JP2015182052A - Method of treating waste acid generated in copper smelting - Google Patents

Method of treating waste acid generated in copper smelting Download PDF

Info

Publication number
JP2015182052A
JP2015182052A JP2014062926A JP2014062926A JP2015182052A JP 2015182052 A JP2015182052 A JP 2015182052A JP 2014062926 A JP2014062926 A JP 2014062926A JP 2014062926 A JP2014062926 A JP 2014062926A JP 2015182052 A JP2015182052 A JP 2015182052A
Authority
JP
Japan
Prior art keywords
primary
slurry
waste acid
gypsum
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014062926A
Other languages
Japanese (ja)
Other versions
JP6206287B2 (en
Inventor
窪田 直樹
Naoki Kubota
直樹 窪田
和典 谷嵜
Kazunori Tanizaki
和典 谷嵜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2014062926A priority Critical patent/JP6206287B2/en
Publication of JP2015182052A publication Critical patent/JP2015182052A/en
Application granted granted Critical
Publication of JP6206287B2 publication Critical patent/JP6206287B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Removal Of Specific Substances (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of treating waste acid generated in copper smelting which reduces work necessary for maintenance inspection, including monitoring of a dehydration installation and replacement of a filter cloth, in individual dehydration steps for a slurry rich in sulfide precipitates obtained in primary and secondary steps and is efficient and excellent in economy.SOLUTION: A method of treating waste acid generated in copper smelting includes: a primary sulfurization step of mixing waste acid with a sulfurizing agent to sulfurize heavy metals and separating the resultant mixture into a primary slurry containing sulfide precipitation and a primary clear liquid; a gypsum production step of mixing the primary clear liquid with a neutralizer to convert sulfuric acid to gypsum and solid/liquid-separating the resultant mixture to obtain a gypsum final liquid; and a secondary sulfurization step of mixing the gypsum final liquid with a sulfurizing agent to sulfurize heavy metals and separating the resultant mixture into a secondary slurry containing sulfide precipitation and a secondary clear liquid. In the secondary sulfurization step, the secondary slurry after separation of the secondary clear liquid is returned to the primary sulfurization step to mix with waste acid.

Description

本発明は、銅製錬において発生する廃酸から重金属を除去する廃酸の処理方法に関し、更に詳しくは脱水設備並びにその監視や保守点検の作業の削減を図ることができる廃酸の処理方法に関する。   The present invention relates to a waste acid treatment method for removing heavy metals from waste acid generated in copper smelting, and more particularly to a dehydration facility and a waste acid treatment method capable of reducing the monitoring and maintenance work.

従来から、銅製錬において発生する亜硫酸ガス(SO)は、硫酸工場に送られ、ガス精製工程、乾燥工程、転化工程及び吸収工程を経て硫酸が製造されている。この銅製錬で発生する亜硫酸ガスのうち1〜3%程度は、ガス精製工程における冷却段階で冷却されて硫酸となる。しかし、ガス精製工程以前の製錬排ガス中には重金属を含む煙灰やヒュームが存在するため、こうして得られた硫酸(以降、廃酸と称する)には不純物が多く含まれ、製品硫酸とはならない。 Conventionally, sulfurous acid gas (SO 2 ) generated in copper smelting is sent to a sulfuric acid factory, and sulfuric acid is produced through a gas purification process, a drying process, a conversion process, and an absorption process. About 1 to 3% of the sulfurous acid gas generated in this copper smelting is cooled in the cooling stage in the gas purification process to become sulfuric acid. However, since smelting ash and fumes containing heavy metals exist in the smelting exhaust gas before the gas purification process, the sulfuric acid thus obtained (hereinafter referred to as waste acid) contains a lot of impurities and does not become product sulfuric acid. .

かかる廃酸の処理方法としては、特許文献1に記載されているように、硫酸分及び重金属を分離除去したうえで、排水処理工程へ送る方法が知られている。また、特許文献2に記載されているように、廃酸から重金属を分離除去したうえで、石膏を製造する方法が知られている。これら廃酸の処理方法の一具体例について、図1を参照して以下に説明する。   As a method for treating such waste acid, as described in Patent Document 1, a method of separating and removing sulfuric acid and heavy metals and sending them to a wastewater treatment step is known. Further, as described in Patent Document 2, a method for producing gypsum after separating and removing heavy metals from waste acid is known. One specific example of the treatment method of these waste acids will be described below with reference to FIG.

まず、廃酸を1次硫化工程において、1次硫化反応ステップ、1次分離ステップ及び1次脱水ステップの順に処理する。即ち、1次硫化反応ステップでは、廃酸に水硫化ナトリウム(NaHS)又は硫化水素(HS)を混合し、酸化還元電位(ORP)約120mV(銀−塩化銀電極基準)として硫化澱物を含むスラリーを得る。このスラリーを1次分離ステップにおいて濃縮等により分離し、硫化澱物に富む1次スラリーと1次清澄液とを得る。この1次スラリーは1次脱水ステップで水分を低減させ、硫化澱物として製錬工程に送られる。 First, waste acid is treated in the order of a primary sulfurization reaction step, a primary separation step, and a primary dehydration step in a primary sulfurization step. That is, in the primary sulfidation reaction step, sodium hydrosulfide (NaHS) or hydrogen sulfide (H 2 S) is mixed with the waste acid, and a sulfurized starch having an oxidation-reduction potential (ORP) of about 120 mV (silver-silver chloride electrode standard). A slurry containing is obtained. This slurry is separated by concentration or the like in the primary separation step to obtain a primary slurry rich in sulfide starch and a primary clarified liquid. This primary slurry reduces moisture in the primary dehydration step and is sent to the smelting process as sulfide starch.

一方、1次分離ステップで得られた1次清澄液は、石膏前濾過ステップで濾過し、濾液として石膏始液を得る。得られた石膏始液は、次の石膏製造工程において、石灰石(炭酸カルシウム)を粉砕したものと反応させ、硫酸分を石膏として分離回収すると共に、硫酸分を取り除いた石膏終液を得る。   On the other hand, the primary clarified liquid obtained in the primary separation step is filtered in the pre-gypsum filtration step to obtain a gypsum starting liquid as the filtrate. The obtained gypsum starting liquid is reacted with pulverized limestone (calcium carbonate) in the next gypsum manufacturing process to separate and recover the sulfuric acid content as gypsum and obtain a gypsum final liquid from which the sulfuric acid content has been removed.

この石膏製造工程で得られた石膏終液は、2次硫化工程において2次硫化反応ステップ、2次分離ステップ及び2次脱水ステップの順に処理される。即ち、2次硫化反応ステップでは、石膏終液に水硫化ナトリウム又は硫化水素を混合し、ORPを約10mVとして硫化澱物を含むスラリーを得る。このスラリーを2次分離ステップで濃縮等により分離して、硫化澱物に富む2次スラリーと2次清澄液を得る。得られた2次スラリーは、2次脱水ステップで水分を低減させ、硫化澱物として回収して製錬工程へ送る。また、2次清澄液は排水処理工程に送られて処理される。   The gypsum final solution obtained in this gypsum manufacturing process is processed in the order of the secondary sulfidation reaction step, the secondary separation step, and the secondary dehydration step in the secondary sulfidation step. That is, in the secondary sulfidation reaction step, sodium hydrosulfide or hydrogen sulfide is mixed in the gypsum final solution to obtain a slurry containing sulfide starch with an ORP of about 10 mV. This slurry is separated by concentration or the like in the secondary separation step to obtain a secondary slurry rich in sulfide starch and a secondary clarified liquid. The obtained secondary slurry reduces moisture in the secondary dehydration step, collects it as a sulfide starch, and sends it to the smelting process. Further, the secondary clarified liquid is sent to the wastewater treatment process for processing.

上記した廃酸の処理方法は、廃酸の浄化だけでなく有価な石膏を回収できる点、石膏製造工程より前に1次硫化工程を経ることで廃酸から重金属を硫化澱物として除去でき、石膏の品質が向上する点、2次硫化工程より前に石膏製造工程があることで石膏終液の酸濃度を低減でき、2次硫化工程において硫化水素の発生を抑えながら反応を進められる点において優れている。   The above-mentioned waste acid treatment method can recover not only waste acid but also valuable gypsum, and can remove heavy metals as sulfurized starch from waste acid by passing through the primary sulfidation step before the gypsum production step. The point that the quality of gypsum is improved, and that there is a gypsum manufacturing process before the secondary sulfidation process, so that the acid concentration of the gypsum final solution can be reduced and the reaction can proceed while suppressing the generation of hydrogen sulfide in the secondary sulfidation process. Are better.

特開2004−275895号公報JP 2004-275895 A 特開2005−154196号公報JP 2005-154196 A

上記した従来の廃酸の処理方法において、1次及び2次硫化工程で得られる硫化澱物中に残存している水分は、硫化澱物が供給された製錬工程の炉内で水蒸気爆発を起こしたり炉内の熔体を凝固させたりして、重大なトラブルを発生させる危険がある。そのため、上記した廃酸の処理方法では、1次及び2次脱水ステップで回収した硫化澱物は、製錬工程に供給して炉に装入するまでの間に水分を十分に低減しておく必要がある。   In the conventional waste acid treatment method described above, the water remaining in the sulfurized starch obtained in the primary and secondary sulfidizing processes is subjected to a steam explosion in the furnace of the smelting process to which the sulfurized starch is supplied. There is a danger of causing serious troubles by causing them to solidify the melt in the furnace. Therefore, in the above-described waste acid treatment method, the sulfide starch recovered in the primary and secondary dehydration steps is sufficiently reduced in moisture before being supplied to the smelting process and charged into the furnace. There is a need.

そのため、上記廃酸の処理方法における1次脱水ステップ及び2次脱水ステップでは、硫化澱物を含むスラリー中の水分率を十分に低減できるような脱水方法が採用されている。具体的な脱水方法としてはフィルタープレスを用いることが多いが、その他の脱水方法として、脱水後の硫化澱物の水分率はフィルタープレスよりもやや高くなるが、真空式濾過機、ベルトプレス、遠心分離機の使用も可能である。   Therefore, in the primary dehydration step and the secondary dehydration step in the waste acid treatment method, a dehydration method that can sufficiently reduce the moisture content in the slurry containing sulfide starch is employed. As a specific dehydration method, a filter press is often used, but as another dehydration method, the moisture content of the dehydrated starch is slightly higher than that of the filter press, but a vacuum filter, belt press, centrifuge A separator can also be used.

しかし、上記脱水方法に共通の欠点として、単位時間あたりの処理能力が低いことが挙げられる。そこで従来は、低い脱水の処理能力を補うために、脱水設備を複数設置して並列処理を行うか、あるいは、脱水に先立って硫化澱物の濃縮を行い、硫化澱物から水分を分離しておくことが一般に行われている。例えば脱水すべき液量が多い場合には、濃縮方法としてシックナーを用いることが多い。   However, a common drawback of the dehydration method is that the processing capacity per unit time is low. Therefore, in the past, in order to compensate for the low dewatering capacity, multiple dehydration facilities were installed to perform parallel processing, or prior to dehydration, sulfide starch was concentrated to separate water from sulfide starch. It is generally done. For example, when the amount of liquid to be dehydrated is large, a thickener is often used as a concentration method.

上記脱水方法の中でフィルタープレスは回分式であり、閉板、濾過、圧搾、ブロー、開板、ケーキ排出及び濾布洗浄といった各操作が1つの設備で順次行われる。しかし、これらの操作の中でスラリーを処理できるのは濾過操作のみであり、従って濾過操作を行わない間は、フィルタープレスの前工程にある設備はスラリーの排出を停止する必要がある。   In the dehydration method, the filter press is a batch type, and each operation such as closing plate, filtration, pressing, blowing, opening plate, cake discharging and filter cloth washing is sequentially performed in one facility. However, only the filtration operation can process the slurry in these operations, and therefore, the equipment in the pre-process of the filter press needs to stop discharging the slurry while the filtration operation is not performed.

そこで、前工程にある設備の停止を避けるために、フィルタープレスの前段に貯液槽を設置し、フィルタープレスが濾過操作を行わない間は貯液槽にスラリーを貯めるという方法が行われているが、その場合でも貯液槽が満ちた場合には前工程にある設備を停止する必要がある。そのため、常に貯液槽の液位を監視して、次の濾過操作が開始するまでの間、スラリーを受け入れる余地が残っているか予測する必要があった。   Therefore, in order to avoid stopping the equipment in the previous process, a liquid storage tank is installed in the front stage of the filter press, and the slurry is stored in the liquid storage tank while the filter press does not perform the filtering operation. However, even in this case, when the liquid storage tank is full, it is necessary to stop the equipment in the previous process. Therefore, it is necessary to always monitor the liquid level in the liquid storage tank and predict whether there is room for receiving the slurry until the next filtration operation starts.

また、フィルタープレスの処理能力は、濾布の目詰まりによって時間と共に低下する。そのため、フィルタープレスは定期的な濾布洗浄によって濾布の目詰まりを取り除く機能を備えている。しかし、定期的な濾布洗浄によって目詰まりを完全に解消することはできず、処理能力の低下を遅らせることしかできない。この処理能力低下に対しては、ポンプを用いてフィルタープレスに高圧力で給液したり、それでも処理能力が十分でない場合は濾布を交換したりする。しかし、濾布の交換には時間と人手を要するため、貯液槽の空き容量に余裕がある間に多くの作業員で交換作業を行う必要がある。   Also, the throughput of the filter press decreases with time due to clogging of the filter cloth. Therefore, the filter press has a function of removing clogging of the filter cloth by periodically cleaning the filter cloth. However, clogging cannot be completely eliminated by periodic filter cloth washing, and only a reduction in processing capacity can be delayed. To reduce the processing capacity, a pump is used to supply liquid to the filter press at a high pressure, or when the processing capacity is still insufficient, the filter cloth is replaced. However, since replacement of the filter cloth requires time and manpower, it is necessary to perform replacement work by a large number of workers while there is a sufficient free space in the liquid storage tank.

更に、濾布の交換を要する状態として、濾布の目詰まり以外にも、濾布の破れが挙げられる。濾布が破れる原因としては、給液による化学的腐食、高圧力の給液による摩擦、給液中の固く尖った澱物や異物による力の集中、フィルタープレスを開閉する際の機械的衝撃などが挙げられる。濾布が破れると、給液圧力が低下して有効に濾過されず、破れ目からスラリーが飛散して失われるうえ、飛散したスラリーが周辺設備に入って故障や汚染の原因となることから、直ちに濾布の交換が必要となる。   Furthermore, as a state that requires replacement of the filter cloth, besides the filter cloth being clogged, the filter cloth is broken. Causes of filter cloth breaking include chemical corrosion due to liquid supply, friction due to high-pressure liquid supply, concentration of force due to hard and sharp starch and foreign matters in the liquid supply, mechanical impact when opening and closing the filter press, etc. Is mentioned. If the filter cloth is torn, the supply pressure will drop and it will not be filtered effectively. It is necessary to change the filter cloth.

このような濾布の破れに対しても、濾布交換による設備の停止時間を最小化するために、常に運転状態を監視し、給液されるスラリー中に異物が混入していないか、濾布に毛羽立ちや傷がないか、濾布表面に液のにじみはないか等により、濾布が破れる時期を予測する必要があった。また、フィルタープレスは可動部が多いため、監視項目として油圧は適切に維持されているか、歯車に潤滑油膜は形成されているか、濾板は割れていないか等も点検し、時間のかかる部品交換や補修の必要性を判断する必要がある。   Even when such a filter cloth breaks, in order to minimize the downtime of the equipment due to the filter cloth replacement, the operation state is constantly monitored to check whether foreign matter is mixed in the supplied slurry. It was necessary to predict when the filter cloth would break depending on whether the cloth had fuzz or scratches, or the surface of the filter cloth had smudged liquid. Since the filter press has many moving parts, it is necessary to check whether the hydraulic pressure is properly maintained as a monitoring item, whether a lubricating oil film is formed on the gear, whether the filter plate is cracked, etc. It is necessary to judge the need for repair.

本発明は、上記した従来の廃酸の処理方法における問題点に鑑みてなされたものであり、1次及び2次硫化工程で得られる硫化澱物に富むスラリーの各脱水ステップにおいて、脱水設備の監視や濾布交換等の保守点検に要する作業の削減を図り、効率的で経済性に優れた廃酸の処理方法を提供することを目的とする。   The present invention has been made in view of the problems in the conventional waste acid treatment method described above, and in each dehydration step of the slurry rich in sulfide starch obtained in the primary and secondary sulfidation steps, The purpose of the present invention is to reduce the work required for maintenance and inspection such as monitoring and filter cloth replacement, and to provide an efficient and economical waste acid treatment method.

本発明者らは、上記課題を解決するために検討を重ねた結果、例えば図1に示す従来の廃酸の処理方法において、1次スラリーと2次スラリーを単一の脱水ステップで処理することによって1次脱水ステップ及び2次脱水ステップの2つの脱水ステップを1つに集約することができれば、脱水設備の監視や保守点検に要する作業の低減になるとの着想を得た。この着想に基づき、2次硫化工程の2次分離ステップから産出する2次スラリーを1次硫化工程に繰り返して、1次分離ステップで更に液量を減少させれば、2次脱水ステップを廃止できることを見出し、本発明を完成するに至ったものである。   As a result of repeated studies to solve the above-described problems, the present inventors have processed the primary slurry and the secondary slurry in a single dehydration step, for example, in the conventional waste acid treatment method shown in FIG. The idea is that if the two dehydration steps, the primary dehydration step and the secondary dehydration step, can be integrated into one, the work required for dehydration equipment monitoring and maintenance inspection can be reduced. Based on this idea, the secondary dehydration step can be abolished if the secondary slurry produced from the secondary separation step of the secondary sulfidation step is repeated in the primary sulfidation step and the liquid volume is further reduced in the primary separation step. And the present invention has been completed.

即ち、本発明が提供する第1の廃酸の処理方法は、銅製錬で発生する廃酸に硫化剤を混合して重金属を硫化し、得られた硫化澱物を含む1次スラリーと1次清澄液とに分離する1次硫化工程と、1次清澄液に中和剤を混合して硫酸を石膏とし、固液分離して石膏終液を得る石膏製造工程と、石膏終液に硫化剤を混合して重金属を硫化し、得られた硫化澱物を含む2次スラリーと2次清澄液とに分離する2次硫化工程とを備え、2次硫化工程において2次清澄液を分離した2次スラリーを1次硫化工程に繰り返し、廃酸と混合することを特徴とする。   That is, in the first waste acid treatment method provided by the present invention, a primary slurry and a primary slurry containing a sulfided starch obtained by mixing a sulfurizing agent with waste acid generated in copper smelting to sulfidize heavy metals. A primary sulfidizing step for separating into a clarified liquid, a neutralizing agent mixed with the primary clarified liquid to make sulfuric acid into gypsum, a solid-liquid separation to obtain a gypsum final liquid, and a gypsum final liquid with a sulfurizing agent And a secondary slurry containing a secondary slurry containing the resulting sulfided starch and a secondary clarified liquid. The secondary clarified liquid was separated in the secondary sulfidizing process. The secondary slurry is repeated in the primary sulfiding step and mixed with waste acid.

また、本発明が提供する第2の廃酸の処理方法は、銅製錬で発生する廃酸に硫化剤を混合して重金属を硫化し、得られた硫化澱物を含む1次スラリーと1次清澄液とに分離する1次硫化工程と、1次清澄液に中和剤を混合して硫酸を石膏とし、固液分離して石膏終液を得る石膏製造工程と、石膏終液に硫化剤を混合して重金属を硫化し、得られた硫化澱物を含む2次スラリーと2次清澄液とに分離する2次硫化工程とを備え、2次硫化工程において2次清澄液を分離した2次スラリーを1次硫化工程に繰り返し、1次清澄液を分離した1次スラリーと混合することを特徴とする。   Further, the second waste acid treatment method provided by the present invention is to mix a sulfurizing agent with waste acid generated in copper smelting to sulfidize heavy metals, and to obtain a primary slurry and a primary slurry containing the obtained sulfided starch. A primary sulfidizing step for separating into a clarified liquid, a neutralizing agent mixed with the primary clarified liquid to make sulfuric acid into gypsum, a solid-liquid separation to obtain a gypsum final liquid, and a gypsum final liquid with a sulfurizing agent And a secondary slurry containing a secondary slurry containing the resulting sulfided starch and a secondary clarified liquid. The secondary clarified liquid was separated in the secondary sulfidizing process. The secondary slurry is repeated in the primary sulfiding step, and the primary clarified liquid is mixed with the separated primary slurry.

上記本発明による本発明が提供する第1及び第2の廃酸の処理方法において、前記1次硫化工程における1次スラリーと1次清澄液の分離、及び前記2次硫化工程における2次スラリーと2次清澄液の分離は、それぞれシックナーでの濃縮による分離であることが好ましい。その場合、上記2次硫化工程の濃縮分離で得られる2次スラリーの量は、1次硫化工程の濃縮分離で得られる1次スラリーの量に対して、10〜50体積%であることが好ましい。   In the first and second waste acid treatment methods provided by the present invention according to the present invention, separation of the primary slurry and primary clarified liquid in the primary sulfidation step, and secondary slurry in the secondary sulfidation step, The separation of the secondary clarified liquid is preferably separation by concentration with a thickener. In that case, the amount of the secondary slurry obtained by the concentration separation in the secondary sulfidation step is preferably 10 to 50% by volume with respect to the amount of the primary slurry obtained by the concentration separation in the primary sulfidation step. .

本発明によれば、銅製錬において発生する廃酸を処理する際に、1次及び2次硫化工程で得られる硫化澱物に富むスラリーの脱水ステップを一つに集約することができるため、脱水設備そのものも削減でき1つだけ設ければよい。従って、脱水設備の監視や濾布交換等の保守点検に要する作業の削減を図ることができ、効率的で経済性に優れた廃酸の処理が可能である。   According to the present invention, when the waste acid generated in copper smelting is treated, the dehydration step of the slurry rich in sulfide starch obtained in the primary and secondary sulfidation processes can be integrated into one, so that dehydration can be performed. The equipment itself can be reduced and only one is required. Therefore, it is possible to reduce the work required for maintenance inspection such as monitoring of dehydration equipment and filter cloth replacement, and it is possible to treat waste acid efficiently and economically.

従来の廃酸の処理方法の一例を示す工程図である。It is process drawing which shows an example of the processing method of the conventional waste acid. 本発明による第1の廃酸の処理方法の一例を示す工程図である。It is process drawing which shows an example of the processing method of the 1st waste acid by this invention. 本発明による第2の廃酸の処理方法の一例を示す工程図である。It is process drawing which shows an example of the processing method of the 2nd waste acid by this invention.

本発明による第1の廃酸の処理方法は、図2に示すように、図1に示す従来の廃酸処理方法と比較して、2次硫化工程において2次清澄液を分離した2次スラリーを1次硫化工程に繰り返して廃酸と混合する点、及び、2次脱水ステップを廃止した点が異なる。この第1の廃酸の処理方法において、2次硫化工程から繰り返される2次スラリー中に含まれていた硫化澱物は、最終的に1次硫化工程における1次脱水ステップで分離される。   As shown in FIG. 2, the first waste acid treatment method according to the present invention is a secondary slurry obtained by separating the secondary clarified liquid in the secondary sulfidation step as compared with the conventional waste acid treatment method shown in FIG. Is different in that it is repeated in the primary sulfurization step and mixed with waste acid, and the secondary dehydration step is eliminated. In the first waste acid treatment method, the sulfide starch contained in the secondary slurry repeated from the secondary sulfidation step is finally separated in the primary dehydration step in the primary sulfidation step.

また、2次脱水ステップを廃止することによって、2次脱水ステップの脱水設備及びそれに付随する貯液槽などが不要になり、それらの監視や保守点検に要する作業を削減することができる。不要となった2次脱水ステップの脱水設備は、1次脱水ステップの予備機として使うことができる。予備機があれば、濾布交換などの作業によって脱水設備が長時間停止する場合でも、予備機を使用して安定した脱水処理を行うことが可能になる。   Further, by eliminating the secondary dehydration step, the dehydration equipment of the secondary dehydration step and the accompanying liquid storage tank become unnecessary, and the work required for monitoring and maintenance inspection can be reduced. The dehydration equipment for the secondary dehydration step that has become unnecessary can be used as a spare machine for the primary dehydration step. If there is a spare machine, even if the dehydration equipment is stopped for a long time due to work such as filter cloth replacement, it becomes possible to perform a stable dehydration process using the spare machine.

更に、2次硫化工程での2次スラリーを1次硫化工程に繰り返すことにより、2次硫化工程で未反応のまま残っている硫化剤を、従来のごとく排水処理工程に送って無駄にすることなく、1次硫化工程で再び利用することができる。そのため、従来の廃酸の処理方法に比べて1次硫化工程での硫化剤を節約でき、プロセス全体で硫化剤の使用量を減らすことができる。   Furthermore, by repeating the secondary slurry in the secondary sulfidation process to the primary sulfidation process, the sulfiding agent remaining unreacted in the secondary sulfidation process is sent to the wastewater treatment process as before and wasted. And can be reused in the primary sulfurization process. Therefore, it is possible to save the sulfiding agent in the primary sulfiding step as compared with the conventional waste acid treatment method, and it is possible to reduce the use amount of the sulfiding agent in the entire process.

本発明による第2の廃酸の処理方法は、図3に示すように、2次硫化工程において2次清澄液を分離した2次スラリーを1次硫化工程に繰り返し、1次清澄液を分離した1次スラリーと混合して、脱水ステップに直接送る方法である。この方法では、2次スラリーを1次硫化工程で濃縮等により再度分離することなく脱水するため、1次硫化工程での脱水ステップの処理能力が要求される反面、1次硫化工程での分離ステップの処理能力に余裕を持たせることができる。   As shown in FIG. 3, the second waste acid treatment method according to the present invention repeats the secondary slurry obtained by separating the secondary clarified liquid in the secondary sulfidation process in the primary sulfidation process, and separates the primary clarified liquid. It is a method in which it is mixed with the primary slurry and sent directly to the dehydration step. In this method, since the secondary slurry is dehydrated in the primary sulfidation step without being separated again by concentration or the like, the processing capacity of the dehydration step in the primary sulfidation step is required, but the separation step in the primary sulfidation step is required. The processing capacity can be given a margin.

また、この第2の廃酸の処理の方法による脱水ステップは、1次分離ステップと2次分離ステップの両方からスラリーを受け入れることから、両方のスラリーを予め混合したうえで脱水ステップに供給することも可能である。これによって、配管長さが節約できると共に、均一なスラリーを安定的に処理できる利点がある。   In addition, since the dehydration step by the second waste acid treatment method accepts the slurry from both the primary separation step and the secondary separation step, both slurries are mixed in advance and then supplied to the dehydration step. Is also possible. As a result, the piping length can be saved, and there is an advantage that a uniform slurry can be stably processed.

上記した本発明の1次硫化工程と2次硫化工程で用いる硫化剤としては、水硫化ナトリウム(硫化水素ナトリウム)、硫化水素、硫化ナトリウムといった一般的な硫化剤が使用可能である。これらの中で水硫化ナトリウムと硫化水素は、コストの点で優れており、石膏製造に適した硫酸濃度の石膏始液が得られる点で特に有利である。   As the sulfiding agent used in the above-described primary sulfiding step and secondary sulfiding step of the present invention, general sulfiding agents such as sodium hydrosulfide (sodium hydrogen sulfide), hydrogen sulfide, and sodium sulfide can be used. Among these, sodium hydrosulfide and hydrogen sulfide are excellent in terms of cost, and are particularly advantageous in that a gypsum starting solution having a sulfuric acid concentration suitable for gypsum production can be obtained.

また、本発明の石膏製造工程で用いる中和剤としては、炭酸カルシウム、水酸化カルシウム、酸化カルシウムなどの中和剤が使用可能である。これらの中和剤はコストの点で優れており、石膏へのカルシウム源となる点で特に有利である。なお、上記中和剤は、炭酸ナトリウムや水酸化ナトリウムを不純物として含んでいても、問題なく使用することができる。   Moreover, neutralizers, such as calcium carbonate, calcium hydroxide, and calcium oxide, can be used as the neutralizer used in the gypsum production process of the present invention. These neutralizing agents are excellent in terms of cost, and are particularly advantageous in that they become a calcium source for gypsum. The neutralizing agent can be used without any problem even if it contains sodium carbonate or sodium hydroxide as impurities.

上記した本発明による第1及び第2の廃酸の処理方法においては、図2及び図3に示すように、1次硫化工程における1次スラリーと1次清澄液の分離、及び2次硫化工程における2次スラリーと2次清澄液の分離は、それぞれシックナーでの濃縮による分離であることが好ましい。   In the above-described first and second waste acid treatment methods according to the present invention, as shown in FIGS. 2 and 3, the separation of the primary slurry and the primary clarified liquid in the primary sulfidation step and the secondary sulfidation step are performed. The secondary slurry and the secondary clarified liquid are preferably separated by concentration in a thickener.

特に上記第1の廃酸の処理方法では、シックナーでの濃縮を行うことによって、2次分離ステップから産出する濃縮された2次スラリーは、2次硫化反応ステップの産出液よりも液量が少なくなり、しかも、2次硫化反応ステップの産出液と同等の澱物を含んでいる。そのため、この濃縮された2次スラリーは、1次分離ステップで更に濃縮されることにより、液量を減少させることができる。その結果、脱水ステップで処理すべき液量は1次スラリーの量と2次スラリーの量の合計よりも少なくてすむため、上記した脱水設備の削減にも寄与する。   In particular, in the first waste acid treatment method, the concentrated secondary slurry produced from the secondary separation step has a smaller liquid volume than the produced solution of the secondary sulfidation reaction step by concentrating with a thickener. In addition, it contains starch equivalent to that produced in the secondary sulfurization reaction step. Therefore, the concentrated secondary slurry can be further concentrated in the primary separation step to reduce the liquid volume. As a result, the amount of liquid to be processed in the dewatering step can be smaller than the sum of the amount of primary slurry and the amount of secondary slurry, which contributes to the reduction of the above dewatering equipment.

2次分離ステップにおいて、2次清澄液への澱物の混入を抑えるためには、澱物をわずかでも含むスラリーは2次スラリーに分配させることが望ましい。この場合、2次スラリーは、スラリー濃度が低く且つ液量が多くなる。1次硫化工程へ繰り返されるスラリーがこのようにスラリー濃度が低く且つ液量が多ければ、1次硫化工程で処理すべき液量が多くなる。ただし、繰り返し先が1次分離ステップより前の工程であれば、1次分離ステップによって液量を低減できるため、1次脱水ステップへの影響は軽微である。   In the secondary separation step, in order to prevent the starch from being mixed into the secondary clarified liquid, it is desirable to distribute the slurry containing even a small amount of the starch into the secondary slurry. In this case, the secondary slurry has a low slurry concentration and a large liquid volume. If the slurry repeated to the primary sulfiding step has such a low slurry concentration and a large amount of liquid, the amount of liquid to be processed in the primary sulfiding step increases. However, if the repetition destination is a process before the primary separation step, the amount of liquid can be reduced by the primary separation step, so the influence on the primary dehydration step is negligible.

上記1次分離ステップ及び2次分離ステップにおいて濃縮により硫化澱物を適切に分離するためには、2次スラリーの量は1次スラリーの量に対して10〜50体積%であることが好ましい。10%体積未満の場合には、1次スラリーが多くなるため脱水設備の負荷が大きくなるか、2次スラリーが少なくなり2次清澄液に硫化澱物が混入してしまう。逆に50体積%を超える場合には、1次分離ステップに流入する液量が多くなるか1次スラリーが少なくなるため、1次清澄液に硫化澱物が混入し、石膏前濾過ステップの操業の手間やコストが増加したり、石膏製造工程で得られる石膏の品質が低下したりしてしまう。   In order to appropriately separate the sulfided starch by concentration in the primary separation step and the secondary separation step, the amount of the secondary slurry is preferably 10 to 50% by volume with respect to the amount of the primary slurry. If the volume is less than 10%, the amount of primary slurry increases, so the load on the dehydration equipment increases, or the secondary slurry decreases and sulfide starch is mixed into the secondary clarified liquid. On the other hand, when the volume exceeds 50% by volume, the amount of liquid flowing into the primary separation step increases or the primary slurry decreases, so that sulfurized starch is mixed in the primary clarified liquid and the pre-gypsum filtration step is started. This will increase the labor and cost and reduce the quality of gypsum obtained in the gypsum manufacturing process.

また、上記2次スラリーの量が1次スラリーの量に対して50%を超える場合には、下記化学式1又は2の反応が生じて有毒の硫化水素が急激に発生するため、硫化水素除害設備の負荷が大きくなってしまうことから、工業的操業には適さない。   Further, when the amount of the secondary slurry exceeds 50% with respect to the amount of the primary slurry, the reaction of the following chemical formula 1 or 2 occurs, and toxic hydrogen sulfide is rapidly generated. Since the load on the equipment becomes large, it is not suitable for industrial operation.

[化学式1]
2NaHS+HSO → 2HS↑+NaSO
[化学式2]
MS+HSO → HS↑+MSO
(式中のMは2価の金属元素を表す)
[Chemical Formula 1]
2NaHS + H 2 SO 4 → 2H 2 S ↑ + Na 2 SO 4
[Chemical formula 2]
MS + H 2 SO 4 → H 2 S ↑ + MSO 4
(M in the formula represents a divalent metal element)

[実施例1]
重金属及び硫酸を含む廃酸を、300l/分の流量で1次硫化工程に送液した。1次硫化工程では、1次硫化反応槽にて廃酸に水硫化ナトリウムを添加することにより、ORPを120mVにしてスラリーを得た。このスラリーを1次シックナーにて沈降濃縮し、上澄み液と底抜きとに分離した。この底抜きは貯液槽に溜めたあと、1次フィルタープレスで濾過することにより硫化澱物を回収した。
[Example 1]
Waste acid containing heavy metals and sulfuric acid was sent to the primary sulfiding step at a flow rate of 300 l / min. In the primary sulfiding step, sodium hydrosulfide was added to the waste acid in the primary sulfiding reaction tank to obtain an ORP of 120 mV to obtain a slurry. This slurry was concentrated by sedimentation with a primary thickener and separated into a supernatant and a bottom. The bottoms were collected in a liquid storage tank and then filtered with a primary filter press to recover sulfided starch.

一方、1次シックナーの上澄み液は、微細な粒子をフィルタープレスで濾過して除くことで石膏始液とし、石膏製造工程へ送液した。石膏製造工程では、石膏始液に炭酸カルシウムを添加してpH2.3に調整し、得られたスラリーから固形分を取り除いて石膏を回収した。石膏を回収して残った石膏終液は、2次硫化工程へ送液した。   On the other hand, the supernatant liquid of the primary thickener was used as a gypsum starting liquid by filtering and removing fine particles with a filter press, and was sent to the gypsum manufacturing process. In the gypsum manufacturing process, calcium carbonate was added to the gypsum starting solution to adjust the pH to 2.3, and the solid content was removed from the resulting slurry to recover gypsum. The gypsum final solution remaining after collecting the gypsum was sent to the secondary sulfiding step.

2次硫化工程では、2次硫化反応槽にて石膏終液に水硫化ナトリウムを添加し、ORPが10mVとなるように調整してスラリーを得た。このスラリーを2次シックナーで沈降濃縮し、上澄み液と底抜きとに分離した。この底抜きは1次硫化工程に繰り返して、1次硫化反応槽に20l/分の流量で送液した。また、2次シックナーの上澄み液は排水処理工程に送液した。   In the secondary sulfidation step, sodium hydrosulfide was added to the gypsum final solution in a secondary sulfidation reaction tank to adjust the ORP to 10 mV to obtain a slurry. The slurry was concentrated by sedimentation with a secondary thickener and separated into a supernatant and a bottom. This bottoming was repeated in the primary sulfiding step, and the solution was fed to the primary sulfiding reaction tank at a flow rate of 20 l / min. The supernatant of the secondary thickener was sent to the wastewater treatment process.

上記の条件で10日間にわたって操業を行ったところ、2次シックナーの底抜きが送液された1次硫化工程において、1次シックナーの上澄み液は清澄な状態が維持され、1次シックナーの底抜きは100l/分であって、1次シックナーと1次フィルタープレスの間の貯液槽から液が溢れることはなかった。また、1次シックナーの上澄み液を分析したところ、銅が1mg/l及び砒素が10mg/lであった。廃酸処理プロセス全体で使用した水硫化ナトリウムの量は、1日につき7.4トンであった。   When the operation was performed for 10 days under the above conditions, in the primary sulfidation process in which the bottom of the secondary thickener was fed, the supernatant of the primary thickener was maintained in a clear state, and the bottom of the primary thickener was maintained. Was 100 l / min, and no liquid overflowed from the reservoir between the primary thickener and the primary filter press. When the supernatant of the primary thickener was analyzed, it was found that copper was 1 mg / l and arsenic was 10 mg / l. The amount of sodium hydrosulfide used throughout the waste acid treatment process was 7.4 tons per day.

1次硫化工程及び2次硫化工程に要する作業員に関しては、1次フィルタープレスの監視と操作に作業員1人を要したが、石膏前フィルタープレスは1次シックナーの上澄み液が清澄で連続して通液できたので、作業員を配置する必要がなく、無人での運転が可能であった。従って、本発明による廃酸の処理方法では、監視と操作を要するフィルタープレスは1台のみで操業でき、脱水設備の監視や保守点検に要する作業を削減することができた。   Regarding the workers required for the primary sulfidation process and the secondary sulfidation process, one person was required to monitor and operate the primary filter press. However, the pre-gypsum filter press has a clear and continuous supernatant of the primary thickener. It was not necessary to place workers and the operation was unattended. Therefore, in the waste acid treatment method according to the present invention, only one filter press requiring monitoring and operation can be operated, and the work required for dehydration equipment monitoring and maintenance inspection can be reduced.

[比較例1]
2次シックナーの底抜きを1次硫化反応槽へ送液せず、従来と同様に2次フィルタープレスへ送液して濾過し、澱物を回収した以外は、上記実施例1と同様に実施した。
[Comparative Example 1]
The same as in Example 1 above, except that the bottom of the secondary thickener was not fed to the primary sulfidation reactor, but was fed to the secondary filter press and filtered to recover the starch. did.

上記の条件で10日間にわたって操業を行ったところ、廃酸処理プロセス全体で使用する水硫化ナトリウムの量は1日につき8.1トンであった。また、1次フィルタープレスの監視と操作に作業員1人、及び2次フィルタープレスの監視と操作に作業員1人を要した。尚、石膏前フィルタープレスは、上記実施例1と同様に無人運転が可能であった。   When operated for 10 days under the above conditions, the amount of sodium hydrosulfide used in the entire waste acid treatment process was 8.1 tons per day. In addition, one worker was required for monitoring and operating the primary filter press, and one worker was required for monitoring and operating the secondary filter press. The pre-gypsum filter press was capable of unmanned operation as in Example 1 above.

実施例1と比較例1とでフィルタープレスの操業に要した人数を比較すると、実施例1では2次フィルタープレスを稼働せず、1次フィルタープレスでの1台のみの稼働で操業できたため、作業員を1名削減することができた。また、水硫化ナトリウムの使用量を比較すると、実施例1の方が少ない。この理由は、2次シックナーの底抜きには未反応の水硫化ナトリウムが含まれており且つその濃度は1次硫化工程よりも高いことから、実施例1では2次シックナーの底抜きを1次硫化工程へ繰り返すことで、未反応の水硫化ナトリウムが1次硫化工程で利用されたためである。   When comparing the number of persons required for the operation of the filter press in Example 1 and Comparative Example 1, in Example 1, the secondary filter press was not operated, and the operation was possible with only one operation in the primary filter press. The number of workers has been reduced by one. Moreover, when the usage-amount of sodium hydrosulfide is compared, Example 1 is smaller. This is because the bottom of the secondary thickener contains unreacted sodium hydrosulfide and the concentration thereof is higher than that of the primary sulfurization process. This is because unreacted sodium hydrosulfide was used in the primary sulfiding step by repeating the sulfiding step.

水硫化ナトリウムが還元剤として働く系において、その濃度が高いほどORPは低くなる。1次硫化工程のORPと2次硫化工程のORPは実施例1に記載の通りであり、2次硫化工程の方が1次硫化工程よりも常に低いことから、水硫化ナトリウム濃度は2次硫化工程の方が1次硫化工程よりも常に高かったことが見て取れる。   In a system in which sodium hydrosulfide works as a reducing agent, the higher the concentration, the lower the ORP. The ORP of the primary sulfidation step and the ORP of the secondary sulfidation step are as described in Example 1. The concentration of sodium hydrosulfide is secondary sulfidation because the secondary sulfidation step is always lower than the primary sulfidation step. It can be seen that the process was always higher than the primary sulfidation process.

上記実施例1においては、水硫化ナトリウム濃度の高いスラリーが2次硫化工程から1次硫化工程に送液されたので、実施例1の1次硫化工程の水硫化ナトリウム濃度が比較例1の1次硫化工程の水硫化ナトリウム濃度よりも部分的に高くなることが考えられる。水硫化ナトリウム濃度が高い場合、下記化学式3又は化学式4に基づいて重金属(銅や砒素)が沈殿し、1次シックナーの上澄み液中の重金属濃度が低くなる。   In Example 1 above, since the slurry having a high sodium hydrosulfide concentration was fed from the secondary sulfidation step to the primary sulfidation step, the sodium hydrosulfide concentration in the primary sulfidation step of Example 1 was 1 in Comparative Example 1. It may be partially higher than the sodium hydrosulfide concentration in the subsequent sulfidation step. When the sodium hydrosulfide concentration is high, heavy metals (copper and arsenic) precipitate based on the following chemical formula 3 or chemical formula 4, and the heavy metal concentration in the supernatant liquid of the primary thickener becomes low.

[化学式3]
2NaHS+CuSO → 2CuS↓+NaHSO
[化学式4]
MS+CuSO → CuS↓+MSO
(式中のMは2価の金属元素を表す)
[Chemical formula 3]
2NaHS + CuSO 4 → 2CuS ↓ + NaHSO 4
[Chemical formula 4]
MS + CuSO 4 → CuS ↓ + MSO 4
(M in the formula represents a divalent metal element)

しかしながら、分析結果によれば、実施例1と比較例1の1次シックナーの上澄み液中の重金属濃度は等しかった。よって、水硫化ナトリウム濃度は実施例1と比較例1で等しかったことが分かる。このことは、本発明の方法によっても、水硫化ナトリウム濃度を適切に制御できることを示している。   However, according to the analysis results, the heavy metal concentrations in the supernatants of the primary thickeners of Example 1 and Comparative Example 1 were equal. Therefore, it can be seen that the sodium hydrosulfide concentration was equal in Example 1 and Comparative Example 1. This indicates that the sodium hydrosulfide concentration can be appropriately controlled also by the method of the present invention.

[比較例2]
2次シックナーの底抜きを1次硫化反応槽へ送液せず、その代りに1次シックナーの底抜きと1次フィルタープレスの間の貯液槽へ送液して濾過することにより澱物の回収を試みた以外は、上記実施例1と同様に実施した。
[Comparative Example 2]
The bottom of the secondary thickener is not fed to the primary sulfidation reactor, but instead is fed to the reservoir between the bottom of the primary thickener and the primary filter press and filtered to filter the starch. The same procedure as in Example 1 was performed except that recovery was attempted.

上記の条件で操業を行ったところ、1次シックナーの底抜きと1次フィルタープレスの間の貯液槽の保有液量が増加の一途を辿り、液が溢れそうになったため数時間で操業を中止した。   When the operation was performed under the above conditions, the amount of liquid held in the storage tank between the bottom of the primary thickener and the primary filter press continued to increase, and the liquid was about to overflow. Canceled.

Claims (7)

銅製錬で発生する廃酸に硫化剤を混合して重金属を硫化し、得られた硫化澱物を含む1次スラリーと1次清澄液とに分離する1次硫化工程と、1次清澄液に中和剤を混合して硫酸を石膏とし、固液分離して石膏終液を得る石膏製造工程と、石膏終液に硫化剤を混合して重金属を硫化し、得られた硫化澱物を含む2次スラリーと2次清澄液とに分離する2次硫化工程とを備え、2次硫化工程において2次清澄液を分離した2次スラリーを1次硫化工程に繰り返し、廃酸と混合することを特徴とする廃酸の処理方法。   A primary sulfidizing step in which a sulfidizing agent is mixed with waste acid generated in copper smelting to sulfidize heavy metals, and the resulting slurry is separated into a primary slurry containing the sulfurized starch and a primary clarified liquid. A gypsum manufacturing process in which a neutralizer is mixed to make sulfuric acid into gypsum and solid-liquid separation to obtain a gypsum final solution, and a sulfurizing agent is mixed into the gypsum final solution to sulfidize heavy metals and contain the resulting sulfide starch. A secondary sulfidation step for separating the secondary slurry and the secondary clarified liquid, and the secondary slurry obtained by separating the secondary clarified liquid in the secondary sulfidization step is repeated in the primary sulfidization step and mixed with the waste acid. A method for treating waste acid. 銅製錬で発生する廃酸に硫化剤を混合して重金属を硫化し、得られた硫化澱物を含む1次スラリーと1次清澄液とに分離する1次硫化工程と、1次清澄液に中和剤を混合して硫酸を石膏とし、固液分離して石膏終液を得る石膏製造工程と、石膏終液に硫化剤を混合して重金属を硫化し、得られた硫化澱物を含む2次スラリーと2次清澄液とに分離する2次硫化工程とを備え、2次硫化工程において2次清澄液を分離した2次スラリーを1次硫化工程に繰り返し、1次清澄液を分離した1次スラリーと混合することを特徴とする廃酸の処理方法。   A primary sulfidizing step in which a sulfidizing agent is mixed with waste acid generated in copper smelting to sulfidize heavy metals, and the resulting slurry is separated into a primary slurry containing the sulfurized starch and a primary clarified liquid. A gypsum manufacturing process in which a neutralizer is mixed to make sulfuric acid into gypsum and solid-liquid separation to obtain a gypsum final solution, and a sulfurizing agent is mixed into the gypsum final solution to sulfidize heavy metals and contain the resulting sulfide starch. A secondary sulfidation step for separating the secondary clarified liquid into a secondary slurry and a secondary clarified liquid. The secondary slurry obtained by separating the secondary clarified liquid in the secondary sulfidizing process is repeated in the primary sulfidizing process to separate the primary clarified liquid. A method for treating waste acid, comprising mixing with a primary slurry. 前記1次硫化工程における1次スラリーと1次清澄液の分離、及び前記2次硫化工程における2次スラリーと2次清澄液の分離は、それぞれシックナーでの濃縮による分離であることを特徴とする、請求項1又は2に記載の廃酸の処理方法。   The separation of the primary slurry and the primary clarified liquid in the primary sulfidation step and the separation of the secondary slurry and the secondary clarified liquid in the secondary sulfidation step are separation by concentration in a thickener, respectively. The processing method of the waste acid of Claim 1 or 2. 前記2次硫化工程の濃縮分離で得られる2次スラリーの量は、1次硫化工程の濃縮分離で得られる1次スラリーの量に対して、10〜50体積%であることを特徴とする、請求項3に記載の廃酸の処理方法。   The amount of secondary slurry obtained by concentration separation in the secondary sulfidation step is 10 to 50% by volume with respect to the amount of primary slurry obtained by concentration separation in the primary sulfidation step. The processing method of the waste acid of Claim 3. 前記1次硫化工程及び2次硫化工程で得られた硫化澱物は、全て1次硫化工程で1次スラリーを脱水することによって回収し、2次硫化工程では2次スラリーの脱水を行わないことを特徴とする、請求項1〜4のいずれかに記載の廃酸の処理方法。   All the sulfides obtained in the primary sulfidation step and the secondary sulfidation step are recovered by dehydrating the primary slurry in the primary sulfidation step, and the secondary slurry is not dehydrated in the secondary sulfidation step. The processing method of the waste acid in any one of Claims 1-4 characterized by these. 前記1次硫化工程及び2次硫化工程で用いる硫化剤が、水硫化ナトリウム又は硫化水素であることを特徴とする、請求項1〜3のいずれかに記載の廃酸の処理方法。   The method for treating a waste acid according to any one of claims 1 to 3, wherein the sulfiding agent used in the primary sulfiding step and the secondary sulfiding step is sodium hydrosulfide or hydrogen sulfide. 前記石膏製造工程で用いる中和剤が、炭酸カルシウム、水酸化カルシウム、酸化カルシウムのいずれかであることを特徴とする、請求項1〜5のいずれかに記載の廃酸の処理方法。   The method for treating a waste acid according to any one of claims 1 to 5, wherein the neutralizing agent used in the gypsum production process is any one of calcium carbonate, calcium hydroxide, and calcium oxide.
JP2014062926A 2014-03-26 2014-03-26 Treatment method of waste acid generated in copper smelting Active JP6206287B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014062926A JP6206287B2 (en) 2014-03-26 2014-03-26 Treatment method of waste acid generated in copper smelting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014062926A JP6206287B2 (en) 2014-03-26 2014-03-26 Treatment method of waste acid generated in copper smelting

Publications (2)

Publication Number Publication Date
JP2015182052A true JP2015182052A (en) 2015-10-22
JP6206287B2 JP6206287B2 (en) 2017-10-04

Family

ID=54349239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014062926A Active JP6206287B2 (en) 2014-03-26 2014-03-26 Treatment method of waste acid generated in copper smelting

Country Status (1)

Country Link
JP (1) JP6206287B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107399855A (en) * 2017-08-25 2017-11-28 金川集团股份有限公司 A kind of system and method for handling metallurgical off-gas acid-making acid waste water
JP2017213507A (en) * 2016-05-31 2017-12-07 住友金属鉱山株式会社 Waste acid treatment method
CN107445379A (en) * 2017-08-25 2017-12-08 金川集团股份有限公司 A kind of device and method of acid waste water evaporation emission reduction
JP2019002046A (en) * 2017-06-15 2019-01-10 住友金属鉱山株式会社 Treatment method of waste acid
JP2019063781A (en) * 2017-10-05 2019-04-25 住友金属鉱山株式会社 Treatment method of waste acid generated in copper smelting
KR102283027B1 (en) * 2020-12-28 2021-07-28 한국광해관리공단 METHOD OF Cu RECOVERY FROM LEACHATE AFTER Cu EXTRACTION

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6970917B2 (en) 2017-12-27 2021-11-24 三菱マテリアル株式会社 Wastewater treatment method
JP6986226B2 (en) 2017-12-27 2021-12-22 三菱マテリアル株式会社 Wastewater treatment method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004275895A (en) * 2003-03-17 2004-10-07 Sumitomo Metal Mining Co Ltd Method for treating exhaust gas from sulfuric acid manufacturing process
JP2005154196A (en) * 2003-11-26 2005-06-16 Sumitomo Metal Mining Co Ltd Method for producing waste acid gypsum
JP2005350766A (en) * 2004-05-13 2005-12-22 Sumitomo Metal Mining Co Ltd Hydrometallurgical process of nickel oxide ore
JP2012012230A (en) * 2010-06-29 2012-01-19 Pan Pacific Copper Co Ltd Method for producing waste acid gypsum
JP2015020103A (en) * 2013-07-18 2015-02-02 住友金属鉱山株式会社 Method for removing heavy metal

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004275895A (en) * 2003-03-17 2004-10-07 Sumitomo Metal Mining Co Ltd Method for treating exhaust gas from sulfuric acid manufacturing process
JP2005154196A (en) * 2003-11-26 2005-06-16 Sumitomo Metal Mining Co Ltd Method for producing waste acid gypsum
JP2005350766A (en) * 2004-05-13 2005-12-22 Sumitomo Metal Mining Co Ltd Hydrometallurgical process of nickel oxide ore
JP2012012230A (en) * 2010-06-29 2012-01-19 Pan Pacific Copper Co Ltd Method for producing waste acid gypsum
JP2015020103A (en) * 2013-07-18 2015-02-02 住友金属鉱山株式会社 Method for removing heavy metal

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017213507A (en) * 2016-05-31 2017-12-07 住友金属鉱山株式会社 Waste acid treatment method
JP2019002046A (en) * 2017-06-15 2019-01-10 住友金属鉱山株式会社 Treatment method of waste acid
CN107399855A (en) * 2017-08-25 2017-11-28 金川集团股份有限公司 A kind of system and method for handling metallurgical off-gas acid-making acid waste water
CN107445379A (en) * 2017-08-25 2017-12-08 金川集团股份有限公司 A kind of device and method of acid waste water evaporation emission reduction
JP2019063781A (en) * 2017-10-05 2019-04-25 住友金属鉱山株式会社 Treatment method of waste acid generated in copper smelting
JP7031207B2 (en) 2017-10-05 2022-03-08 住友金属鉱山株式会社 Treatment method of waste acid generated in copper smelting
KR102283027B1 (en) * 2020-12-28 2021-07-28 한국광해관리공단 METHOD OF Cu RECOVERY FROM LEACHATE AFTER Cu EXTRACTION

Also Published As

Publication number Publication date
JP6206287B2 (en) 2017-10-04

Similar Documents

Publication Publication Date Title
JP6206287B2 (en) Treatment method of waste acid generated in copper smelting
US7789944B2 (en) System and method for treating dust contained in extracted cement kiln combustion gas
US8603344B2 (en) Method and apparatus for removing metal from waste water
JP6743491B2 (en) Waste acid treatment method
US7264733B2 (en) Method for treating heavy-metal-containing wastewater using sulfidizing agent
KR102556133B1 (en) Wastewater Treatment Method
JP5355431B2 (en) Method and apparatus for treating incinerated fly ash and cement kiln combustion gas bleed dust
JP3306471B2 (en) Treatment method of exhaust gas from cement kiln
JP6481542B2 (en) Method for producing high-purity nickel sulfate aqueous solution
JP2012082458A (en) Method for separating and recovering zinc from zinc plating waste liquid
CN106517624B (en) Desulfurization wastewater treatment method and system based on multistage fluidized bed crystallization
JP6953988B2 (en) How to remove sulfide
JP4986958B2 (en) Water washing method and water washing system for incineration ash and cement kiln combustion gas extraction dust
EA004600B1 (en) Process for electrolytic production of highly pure zinc or zinc compounds from primary and secondary zinc raw material
JP5911100B2 (en) Wastewater treatment method
RU2443791C1 (en) Conditioning method of cyanide-containing reusable solutions for processing of gold-copper ores with extraction of gold and copper and regeneration of cyanide
JP3945216B2 (en) Waste acid gypsum manufacturing method
JP6962017B2 (en) Waste acid treatment method
CN105330064A (en) Zinc-containing cyanide barren solution treatment method
JP4239801B2 (en) Method for producing waste acid gypsum
US4012297A (en) Mercury recovery and recycle process
RU2448053C1 (en) Apparatus for purifying alkaline wastes
WO2005012582A1 (en) Improved hydrometallurgical processing of manganese containing materials
JP2008075139A (en) Method for treating dust in bled combustion gas of cement kiln
JP7031207B2 (en) Treatment method of waste acid generated in copper smelting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170821

R150 Certificate of patent or registration of utility model

Ref document number: 6206287

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150