 基本的には Pb は溶出されず、 Ca、 Zn が溶出される反応であり、 その反応メカニズムは未解明の部分も多いが、 おおよ そ 「亜硫酸塩および亜硫酸の生成」 + 「亜硫酸塩と亜硫酸の反応」 の段階的反応 であると考えられる。 Ca あるいは Zn の亜硫酸塩は CaS 03 、 ZnS 03 の形 態であり、 これらはいずれも純水には不溶であるが、 亜硫酸水溶液には可溶であ るという性質を有する。 すなわち Ca(H S 03)2 や Zn(HS 03)2 は可溶であり、 P 等の残渣成分と分離されて液中に溶解した形で回収できるのである。 The reaction in S 0 2 process of the present invention is basically Pb is not eluted, Ca, a reaction in which Zn is eluted, although the reaction mechanism often part unexplained, Oyo its "sulfite And the formation of sulfurous acid ”+“ reaction between sulfite and sulfurous acid ”. Sulfites Ca or Zn is CaS 0 3, ZnS 0 3 in the form states, but they are insoluble in pure water either, the sulfite aqueous solution having the property of Ru soluble der. That Ca (HS 0 3) 2 and Zn (HS 0 3) 2 is soluble, it can be recovered in dissolved form is separated from the residual component, such as P, in a liquid.
飛灰中の Ca 分の形態が CaOである場合を例にとると、 本発明の S02 処理 での反応式は以下のようなものであると考えられる。 When Ca content in the form of fly ash is taken as an example the case of CaO, Scheme in S0 2 process of the present invention are believed to be as follows.
S 02 + CaO→CaS 03 (中和反応) (1) S 0 2 + CaO → CaS 03 (neutralization reaction) (1)
S 02 +H20- H2S 03 (亜硫酸生成反応) · · · ·(2) S 02 + H 2 0- H 2 S 0 3 (Sulfurous acid formation reaction) · · · · (2)
CaSOa +H2S03 →Ca(HS03)2 (3) CaSOa + H 2 S0 3 → Ca (HS0 3 ) 2 (3)
発明者らの実験によれば、 Ca 分の形態が CaOの場合だけでなく、 CaSi03 、 Ca3(P 04)2 、 CaC O 3 、 CaS Os 、 CaF2 のいずれの場合でも S O2 によ る溶出が可能であった。 ただ、 CaS 04 (石膏) については S 02 で溶出するこ とは困難であった。 According to the inventors' experiments, the form of Ca content not only of CaO, CaSi0 3, Ca 3 ( P 04) 2, the CaC O 3, CaS Os, in any case of CaF 2 S O2 Elution was possible. However, the CaS 0 4 (gypsum) has been difficult to the child eluted with S 0 2.
Zn についても同様に、 Zn 分の形態が Ζηθである場合を例にとると、 S 02 処理での反応式は以下のようなものであると考えられる。 Similarly for Zn, take the case form of Zn content is Ζηθ example, it is considered to reaction scheme at S 0 2 process is as follows.
S02 +Zn0→ZnS03 (中和反応) (4) S02 + Zn0 → ZnS0 3 (neutralization reaction) (4)
S 02 +H20→H2 S 03 (亜硫酸生成反応) · · · (2) S 0 2 + H 2 0 → H 2 S 0 3 (Sulfurous acid formation reaction) · · · (2)
ZnS Oa +H2S03 →Zn(HS03)2 (5) ZnS Oa + H 2 S0 3 → Zn (HS03) 2 (5)
S 02 処理では、 飛灰のパルプ濃度を 5 0〜5 0 0 gZL程度とすればよい。 薄くすると Ca、 Zn の溶出量を増加させる上で有利となるが、 反面、 効率低下 や固液分離作業の負担増を招く。 一般的には 1 0 0~ 2 0 0 gZL程度のパルプ 濃度とすることが現実的である。 S O 2 ガスは、 S 02 濃度が 5〜1 0 0 %のものを使用することができる。 例 えば製鍊原料から発生する S02 ガスが使用可能である。 S 02 濃度が低くなる と必ずしも反応が進行しにく くなるということではない。 In S 0 2 treatment may be a 5 0~5 0 0 gZL about a pulp consistency of fly ash. Although thinning is advantageous in increasing the amount of Ca and Zn eluted, it also reduces efficiency and increases the burden of solid-liquid separation work. Generally, it is realistic to set the pulp concentration to about 100 to 200 gZL. SO 2 gas may be S 0 2 concentration using those 5-1 0 0%. S0 2 gas generated from the example Eba made鍊原fee is available. S 0 2 concentration of the not necessarily mean that the reaction is advanced difficulty Kunar low.
スラリーに直接 S 02 ガスを吹き込む場合、 G/L比 (すなわち 「反応時間中 に吹き込むガスの体積 (L) /スラリーの体積 (L) 」 ) は 1以上とすることが 望ましい。 G/L比を大きくするほどバブリングによる攪拌効果が高まるが、 上 限は設備能力によって制限される。 現実的な G/L比としては 1〜1 0 0程度が 妥当である。 When blowing directly S 0 2 gas into the slurry, G / L ratio (i.e. "volume of the gas blown into the reaction time (L) / slurry vol (L)") is preferably set to 1 or more. As the G / L ratio increases, the stirring effect by bubbling increases, but the upper limit is limited by the capacity of the equipment. A realistic G / L ratio of about 1 to 100 is appropriate.
反応中は、 S 02 を液中に十分拡散させるに足る強い機械的攪拌やパブリング を行うことが望ましい。  During the reaction, it is desirable to perform strong mechanical stirring or publishing sufficient to sufficiently diffuse S 02 into the liquid.
S 02 による前記反応が十分に進行しているかどうかは、 液の pHの変動によ つて判断することができる。 pHが 3.5以下に低下するまで反応を継続させる ことが望ましい。 pHがそれより高い時点では、 まだ未溶解の Ca、 Zn が相当 量残っていると見てよい。 例えば純 S 02 ガスを使用し、 G/L比を 5 0、 初期 温度を 3 Q°Cとした場合、 1 0分程度の反応時間で pHは 2程度まで低下するの で、 溶解反応が進んだことが判る。 この場合、 酸化還元電位 (Ag /AgCl 電 極基準) は 1 0 0〜2 5 O mV程度となる。 また、 温度は 1 0分後に約 4 0°Cま で上昇し、 3 0分後には 5 0°C程度となる。 Whether or not the reaction by S02 has proceeded sufficiently can be determined by a change in the pH of the solution. It is desirable to continue the reaction until the pH drops below 3.5. When the pH is higher, it can be seen that considerable amounts of undissolved Ca and Zn still remain. For example using pure S 0 2 gas, G / L ratio 5 0, when the initial temperature and 3 Q ° C, 1 pH at the reaction time of about 0 minutes than decreases to about 2, the dissolution reaction You can see that it has advanced. In this case, the oxidation-reduction potential (based on the Ag / AgCl electrode) is about 100 to 25 OmV. The temperature rises to about 40 ° C after 10 minutes and reaches about 50 ° C after 30 minutes.
このような pHや酸化還元電位の変化は、 S02 処理時間のコントロールに利 用することができる。 Such a change in pH or redox potential, can be take advantage in the control of the S0 2 processing time.
具体的には、 スラリーへの S 02 ガス導入開始後、 11が3.5以下、 好まし くは 2.5以下になったのちに反応を終了させるとよい。 More specifically, the reaction may be terminated after 11 is 3.5 or less, preferably 2.5 or less, after the introduction of SO 2 gas into the slurry.
あるいは、 スラリーへの S 02 ガス導入開始後、 酸化還元電位 (Ag /AgCl 電極基準) が例えば 1 0 0〜2 0 0 mVの間で落ち着いた時に反応を終了させる とよい。 飛灰の種類により酸化還元電位は上下するので、 適用する飛灰に応じて 予め反応終了時点の電位領域を定めておくなどして、 処理時間をコントロールす ることが可能である。 Alternatively, the reaction may be terminated when the oxidation-reduction potential (based on the Ag / AgCl electrode) has settled, for example, between 100 and 200 mV after the introduction of the SO 2 gas into the slurry. Since the oxidation-reduction potential fluctuates depending on the type of fly ash, the processing time can be controlled by, for example, previously defining the potential region at the end of the reaction according to the fly ash to be applied.
S 02 処理を終えたスラリーは、 固液分離することで、 Ca、 Zn が溶解した 液と残渣とを回収することができる。 元の飛灰に Pb が含まれている場合、 この 残渣は 「Pb 含有残渣」 として回収される。 この残渣中には Ca も一部残存する が、 これは当初から飛灰に含まれていた CaS 04 (石膏) 主体のものである。 た だし、 通常の硫酸浸出によって分離回収された Pb 含有残渣と比べると CaS 04 含有量は大幅に少ないものとなり、 Pb 製練の原料として好適に利用できる。 The slurry having been subjected to the S 0 2 treatment, by solid-liquid separation, can be recovered from the liquid and residue Ca, Zn is dissolved. If the original fly ash contains Pb, this The residue is collected as “Pb-containing residue”. This residue remaining part also Ca, which is intended CaS 0 4 (gypsum) mainly contained in the fly ash from the beginning. However, as compared to Pb-containing residue is separated and recovered by conventional sulfuric acid leaching CaS 0 4 content is made as significantly less, it can be suitably used as a raw material for Pb made kneaded.
〔酸化処理〕  (Oxidation treatment)
S 02 処理後に残渣を除いて得られた 「Ca、 Zn 含有液」 は、 例えば 「酸化 剤を作用させる処理」 (以下 「酸化処理」 という) に供することで、 Ca と Zn を分離して回収することができる。 この Ca、 Zn含有液には、 前述のように C a は Ca(HS03)2 として、 また Zn は Zn(HS 03)2 としてそれぞれ亜硫酸水溶 液に溶解した形で存在していると考えられる。 この Ca(HS 03)2 および Zn(H S O 3 ) 2 に酸化剤を作用させると、 いずれも比較的容易に硫酸塩に変化する。 こ のとき、 Ca の硫酸塩 CaS 04 (石膏) は不溶性であり、 Zn の硫酸塩 ZnS〇4 は可溶性であるために、 Ca と Zn を固液分離することができるのである。 すな わち、 前記 Ca、 Zn 含有液に酸化剤を作用させることにより、 Ca を選択的に 沈殿させることができる。 The “Ca, Zn-containing liquid” obtained by removing the residue after the S 02 treatment is subjected to, for example, “treatment with an oxidizing agent” (hereinafter referred to as “oxidation treatment”) to separate and recover Ca and Zn. can do. The Ca, the Zn-containing solution, believed to be present in the form C a as described above as Ca (HS0 3) 2, also Zn is dissolved in each sulfite aqueous solution as Zn (HS 0 3) 2 Can be When the Ca (HS 0 3) 2 and Zn (HSO 3) is an oxidizing agent to 2, both changes relatively easily sulfate. At this time, the sulfate of Ca CaS 0 4 (gypsum) is insoluble, sulfate ZnS_rei_4 of Zn in order to be soluble, it is possible to solid-liquid separation of Ca and Zn. That is, Ca can be selectively precipitated by causing an oxidizing agent to act on the Ca- and Zn-containing liquid.
この酸化反応は、 以下のような反応式で表されると考えられる。 This oxidation reaction is considered to be represented by the following reaction formula.
Figure imgf000010_0001
Figure imgf000010_0001
Ca(H S 03)2(aq) + 02 + 2 H20→CaS 04 - 2 E O(s) +H2S 04 - - (7) Ca(H S 03)2(aq)+l/202 + H 20→ C a S 04 · 2 H 20 (s) + S 02(g) - · (7), Zn(HS 03)2(aq) + 02 →ZnS 04 (aq) + H 2 S 04 · · · · (8) Ca (HS 0 3) 2 ( aq) + 0 2 + 2 H 2 0 → CaS 04 - 2 EO (s) + H2S 04 - - (7) Ca (HS 0 3) 2 (aq) + l / 202 + H 20 → C a S 04 · 2 H 2 0 (s) + S 0 2 (g) - · (7), Zn (HS 0 3) 2 (aq) + 02 → ZnS 04 (aq) + H 2 S 04
Zn(H S 03)2(aq)+l/202 → ZnS 04 (aq) + S 02 (g) +H2O · · · (8), 反応の初期に少しだけ: pHが上がって白色沈殿が生じるので、 (7) と(7)'の両 方の反応が起こっていると考えられる。 (8) と(8)'についても同様である。 Zn (HS 0 3) 2 ( aq) + l / 202 → ZnS 04 (aq) + S 02 (g) + H2O · · · (8), the little initial reaction: white precipitate forms up the pH Therefore, it is considered that both reactions (7) and (7) 'are occurring. The same applies to (8) and (8) '.
これらの反応は、 例えば酸化剤として空気のような酸素含有気体を液中に吹き 込むことによって進行させることができる。 その他の酸化剤として、 H202 や 03 などを用いることもできる。 ただし、 ΚΜηΟ のような Μη 化合物を使用 すると Μη の回収や付着水に存在する Μη の処理に工夫が必要となる。 These reactions can be advanced by blowing an oxygen-containing gas such as air as an oxidant into the liquid. Other oxidizing agents may be used such as H 2 0 2 and 0 3. However, if a Μη compound such as ΚΜηΟ is used, it is necessary to devise a way to recover Μη and treat Μη present in the attached water.
反応中は、 酸化剤を液中に十分拡散させるに足る強い機械的攪拌やバブリング を行うことが望ましい。 この酸化反応を空気の吹き込みによって行う場合だと、 G Z L比は通常 1〜 1 0 0 0の範囲で最適値を見つけることができる。 温度は 2 0〜5 0°C程度が望ま しい。 反応時間については、 反応の終了点を酸化還元電位により管理することが 好ましい。 空気吹き込みの場合、 酸化還元電位が最初 1 0 0〜2 0 0 mV (Ag /AgCl 電極基準、 以下同様) であったものが、 反応の初期段階で 02 が消費 されることにより、 3 5 O mVあたりまで上昇し、 その後徐々に上昇を続け 4 0 0〜7 5 O mV程度で落ち着く。 電位変化がほとんどなくなれば前記(7) 、 (8) 式の酸化反応はほぼ完了したと見てよい。 During the reaction, it is desirable to perform strong mechanical stirring or bubbling sufficient to sufficiently diffuse the oxidizing agent into the solution. When this oxidation reaction is performed by blowing air, the GZL ratio can usually find an optimum value in the range of 1 to 1000. The temperature is preferably about 20 to 50 ° C. Regarding the reaction time, it is preferable to control the end point of the reaction by the oxidation-reduction potential. In the case of air blowing, the oxidation-reduction potential was initially 100 to 200 mV (based on the Ag / AgCl electrode, the same applies hereinafter), but since 0 2 was consumed in the initial stage of the reaction, 35 It rises to around O mV, then gradually rises, and calms down at about 400 to 75 O mV. If there is almost no change in the potential, it can be seen that the oxidation reactions of the above equations (7) and (8) are almost completed.
H2S 03 →H20 + S 02 (脱気反応) . . · · (9) H 2 S 03 → H 2 0 + S 0 2 (degassing reaction)... (9)
ρ Ηについては、 初期の S 02 脱気により一時的に元の p H (例えば 2前後) から 0.5〜2.0程度上昇するが、 その後元の pHから若干下回るところに落ち 着く。 For [rho Eta is elevated 0.5-2.0 degree from the initial S 0 2 degassed by temporarily original p H (e.g. 2 before and after), get dropped at slightly below the subsequent original pH.
〔他の Ca /Zn分離手法〕  [Other Ca / Zn separation methods]
図 1には酸化処理により Ca を沈殿させる工程を示したが、 Ca と Zn を分離 回収する他の方法としては、 前記 Ca、 Zn含有液にダイレク 卜に硫酸を作用さ せて Ca を選択的に石膏として沈殿させる方法がある (硫酸置換処理) 。 その反 応式は以下のようなものであると考えられる。  Fig. 1 shows the step of precipitating Ca by oxidation.Another method for separating and recovering Ca and Zn is to selectively treat Ca by directing sulfuric acid on the Ca- and Zn-containing liquid. There is a method to precipitate as gypsum (sulfuric acid substitution treatment). The reaction equation is considered as follows.
Ca について; About Ca;
Ca(H S 03)2(aq) + H2 S 04 →CaS 04 - 2 H20(s) + 2 S O2 · · (10) Zn について; Ca (HS 0 3) 2 ( aq) + H 2 S 04 → CaS 0 4 - 2 H 2 0 (s) + 2 S O2 · · (10) for Zn;
Zn(HS 03)2(aq) + HhS 04 →ZnS〇4(aq)+ 2 H2O+ 2 S O2 · · (11) その他、 N2 等の不活性ガスを液中に吹き込むことにより、 S02 の脱気反応 を進行させ、 次いで硫酸を添加して Ca を選択的に沈殿させる方法がある。 この 反応式は以下のようなものであると考えられる。 Zn (HS 0 3) 2 ( aq) + HhS 04 → ZnS_rei_4 (aq) + 2 H2O + 2 S O2 · · (11) Others, by blowing an inert gas such as N 2 in the liquid, S0 2 There is a method in which the degassing reaction is allowed to proceed, and then sulfuric acid is added to selectively precipitate Ca. This reaction formula is considered to be as follows.
Ca について;  About Ca;
Ca(HS 03)2 →CaS03(s) + H20 + S 02 (12) Ca (HS 0 3) 2 → CaS0 3 (s) + H 2 0 + S 02 (12)
CaS 03(s) + H2 S 04 +H20→CaS 04 - 2 H2O (s) +S02 · - (13 Zn について; CaS 0 3 (s) + H 2 S 04 + H 2 0 → CaS 04 - 2 H2O (s) + S0 2 · - ( about 13 Zn;
Zn(HS 03)2 →ZnS 03(s) + H20 + S O2 (14) ZnS 03(s) + H2 S 04 — ZnS O (aq) +H2O + S O2 · · · (15) すなわち、 脱気反応により Ca(HS03)2 および Zn(HS 03)2 が一旦亜硫酸 塩として析出し、 これに硫酸を作用させると Ca は不溶性の硫酸塩 (石膏) に、 Zn は可溶性の硫酸塩になり、 結果的に Ca を選択的に沈殿物として分離できる と考えられる。 Zn (HS 0 3 ) 2 → ZnS 0 3 (s) + H20 + S O2 (14) ZnS 0 3 (s) + H2 S 04 - ZnS O (aq) + H2O + S O2 · · · (15) i.e., Ca (HS0 3) by degassing the reaction 2 and Zn (HS 0 3) 2 Once sulfite It precipitates as a salt, and when sulfuric acid acts on it, Ca becomes an insoluble sulfate (gypsum) and Zn becomes a soluble sulfate. As a result, it is thought that Ca can be selectively separated as a precipitate.
以上のように Ca を選択的に沈殿させた後、 固液分離すると、 Ca は石膏とし て回収される。 この石膏を工業的な規格を満たす石膏として製品化する場合は、 水分を十分に切っておくことが望ましい。 水切りにはフィルタ一プレスや遠心分 離機を使用するとよい。  After selective precipitation of Ca as described above, solid-liquid separation recovers Ca as gypsum. When commercializing this gypsum as gypsum that meets industrial standards, it is desirable to remove moisture sufficiently. It is advisable to use a filter press or a centrifuge for draining.
〔中和〕  (Neutralization)
Ca を分離除去した後の液 (Zn 含有液) には、 Zn が ZnS 04 の形で溶解 している。 この液はそのまま亜鉛製鍊工程に導入することもできるが、 搬送時の 取り扱い性や液のリサイクルを考慮すると、 中和, 硫化, 溶媒抽出といった手法 を実施して Zn を固形物として回収することが望ましい。 The liquid after the separation and removal Ca (Zn-containing liquid), Zn is dissolved in the form of ZnS 0 4. This liquid can be directly introduced into the zinc production process, but in consideration of handling properties during transport and recycling of the liquid, neutralization, sulfidation, and solvent extraction are used to recover Zn as a solid. Is desirable.
中和による場合は、 中和剤として CaO、 Ca(OH)2、 CaCOa 等のアルカリ を Zn 含有液に添加すればよい。 11が7〜1 0で Zn は沈殿する。 元の液 (Zn 含有液) が前記酸化処理を経て得られたものである場合、 Zn殿物は Ζηθを主 体としたものとなる。 なお、 中和剤として NaOHや ΚΟΗを使用しても Zn 殿 物の形成は可能であるが、 中和後の液を前工程に戻して繰り返し使うとなると、 Na、 Kの硫酸塩が可溶であるため晶析工程が必要となる。 In the case of neutralization, an alkali such as CaO, Ca (OH) 2 , or CaCOa may be added to the Zn-containing liquid as a neutralizing agent. When 11 is 7 to 10, Zn precipitates. When the original liquid (Zn-containing liquid) is a liquid obtained through the above-mentioned oxidation treatment, the Zn residue is mainly composed of Ζηθ. The use of NaOH or と し て as a neutralizing agent can form Zn precipitates, but if the solution after neutralization is returned to the previous step and used repeatedly, the Na and K sulfates become soluble. Therefore, a crystallization step is required.
中和後のスラリーを固液分離することにより、 Zn含有残渣が回収される。 こ の残渣は亜鉛製鍊の原料として使用できる。 他方、 后液は洗浄あるいは S 02 処 理の用水として再利用することができる。 ただし、 この后液の再利用を繰り返し てゆくと付着塩類の持ち込みにより Na C1 や KC1 が濃縮してくる。 このため、 一部はブリードオフさせて排水処理することが望ましい。  By solid-liquid separation of the neutralized slurry, a Zn-containing residue is recovered. This residue can be used as a raw material for zinc production. On the other hand, the after-liquid can be reused as water for washing or S02 treatment. However, if the reuse of the solution is repeated, NaC1 and KC1 will be concentrated due to the carry-in of attached salts. Therefore, it is desirable to bleed off part of the wastewater and treat it.
第 2図には、 最初の洗浄を行わずに本発明の S02 処理を実施する場合の飛灰 処理フローの一例を示す。 この場合 Zn 含有残渣を除去した后液は塩濃度が高い ので、 后液の大部分を脱 C1 工程に送って排水処理することが望ましい。 実施例 The Figure 2 shows an example of a fly ash treatment flow for carrying out the S0 2 process of the present invention without first washing. In this case, since the solution after removing the Zn-containing residue has a high salt concentration, it is desirable to send most of the solution to the C1 removal step for wastewater treatment. Example
実施例 1 Example 1
表 1に示す A飛灰を用いて、 これを S 02 を使用せずに硫酸浸出および中和で 処理した場合 (比較例) と、 本発明に従って S 02 を用いて処理した場合 (発明 例) について、 処理後のそれぞれの液と、 それぞれの残渣を比較した。 また、 発 明例については、 さらに酸化処理の工程、 次いで中和の工程を実施した。 Using A fly ash shown in Table 1, if this was treated with sulfuric acid leach and neutralization without the use of S 0 2 (Comparative Example), when treated with S 0 2 (invention according to the invention For Example), each liquid after treatment and each residue were compared. Further, in the case of the invention, an oxidation treatment step and then a neutralization step were performed.
表 1 〔A飛灰〕
Figure imgf000013_0001
Table 1 (A fly ash)
Figure imgf000013_0001
〔比較例〕 (Comparative example)
A飛灰を 1 0 0 0 g計量し、 これに蒸留水 3 L (リツ トル) を加えて飛灰混合 水を得た。 この飛灰混合水を 6 0分攪拌したのち、 濾過器で固液分離して、 濾液 aと固形分 aを得た。 この固形分 aにさらに蒸留水 0.3 Lを加えて追加洗浄し、 濾液 bと固形分 ( 「洗浄残渣」 という) を得た。 濾液 aと濾液 bを混合した液 ( 「洗浄后液」 という) が約 3 L得られた。  100 g of fly ash was weighed, and 3 L (liter) of distilled water was added thereto to obtain mixed fly ash water. After this fly ash mixed water was stirred for 60 minutes, it was subjected to solid-liquid separation with a filter to obtain a filtrate a and a solid content a. The solid a was further washed with 0.3 L of distilled water to obtain a filtrate b and a solid (referred to as “wash residue”). Approximately 3 L of a mixture of the filtrate a and the filtrate b (referred to as “post-wash solution”) was obtained.
前記洗浄残渣を 1 0 5 °Cで充分乾燥したのち、 組成分析を行った。 その結果を 表 2に示す。 一方、 前記洗浄后液についても組成分析を行った。 その結果を表 3 に示す。  After the washing residue was sufficiently dried at 105 ° C., composition analysis was performed. The results are shown in Table 2. On the other hand, a composition analysis was also performed on the solution after washing. The results are shown in Table 3.
次に、 前記洗浄残渣をパルプ濃度 1 0 0 g/Lでリパルプした後、 硫酸を添加 して pH== 2に調整した。 これを 3 0 °Cで 6 0分攪拌することにより硫酸浸出を 実施した。 次いでその処理液 (浸出後のスラリー) に CaC03 を添加して p H = 4に調整し、 6 0分攪拌することにより中和を行った。 液温は 3 0°Cとじた。 その後、 固液分離を行い、 Zn含有后液と Pb 含有残渣を得た。 Ζπ 含有后液の 分析結果を表 4に示す。 Pb 含有残渣は 1 0 5 °Cで充分乾燥したのち組成分析を 行った。 その結果を表 5に示す。 ' 〔洗浄残渣〕
Figure imgf000014_0001
Next, the washed residue was repulped at a pulp concentration of 100 g / L, and adjusted to pH == 2 by adding sulfuric acid. This was stirred at 30 ° C for 60 minutes to perform sulfuric acid leaching. Then was adjusted to p H = 4 by adding CAC0 3 to the treatment liquid (slurry after leaching), it was neutralized by stirring for 6 0 minutes. The liquid temperature was kept at 30 ° C. After that, solid-liquid separation was performed to obtain a Zn-containing post-solution and a Pb-containing residue. Table 4 shows the results of analysis of the solution containing Ζπ. After the Pb-containing residue was sufficiently dried at 105 ° C, the composition was analyzed. Table 5 shows the results. ' (Washing residue)
Figure imgf000014_0001
表 3 〔洗浄后液〕  Table 3 (After washing)
Figure imgf000014_0002
Figure imgf000014_0002
表 5 〔P b含有残渣〕 一比較例
Figure imgf000014_0003
Table 5 [Pb-containing residue] Comparative example
Figure imgf000014_0003
〔発明例〕  (Invention example)
A飛灰を 1 0 0 0 g計量し、 前記比較例と同じ方法で洗浄し、 洗浄残渣と洗浄 后液を得た。 洗浄残渣をパルプ濃度 1 0 0 g/Lでリパルプし、 このスラリー 8 Lに純 S O 2 ガスを吹き込んで 「S 02 処理」 を実施した。 S 02 ガス吹き込み 速度は 8 L/min とした。 この場合 G/L比は 6 0となる。 液温は 1 5〜 4 0 °C の範囲であった。 ガス吹き込み中、 機械的攪拌も行った。 反応中、 酸化還元電位 (Ag /AgCl 電極基準) および pHを監視した。 それによると 1 0〜2 0分 程度で反応はほとんど終了していると考えられたが、 その後もガス吹き込みおよ び機械的攪拌を継続し、 最終的に反応時間は 6 0分とした。 最終の酸化還元電位 は 1 5 0 mV、 pHは 2.2であった。 100 g of fly ash A was weighed and washed in the same manner as in the comparative example to obtain a washing residue and a liquid after washing. The washed residue was repulped with pulp 1 0 0 g / L, were conducted "S 0 2 process" by blowing pure SO 2 gas to the slurry 8 L. S 0 2 gas blowing speed was 8 L / min. In this case, the G / L ratio is 60. Liquid temperatures ranged from 15 to 40 ° C. During gas blowing, mechanical stirring was also performed. During the reaction, the redox potential (based on the Ag / AgCl electrode) and pH were monitored. According to the results, it was considered that the reaction was almost completed in about 10 to 20 minutes, but after that, gas blowing and mechanical stirring were continued, and the reaction time was finally set to 60 minutes. The final redox potential was 150 mV and pH was 2.2.
得られたスラリーを濾過器で固液分離して、 S 02 処理后液 (Ca 、 Zn含有 液) および S 02 処理残渣 (Pb含有残渣) を得た。 后液の組成分析結果を表 6 に示す。 残渣は 1 0 5 °Cで充分乾燥したのち組成分析した。 その結果を表 7に示 The resulting slurry was solid-liquid separated through a filter to obtain S 0 2 treatment after solution (Ca, Zn-containing liquid) and S 0 2 processing residue (Pb-containing residue). Table 6 shows the composition analysis results of the back solution. The residue was sufficiently dried at 105 ° C. and analyzed for composition. The results are shown in Table 7.
差替え用紙 26 表 6 〔S 02 処理后液 (Ca、 Zn 含有液) 〕 一発明例
Figure imgf000015_0001
Replacement paper 26 Table 6 [S 0 2 treatment after solution (Ca, Zn-containing liquid)] one invention embodiment
Figure imgf000015_0001
表 7 [S 02 処理残渣 (Pb 含有残渣) 〕 一発明例
Figure imgf000015_0002
表 4 (比較例) と表 6 (発明例) を対比すると、 発明例では S 02 処理により Zn および Ca を液中に溶解させた形で回収できたことがわかる。 また表 5 (比 較例) と表 7 (発明例) を対比すると、 発明例では Pb含有残渣の量が非常に減 少し、 かつ残渣中の Ca の量および含有量が減少していることがわかる。 すなわ ち本発明によれば S 02 処理によって直接、 Pb 品位が高く Ca 品位の低い Pb 含有残渣が発生し、 その量も低減されることから、 これを再利用する鉛製鍊工程 側の負荷を大幅に軽減することができる。
Table 7 [S 0 2 processing residue (Pb-containing residue)] one invention embodiment
Figure imgf000015_0002
Table 4 (Comparative Example) In comparison to Table 6 (invention examples), in the inventive examples it can be seen that was recovered in the form dissolved in the liquid Zn and Ca by S 0 2 treatment. Also, comparing Table 5 (Comparative Example) and Table 7 (Inventive Example), it can be seen that in the inventive example, the amount of the Pb-containing residue was significantly reduced, and the amount and content of Ca in the residue were reduced. Understand. Directly by S 0 2 process according to Sunawa Chi present invention, a low Pb-containing residue Pb quality of high Ca quality occurs, since the amount is reduced, the lead made鍊process side to reuse the same The load can be greatly reduced.
次に、 S 02 処理后液 (Ca、 Zn 含有液) に空気を吹き込む方法で酸化処理 を実施した。 空気吹き込み速度は 6 0 L/min とした。 この場合 GZL比は 6 0 0となる。 温度は 4 5 °Cにコントロールした。 機械的攪拌も併用した。 反 中、 酸化還元電位 (Ag /AgCl 電極基準) および pHを監視した。 それによると、 反応開始 1 0分後に一旦酸化還元電位は 1 0 O mVまで下がり、. pHも 3.5を 超えて上昇した。 その後、 酸化還元電位は上昇し、 pHは徐々に低下した。 6 0 分経過時点で酸化還元電位は 4 0 O mV、 pHは 2となり、 変動が少なくなつた。 この時点でほぼ反応は終了したと考えられたが、 更に様子をみるために 1 2 0分 まで空気吹き込みおよび機械的攪拌を継続した。 最終的に酸化還元電位は 4 5 0 mV、 p Hは 2.0となった。 液中には白色の沈殿物が生じており、 これを濾過 器で固液分離して、 酸化処理后液 (Zn 含有液) と酸化処理残渣 (Ca 含有残渣) のケーキを得た。 后液の分析結果を表 8に、 残渣の分析結果を表 9に示す。 Was then carry out the oxidation treatment in a method of blowing air into the S 0 2 treatment after solution (Ca, Zn-containing solution). The air blowing speed was 60 L / min. In this case, the GZL ratio is 600. The temperature was controlled at 45 ° C. Mechanical stirring was also used. In addition, the redox potential (based on the Ag / AgCl electrode) and pH were monitored. According to the results, the oxidation-reduction potential once decreased to 10 OmV 10 minutes after the start of the reaction, and the pH increased to more than 3.5. Thereafter, the redox potential increased and the pH gradually decreased. At the elapse of 60 minutes, the oxidation-reduction potential was 40 OmV and the pH was 2, and the fluctuation was small. At this point, the reaction was considered to be almost complete, but air blowing and mechanical stirring were continued for up to 120 minutes to observe the situation. Finally, the oxidation-reduction potential was 450 mV and the pH was 2.0. A white precipitate was formed in the liquid, which was separated into solid and liquid by a filter to obtain a cake of the liquid after oxidation treatment (Zn-containing liquid) and the oxidation treatment residue (Ca-containing residue). Table 8 shows the analysis results of the back solution, and Table 9 shows the analysis results of the residue.
表 8 〔酸化処理后液 (Zn含有液) 〕 一発明例
Figure imgf000015_0003
Table 8 [Oxidized solution (Zn-containing solution)]
Figure imgf000015_0003
差替え用紙 '(規則 26) 表 9 〔酸化処理残渣 (Ca含有残渣) 〕 一発明例 Replacement Form '(Rule 26) Table 9 [Residue of oxidation treatment (residue containing Ca)]
合計 Zn Pb Ca S Na K CI 品位 (質量%) 0.23 0.00 25.69 21.49 0.24 0.24 0.60 物量 (g) 398 1 0 102 86 1 1 2 表 8, 表 9から、 酸化処理により Ca を選択的に沈殿させ、 Ca と Zn を分離 回収できたことがわ る。 すなわち、 S 02 処理と酸化処理を組み合わせると、 ガスを吹き込むという簡単な操作で飛灰から Pb 、 そして Ca、 Zn を分離回収 できた。 なお、 X線回折の結果、 Ca 含有残渣のケーキは石膏であることが確認 された。 Total Zn Pb Ca S Na K CI Grade (% by mass) 0.23 0.00 25.69 21.49 0.24 0.24 0.60 Quantity (g) 398 1 0 102 86 1 1 2 From Tables 8 and 9, Ca was selectively precipitated by oxidation treatment. It can be seen that Ca and Zn could be separated and recovered. That is, the combination of oxidation and S 0 2 treatment, and Ca, were able to separate and recover Zn Pb, from fly ash by a simple operation of blowing gas. As a result of X-ray diffraction, it was confirmed that the cake containing Ca-containing residue was gypsum.
次に、 酸化処理后液 (Zn 含有液) に NaOHを添加する方法で中和した。 Na 濃度が 1 0 0 g/Lの溶液を調製し、 これを酸化処理后液に添加して pHが 8に なるようにして中和した。 NaOH溶液の消費量は 4 3 O mLであった。 中和に より白色の沈殿を生じたので、 これを固液分離し、 中和后液と中和残渣 (Zn 含 有残渣). のケーキを得た。 后液の分析結果を表 1 0に、 残渣の分析結果を表 1 1 に示す。  Next, the solution after the oxidation treatment (Zn-containing solution) was neutralized by adding NaOH. A solution having a Na concentration of 100 g / L was prepared, added to the solution after the oxidation treatment, and neutralized so that the pH became 8. The consumption of NaOH solution was 43 OmL. Since a white precipitate was generated by the neutralization, the precipitate was separated into solid and liquid to obtain a cake of a liquid after the neutralization and a neutralization residue (Zn-containing residue). Table 10 shows the analysis results of the back solution, and Table 11 shows the analysis results of the residue.
表 10 〔中和后液〕 —発明例
Figure imgf000016_0001
Table 10 [After neutralization]-Inventive example
Figure imgf000016_0001
〔中和残渣 (Zn含有残渣) 〕 一 明例
Figure imgf000016_0002
表 1 0からわかるように、 この后液は Ca、 Zn、 pb の含有量が低く、 最初 の洗浄工程、 あるいは S02 処理工程に供給する用水として十分再利用可能なも のである。 また表 1 1からわかるように、 中和残渣のケーキは Zn含有量が高く 亜鉛製鍊の原料として好ましいものである。 . 実施例 2
[Neutralization residue (Zn-containing residue)]
Figure imgf000016_0002
Table 1 As can be seen from 0, the after liquid Ca, Zn, low content of pb, is the first washing step, or even capable enough reused as water to be supplied to the S0 2 process to. Further, as can be seen from Table 11, the cake of the neutralized residue has a high Zn content and is preferable as a raw material for zinc production. Example 2
〔発明例〕  (Invention example)
飛灰 Aを用いて、 実施例 1の発明例と同じ方法で洗浄および S 02 処理を行つ た。 得られた S 02 処理后液および S 02 処理残渣はそれぞれ表 6および表 7に Using fly ash A, having conducted a washing and S 0 2 processed in the same way as the invention examples of Examples 1. Each obtained S 0 2 treatment after solution and S 0 2 processing residues Tables 6 and 7
差替え用紙(規則 26) 示したものと同様である。 ここでは、 この S 02 処理后液 (Ca、 Zn 含有液) に硫酸を作用させる方法により、 Ca の選択的沈殿を試みた。 Replacement form (Rule 26) It is the same as that shown. Here, the S 0 2 treatment after solution (Ca, Zn-containing liquid) by a method for applying a sulfuric acid, attempts to selective precipitation of Ca.
表 6と同様の S 02処理后液 (Ca、 Zn 含有液) 6.2 Lに対し、 硫酸 2 3 7 gを加えた。 pHは 0.9となった。 白色の沈殿が生じたので、 1 0分間攪拌し たのち固液分離した。 得られた后 ( 「硫酸置換后液」 という) の分析結果を 表 1 2に、 残渣 ( 「硫酸置換残渣」 という) の分析結果を表 1 3に示す。 Table 6 similar S 0 2 treatment after solution (Ca, Zn-containing solution) to 6.2 L, it was added 2 3 7 g sulfuric acid. pH became 0.9. Since a white precipitate was formed, the mixture was stirred for 10 minutes and then subjected to solid-liquid separation. The analysis results after the obtained (referred to as “sulfuric acid replacement solution”) are shown in Table 12, and the analysis results for the residue (referred to as “sulfuric acid replacement residue”) are shown in Table 13.
表 12 〔硫酸置換后液 (Zn含有液) 〕 一発明例
Figure imgf000017_0001
表 13 〔硫酸置換残渣 (Ca含有残渣) 〕 一発明例
Figure imgf000017_0002
表 1 2と表 1 3力、ら、 硫酸を作用させることにより Ca を選択的に沈殿させ、 Ca と Zn を分離回収できたことがわかる。 X線回折の結果、 硫酸置換残渣 (Ca 含有残渣) のケーキは石膏であることが確認された。
Table 12 [Sulfuric acid replacement solution (Zn-containing solution)] An example of the invention
Figure imgf000017_0001
Table 13 [Sulfuric acid substitution residue (Ca-containing residue)] An example of the invention
Figure imgf000017_0002
Tables 12 and 13 show that Ca was selectively precipitated by the action of sulfuric acid and that Ca and Zn could be separated and recovered. As a result of X-ray diffraction, it was confirmed that the cake of the sulfuric acid substitution residue (Ca-containing residue) was gypsum.
次に、 硫酸置換后液 (Zn 含有液) に、 ここでは生石灰 CaOを添加する方法 で中和した。 機械的攪拌を行いながら生石灰を粉状のまま徐々に液中に投入し、 pHを 8に調整した。 CaOの添加量は合計 7 4 gであった。 反応時間は 6 0分 とした。 酸化還元電位 (Ag /AgCl 電極基準) は最終的に 1 0 O mVになつ た。 中和により白色の沈殿を生じたので、 これを固液分離し、 中和后液と中和残 渣 (Zn 含有残渣) のケーキを得た。 后液の分析結果を表 1 4に、 残渣の分析結 果を表 1 5に示す。  Next, the solution after sulfuric acid replacement (Zn-containing solution) was neutralized by adding quicklime CaO here. While the mechanical stirring was being performed, quicklime was gradually poured into the liquid in a powdery state, and the pH was adjusted to 8. The total amount of CaO added was 74 g. The reaction time was 60 minutes. The oxidation-reduction potential (based on the Ag / AgCl electrode) finally reached 100 OmV. Since a white precipitate was generated by the neutralization, this was subjected to solid-liquid separation to obtain a cake of a liquid after the neutralization and a neutralization residue (Zn-containing residue). Table 14 shows the analysis results of the post-solution and Table 15 shows the analysis results of the residue.
表 14 〔中和后液〕 一発明例
Figure imgf000017_0003
表 15 〔中和残渣 (Zn含有残 S)〕 一発明例
Figure imgf000017_0004
Table 14 [Liquid after neutralization] An example of the invention
Figure imgf000017_0003
Table 15 [Neutralization residue (Zn-containing residue S)]
Figure imgf000017_0004
差替え用紙 ( 'J26) 表 1 4からわかるように、 この后液は Ca、 Zn、 pb の含有量が低く、 最初 の洗浄工程、 あるいは S 02 処理工程に供給する用水として十分再利用可能なも のである。 また表 1 5からわかるように、 中和残渣のケーキは Zn 含有量が高く- 亜鉛製練の原料として好ましいものである。 実施例 3 Replacement paper ('J26) Table 1 4 As can be seen, this after liquid Ca, Zn, low content of pb, is the first washing step, or even an S 0 2 can sufficiently reused as water to be supplied to the treatment step of. Further, as can be seen from Table 15, the cake of the neutralized residue has a high Zn content and is preferred as a raw material for zinc smelting. Example 3
〔発明例〕  (Invention example)
飛灰 Aを用いて、 実施例 1の発明例と同じ方法で洗浄および S O 2 処理を行つ た。 得られた S02 処理后液および S 02 処理残渣はそれぞれ表 6および表 7に 示したものと同様である。 ここでは、 この S 02 処理后液 (Ca、 zn 含有液) に不活性ガス (N2 ガス) を吹き込むことで S 02 の脱気反応を進行させ、 次い で硫酸を作用させる方法により、 Ca の選択的沈殿を試みた。 Using fly ash A, cleaning and SO 2 treatment were performed in the same manner as in the invention example of Example 1. The resulting S0 2 treatment after solution and S 0 2 processing residues are the same as those shown in Tables 6 and 7. Here, the S 0 2 treatment after solution (Ca, zn-containing liquid) is allowed to proceed degassed reaction of S 0 2 by blowing an inert gas (N 2 gas) to, by then in method of reacting sulfuric acid , Ca was attempted to precipitate selectively.
表 6と同様の S 02 処理后液 (Ca、 Zn 含有液) 6.2 Lに対し、 N2 ガス を 6 0 L/min の流量で 1 2 0分間吹き込んだ。 N2 ガス吹き込み中、 S 02 ガ スが発生し液から放出された。 pHは 3.9となり、 白色の沈殿が生じた。 酸化 還元電位 (Ag /AgCl 電極基準) は 2 3 0 mVであった。 引き続いて S 02 を脱気した液 (スラリー) 6.2 Lに硫酸 3 5 6 gを添加した。 pHは 1.9とな り酸化還元電位は 3 0 O mVとなった。 白色の沈殿物は見かけ上はそのままであ つた。 そして 6 0分間攪拌した後、 スラリーを固液分離した。 Similar S 0 2 treatment after solution and Table 6 (Ca, Zn-containing solution) to 6.2 L, was bubbled 1 2 0 min N 2 gas at a flow rate of 6 0 L / min. In an N 2 gas blowing, S 0 2 gas was released from the generated solution. The pH was 3.9 and a white precipitate formed. The oxidation-reduction potential (based on the Ag / AgCl electrode) was 230 mV. Sulfuric acid were added 3 5 6 g to S 0 2 and degassed liquid (slurry) 6.2 L subsequently. The pH was 1.9, and the oxidation-reduction potential was 30 OmV. The white precipitate was apparently intact. After stirring for 60 minutes, the slurry was subjected to solid-liquid separation.
得られた后液 ( 「N2 +硫酸置換后液」 という) の分析結果を表 1 6に、 また 残渣 ( 「N2 +硫酸置換残渣」 という) を 1 0 5 °Cで十分乾燥させた後の分析結 果を表 1 7に示す。 The results of analysis of the resulting solution (referred to as “N 2 + sulfuric acid replacement solution”) are shown in Table 16, and the residue (referred to as “N 2 + sulfuric acid replacement residue”) was sufficiently dried at 105 ° C. The results of the later analysis are shown in Table 17.
表 16 〔N2 +硫酸 S換后液 (Zn含有液) 〕 一発明例 Table 16 [N 2 + sulfuric acid S solution (Zn-containing solution)] An example of the invention
Figure imgf000018_0001
Figure imgf000018_0001
合計 Zn Pb Ca S Na K CI  Total Zn Pb Ca S Na K CI
品位 (質量%) 0.30 0.00 26.73 23.29 0.28 0.22 0.58  Grade (mass%) 0.30 0.00 26.73 23.29 0.28 0.22 0.58
物量 (g) 365 1 0 98 85 1 1 2 表 1 6, 表 1 7力、ら、 不活性ガス吹き込み +硫識添加により Ca を選択的に沈 殿させ、 Ca と Zn を分離回収できたことがわかる。 X線回折の結果、 N2 +硫 酸置換残渣 (Ca 含有残渣) のケーキは石膏であることが確認された。 Quantity (g) 365 1 0 98 85 1 1 2 Tables 16 and 17 It can be seen that Ca was selectively precipitated by injecting inert gas and adding sulfuric acid, and Ca and Zn could be separated and recovered. As a result of X-ray diffraction, it was confirmed that the cake of the N 2 + sulfuric acid substitution residue (Ca-containing residue) was gypsum.
次に、 N2 +硫酸置換后液 (Zn 含有液) に、 ここでも生石灰 Ca 0を添加す る方法で中和した。 機械的攪拌を行いながら生石灰を粉状のまま徐々に液中に投 入し、 p Hを 8に調整した。 CaOの添加量は合計 8 9 gであった。 反応時間は 6 0分とした。 酸化還元電位 (Ag /AgCl 電極基準) は 3 0 O mVになった。 中和により白色の沈殿を生じたので、 これを固液分離し、 中和后液と中和残渣 ( Zn含有残渣) のケーキを得た。 后液の分析結果を表 1 8に、 残渣の分析結果を 表 1 9に示す。 Next, the solution after the replacement with N 2 + sulfuric acid (Zn-containing solution) was again neutralized by adding quicklime Ca 0. The quicklime was gradually poured into the liquid in a powdery state with mechanical stirring, and the pH was adjusted to 8. The total amount of CaO added was 89 g. The reaction time was 60 minutes. The oxidation-reduction potential (based on the Ag / AgCl electrode) was 30 OmV. Since a white precipitate was generated by the neutralization, this was subjected to solid-liquid separation to obtain a cake of the neutralized liquid and a neutralized residue (Zn-containing residue). Table 18 shows the analysis results of the back solution and Table 19 shows the analysis results of the residue.
表 18 〔中和后液〕 一発明例
Figure imgf000019_0001
Table 18 [After neutralization] Example of invention
Figure imgf000019_0001
表 19 〔中和残渣 (Zn含有残渣) 〕 —発明例
Figure imgf000019_0002
Table 19 [Neutralization residue (Zn-containing residue)] —Example of invention
Figure imgf000019_0002
表 1 8からわかるように、 この后液は Ca、 Zn、 P b の含有量が低く、.最初 の洗浄工程、 あるいは S 02 処理工程に供給する用水として十分再利用可能なも のである。 また表 1 9からわかるように、 中和残渣のケーキは Zn含有量が高く、 亜鉛製鍊の原料として好ましいものである。 Table As can be seen from 1 8, this after liquid Ca, Zn, low content of P b,. The first washing step, or S is 0 2 treatment also the possible sufficiently reused as water to be supplied to the process. Further, as can be seen from Table 19, the cake of the neutralized residue has a high Zn content and is preferred as a raw material for zinc production.
差替え用紙 (規則 26) Replacement form (Rule 26)

Claims

請求の範囲 The scope of the claims
1. 飛灰のスラリ一に S 02 を作用させて、 飛灰中の Ca および Zn を液中に溶 解させ、 これらの元素を残渣と分離して液中に回収する工程を有する飛灰の処理 方法。 1. slurry one fly ash by the action of S 0 2, fly ash having a step is dissolve Ca and Zn in fly ash into the liquid, recovered in the liquid separated from the residue of these elements Processing method.
2. 飛灰のスラリーに S 02 を作用させて、 飛灰中の Ca および Zn を液中に溶 解させ、 これらの元素を Pb 含有残渣と分離して液中に回収する工程を有する飛 灰の処理方法。 2. The slurry is reacted with S 0 2 of fly ash, fly with step was dissolve Ca and Zn in fly ash into the liquid, to recover these elements in the liquid separated from the Pb-containing residue Ash treatment method.
3. 前記飛灰のスラリーは、 洗浄を経て Na、 K、 C1 の含有量を減じた飛灰を リパルプしたものである請求の範囲 1または 2に記載の飛灰の処理方法。 3. The fly ash processing method according to claim 1, wherein the fly ash slurry is obtained by repulping fly ash having a reduced content of Na, K, and C1 through washing.
4. 請求の範囲 1〜 3のいずれかの工程を経ることにより回収された Ca、 Zn 含有液に酸化剤を作用させることにより、 Ca を選択的に沈殿させるとともに、 Zn を液中に溶解させた状態で残し、 これらの元素を分離して回収する工程を有 する飛灰の処理方法。 4. By causing an oxidizing agent to act on the Ca- and Zn-containing liquid recovered through any of the steps of claims 1 to 3, Ca is selectively precipitated and Zn is dissolved in the liquid. A method for treating fly ash that has a step of separating and recovering these elements while leaving them in a state of being left.
5. 前記酸化剤が酸素を含む気体である請求の範囲 4に記載の飛灰の処理方法。 5. The method for treating fly ash according to claim 4, wherein the oxidizing agent is a gas containing oxygen.
6. 請求の範囲 1〜 3のいずれかの工程を経ることにより回収された Ca、 Zn 含有液に硫酸を作用させることにより、 Ca を選択的に沈殿させるとと に Zn を液中に溶解させた状態で残し、 これらの元素を分離して回収する工程を有する 飛灰の処理方法。 6. By causing sulfuric acid to act on the Ca- and Zn-containing liquid recovered through any one of the steps of claims 1 to 3, Ca is selectively precipitated and Zn is dissolved in the liquid. A method for treating fly ash, comprising a step of separating and recovering these elements while leaving them in a state.
7. 請求の範囲 1〜3のいずれかの工程を経ることにより回収された Ca、 Zn 含有液に不活性ガスを吹き込むことにより、 S 02 の脱気反応を進行させ、 次い で硫酸を作用させることにより、 Ca を選択的に沈殿させるとともに Zn を液中 に溶解させ、 これらの元素を分離して回収する工程を有する飛灰の処理方法。 7. Inert gas is blown into the Ca- and Zn-containing liquid recovered through any one of claims 1 to 3 to advance the degassing reaction of SO 2 , and then sulfuric acid is removed. A fly ash treatment method comprising the steps of selectively precipitating Ca and dissolving Zn in a liquid by causing the element to act to separate and recover these elements.
8. 請求の範囲 4〜7のいずれかの工程を経ることにより Ca と分離して回収さ れた Zn含有液に、 アルカリを添加して中和することにより Zn を沈殿させて回 収するとともに、 これを分離した后液を飛灰処理の用水として再利用する飛灰の 処理方法。 8. Alkali is added to neutralize the Zn-containing liquid separated and recovered from Ca through any of the steps 4 to 7 to precipitate and recover Zn. A method of treating fly ash in which the liquid after separation is reused as water for fly ash treatment.
PCT/JP2005/002379 2004-03-29 2005-02-09 Method for treatment of fly ash using sulfur dioxide WO2005092528A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004097254A JP4639398B2 (en) 2004-03-29 2004-03-29 Method for treating fly ash using sulfur dioxide
JP2004-97254 2004-03-29

Publications (1)

Publication Number Publication Date
WO2005092528A1 true WO2005092528A1 (en) 2005-10-06

Family

ID=35056037

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/002379 WO2005092528A1 (en) 2004-03-29 2005-02-09 Method for treatment of fly ash using sulfur dioxide

Country Status (2)

Country Link
JP (1) JP4639398B2 (en)
WO (1) WO2005092528A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5063885B2 (en) * 2005-10-27 2012-10-31 太平洋セメント株式会社 Lead recovery apparatus and method
CN107247470B (en) * 2017-06-19 2020-01-10 青海盐湖工业股份有限公司 Automatic control system for repulping and washing in potash fertilizer production

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000254619A (en) * 1999-03-11 2000-09-19 Chiyoda Corp Treatment of solid and waste gas, containing dioxins

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3917222B2 (en) * 1995-11-14 2007-05-23 新興化学工業株式会社 Processing method of dust collector ash

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000254619A (en) * 1999-03-11 2000-09-19 Chiyoda Corp Treatment of solid and waste gas, containing dioxins

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NAKAHARA K. ET AL: "Yoyu Hibai no Kinzoku Kaishu.", KABUSHIKI KAISHA NTS., 1998, pages 208 - 241, XP002997262 *

Also Published As

Publication number Publication date
JP4639398B2 (en) 2011-02-23
JP2005279446A (en) 2005-10-13

Similar Documents

Publication Publication Date Title
CA2437549C (en) Production of zinc oxide from complex sulfide concentrates using chloride processing
EP0166710B1 (en) Process for leaching sulfides containing zinc and iron
JP6743491B2 (en) Waste acid treatment method
JP4710034B2 (en) Arsenic-containing material treatment method
JP2006512484A (en) Recovery of metals from sulfide-based materials
WO2001025497A1 (en) Production of zinc oxide from complex sulfide concentrates using chloride processing
JP2006198448A (en) Valuable recovery method from flying ash
JP7016463B2 (en) How to collect tellurium
WO2005084838A1 (en) Method for treatment of fly ash
WO2005084837A1 (en) Method for treatment of fly ash involving fixation of carbon dioxide
JP4529969B2 (en) Method for removing selenium from selenate-containing liquid
US6117209A (en) Hydrometallurgical process for treating alloys and drosses to recover the metal components
JPH09315819A (en) Method for recovering arsenic from sulfide containing arsenic and production of calcium arsenate
JP2000109939A (en) Separation of lead, tin and bismuth from lead slag
JP3069520B2 (en) Method for separating arsenic from smelting intermediates containing arsenic sulfide
WO2005092528A1 (en) Method for treatment of fly ash using sulfur dioxide
JP6233177B2 (en) Method for producing rhenium sulfide
JP3945216B2 (en) Waste acid gypsum manufacturing method
JP6962017B2 (en) Waste acid treatment method
RU2353679C2 (en) Metals extraction from sulfide materials
JP3963093B2 (en) Arsenous acid production method
JP5084272B2 (en) Method for treating heavy metals containing zinc and substances containing chlorine
JP2007092124A (en) Method for treating copper converter dust
WO2005040437A1 (en) Method of wet treatment of fly ash
US6053963A (en) Method for treating rotary slag

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase