JP4639398B2 - Method for treating fly ash using sulfur dioxide - Google Patents

Method for treating fly ash using sulfur dioxide Download PDF

Info

Publication number
JP4639398B2
JP4639398B2 JP2004097254A JP2004097254A JP4639398B2 JP 4639398 B2 JP4639398 B2 JP 4639398B2 JP 2004097254 A JP2004097254 A JP 2004097254A JP 2004097254 A JP2004097254 A JP 2004097254A JP 4639398 B2 JP4639398 B2 JP 4639398B2
Authority
JP
Japan
Prior art keywords
fly ash
liquid
residue
solution
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004097254A
Other languages
Japanese (ja)
Other versions
JP2005279446A (en
Inventor
太郎 愛知
洋 浅田
英樹 八塚
章芳 堀内
哲雄 土肥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Metals and Mining Co Ltd
Original Assignee
Dowa Metals and Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Metals and Mining Co Ltd filed Critical Dowa Metals and Mining Co Ltd
Priority to JP2004097254A priority Critical patent/JP4639398B2/en
Priority to PCT/JP2005/002379 priority patent/WO2005092528A1/en
Publication of JP2005279446A publication Critical patent/JP2005279446A/en
Application granted granted Critical
Publication of JP4639398B2 publication Critical patent/JP4639398B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/46Sulfates
    • C01F11/464Sulfates of Ca from gases containing sulfur oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • B09B3/70Chemical treatment, e.g. pH adjustment or oxidation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G9/00Compounds of zinc
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B13/00Obtaining lead
    • C22B13/04Obtaining lead by wet processes
    • C22B13/045Recovery from waste materials
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B19/00Obtaining zinc or zinc oxide
    • C22B19/28Obtaining zinc or zinc oxide from muffle furnace residues
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • C22B7/007Wet processes by acid leaching
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/02Working-up flue dust
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Description

本発明は、都市ごみ等の焼却時の燃焼排ガスから採取される飛灰、あるいは焼却時の灰分やダスト類を溶融処理等する際に発生する排ガス等から採取される飛灰を対象とした湿式処理法であって、その飛灰中に含まれるCa,Zn,Pb,脈石成分などを有効利用しやすい形で分離回収する処理方法に関する。   The present invention is a wet ash collected from flue gas collected from combustion exhaust gas at the time of incineration of municipal waste, etc., or fly ash collected from flue gas generated when melting ash and dust at the time of incineration, etc. The present invention relates to a processing method for separating and recovering Ca, Zn, Pb, gangue components, and the like contained in the fly ash in an easy-to-use manner.

一般事業所や一般家庭から排出されるごみ(「都市ごみ」または「一般廃棄物」と称される)は、都市ごみ焼却施設や産業廃棄物焼却工場等に集められ、焼却処分されている。その際に焼却炉から発生する焼却灰や飛灰は、薬液処理,溶融処理,セメントキルン処理等の中間処理を経て最終処分場に堆積される。
しかし、溶融炉やセメントキルン等での中間処理においては、蒸気圧の高いZn,Pb,Cd等の重金属が炉内で揮発して排ガスに入り、その後、排ガス処理設備の中で凝縮して再び飛灰となってしまうという問題があった。この再度の飛灰中には、Cl,Na,Caと共に、Zn,Pb,Cu,Cd等の重金属が多量に含まれており、これらの元素の回収を含めた安定した処理方法が求められていた。
下記特許文献には種々の飛灰処理方法が提案されている。
Garbage discharged from general business establishments and households (referred to as “urban waste” or “general waste”) is collected and incinerated at municipal waste incineration facilities and industrial waste incineration plants. Incineration ash and fly ash generated from the incinerator at that time are deposited in the final disposal site through intermediate treatments such as chemical treatment, melting treatment, and cement kiln treatment.
However, in intermediate treatment in melting furnaces, cement kilns, etc., heavy metals such as Zn, Pb, and Cd with high vapor pressure volatilize in the furnace and enter the exhaust gas, and then condense again in the exhaust gas treatment equipment. There was a problem that it became fly ash. This second fly ash contains a large amount of heavy metals such as Zn, Pb, Cu and Cd as well as Cl, Na and Ca, and a stable treatment method including recovery of these elements is required. It was.
Various fly ash treatment methods are proposed in the following patent documents.

特開平7−109533号公報JP 7-109533 A 特開平8−117724号公報JP-A-8-117724 特開平8−141539号公報JP-A-8-141539 特開2001−113242号公報JP 2001-113242 A 特開2001−348627号公報JP 2001-348627 A 特開2003−164829号公報JP 2003-164829 A

上記各特許文献の湿式処理法は、飛灰に含まれている重金属類を安定な形で分離回収するうえで有効であると考えられる。しかし、これらの技術は重金属類を回収することに主眼が置かれており、Caの有効利用、および脈石成分の有効利用の観点に立てば、更なる改善が望まれるところである。   The wet processing methods described in the above patent documents are considered to be effective in separating and recovering heavy metals contained in fly ash in a stable form. However, these techniques focus on recovering heavy metals, and further improvements are desired from the viewpoint of effective utilization of Ca and effective utilization of gangue components.

一方、本出願人は、飛灰中のZnを湿式亜鉛製錬工程に供用できる最も好ましい形態で回収することを意図した飛灰処理方法として、塩酸酸性水溶液で飛灰を浸出する工程を採用した処理法を特願2003−365706号として提案した。これによれば、中和殿物残渣として、Znリッチでその他の重金属類もリッチに同伴し、かつSiやAlがほとんど含まれてこないものを回収することが可能となる。この残渣は湿式亜鉛製錬に供給するための原料として利用価値が高い。
しかし、この処理法にも問題がある。すなわち、得られる残渣には塩濃度の高い液が付着するため、製錬工程で受け入れ可能な塩素量によって当該残渣の使用量が制限を受けるのである。この制限を回避するには付着した液を除去するための処理が必要となる。また、塩酸浸出を用いる処理は硫酸浸出の場合と比べ、コストが割高となる。
On the other hand, the present applicant adopted a step of leaching fly ash with an aqueous hydrochloric acid solution as a fly ash treatment method intended to recover Zn in the fly ash in the most preferable form that can be used in the wet zinc smelting step. A treatment method was proposed as Japanese Patent Application No. 2003-365706. According to this, it is possible to recover the neutralized residue, which is rich in Zn and accompanied by other heavy metals in a rich manner and hardly contains Si or Al. This residue has a high utility value as a raw material to be supplied to wet zinc smelting.
However, this processing method also has problems. That is, the residue obtained to adhere high liquid of salt concentration is the amount of the residue limited by acceptable chlorine content in smelting process. In order to avoid this limitation, a process for removing the attached liquid is required. Further, the treatment using hydrochloric acid leaching is more expensive than the case of sulfuric acid leaching.

他方、コスト面で有利な硫酸浸出のプロセスを用いて湿式亜鉛製錬に供給可能なZn資源を分離回収しようとすると、飛灰中には多量のCaが存在するため途中工程で得られる副産物の脈石残渣中には石膏(CaSO4)が多く含まれてしまう。飛灰中のPbはこの脈石残渣中に回収されるので、この残渣は鉛製錬に利用したいところであるが、石膏含有量が多いのでこれを鉛製錬の原料として用いることは熱エネルギー上問題がある。また、硫酸浸出に供する飛灰中のCa量が多いことは、硫酸浸出工程への負荷を増大させ、好ましくない。 On the other hand, when trying to separate and recover Zn resources that can be supplied to wet zinc smelting using the sulfuric acid leaching process, which is advantageous in terms of cost, a large amount of Ca is present in the fly ash, so there is a by-product obtained in the intermediate process. A large amount of gypsum (CaSO 4 ) is contained in the gangue residue. Since Pb in fly ash is recovered in this gangue residue, this residue is intended to be used for lead smelting, but since it contains a large amount of gypsum, using it as a raw material for lead smelting is a thermal energy problem. There's a problem. Further, a large amount of Ca in the fly ash used for sulfuric acid leaching is not preferable because it increases the load on the sulfuric acid leaching process.

そこで本出願人は、硫酸浸出に供する前に、飛灰を非常に薄いパルプ濃度の液中で洗浄することによりCaの大部分を洗浄液に溶解させて除去してしまう手法を創出し、これを特願2004−59847号,特願2004−59852号として提案した。この場合、洗浄時にCO2ガスを吹き込むことにより、一層効果的なCaの除去が達成できた。
しかし、この方法では洗浄に多量の水を必要とし、設備規模の小さい工場では実施し難いという欠点があった。
Therefore, the present applicant has created a technique in which most of Ca is dissolved and removed by washing the fly ash in a liquid having a very low pulp concentration before being subjected to sulfuric acid leaching. Proposed as Japanese Patent Application Nos. 2004-59847 and 2004-59852. In this case, more effective removal of Ca could be achieved by blowing CO 2 gas at the time of cleaning.
However, this method has a drawback in that a large amount of water is required for cleaning, and it is difficult to implement in a factory with a small facility scale.

本発明はこのような現状に鑑み、飛灰からCa,Zn、あるいは更にPb等の有価金属を利用しやすい形で効率的に回収できる処理プロセスであって、設備規模の大小にあまり関係なく、既存の多くの湿式処理現場において実施可能な方法を開発し提供することを目的とする。   In view of such a current situation, the present invention is a treatment process that can efficiently recover valuable metals such as Ca, Zn, or Pb from fly ash, regardless of the size of the equipment. The aim is to develop and provide a method that can be implemented in many existing wet processing sites.

発明者らは鋭意研究を重ねたところ、SO2ガスを用いて飛灰スラリーを処理したとき、CaとZnを同時に溶液中に溶解させた形で回収することができ、その段階でPb等の有価金属を含む残渣を、Ca品位の低い状態で分離回収できることを見出した。さらに、このCa,Znが溶解した液に例えば空気を吹き込むといった簡単な酸化処理、あるいは硫酸を添加するという処理を施すと、Caの硫酸塩(石膏)は不溶性、Znの硫酸塩は可溶性であるという性質を利用して、CaとZnを容易に分離回収できることがわかった。本発明はこのような知見に基づいて完成したものである。 The inventors conducted extensive research and found that when SO 2 gas was used to treat the fly ash slurry, Ca and Zn could be recovered in the form of simultaneous dissolution of Pb and the like at that stage. It has been found that residues containing valuable metals can be separated and recovered in a low Ca quality state. Further, when a simple oxidation treatment such as blowing air into the solution in which Ca and Zn are dissolved, or a treatment of adding sulfuric acid, Ca sulfate (gypsum) is insoluble and Zn sulfate is soluble. Thus, it was found that Ca and Zn can be easily separated and recovered. The present invention has been completed based on such findings.

すなわち、上記目的は、Ca、Zn、Pb含有飛灰と水溶媒を混合した飛灰スラリーにSO2添加することにより、飛灰中のCaおよびZnを水溶媒中に溶解させ、その後、固液分離してCa,Zn含有液とPb含有残渣を回収する工程を有する飛灰の処理方法によって達成される That is, the above object is to add SO 2 to a fly ash slurry in which Ca, Zn, Pb-containing fly ash and an aqueous solvent are mixed, thereby dissolving Ca and Zn in the fly ash in an aqueous solvent , This is achieved by a fly ash treatment method having a step of recovering a Ca, Zn-containing liquid and a Pb-containing residue by liquid separation .

SO2添加する前記の飛灰スラリーとして、洗浄を経てNa,K,Clの含有量を減じた飛灰をリパルプしたものを使用することができる。
ここで、「リパルプしたもの」とは、一旦固液分離して回収された固形分を再度水を主体とした溶媒と混合してスラリー化したものをいう。
As the above-mentioned fly ash slurry to which SO 2 is added, it is possible to use a repulped fly ash that has been washed to reduce the contents of Na, K, and Cl.
Here, the “repulped product” means a product obtained by mixing a solid content once separated by solid-liquid separation with a solvent mainly composed of water to make a slurry.

更に、前記のようにSO2添加して残渣と分離したCa,Zn含有液、すなわちCaおよびZnが溶解している液に、酸化剤(例えば酸素を含む気体)、あるいは硫酸を添加することにより、Caを選択的に沈殿させるとともにZnを液中に溶解させた状態で残し、その後、固液分離してZn含有液とCa含有残渣を回収する工程を有する飛灰の処理方法が提供される。
また、前記Ca,Zn含有液に不活性ガスを吹き込むことにより、SO2の脱気反応を利用してCaおよびZnを一旦亜硫酸塩として析出させ、次いで硫酸を添加することにより、Caを選択的に沈殿させるとともにZnを液中に溶解させ、その後、固液分離してZn含有液とCa含有残渣を回収する工程を有する飛灰の処理方法が提供される。
Further, an oxidizing agent (for example, a gas containing oxygen) or sulfuric acid is added to the Ca, Zn-containing liquid separated from the residue by adding SO 2 as described above, that is, the liquid in which Ca and Zn are dissolved. Provides a method for treating fly ash having a step of selectively precipitating Ca and leaving Zn dissolved in the liquid, and then recovering the Zn-containing liquid and the Ca-containing residue by solid-liquid separation. The
In addition, by blowing an inert gas into the Ca, Zn-containing liquid, Ca and Zn are once precipitated as sulfites using the degassing reaction of SO 2 , and then Ca is selectively added by adding sulfuric acid. And a method for treating fly ash comprising the steps of precipitating Zn and dissolving Zn in the liquid, followed by solid-liquid separation to recover the Zn-containing liquid and the Ca-containing residue .

更に、前記のようにSO2添加して残渣と分離したCa,Zn含有液からCaを選択的に沈殿させて分離したZn含有液に、アルカリを添加して中和することによりZnを沈殿させ、その後、固液分離してZn含有残渣を回収するとともに、これを分離した后液を飛灰処理の用水として再利用する飛灰の処理方法が提供される。 Furthermore, Zn is precipitated by adding alkali to the Zn-containing solution separated by selectively precipitating Ca from the Ca- and Zn-containing solution separated from the residue by adding SO 2 as described above. Then, solid-liquid separation is performed to recover the Zn-containing residue, and after separation of the Zn-containing residue, a fly ash treatment method is provided in which the liquid is reused as water for fly ash treatment.

本発明は以下のようなメリットを有するものである。
(1) SO2や空気といったガス成分と反応させるだけで飛灰からCa,Zn、あるいは更にPbを工業的に利用しやすい形態で分離回収することができるため、工程簡略化および薬剤購入の削減によるコスト低減が図れる。
(2) 分離回収されるPb含有残渣はCa品位が低いため、Pb製錬で有効利用しやすい。
(3) 分離回収されるCa,Zn含有液に更に酸化処理等を施すと容易にCaとZnとを分離することができる。
(4) 大量の水を循環使用する必要がないため、設備規模の小さい工場でも比較的実施化が容易である。
したがって本発明は、飛灰から有価金属や脈石残渣を回収するリサイクル処理の普及に寄与するものである。
The present invention has the following merits.
(1) Since it is possible to separate and recover Ca, Zn, or even Pb from fly ash in a form that is industrially easy to use by simply reacting with gas components such as SO 2 and air, the process is simplified and the purchase of chemicals is reduced. Can reduce the cost.
(2) Since the Pb-containing residue separated and recovered has a low Ca quality, it is easy to use it effectively in Pb smelting.
(3) Ca and Zn can be easily separated by subjecting the Ca and Zn-containing liquid to be separated and recovered to further oxidation treatment.
(4) Since it is not necessary to circulate and use a large amount of water, it is relatively easy to implement even in factories with small facilities.
Therefore, this invention contributes to the spread of the recycling process which collects a valuable metal and a gangue residue from fly ash.

本発明の飛灰処理方法は、廃棄物処理施設等の焼却炉や溶融炉から排出される種々の飛灰あるいはそれらの混合飛灰に適用できる。中でも、Ca含有量が例えば5〜30質量%と比較的高い飛灰に適用することが特に効果的である。
図1に本発明の処理を含む飛灰処理フローの一例を示す。以下、この例に沿って本発明を説明する。
Fly ash treatment method of the present invention is applicable to various fly ash or mixtures fly ash thereof discharged from incinerators and melting furnace waste disposal facilities. Among them, it is particularly effective to apply to fly ash having a relatively high Ca content of, for example, 5 to 30% by mass.
FIG. 1 shows an example of a fly ash treatment flow including the treatment of the present invention. Hereinafter, the present invention will be described along this example.

〔洗浄〕
飛灰はまず、塩類つまりNa,K,Cl等の元素を除去するために洗浄することが望ましい。通常、水と混合したスラリー攪拌して塩類を水に溶解させる手法が採用される。飛灰が調湿されている場合など、凝集して塊状になっているときは、予め粉砕しておくことが望ましい。パルプ濃度は薄くした方が飛灰に付着している塩類の除去効果は高いが、その分、排水処理量が増加するので、設備の実状に応じてコストを最小に抑える条件を採用すればよい。一般的にはパルプ濃度を50〜500g/Lの範囲で実施できる。洗浄の際にCO2をスラリー中に吹き込むと重金属類の溶出を抑制する効果があり、またCaの溶出が促進されるので後工程での負荷を軽減することもできる。
〔Washing〕
It is desirable that the fly ash is first washed to remove salts, that is, elements such as Na, K, and Cl. Usually, the method of the slurry mixed with water and stirred to dissolve the salts in water is employed. When the fly ash is conditioned, it is desirable to pulverize it beforehand when it is agglomerated into a lump. The thinner the pulp concentration is, the higher the effect of removing salt adhering to the fly ash, but the amount of wastewater treatment increases accordingly, so the conditions that minimize the cost may be adopted according to the actual situation of the equipment . In general, the pulp concentration can be 50 to 500 g / L. When CO 2 is blown into the slurry at the time of washing, there is an effect of suppressing the elution of heavy metals, and the elution of Ca is promoted, so the load in the subsequent process can be reduced.

pHは、飛灰の種類によってまちまちであるが、およそ7〜13の範囲で落ち着く。CO2を入れた場合は5〜7程度になる。鉱酸を添加することで任意のpHに調整してもよい。洗浄の滞留時間は10〜120分程度で効果があるが、一般的には攪拌を行って60分程度の滞留時間を確保することが経済的であると考えられる。 The pH varies depending on the type of fly ash, but settles in the range of about 7 to 13. When CO 2 is added, it is about 5 to 7. You may adjust to arbitrary pH by adding a mineral acid. The washing residence time is effective at about 10 to 120 minutes, but it is generally considered economical to ensure a residence time of about 60 minutes by stirring.

洗浄後のスラリーは一般的な手法で固液分離すればよい。例えば、シックナーによる濃縮,フィルタープレス,ベルト式真空濾過器,オリバー,スクリューカウンターなど、種々の手段が選択できる。ただし、シックナーのみとすると固液分離性が悪くなり、洗浄によって溶解した塩類等が固形分側に多く持ち越される場合があるので注意を要する。通常、フィルタープレスを使用すると良好な結果が得られる。   What is necessary is just to solid-liquid-separate the slurry after washing | cleaning by a general method. For example, various means such as thickener concentration, filter press, belt type vacuum filter, oliver, screw counter, etc. can be selected. However, if only thickeners are used, the solid-liquid separation property is deteriorated, and a large amount of salts dissolved by washing may be carried over to the solid content side, so care must be taken. Usually, good results are obtained when a filter press is used.

〔SO2処理〕
このようにしてNa,K,Clの含有量が低減された飛灰(洗浄残渣)は、リパルプされ、本発明の「SO2添加する処理」(以下「SO2処理」という)に供される。飛灰のスラリーにSO2添加するには、スラリー中に直接SO2ガスを吹き込む方法が最も簡単である。設備仕様によっては用水にSO2ガスを入れ、H2SO3液相当のものをスラリーに供給する方が実施しやすい場合もある。このように間接的にSO2添加しても飛灰中のCaおよびZnを液中に溶解させることは可能である。
[SO 2 treatment]
The fly ash (cleaning residue) with the reduced contents of Na, K, and Cl in this way is repulped and used for the “treatment of adding SO 2 ” (hereinafter referred to as “SO 2 treatment”) of the present invention. The The simplest method for adding SO 2 to the fly ash slurry is to blow SO 2 gas directly into the slurry. Depending on the equipment specifications, it may be easier to put SO 2 gas in the water and supply the H 2 SO 3 liquid equivalent to the slurry. Thus, Ca and Zn in fly ash can be dissolved in the liquid even if SO 2 is added indirectly.

本発明のSO2処理における反応は、基本的にはPbは溶出されず、Ca,Znが溶出される反応であり、その反応メカニズムは未解明の部分も多いが、おおよそ「亜硫酸塩および亜硫酸の生成」+「亜硫酸塩と亜硫酸の反応」の段階的反応であると考えられる。CaあるいはZnの亜硫酸塩はCaSO3,ZnSO3の形態であり、これらはいずれも純水には不溶であるが、亜硫酸水溶液には可溶であるという性質を有する。すなわちCa(HSO3)2やZn(HSO3)2は可溶であり、Pb等の残渣成分と分離されて液中に溶解した形で回収できるのである。 The reaction in the SO 2 treatment of the present invention is basically a reaction in which Pb is not eluted but Ca and Zn are eluted, and the reaction mechanism has many unclear parts. It is considered to be a stepwise reaction of “production” + “reaction of sulfite and sulfite”. Ca or Zn sulfites are in the form of CaSO 3 and ZnSO 3 , both of which are insoluble in pure water but soluble in an aqueous sulfite solution. That is, Ca (HSO 3 ) 2 and Zn (HSO 3 ) 2 are soluble and can be recovered in a form separated from the residual components such as Pb and dissolved in the liquid.

飛灰中のCa分の形態がCaOである場合を例にとると、本発明のSO2処理での反応式は以下のようなものであると考えられる。
SO2+CaO → CaSO3 (中和反応) ……(1)
SO2+H2O → H2SO3 (亜硫酸生成反応) ……(2)
CaSO3+H2SO3 → Ca(HSO3)2 ……(3)
発明者らの実験によれば、Ca分の形態がCaOの場合だけでなく、CaSiO3,Ca3(PO4)2,CaCO3,CaSO3,CaF2のいずれの場合でもSO2による溶出が可能であった。ただ、CaSO4(石膏)についてはSO2で溶出することは困難であった。
When Ca content in the form of fly ash is taken as an example the case of CaO, Scheme in SO 2 treatment of the present invention are believed to be as follows.
SO 2 + CaO → CaSO 3 (neutralization reaction) (1)
SO 2 + H 2 O → H 2 SO 3 (sulfurous acid production reaction) ...... (2)
CaSO 3 + H 2 SO 3 → Ca (HSO 3 ) 2 (3)
According to the experiments by the inventors, elution by SO 2 is not only in the case where the form of Ca is CaO but also in any of CaSiO 3 , Ca 3 (PO 4 ) 2 , CaCO 3 , CaSO 3 , and CaF 2. It was possible. However, CaSO 4 (gypsum) was difficult to elute with SO 2 .

Znについても同様に、Zn分の形態がZnOである場合を例にとると、SO2処理での反応式は以下のようなものであると考えられる。
SO2+ZnO → ZnSO3 (中和反応) ……(4)
SO2+H2O → H2SO3 (亜硫酸生成反応) ……(2)
ZnSO3+H2SO3 → Zn(HSO3)2 ……(5)
Similarly for Zn, take the case form of Zn component is ZnO as an example, is considered to reaction scheme with SO 2 treatment is as follows.
SO 2 + ZnO → ZnSO 3 (neutralization reaction) ...... (4)
SO 2 + H 2 O → H 2 SO 3 (sulfurous acid production reaction) ...... (2)
ZnSO 3 + H 2 SO 3 → Zn (HSO 3 ) 2 (5)

SO2処理では、飛灰のパルプ濃度を50〜500g/L程度とすればよい。薄くするとCa,Znの溶出量を増加させる上で有利となるが、反面、効率低下や固液分離作業の負担増を招く。一般的には100〜200g/L程度のパルプ濃度とすることが現実的である。
SO2ガスは、SO2濃度が5〜100%のものを使用することができる。例えば製錬原料から発生するSO2ガスが使用可能である。SO2濃度が低くなると必ずしも反応が進行しにくくなるということではない。
In the SO 2 treatment, the fly ash pulp concentration may be about 50 to 500 g / L. Thinning is advantageous in increasing the amount of Ca and Zn elution, but on the other hand, it leads to a decrease in efficiency and an increase in the burden of solid-liquid separation. Generally, it is realistic to set the pulp concentration to about 100 to 200 g / L.
As the SO 2 gas, one having an SO 2 concentration of 5 to 100% can be used. For example, SO 2 gas generated from smelting raw materials can be used. It does not necessarily mean that the reaction does not easily proceed as the SO 2 concentration decreases.

スラリーに直接SO2ガスを吹き込む場合、G/L比(すなわち「反応時間中に吹き込むガスの体積(L)/スラリーの体積(L)」)は1以上とすることが望ましい。G/L比を大きくするほどバブリングによる攪拌効果が高まるが、上限は設備能力によって制限される。現実的なG/L比としては1〜100程度が妥当である。
反応中は、SO2を液中に十分拡散させるに足る強い機械的攪拌やバブリングを行うことが望ましい。
When the SO 2 gas is directly blown into the slurry, the G / L ratio (that is, “volume of gas blown during reaction time (L) / volume of slurry (L)”) is desirably 1 or more. As the G / L ratio is increased, the stirring effect by bubbling increases, but the upper limit is limited by the facility capacity. As a practical G / L ratio, about 1 to 100 is appropriate.
During the reaction, it is desirable to perform strong mechanical stirring and bubbling sufficient to sufficiently diffuse SO 2 into the liquid.

SO2による前記反応が十分に進行しているかどうかは、液のpHの変動によって判断することができる。pHが3.5以下に低下するまで反応を継続させることが望ましい。pHがそれより高い時点では、まだ未溶解のCa,Znが相当量残っていると見てよい。例えば純SO2ガスを使用し、G/L比を50、初期温度を30℃とした場合、10分程度の反応時間でpHは2程度まで低下するので、溶解反応が進んだことが判る。この場合、酸化還元電位(Ag/AgCl電極基準)は100〜250程度となる。また、温度は10分後に約40℃まで上昇し、30分後には50℃程度となる。 Whether or not the reaction by SO 2 is proceeding sufficiently can be determined by fluctuation of the pH of the solution. It is desirable to continue the reaction until the pH drops below 3.5. It can be seen that a considerable amount of undissolved Ca and Zn still remains at the time when the pH is higher. For example, when pure SO 2 gas is used, the G / L ratio is 50, and the initial temperature is 30 ° C., the pH drops to about 2 in a reaction time of about 10 minutes, indicating that the dissolution reaction has progressed. In this case, the oxidation-reduction potential (Ag / AgCl electrode reference) is about 100 to 250. The temperature rises to about 40 ° C. after 10 minutes and reaches about 50 ° C. after 30 minutes.

このようなpHや酸化還元電位の変化は、SO2処理時間のコントロールに利用することができる。
具体的には、スラリーへのSO2ガス導入開始後、pHが3.5以下、好ましくは2.5以下になったのちに反応を終了させるとよい。
あるいは、スラリーへのSO2ガス導入開始後、酸化還元電位(Ag/AgCl電極基準)が例えば100〜200mVの間で落ち着いた時に反応を終了させるとよい。飛灰の種類により酸化還元電位は上下するので、適用する飛灰に応じて予め反応終了時点の電位領域を定めておくなどして、処理時間をコントロールすることが可能である。
Such changes in pH and redox potential can be used to control the SO 2 treatment time.
Specifically, after the introduction of SO 2 gas into the slurry, the reaction may be terminated after the pH becomes 3.5 or less, preferably 2.5 or less.
Alternatively, the reaction may be terminated when the oxidation-reduction potential (Ag / AgCl electrode reference) settles between, for example, 100 to 200 mV after starting the introduction of SO 2 gas into the slurry. Since the oxidation-reduction potential varies depending on the type of fly ash, the treatment time can be controlled by, for example, determining a potential region at the end of the reaction in advance according to the fly ash to be applied.

SO2処理を終えたスラリーは、固液分離することで、Ca,Znが溶解した液と残渣とを回収することができる。元の飛灰にPbが含まれている場合、この残渣は「Pb含有残渣」として回収される。この残渣中にはCaも一部残存するが、これは当初から飛灰に含まれていたCaSO4(石膏)主体のものである。ただし、通常の硫酸浸出によって分離回収されたPb含有残渣と比べるとCaSO4含有量は大幅に少ないものとなり、Pb製錬の原料として好適に利用できる。 The slurry after the SO 2 treatment is subjected to solid-liquid separation, whereby the liquid and residue in which Ca and Zn are dissolved can be recovered. When Pb is contained in the original fly ash, this residue is recovered as a “Pb-containing residue”. This residue remaining part also Ca, which is intended CaSO 4 in (gypsum) mainly contained in the fly ash from the beginning. However, compared with the Pb-containing residue separated and recovered by ordinary sulfuric acid leaching, the content of CaSO 4 is significantly less and can be suitably used as a raw material for Pb smelting.

〔酸化処理〕
SO2処理後に残渣を除いて得られた「Ca,Zn含有液」は、例えば「酸化剤を添加する処理」(以下「酸化処理」という)に供することで、CaとZnを分離して回収することができる。このCa,Zn含有液には、前述のようにCaはCa(HSO3)2として、またZnはZn(HSO3)2としてそれぞれ亜硫酸水溶液に溶解した形で存在していると考えられる。このCa(HSO3)2およびZn(HSO3)2に酸化剤を反応させると、いずれも比較的容易に硫酸塩に変化する。このとき、Caの硫酸塩CaSO4(石膏)は不溶性であり、Znの硫酸塩ZnSO4は可溶性であるために、CaとZnを固液分離することができるのである。すなわち、前記Ca,Zn含有液に酸化剤を添加することにより、Caを選択的に沈殿させることができる。
[Oxidation treatment]
The “Ca, Zn-containing liquid” obtained by removing the residue after the SO 2 treatment is separated and recovered by, for example, “treatment of adding an oxidizing agent” (hereinafter referred to as “oxidation treatment”). can do. In this Ca, Zn-containing liquid, it is considered that Ca is present in a dissolved form in a sulfurous acid aqueous solution as Ca is Ca (HSO 3 ) 2 and Zn is Zn (HSO 3 ) 2 as described above. When Ca (HSO 3 ) 2 and Zn (HSO 3 ) 2 are reacted with an oxidizing agent, both of them easily change to sulfate. At this time, Ca sulfate CaSO 4 (gypsum) is insoluble, and Zn sulfate ZnSO 4 is soluble, so that Ca and Zn can be separated into solid and liquid. That is, Ca can be selectively precipitated by adding an oxidizing agent to the Ca, Zn-containing liquid.

この酸化反応は、以下のような反応式で表されると考えられる。
2H2SO3+O2 → 2H2SO4 ……(6)
Ca(HSO3)2(aq)+O2+2H2O → CaSO4・2H2O(s)+H2SO4 ……(7)
Ca(HSO3)2(aq)+1/2O2+H2O → CaSO4・2H2O(s)+SO2(g) ……(7)'
Zn(HSO3)2(aq)+O2 → ZnSO4(aq)+H2SO4 ……(8)
Zn(HSO3)2(aq)+1/2O2 → ZnSO4(aq)+SO2(g)+H2O ……(8)'
反応の初期に少しだけpHが上がって白色沈殿が生じるので、(7)と(7)'の両方の反応が起こっていると考えられる。(8)と(8)'についても同様である。
これらの反応は、例えば酸化剤として空気のような酸素含有気体を液中に吹き込むことによって進行させることができる。その他の酸化剤として、H22やO3などを用いることもできる。ただし、KMnO4のようなMn化合物を使用するとMnの回収や付着水に存在するMnの処理に工夫が必要となる。
反応中は、酸化剤を液中に十分拡散させるに足る強い機械的攪拌やバブリングを行うことが望ましい。
This oxidation reaction is considered to be represented by the following reaction formula.
2H 2 SO 3 + O 2 → 2H 2 SO 4 (6)
Ca (HSO 3) 2 (aq ) + O 2 + 2H 2 O → CaSO 4 · 2H 2 O (s) + H 2 SO 4 ...... (7)
Ca (HSO 3 ) 2 (aq) + 1 / 2O 2 + H 2 O → CaSO 4 .2H 2 O (s) + SO 2 (g) (7) '
Zn (HSO 3 ) 2 (aq) + O 2 → ZnSO 4 (aq) + H 2 SO 4 (8)
Zn (HSO 3) 2 (aq ) + 1 / 2O 2 → ZnSO 4 (aq) + SO 2 (g) + H 2 O ...... (8) '
A white precipitate forms up is initially slightly pH of the reaction is believed that occurred both reactions (7) and (7) '. The same applies to (8) and (8) ′.
These reactions can proceed by blowing an oxygen-containing gas such as air into the liquid as an oxidizing agent. As other oxidizing agents, H 2 O 2 and O 3 can also be used. However, when an Mn compound such as KMnO 4 is used, it is necessary to devise methods for recovering Mn and treating Mn present in the adhering water.
During the reaction, it is desirable to perform strong mechanical stirring and bubbling sufficient to sufficiently diffuse the oxidizing agent into the liquid.

この酸化反応を空気の吹き込みによって行う場合だと、G/L比は通常1〜1000の範囲で最適値を見つけることができる。温度は20〜50℃程度が望ましい。反応時間については、反応の終了点を酸化還元電位により管理することが好ましい。空気吹き込みの場合、酸化還元電位が最初100〜200mV(Ag/AgCl電極基準、以下同様)であったものが、反応の初期段階でO2が消費されることにより、350mVあたりまで上昇し、その後徐々に上昇を続け400〜750mV程度で落ち着く。電位変化がほとんどなくなれば前記(7)(8)式の酸化反応はほぼ完了したと見てよい。
2SO3 → H2O+SO2 (脱気反応) ……(9)
pHについては、初期のSO2脱気により一時的に元のpH(例えば2前後)から0.5〜2.0程度上昇するが、その後元のpHから若干下回るところに落ち着く。
When this oxidation reaction is performed by blowing air, an optimum value can be found in the G / L ratio in the range of usually 1 to 1000. The temperature is preferably about 20 to 50 ° C. Regarding the reaction time, it is preferable to manage the end point of the reaction by the redox potential. In the case of air blowing, the oxidation-reduction potential was initially 100 to 200 mV (Ag / AgCl electrode standard, the same applies hereinafter), but increased to around 350 mV due to consumption of O 2 in the initial stage of the reaction, and thereafter It continues to rise gradually and settles at about 400 to 750 mV. If there is almost no potential change, it can be considered that the oxidation reactions of the above formulas (7) and (8) are almost completed.
H 2 SO 3 → H 2 O + SO 2 (degassing reaction) ...... (9)
The pH temporarily rises about 0.5 to 2.0 from the original pH (for example, around 2) due to the initial SO 2 degassing, but then settles to a position slightly below the original pH.

〔他のCa/Zn分離手法〕
図1には酸化処理によりCaを沈殿させる工程を示したが、CaとZnを分離回収する他の方法としては、前記Ca,Zn含有液にダイレクトに硫酸を添加してCaを選択的に石膏として沈殿させる方法がある(硫酸置換処理)。その反応式は以下のようなものであると考えられる。
Caについて;
Ca(HSO3)2(aq)+H2SO4 → CaSO4・2H2O(s)+2SO2 ……(10)
Znについて;
Zn(HSO3)2(aq)+H2SO4 → ZnSO4(aq)+2H2O+2SO2 …(11)
[Other Ca / Zn separation methods]
FIG. 1 shows a process of precipitating Ca by oxidation treatment. As another method for separating and recovering Ca and Zn, sulfuric acid is directly added to the Ca and Zn-containing liquid to selectively select Ca. There is a method of precipitation as (sulfuric acid replacement treatment). The reaction formula is considered as follows.
About Ca;
Ca (HSO 3 ) 2 (aq) + H 2 SO 4 → CaSO 4 .2H 2 O (s) + 2SO 2 (10)
About Zn;
Zn (HSO 3 ) 2 (aq) + H 2 SO 4 → ZnSO 4 (aq) + 2H 2 O + 2SO 2 (11)

その他、N2等の不活性ガスを液中に吹き込むことにより、SO2の脱気反応を進行させ、次いで硫酸を添加してCaを選択的に沈殿させる方法がある。この反応式は以下のようなものであると考えられる。
Caについて;
Ca(HSO3)2(aq) → CaSO3(s)+H2O+SO2 ……(12)
CaSO3(s)+H2SO4+H2O → CaSO4・2H2O(s)+SO2 ……(13)
Znについて;
Zn(HSO3)2(aq) → ZnSO3(s)+H2O+SO2 ……(14)
ZnSO3(s)+H2SO4 → ZnSO4(aq)+H2O+SO2 ……(15)
すなわち、脱気反応によりCa(HSO3)2およびZn(HSO3)2が一旦亜硫酸塩として析出し、これに硫酸を反応させるとCaは不溶性の硫酸塩(石膏)に、Znは可溶性の硫酸塩になり、結果的にCaを選択的に沈殿物として分離できると考えられる。
In addition, there is a method in which an inert gas such as N 2 is blown into the liquid to advance the degassing reaction of SO 2 and then sulfuric acid is added to selectively precipitate Ca. This reaction formula is considered as follows.
About Ca;
Ca (HSO 3 ) 2 (aq) → CaSO 3 (s) + H 2 O + SO 2 (12)
CaSO 3 (s) + H 2 SO 4 + H 2 O → CaSO 4 .2H 2 O (s) + SO 2 (13)
About Zn;
Zn (HSO 3 ) 2 (aq) → ZnSO 3 (s) + H 2 O + SO 2 (14)
ZnSO 3 (s) + H 2 SO 4 → ZnSO 4 (aq) + H 2 O + SO 2 (15)
That is, Ca (HSO 3 ) 2 and Zn (HSO 3 ) 2 are once precipitated as sulfites by degassing reaction, and when reacted with sulfuric acid, Ca is insoluble sulfate (gypsum) and Zn is soluble sulfuric acid. As a result, it is considered that Ca can be selectively separated as a precipitate.

以上のようにCaを選択的に沈殿させた後、固液分離すると、Caは石膏として回収される。この石膏を工業的な規格を満たす石膏として製品化する場合は、水分を十分に切っておくことが望ましい。水切りにはフィルタープレスや遠心分離機を使用するとよい。   After selective precipitation of Ca as described above, the solid-liquid separation, Ca is recovered as gypsum. When this gypsum is commercialized as gypsum that satisfies industrial standards, it is desirable to sufficiently cut off moisture. A filter press or a centrifuge may be used for draining.

〔中和〕
Caを分離除去した後の液(Zn含有液)には、ZnがZnSO4の形で溶解している。この液はそのまま亜鉛製錬工程に導入することもできるが、搬送時の取り扱い性や液のリサイクルを考慮すると、中和,硫化,溶媒抽出といった手法を実施してZnを固形物として回収することが望ましい。
[Neutralization]
Zn is dissolved in the form of ZnSO 4 in the liquid after separating and removing Ca (Zn-containing liquid). This liquid can be directly introduced into the zinc smelting process, but in consideration of handling during transportation and recycling of the liquid, it is necessary to carry out techniques such as neutralization, sulfidation, and solvent extraction to recover Zn as a solid matter. Is desirable.

中和による場合は、中和剤としてCaO,Ca(OH)2,CaCO3等のアルカリをZn含有液に添加すればよい。pHが7〜10でZnは沈殿する。元の液(Zn含有液)が前記酸化処理を経て得られたものである場合、Zn殿物はZnOを主体としたものとなる。なお、中和剤としてNaOHやKOHを使用してもZn殿物の形成は可能であるが、中和後の液を前工程に戻して繰り返し使うとなると、Na,Kの硫酸塩が可溶であるため晶析工程が必要となる。 In the case of neutralization, an alkali such as CaO, Ca (OH) 2 , or CaCO 3 may be added to the Zn-containing liquid as a neutralizing agent. Zn precipitates at pH 7-10. If the original solution (Zn-containing liquid) is obtained through the oxidation process, Zn Shingaributsu is intended mainly containing ZnO. Zn can be formed even if NaOH or KOH is used as a neutralizing agent. However, if the solution after neutralization is returned to the previous step and used repeatedly, the sulfates of Na and K are soluble. Therefore, a crystallization process is required.

中和後のスラリーを固液分離することにより、Zn含有残渣が回収される。この残渣は亜鉛製錬の原料として使用できる。他方、后液は洗浄あるいはSO2処理の用水として再利用することができる。ただし、この后液の再利用を繰り返してゆくと付着塩類の持ち込みによりNaClやKClが濃縮してくる。このため、一部はブリードオフさせて排水処理することが望ましい。 A Zn-containing residue is recovered by solid-liquid separation of the neutralized slurry. This residue can be used as a raw material for zinc smelting. On the other hand, the post-solution can be reused as water for cleaning or SO 2 treatment. However, if reuse of the solution is repeated thereafter, NaCl and KCl are concentrated due to the introduction of attached salts. For this reason, it is desirable to bleed off a part of the waste water.

図2には、最初の洗浄を行わずに本発明のSO2処理を実施する場合の飛灰処理フローの一例を示す。この場合Zn含有残渣を除去した后液は塩濃度が高いので、后液の大部分を脱Cl工程に送って排水処理することが望ましい。 FIG. 2 shows an example of a fly ash treatment flow when the SO 2 treatment of the present invention is performed without performing the first cleaning. In this case after liquid removal of Zn-containing residues higher salt concentration, it is desirable to wastewater treatment by sending most of after liquid removal Cl process.

表1に示すA飛灰を用いて、これをSO2を使用せずに硫酸浸出および中和で処理した場合(比較例)と、本発明に従ってSO2を用いて処理した場合(発明例)について、処理後のそれぞれの液と、それぞれの残渣を比較した。また、発明例については、さらに酸化処理の工程、次いで中和の工程を実施した。 When A fly ash shown in Table 1 is used and treated with sulfuric acid leaching and neutralization without using SO 2 (comparative example) and treated with SO 2 according to the present invention (invention example) About each liquid after a process, each residue was compared. Moreover, about the invention example, the process of the oxidation process and the process of neutralization were further implemented.

Figure 0004639398
Figure 0004639398

〔比較例〕
A飛灰を1000g計量し、これに蒸留水3L(リットル)を加えて飛灰混合水を得た。この飛灰混合水を60分攪拌したのち、濾過器で固液分離して、濾液aと固形分aを得た。この固形分aにさらに蒸留水0.3Lを加えて追加洗浄し、濾液bと固形分(「洗浄残渣」という)を得た。濾液aと濾液bを混合した液(「洗浄后液」という)が約3L得られた。
前記洗浄残渣を105℃で充分乾燥したのち、組成分析を行った。その結果を表2に示す。一方、前記洗浄后液についても組成分析を行った。その結果を表3に示す。
[Comparative example]
1000 g of A fly ash was weighed, and 3 L (liter) of distilled water was added thereto to obtain fly ash mixed water. The fly ash mixed water was stirred for 60 minutes and then separated into solid and liquid with a filter to obtain filtrate a and solid a. The solid a was further washed by adding 0.3 L of distilled water to obtain a filtrate b and a solid (referred to as “washing residue”). About 3 L of a liquid obtained by mixing the filtrate a and the filtrate b (referred to as “liquid after washing”) was obtained.
After the washing residue was sufficiently dried at 105 ° C., composition analysis was performed. The results are shown in Table 2. On the other hand, composition analysis was also performed on the washed solution. The results are shown in Table 3.

次に、前記洗浄残渣をパルプ濃度100g/Lでリパルプした後、硫酸を添加してpH=2に調整した。これを30℃で60分攪拌することにより硫酸浸出を実施した。次いでその処理液(浸出後のスラリー)にCaCO3を添加してpH=4に調整し、60分攪拌することにより中和を行った。液温は30℃とした。その後、固液分離を行い、Zn含有后液とPb含有残渣を得た。Zn含有后液の分析結果を表4に示す。Pb含有残渣は105℃で充分乾燥したのち組成分析を行った。その結果を表5に示す。 Next, after the washing residue was repulped at a pulp concentration of 100 g / L, sulfuric acid was added to adjust pH = 2. This was stirred at 30 ° C. for 60 minutes to carry out sulfuric acid leaching. Next, CaCO 3 was added to the treatment liquid (slurry after leaching) to adjust to pH = 4, and neutralization was performed by stirring for 60 minutes. The liquid temperature was 30 ° C. Thereafter, solid-liquid separation was performed to obtain a Zn-containing after-solution and a Pb-containing residue. Table 4 shows the analysis results of the Zn-containing post-solution. The Pb-containing residue was sufficiently dried at 105 ° C. and then subjected to composition analysis. The results are shown in Table 5.

Figure 0004639398
Figure 0004639398

Figure 0004639398
Figure 0004639398

Figure 0004639398
Figure 0004639398

Figure 0004639398
Figure 0004639398

〔発明例〕
A飛灰を1000g計量し、前記比較例と同じ方法で洗浄し、洗浄残渣と洗浄后液を得た。洗浄残渣をパルプ濃度100g/Lでリパルプし、このスラリー8Lに純SO2ガスを吹き込んで「SO2処理」を実施した。SO2ガス吹き込み速度は8L/minとした。この場合G/L比は60となる。液温は15〜40℃の範囲であった。ガス吹き込み中、機械的攪拌も行った。反応中、酸化還元電位(Ag/AgCl電極基準)およびpHを監視した。それによると10〜20分程度で反応はほとんど終了していると考えられたが、その後もガス吹き込みおよび機械的攪拌を継続し、最終的に反応時間は60分とした。最終の酸化還元電位は150mV,pHは2.2であった。
[Invention Example]
1000 g of A fly ash was weighed and washed in the same manner as in the comparative example to obtain a washing residue and a washed solution. The washed residue was repulped with a pulp concentration of 100 g / L, it was carried out "SO 2 process" by blowing pure SO 2 gas to the slurry 8L. The SO 2 gas blowing speed was 8 L / min. In this case, the G / L ratio is 60. The liquid temperature was in the range of 15-40 ° C. Mechanical agitation was also performed during gas blowing. During the reaction, the redox potential (Ag / AgCl electrode standard) and pH were monitored. According to this, it was considered that the reaction was almost completed in about 10 to 20 minutes, but after that, gas blowing and mechanical stirring were continued, and the reaction time was finally set to 60 minutes. The final redox potential was 150 mV and the pH was 2.2.

得られたスラリーを濾過器で固液分離して、SO2処理后液(Ca,Zn含有液)およびSO2処理残渣(Pb含有残渣)を得た。后液の組成分析結果を表6に示す。残渣は105℃で充分乾燥したのち組成分析した。その結果を表7に示す。 The obtained slurry was subjected to solid-liquid separation with a filter to obtain a SO 2 -treated solution (Ca, Zn-containing solution) and an SO 2 treatment residue (Pb-containing residue). Table 6 shows the composition analysis results of the back solution. The residue was thoroughly dried at 105 ° C. and analyzed for composition. The results are shown in Table 7.

Figure 0004639398
Figure 0004639398

Figure 0004639398
Figure 0004639398

表4(比較例)と表6(発明例)を対比すると、発明例ではSO2処理によりZnおよびCaを液中に溶解させた形で回収できたことがわかる。また表5(比較例)と表7(発明例)を対比すると、発明例ではPb含有残渣の量が非常に減少し、かつ残渣中のCaの量および含有量が減少していることがわかる。すなわち本発明によればSO2処理によって直接、Pb品位が高くCa品位の低いPb含有残渣が発生し、その量も低減されることから、これを再利用する鉛製錬工程側の負荷を大幅に軽減することができる。 Comparing Table 4 (Comparative Example) and Table 6 (Invention Example), it can be seen that the invention example was able to recover Zn and Ca dissolved in the liquid by SO 2 treatment. Further, when Table 5 (Comparative Example) and Table 7 (Invention Example) are compared, it can be seen that in the Invention Example, the amount of Pb-containing residue is greatly reduced, and the amount and content of Ca in the residue are reduced. . That is, according to the present invention, a Pb-containing residue having a high Pb quality and a low Ca quality is generated directly by SO 2 treatment, and the amount thereof is also reduced. Can be reduced.

次に、SO2処理后液(Ca,Zn含有液)に空気を吹き込む方法で酸化処理を実施した。空気吹き込み速度は60L/minとした。この場合G/L比は600となる。温度は45℃にコントロールした。機械的攪拌も併用した。反応中、酸化還元電位(Ag/AgCl電極基準)およびpHを監視した。それによると、反応開始10分後に一旦酸化還元電位は100mVまで下がり、pHも3.5を超えて上昇した。その後、酸化還元電位は上昇し、pHは徐々に低下した。60分経過時点で酸化還元電位は400mV,pHは2となり、変動が少なくなった。この時点でほぼ反応は終了したと考えられたが、更に様子をみるために120分まで空気吹き込みおよび機械的攪拌を継続した。最終的に酸化還元電位は450mV,pHは2.0となった。液中には白色の沈殿物が生じており、これを濾過器で固液分離して、酸化処理后液(Zn含有液)と酸化処理残渣(Ca含有残渣)のケーキを得た。后液の分析結果を表8に、残渣の分析結果を表9に示す。 Next, oxidation treatment was performed by blowing air into the solution after SO 2 treatment (Ca, Zn-containing solution). The air blowing speed was 60 L / min. In this case, the G / L ratio is 600. The temperature was controlled at 45 ° C. Mechanical agitation was also used. During the reaction, the redox potential (Ag / AgCl electrode standard) and pH were monitored. According to this, the oxidation-reduction potential once decreased to 100 mV 10 minutes after the start of the reaction, and the pH also rose above 3.5. Thereafter, the redox potential increased and the pH gradually decreased. After 60 minutes, the oxidation-reduction potential was 400 mV, the pH was 2, and the fluctuation was small. At this point, the reaction was considered to be almost complete, but air blowing and mechanical agitation were continued for 120 minutes to see further. Eventually, the redox potential was 450 mV, and the pH was 2.0. A white precipitate was formed in the liquid, and this was solid-liquid separated with a filter to obtain a cake of a post-oxidation treatment solution (Zn-containing solution) and an oxidation treatment residue (Ca-containing residue). Table 8 shows the analysis results of the rear solution, and Table 9 shows the analysis results of the residue.

Figure 0004639398
Figure 0004639398

Figure 0004639398
Figure 0004639398

表8,表9から、酸化処理によりCaを選択的に沈殿させ、CaとZnを分離回収できたことがわかる。すなわち、SO2処理と酸化処理を組み合わせると、ガスを吹き込むという簡単な操作で飛灰からPb、そしてCa,Znを分離回収できた。なお、X線回折の結果、Ca含有残渣のケーキは石膏であることが確認された。 From Tables 8 and 9, it can be seen that Ca was selectively precipitated by the oxidation treatment, and Ca and Zn could be separated and recovered. That is, when SO 2 treatment and oxidation treatment were combined, Pb, Ca, and Zn could be separated and recovered from the fly ash by a simple operation of blowing gas. As a result of X-ray diffraction, it was confirmed that the Ca-containing residue cake was gypsum.

次に、酸化処理后液(Zn含有液)にNaOHを添加する方法で中和した。Na濃度が100g/Lの溶液を調製し、これを酸化処理后液に添加してpHが8になるようにして中和した。NaOH溶液の消費量は430mLであった。中和により白色の沈殿を生じたので、これを固液分離し、中和后液と中和残渣(Zn含有残渣)のケーキを得た。后液の分析結果を表10に、残渣の分析結果を表11に示す。   Next, the solution after the oxidation treatment (Zn-containing solution) was neutralized by adding NaOH. A solution having an Na concentration of 100 g / L was prepared, and this was added to the solution after the oxidation treatment to neutralize the solution so that the pH became 8. The consumption of NaOH solution was 430 mL. Since white precipitate was formed by neutralization, this was subjected to solid-liquid separation to obtain a post-neutralization solution and a cake of neutralization residue (Zn-containing residue). Table 10 shows the analysis results of the rear solution, and Table 11 shows the analysis results of the residue.

Figure 0004639398
Figure 0004639398

Figure 0004639398
Figure 0004639398

表10からわかるように、この后液はCa,Zn,Pbの含有量が低く、最初の洗浄工程、あるいはSO2処理工程に供給する用水として十分再利用可能なものである。また表11からわかるように、中和残渣のケーキはZn含有量が高く、亜鉛製錬の原料として好ましいものである。 As can be seen from Table 10, the subsequent solution has a low content of Ca, Zn, and Pb, and can be sufficiently reused as water to be supplied to the first cleaning step or the SO 2 treatment step. As can be seen from Table 11, the cake of neutralization residue has a high Zn content and is preferable as a raw material for zinc smelting.

〔発明例〕
飛灰Aを用いて、実施例1の発明例と同じ方法で洗浄およびSO2処理を行った。得られたSO2処理后液およびSO2処理残渣はそれぞれ表6および表7に示したものと同様である。ここでは、このSO2処理后液(Ca,Zn含有液)に硫酸を添加する方法により、Caの選択的沈殿を試みた。
表6と同様のSO2処理后液(Ca,Zn含有液)6.2Lに対し、硫酸237gを加えた。pHは0.9となった。白色の沈殿が生じたので、10分間攪拌したのち固液分離した。得られた后液(「硫酸置換后液」という)の分析結果を表12に、残渣(「硫酸置換残渣」という)の分析結果を表13に示す。
[Invention Example]
Using fly ash A, cleaning and SO 2 treatment were performed in the same manner as in the inventive example of Example 1. The obtained SO 2 after-treatment solution and SO 2 treatment residue are the same as those shown in Table 6 and Table 7, respectively. Here, selective precipitation of Ca was attempted by a method in which sulfuric acid was added to this SO 2 -treated solution (Ca, Zn-containing solution).
237 g of sulfuric acid was added to 6.2 L of the SO 2 -treated solution (Ca, Zn-containing solution) similar to Table 6. The pH was 0.9. Since a white precipitate was formed, the mixture was stirred for 10 minutes and then separated into solid and liquid. Table 12 The results of the analysis of the resulting after liquid (referred to as "sulfate substitution after solution") indicates the residue analysis results of (referred to as "sulfate substituted residue") in Table 13.

Figure 0004639398
Figure 0004639398

Figure 0004639398
Figure 0004639398

表12,表13から、硫酸を添加することによりCaを選択的に沈殿させ、CaとZnを分離回収できたことがわかる。X線回折の結果、硫酸置換残渣(Ca含有残渣)のケーキは石膏であることが確認された。 From Tables 12 and 13, it can be seen that Ca was selectively precipitated by adding sulfuric acid, and Ca and Zn could be separated and recovered. As a result of X-ray diffraction, it was confirmed that the cake of the sulfuric acid substitution residue (Ca-containing residue) was gypsum.

次に、硫酸置換后液(Zn含有液)に、ここでは生石灰CaOを添加する方法で中和した。機械的攪拌を行いながら生石灰を粉状のまま徐々に液中に投入し、pHを8に調整した。CaOの添加量は合計74gであった。反応時間は60分とした。酸化還元電位(Ag/AgCl電極基準)は最終的に100mVになった。中和により白色の沈殿を生じたので、これを固液分離し、中和后液と中和残渣(Zn含有残渣)のケーキを得た。后液の分析結果を表14に、残渣の分析結果を表15に示す。   Next, the sulfuric acid substitution after solution (Zn-containing solution), and neutralized with a method of adding quicklime CaO here. While performing mechanical stirring, quick lime was gradually poured into the liquid in a powder state, and the pH was adjusted to 8. The total amount of CaO added was 74 g. The reaction time was 60 minutes. The oxidation-reduction potential (Ag / AgCl electrode standard) finally reached 100 mV. Since white precipitate was formed by neutralization, this was subjected to solid-liquid separation to obtain a post-neutralization solution and a cake of neutralization residue (Zn-containing residue). Table 14 shows the analysis results of the rear solution, and Table 15 shows the analysis results of the residue.

Figure 0004639398
Figure 0004639398

Figure 0004639398
Figure 0004639398

表14からわかるように、この后液はCa,Zn,Pbの含有量が低く、最初の洗浄工程、あるいはSO2処理工程に供給する用水として十分再利用可能なものである。また表15からわかるように、中和残渣のケーキはZn含有量が高く、亜鉛製錬の原料として好ましいものである。 As can be seen from Table 14, the subsequent solution has a low content of Ca, Zn, and Pb, and is sufficiently reusable as water to be supplied to the first cleaning step or the SO 2 treatment step. As can be seen from Table 15, the neutralized residue cake has a high Zn content and is preferable as a raw material for zinc smelting.

〔発明例〕
飛灰Aを用いて、実施例1の発明例と同じ方法で洗浄およびSO2処理を行った。得られたSO2処理后液およびSO2処理残渣はそれぞれ表6および表7に示したものと同様である。ここでは、このSO2処理后液(Ca,Zn含有液)に不活性ガス(N2ガス)を吹き込むことでSO2の脱気反応を進行させ、次いで硫酸を添加する方法により、Caの選択的沈殿を試みた。
表6と同様のSO2処理后液(Ca,Zn含有液)6.2Lに対し、N2ガスを60L/minの流量で120分間吹き込んだ。N2ガス吹き込み中、SO2ガスが発生し液から放出された。pHは3.9となり、白色の沈殿が生じた。酸化還元電位(Ag/AgCl電極基準)は230mVであった。引き続いてSO2を脱気した液(スラリー)6.2Lに硫酸356gを添加した。pHは1.9となり酸化還元電位は300mVとなった。白色の沈殿物は見かけ上はそのままであった。そして60分間攪拌した後、スラリーを固液分離した。
得られた后液(「N2+硫酸置換后液」という)の分析結果を表16に、また残渣(「N2+硫酸置換残渣」という)を105℃で十分乾燥させた後の分析結果を表17に示す。
[Invention Example]
Using fly ash A, cleaning and SO 2 treatment were performed in the same manner as in the inventive example of Example 1. The obtained SO 2 after-treatment solution and SO 2 treatment residue are the same as those shown in Table 6 and Table 7, respectively. Here, the selection of Ca is carried out by a method in which a degassing reaction of SO 2 proceeds by blowing an inert gas (N 2 gas) into this SO 2 -treated solution (Ca, Zn-containing solution) and then sulfuric acid is added. Attempts were made to precipitate.
Table 6 similar SO 2 treatment after solution (Ca, Zn-containing solution) to 6.2 L, was blown for 120 minutes N 2 gas at a flow rate of 60L / min. During the N 2 gas blowing, SO 2 gas was generated and released from the liquid. The pH was 3.9 and a white precipitate was formed. The oxidation-reduction potential (Ag / AgCl electrode reference) was 230 mV. Subsequently, 356 g of sulfuric acid was added to 6.2 L of a liquid (slurry) from which SO 2 was degassed. The pH was 1.9 and the redox potential was 300 mV. The white precipitate was apparently intact. Then, after stirring for 60 minutes, the slurry was subjected to solid-liquid separation.
The analysis results of the resulting back solution (referred to as “N 2 + sulfuric acid replacement post-solution”) are shown in Table 16, and the residue (referred to as “N 2 + sulfuric acid replacement residue”) is sufficiently dried at 105 ° C. Is shown in Table 17.

Figure 0004639398
Figure 0004639398

Figure 0004639398
Figure 0004639398

表16,表17から、不活性ガス吹き込み+硫酸添加によりCaを選択的に沈殿させ、CaとZnを分離回収できたことがわかる。X線回折の結果、N2+硫酸置換残渣(Ca含有残渣)のケーキは石膏であることが確認された。 Table 16, Table 17, selectively precipitate Ca by inert gas blowing + the addition of sulfuric acid, it is understood that could be separated recover Ca and Zn. As a result of X-ray diffraction, it was confirmed that the cake of N 2 + sulfuric acid substitution residue (Ca-containing residue) was gypsum.

次に、N2+硫酸置換后液(Zn含有液)に、ここでも生石灰CaOを添加する方法で中和した。機械的攪拌を行いながら生石灰を粉状のまま徐々に液中に投入し、pHを8に調整した。CaOの添加量は合計89gであった。反応時間は60分とした。酸化還元電位(Ag/AgCl電極基準)は300mVになった。中和により白色の沈殿を生じたので、これを固液分離し、中和后液と中和残渣(Zn含有残渣)のケーキを得た。后液の分析結果を表18に、残渣の分析結果を表19に示す。 Next, neutralization was performed by adding quick lime CaO to the N 2 + sulfuric acid-substituted solution (Zn-containing solution). While performing mechanical stirring, quick lime was gradually poured into the liquid in a powder state, and the pH was adjusted to 8. The total amount of CaO added was 89 g. The reaction time was 60 minutes. The oxidation-reduction potential (Ag / AgCl electrode standard) was 300 mV. Since resulting white precipitate by neutralization, which was solid-liquid separation to obtain a cake of neutralized after solution neutralization residue (Zn-containing residue). Table 18 shows the analysis results of the rear solution, and Table 19 shows the analysis results of the residue.

Figure 0004639398
Figure 0004639398

Figure 0004639398
Figure 0004639398

表18からわかるように、この后液はCa,Zn,Pbの含有量が低く、最初の洗浄工程、あるいはSO2処理工程に供給する用水として十分再利用可能なものである。また表19からわかるように、中和残渣のケーキはZn含有量が高く、亜鉛製錬の原料として好ましいものである。 As can be seen from Table 18, the subsequent solution has a low content of Ca, Zn, and Pb, and is sufficiently reusable as water to be supplied to the first cleaning step or the SO 2 treatment step. As can be seen from Table 19, the neutralized residue cake has a high Zn content and is preferable as a raw material for zinc smelting.

本発明の処理を含む飛灰処理プロセスのフロー図。The flowchart of the fly ash processing process including the process of this invention. 本発明の処理を含む飛灰処理プロセスのフロー図。The flowchart of the fly ash processing process including the process of this invention.

Claims (7)

Ca、Zn、Pb含有飛灰と水溶媒を混合した飛灰スラリーにSO2添加することにより、飛灰中のCaおよびZnを水溶媒中に溶解させ、その後、固液分離してCa,Zn含有液とPb含有残渣を回収する工程を有する飛灰の処理方法。 By adding SO 2 to the fly ash slurry in which the fly ash containing Ca, Zn, and Pb and the aqueous solvent are mixed , Ca and Zn in the fly ash are dissolved in the aqueous solvent . A method for treating fly ash comprising a step of recovering a Zn-containing liquid and a Pb-containing residue . 前記飛灰スラリーは、洗浄を経てNa,K,Clの含有量を減じた飛灰をリパルプしたものである請求項1に記載の飛灰の処理方法。 2. The fly ash treatment method according to claim 1, wherein the fly ash slurry is obtained by repulping fly ash that has been washed to reduce the content of Na, K, and Cl. 3. 請求項1または2に記載の処理方法により回収されたCa,Zn含有液に酸化剤を添加することにより、Caを選択的に沈殿させるとともにZnを液中に溶解させた状態で残し、その後、固液分離してZn含有液とCa含有残渣を回収する工程を有する飛灰の処理方法。 Claim 1 or 2 Ca which is more recovered processing method according to, by adding an oxidizing agent to the Zn-containing solution, leaving in a state of being dissolved Zn in the solution with to selectively precipitate Ca, then The processing method of fly ash which has the process of collect | recovering Zn containing liquid and Ca containing residue by solid-liquid separation . 前記酸化剤が酸素を含む気体である請求項に記載の飛灰の処理方法。 The fly ash treatment method according to claim 3 , wherein the oxidizing agent is a gas containing oxygen. 請求項1または2に記載の処理方法により回収されたCa,Zn含有液に硫酸を添加することにより、Caを選択的に沈殿させるとともにZnを液中に溶解させた状態で残し、その後、固液分離してZn含有液とCa含有残渣を回収する工程を有する飛灰の処理方法。 Claim 1 or Ca that is more recovered processing method according to 2, by adding sulfuric acid to Zn-containing solution, leaving in a state of being dissolved Zn in the solution with to selectively precipitate Ca, then, A fly ash treatment method comprising a step of solid-liquid separation to recover a Zn-containing liquid and a Ca-containing residue . 請求項1または2に記載の処理方法により回収されたCa,Zn含有液に不活性ガスを吹き込むことにより、SO2の脱気反応を進行させ、次いで硫酸を添加することにより、Caを選択的に沈殿させるとともにZnを液中に溶解させ、その後、固液分離してZn含有液とCa含有残渣を回収する工程を有する飛灰の処理方法。 Claim 1 or 2 Ca which is more recovered processing method according to, by blowing an inert gas into the Zn-containing solution, allowed to proceed for degassing reaction SO 2, followed by the addition of sulfuric acid, choose the Ca manner with precipitating dissolved Zn in the liquid, then the processing method of fly ash comprising the step of by solid-liquid separation and recovery of Zn-containing solution and Ca-containing residue. 請求項のいずれかに記載の処理方法によりCaと分離して回収されたZn含有液に、アルカリを添加して中和することによりZnを沈殿させ、その後、固液分離してZn含有残渣を回収するとともに、これを分離した后液を飛灰処理の用水として再利用する飛灰の処理方法。 7. Zn is precipitated by adding an alkali to the Zn-containing liquid separated and recovered by the treatment method according to any one of claims 3 to 6 to neutralize it , followed by solid-liquid separation to separate Zn. A method for treating fly ash, in which the residue is collected and the separated liquid is reused as water for fly ash treatment.
JP2004097254A 2004-03-29 2004-03-29 Method for treating fly ash using sulfur dioxide Expired - Fee Related JP4639398B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004097254A JP4639398B2 (en) 2004-03-29 2004-03-29 Method for treating fly ash using sulfur dioxide
PCT/JP2005/002379 WO2005092528A1 (en) 2004-03-29 2005-02-09 Method for treatment of fly ash using sulfur dioxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004097254A JP4639398B2 (en) 2004-03-29 2004-03-29 Method for treating fly ash using sulfur dioxide

Publications (2)

Publication Number Publication Date
JP2005279446A JP2005279446A (en) 2005-10-13
JP4639398B2 true JP4639398B2 (en) 2011-02-23

Family

ID=35056037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004097254A Expired - Fee Related JP4639398B2 (en) 2004-03-29 2004-03-29 Method for treating fly ash using sulfur dioxide

Country Status (2)

Country Link
JP (1) JP4639398B2 (en)
WO (1) WO2005092528A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107247470A (en) * 2017-06-19 2017-10-13 青海盐湖工业股份有限公司 The automatic control system of plasm scouring again in a kind of production of potash fertilizer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5063885B2 (en) * 2005-10-27 2012-10-31 太平洋セメント株式会社 Lead recovery apparatus and method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000254619A (en) * 1999-03-11 2000-09-19 Chiyoda Corp Treatment of solid and waste gas, containing dioxins

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3917222B2 (en) * 1995-11-14 2007-05-23 新興化学工業株式会社 Processing method of dust collector ash

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000254619A (en) * 1999-03-11 2000-09-19 Chiyoda Corp Treatment of solid and waste gas, containing dioxins

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107247470A (en) * 2017-06-19 2017-10-13 青海盐湖工业股份有限公司 The automatic control system of plasm scouring again in a kind of production of potash fertilizer
CN107247470B (en) * 2017-06-19 2020-01-10 青海盐湖工业股份有限公司 Automatic control system for repulping and washing in potash fertilizer production

Also Published As

Publication number Publication date
WO2005092528A1 (en) 2005-10-06
JP2005279446A (en) 2005-10-13

Similar Documents

Publication Publication Date Title
US6843976B2 (en) Reduction of zinc oxide from complex sulfide concentrates using chloride processing
JP4478585B2 (en) How to recover valuable materials from fly ash
JP4549579B2 (en) Waste treatment method with high chlorine and lead content
JP4710034B2 (en) Arsenic-containing material treatment method
EP2333895B1 (en) Method for desulphurization of battery paste
WO2005084837A1 (en) Method for treatment of fly ash involving fixation of carbon dioxide
JP2017213507A (en) Waste acid treatment method
WO2005084838A1 (en) Method for treatment of fly ash
JP4826532B2 (en) Processing method of molten fly ash
JP7016463B2 (en) How to collect tellurium
JP2018069108A (en) Method for removing chlorine components from ashes
JP2004307965A (en) Method for removing arsenic and antimony by separation from slag fuming dust
WO2000041968A9 (en) Process for the recovery of sulphur from lead-acid battery scrap
JP4529969B2 (en) Method for removing selenium from selenate-containing liquid
JP4581715B2 (en) Dust disposal method
JP4639398B2 (en) Method for treating fly ash using sulfur dioxide
JP2000109939A (en) Separation of lead, tin and bismuth from lead slag
JP2003225633A (en) Method of treating chloride-containing dust
JP5084272B2 (en) Method for treating heavy metals containing zinc and substances containing chlorine
KR20160124160A (en) PROCESS FOR REDUCING THE AMOUNTS OF ZINC(Zn) AND LEAD(Pb)IN MATERIALS CONTAINING IRON(Fe)
JP2008246398A (en) Method for recovering gypsum from molten fly ash
JP4044068B2 (en) Method for treating substances containing heavy metals
WO2005040437A1 (en) Method of wet treatment of fly ash
JP4350262B2 (en) Residue treatment method
JP2003164829A (en) Method for treating heavy metal-containing fly ash

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101102

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20101112

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20101112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20101112

R150 Certificate of patent or registration of utility model

Ref document number: 4639398

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees