JP7102876B2 - Fluorine removal method - Google Patents

Fluorine removal method Download PDF

Info

Publication number
JP7102876B2
JP7102876B2 JP2018071951A JP2018071951A JP7102876B2 JP 7102876 B2 JP7102876 B2 JP 7102876B2 JP 2018071951 A JP2018071951 A JP 2018071951A JP 2018071951 A JP2018071951 A JP 2018071951A JP 7102876 B2 JP7102876 B2 JP 7102876B2
Authority
JP
Japan
Prior art keywords
fluorine
containing wastewater
phosphoric acid
amount
magnesium hydroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018071951A
Other languages
Japanese (ja)
Other versions
JP2019181329A (en
Inventor
次郎 中西
聡 浅野
伸行 加地
宏 竹之内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2018071951A priority Critical patent/JP7102876B2/en
Publication of JP2019181329A publication Critical patent/JP2019181329A/en
Application granted granted Critical
Publication of JP7102876B2 publication Critical patent/JP7102876B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Removal Of Specific Substances (AREA)

Description

本発明は、例えば非鉄金属製錬工程から生じる排水等のフッ素および硫酸イオン等を含有するフッ素含有排水からのフッ素除去方法に関する。 The present invention relates to, for example, a method for removing fluorine from fluorine-containing wastewater containing fluorine and sulfate ions, such as wastewater generated from a non-ferrous metal smelting process.

銅や鉛等の非鉄金属の製錬工程では、原料鉱石を炉に投入して熔解し、不純物をスラグとして、又は硫黄を亜硫酸ガスとして分離し、目的とする金属を精製する。原料鉱石にはフッ素が含有されることがあるが、このフッ素は鉱石が熔解される際に揮発し、亜硫酸ガスと共に排ガスとしてスクラバー等に集められ、アルカリ性の洗浄液中に捕集される。 In the smelting process of non-ferrous metals such as copper and lead, the raw material ore is put into a furnace and melted to separate impurities as slag or sulfur as sulfite gas to purify the target metal. Fluorine may be contained in the raw material ore, but this fluorine volatilizes when the ore is melted, is collected in a scrubber or the like as exhaust gas together with sulfurous acid gas, and is collected in an alkaline cleaning liquid.

スクラバー等で排ガスを捕集した洗浄液は、洗浄廃液として順次取り出されて処理され、フッ素が分離回収される。フッ素を除去した後の洗浄廃液は、引き続いて排水処理施設に送られ、一般の排水と共に中和、酸化、還元等の方法によって、重金属や有機物等を分離し、無害化された後に排出される。 The cleaning liquid in which the exhaust gas is collected by a scrubber or the like is sequentially taken out and processed as a cleaning waste liquid, and fluorine is separated and recovered. After removing fluorine, the cleaning waste liquid is subsequently sent to a wastewater treatment facility, where heavy metals and organic substances are separated by methods such as neutralization, oxidation, and reduction together with general wastewater, and then discharged after being detoxified. ..

排水等の水溶液中に含まれるフッ素を除去する一般的な方法としては、フッ素沈澱剤として消石灰や塩化カルシウムや硫酸カルシウム等のカルシウム化合物を添加し、フッ素を難溶性のフッ化カルシウムとして沈澱させる方法が知られている。 As a general method for removing fluorine contained in an aqueous solution such as wastewater, a method of adding calcium compounds such as slaked lime, calcium chloride and calcium sulfate as a fluorine precipitant to precipitate fluorine as sparingly soluble calcium fluoride. It has been known.

例えば特許文献1には、フッ素含有排水中の硫酸イオン濃度を調整する硫酸イオン濃度調整工程と、フッ素含有排水中のフッ素を沈澱として分離除去するフッ素沈澱除去工程とを含むフッ素含有排水中のフッ素をフッ化カルシウムとして沈澱させて分離除去するフッ素含有排水からのフッ素分離方法が記載されている。 For example, Patent Document 1 includes a fluorine ion concentration adjusting step for adjusting the sulfate ion concentration in the fluorine-containing wastewater and a fluorine precipitate removing step for separating and removing fluorine in the fluorine-containing wastewater as a precipitate. A method for separating fluorine from fluorine-containing wastewater is described, in which fluorine is precipitated as calcium fluoride and separated and removed.

しかし、特許文献1に記載の方法によれば、硫酸イオン濃度を調整するために、フッ素含有排水に多量の塩化カルシウムを添加する必要があり、コストアップにつながっていた。 However, according to the method described in Patent Document 1, it is necessary to add a large amount of calcium chloride to the fluorine-containing wastewater in order to adjust the sulfate ion concentration, which leads to an increase in cost.

また、排水等の水溶液中に含まれるフッ素を除去する一般的な方法として、リン酸化合物を添加してから固液分離を行うフッ化アパタイト法などが知られている。フッ化アパタイト法は、カルシウム、リン酸及びフッ素が反応することで、フッ化カルシウムよりも溶解度が低いフッ化アパタイト(Ca(POF)を生成させるものである(例えば特許文献2参照)。 Further, as a general method for removing fluorine contained in an aqueous solution such as wastewater, a fluorinated apatite method in which a phosphoric acid compound is added and then solid-liquid separation is performed is known. In the fluorinated apatite method, calcium, phosphoric acid and fluorine react to produce fluorinated apatite (Ca 5 (PO 4 ) 3 F) having a lower solubility than calcium fluoride (for example, Patent Document 2). reference).

しかし、従来のフッ化アパタイト法では、硫酸イオンが共存するフッ素含有排水において、カルシウムイオンを添加すると、カルシウムイオンと硫酸イオンが反応して石膏(硫酸カルシウム)が生成するため、十分にフッ素を沈澱除去できないという問題を有していた。また、生成した硫酸カルシウムはスラッジとして処理されるため、多量の硫酸カルシウムの生成はフッ素除去に要するコストの増加につながっていた。 However, in the conventional fluorinated apatite method, when calcium ions are added to fluorine-containing wastewater in which sulfate ions coexist, the calcium ions react with the sulfate ions to generate gypsum (calcium sulfate), so that fluorine is sufficiently precipitated. It had the problem that it could not be removed. In addition, since the produced calcium sulfate is treated as sludge, the production of a large amount of calcium sulfate has led to an increase in the cost required for removing fluorine.

特開2017-47336号公報Japanese Unexamined Patent Publication No. 2017-473336 特開昭62-125894号公報Japanese Unexamined Patent Publication No. 62-125894

本発明は、上述した従来の事情に鑑みて提案されたものであり、非鉄金属製錬工程から生じるフッ素含有排水から簡単且つ低コストで、沈澱物の生成を抑制しながら効率よくフッ素を分離除去することが可能な方法を提供することを目的とする。 The present invention has been proposed in view of the above-mentioned conventional circumstances, and efficiently separates and removes fluorine from fluorine-containing wastewater generated from a non-ferrous metal smelting process easily and at low cost while suppressing the formation of precipitates. The purpose is to provide a method that can be done.

本発明者等は、硫酸イオンを含むフッ素含有排水(以下、「フッ素含有排水」とも言う)中のフッ素を低減する処理方法について検討を重ね、フッ素含有排水にリン酸、水酸化マグネシウムおよび消石灰を一定の範囲の割合で添加することで、沈澱物の生成を抑制しながらフッ素含有沈澱としてフッ素が安定的に分離されることを見出し、本発明を完成させるに至った。 The present inventors have repeatedly studied a treatment method for reducing fluorine in fluorine-containing wastewater containing sulfate ions (hereinafter, also referred to as “fluorine-containing wastewater”), and added phosphoric acid, magnesium hydroxide and slaked lime to the fluorine-containing wastewater. It has been found that fluorine is stably separated as a fluorine-containing precipitate while suppressing the formation of a precipitate by adding it at a ratio in a certain range, and the present invention has been completed.

即ち、上記目的を達成するための本発明の一態様は、非鉄金属製錬工程から生じる硫酸イオンを含むフッ素含有排水からのフッ素除去方法であって、前記フッ素含有排水にリン酸を添加するリン酸添加工程と、前記リン酸添加工程後のフッ素含有排水に水酸化マグネシウムを添加する水酸化マグネシウム添加工程と、前記水酸化マグネシウム添加工程後のフッ素含有排水に消石灰を添加して、生成したフッ素含有沈澱物を分離除去するフッ素沈澱除去工程とを有し、前記水酸化マグネシウム添加工程におけるフッ素含有排水のpHが4以上7以下となるように前記水酸化マグネシウムの添加量を調整することを特徴とする。 That is, one aspect of the present invention for achieving the above object is a method for removing fluorine from fluorine-containing wastewater containing sulfate ions generated from a non-ferrous metal smelting step, wherein phosphoric acid is added to the fluorine-containing wastewater. Fluorine produced by adding slaked lime to the acid addition step, the magnesium hydroxide addition step of adding magnesium hydroxide to the fluorine-containing wastewater after the phosphoric acid addition step, and the fluorine-containing wastewater after the magnesium hydroxide addition step. It has a fluorine precipitate removing step of separating and removing the contained precipitate, and is characterized in that the addition amount of the magnesium hydroxide is adjusted so that the pH of the fluorine-containing wastewater in the magnesium hydroxide addition step is 4 or more and 7 or less. And.

このようにすれば、非鉄金属製錬工程から生じるフッ素含有排水から簡単且つ低コストで、沈澱物の生成を抑制しながら効率よくフッ素を分離除去することができる。また、無用な澱物量の生成を抑制しながら効率的にフッ素を分離除去することができる。 In this way, fluorine can be efficiently separated and removed from the fluorine-containing wastewater generated from the non-ferrous metal smelting process easily and at low cost while suppressing the formation of precipitates. In addition, fluorine can be efficiently separated and removed while suppressing the formation of an unnecessary amount of starch.

また、本発明の一態様では、前記リン酸の添加量を、前記フッ素含有排水中のフッ素(F)に対する前記リン酸中のリン(P)のモル比(P/F)が0.2以上5.0以下となるように調整してもよい。 Further, in one aspect of the present invention, the molar ratio (P / F) of phosphorus (P) in phosphoric acid to fluorine (F) in the fluorine-containing wastewater is 0.2 or more. It may be adjusted to be 5.0 or less.

このようにすれば、フッ素含有排水に添加するリン酸のコストを抑えつつ、フッ素の沈澱量を増加することができる。 By doing so, it is possible to increase the amount of fluorine precipitation while suppressing the cost of phosphoric acid added to the fluorine-containing wastewater.

また、本発明の一態様では、前記フッ素沈澱除去工程におけるフッ素含有排水のpHが7.1以上9.0以下となるように前記消石灰の添加量を調整してもよい。 Further, in one aspect of the present invention, the amount of slaked lime added may be adjusted so that the pH of the fluorine-containing wastewater in the fluorine precipitation removing step is 7.1 or more and 9.0 or less.

このようにすれば、無用な澱物量の生成を抑制しながら効率的にフッ素を分離除去することができる。 In this way, fluorine can be efficiently separated and removed while suppressing the formation of an unnecessary amount of starch.

また、本発明の一態様では、前記リン酸の添加量を、前記フッ素含有排水中のフッ素(F)に対する前記リン酸中のリン(P)のモル比(P/F)が0.25以上1.45以下となるように調整してもよい。 Further, in one aspect of the present invention, the molar ratio (P / F) of phosphorus (P) in phosphoric acid to fluorine (F) in the fluorine-containing wastewater is 0.25 or more. It may be adjusted to be 1.45 or less.

このようにすれば、澱物量の増加を抑えつつフッ素除去排水中のフッ素濃度を低減することができる。 In this way, it is possible to reduce the fluorine concentration in the fluorine-removed wastewater while suppressing an increase in the amount of starch.

本発明によれば、非鉄金属製錬工程から生じるフッ素含有排水から簡単且つ低コストで、沈澱物の生成を抑制しながら効率よくフッ素を分離除去することができる。 According to the present invention, fluorine can be efficiently separated and removed from the fluorine-containing wastewater generated from the non-ferrous metal smelting process easily and at low cost while suppressing the formation of precipitates.

本発明の一実施の形態に係るフッ素含有排水からのフッ素除去方法におけるフッ素の除去プロセスの概略を示す工程図である。It is a process drawing which shows the outline of the fluorine removal process in the method of removing fluorine from the fluorine-containing wastewater which concerns on one Embodiment of this invention. 本発明の一実施の形態に係るフッ素沈澱除去工程後のフッ素除去排水中のフッ素(F)濃度と、澱物量の関係を示す図である。It is a figure which shows the relationship between the fluorine (F) concentration in the fluorine removal wastewater after the fluorine precipitation removal step which concerns on one Embodiment of this invention, and the amount of starch.

本発明を適用した具体的な実施の形態(以下、「本実施の形態」という。)について、以下の順序で図面を参照して詳細に説明する。なお、本発明は、以下の実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の変更を加えることが可能である。 A specific embodiment to which the present invention is applied (hereinafter, referred to as “the present embodiment”) will be described in detail with reference to the drawings in the following order. The present invention is not limited to the following embodiments, and various modifications can be made without departing from the gist of the present invention.

1.フッ素含有排水からのフッ素除去方法
1-1.フッ素除去方法の概要
1-2.各工程の概略
1-3.リン酸添加工程
1-4.水酸化マグネシウム添加工程
1-5.フッ素沈澱除去工程
1. 1. Fluorine removal method from fluorine-containing wastewater 1-1. Outline of fluorine removal method 1-2. Outline of each process 1-3. Phosphoric acid addition step 1-4. Magnesium hydroxide addition step 1-5. Fluorine precipitate removal process

[1.フッ素含有排水からのフッ素除去方法]
(1-1.フッ素除去方法の概要)
本実施の形態に係るフッ素含有排水からのフッ素除去方法(以下、「フッ素除去方法」という。)は、銅や鉛等の非鉄金属の製錬工程(非鉄金属製錬工程)から生じる排水中に含まれている原料鉱石由来のフッ素を除去するための方法である。
[1. Fluorine removal method from fluorine-containing wastewater]
(1-1. Outline of fluorine removal method)
The method for removing fluorine from fluorine-containing wastewater according to the present embodiment (hereinafter referred to as “fluorine removal method”) is used in wastewater generated from a process for smelting non-ferrous metals such as copper and lead (non-ferrous metal smelting process). This is a method for removing fluorine derived from the contained raw material ore.

非鉄金属の製錬においては、原料鉱石の熔解時に発生する排ガス中に含まれているフッ素や亜硫酸ガスをスクラバーで捕集して処理を行う。排ガス中のフッ素をスクラバーで捕集するとフッ素含有排水が得られる。 In the smelting of non-ferrous metals, fluorine and sulfurous acid gas contained in the exhaust gas generated when the raw material ore is melted are collected by a scrubber and processed. Fluorine-containing wastewater can be obtained by collecting fluorine in the exhaust gas with a scrubber.

また、排ガス中の亜硫酸ガスをスクラバーで捕集すると硫酸イオンが得られるため、フッ素含有排水中には硫酸イオンが含まれている。この硫酸イオン(SO 2-)は、特許文献2で示された、リン酸(HPO)と消石灰(Ca(OH))を添加することによりフッ素をフッ素含有沈澱物として除去する方法において、多量のCaSOを沈澱物として生成させてしまう。 Further, since sulfur dioxide gas in the exhaust gas is collected by a scrubber to obtain sulfate ions, sulfate ions are contained in the fluorine-containing wastewater. This sulfate ion (SO 4-2 ) removes fluorine as a fluorine-containing precipitate by adding phosphoric acid (H 3 PO 4 ) and calcium (Ca (OH) 2 ) shown in Patent Document 2 . In the method, a large amount of CaSO 4 is produced as a precipitate.

具体的に説明すると、特許文献2において、リン酸と消石灰の反応により生成するハイドロキシアパタイトCa10(PO(OH)は、OHイオンの位置にFイオンが置換してフッ化アパタイトが形成すると考えられる(化学式1)。
3HPO+5Ca(OH)+F→Ca(POF+9HO+OH・・・・(化学式1)
Specifically, in Patent Document 2, hydroxyapatite Ca 10 (PO 4 ) 6 (OH) 2 produced by the reaction of phosphoric acid and slaked lime is fluorinated by substituting F - ion at the position of OH - ion. It is considered that apatite is formed (Chemical formula 1).
3H 3 PO 4 + 5Ca (OH ) 2 + F- → Ca 5 (PO 4 ) 3 F + 9H 2 O + OH -... (Chemical formula 1)

ここで、添加する消石灰の第一の役割はハイドロキシアパタイトが高pH側で生成するためにフッ素含有排水のpHを上昇させることであり、第二の役割は化学式1において示したようにフッ化アパタイトを生成させることである。しかしながら、フッ素含有排水中に多量に含まれる硫酸イオンSO 2-と消石灰Ca(OH)が反応し、添加した消石灰が石膏の生成に消費されてしまう。これにより多量のCaSOが生成し、沈澱すると考えられる。そして、CaSOの沈澱物はスラッジとして処理されるため、多量の沈澱物の生成はフッ素除去に要するコストの増加につながっていた。 Here, the first role of the slaked lime to be added is to raise the pH of the fluorine-containing wastewater because hydroxyapatite is produced on the high pH side, and the second role is to raise the pH of the fluorine-containing wastewater, and the second role is the fluoride apatite as shown in Chemical Formula 1. Is to generate. However, the sulfate ion SO4-2 , which is contained in a large amount in the fluorine -containing wastewater, reacts with the slaked lime Ca (OH) 2 , and the added slaked lime is consumed in the production of gypsum. It is considered that this produces a large amount of CaSO 4 and precipitates. Since the precipitate of CaSO 4 is treated as sludge, the production of a large amount of precipitate has led to an increase in the cost required for removing fluorine.

本発明による方法は、フッ素含有排水にリン酸を添加した後に、消石灰を添加するのではなく、フッ素含有排水にリン酸を添加した後に水酸化マグネシウムを添加し、消石灰を添加することを特徴とする。これにより、消石灰の第一の役割である、フッ素含有排水のpHの上昇を水酸化マグネシウムを用いて行う。水酸化マグネシウムと硫酸イオンSO 2-との反応により生成するMgSOは極めて水に溶けやすいため沈澱を生じない。このため、消石灰のみを用いた場合に引き起こされる、石膏による沈澱生成が抑制される。 The method according to the present invention is characterized in that, instead of adding phosphoric acid to fluorine-containing wastewater and then adding slaked lime, magnesium hydroxide is added after adding phosphoric acid to fluorine-containing wastewater, and slaked lime is added. do. Thereby, magnesium hydroxide is used to raise the pH of the fluorine-containing wastewater, which is the primary role of slaked lime. The sulfonyl 4 produced by the reaction of magnesium hydroxide and the sulfate ion SO 4 2- is extremely soluble in water and does not cause precipitation. Therefore, the precipitation caused by gypsum, which is caused when only slaked lime is used, is suppressed.

本発明によれば、非鉄金属製錬工程から生じるフッ素含有排水から、CaSO等の沈澱物の生成を抑制しながら効率よくフッ素をフッ素含有沈澱物として分離除去することができる。 According to the present invention, fluorine can be efficiently separated and removed as a fluorine-containing precipitate from the fluorine-containing wastewater generated from the non-ferrous metal smelting process while suppressing the formation of a precipitate such as CaSO 4 .

(1-2.各工程の概略)
本発明の一実施形態に係るフッ素除去方法は、図1に示すように、フッ素含有排水中にリン酸を添加する工程(以下、「リン酸添加工程S11」という。)と、リン酸添加工程後のフッ素含有排水中に水酸化マグネシウムを添加する水酸化マグネシウム添加工程(以下、「水酸化マグネシウム添加工程S12」という。)と、水酸化マグネシウム添加工程後のフッ素含有排水中のフッ素を沈澱として分離除去する工程(以下、「フッ素沈澱除去工程S13」という。)とを有するものである。
(1-2. Outline of each process)
As shown in FIG. 1, the method for removing fluorine according to an embodiment of the present invention includes a step of adding phosphoric acid to fluorine-containing wastewater (hereinafter referred to as “phosphoric acid addition step S11”) and a phosphoric acid addition step. A magnesium hydroxide addition step of adding magnesium hydroxide to the subsequent fluorine-containing wastewater (hereinafter referred to as "magnesium hydroxide addition step S12") and fluorine in the fluorine-containing wastewater after the magnesium hydroxide addition step are used as precipitates. It has a step of separating and removing (hereinafter, referred to as "fluorine precipitate removing step S13").

(1-3.リン酸添加工程)
図1に示すリン酸添加工程S11では、リン酸をフッ素含有排水に添加する。本工程でリン酸をフッ素含有排水中に添加することで、後述するフッ素沈澱除去工程において水酸化マグネシウム及び消石灰と反応させてフッ素含有沈澱物を生成することができる。そして、フッ素を分離除去することができる。
(1-3. Phosphoric acid addition step)
In the phosphoric acid addition step S11 shown in FIG. 1, phosphoric acid is added to the fluorine-containing wastewater. By adding phosphoric acid to the fluorine-containing wastewater in this step, a fluorine-containing precipitate can be produced by reacting with magnesium hydroxide and slaked lime in the fluorine precipitate removing step described later. Then, fluorine can be separated and removed.

リン酸の添加量は、フッ素含有排水中の総フッ素量の0.2倍以上5.0倍以下の物質量(モル量)とするのが望ましい。リン酸の添加量がフッ素含有排水中の総フッ素量の0.2倍未満では、十分にフッ素を除去することができなくなってしまう。リン酸の添加量がフッ素含有排水中の総フッ素量の5.0倍を超えると、リン酸の添加量を増やしても生成する澱物量が大きくなり澱物廃棄のコストが大きくなってしまう。リン酸の添加量は、フッ素含有排水中の総フッ素量の0.2倍以上5.0倍以下とすることで、リン酸のコストを抑えつつ、フッ素含有沈澱を生成することができる。また、リン酸の添加量は、フッ素含有排水中の総フッ素量の0.25倍以上1.5倍以下とすることがさらに好ましい。リン酸の添加量をこの範囲とすることで、後述する図2に示すように、澱物量の増加を抑えつつフッ素除去排水中のフッ素濃度を低減することができる。 The amount of phosphoric acid added is preferably a substance amount (molar amount) of 0.2 times or more and 5.0 times or less of the total amount of fluorine in the fluorine-containing wastewater. If the amount of phosphoric acid added is less than 0.2 times the total amount of fluorine in the fluorine-containing wastewater, fluorine cannot be sufficiently removed. If the amount of phosphoric acid added exceeds 5.0 times the total amount of fluorine in the fluorine-containing wastewater, the amount of starch produced will increase even if the amount of phosphoric acid added is increased, and the cost of waste disposal will increase. By adding the amount of phosphoric acid to 0.2 times or more and 5.0 times or less the total amount of fluorine in the fluorine-containing wastewater, it is possible to generate a fluorine-containing precipitate while suppressing the cost of phosphoric acid. Further, the amount of phosphoric acid added is more preferably 0.25 times or more and 1.5 times or less the total amount of fluorine in the fluorine-containing wastewater. By setting the amount of phosphoric acid added in this range, as shown in FIG. 2 described later, it is possible to reduce the fluorine concentration in the fluorine-removed wastewater while suppressing an increase in the amount of starch.

(1-4.水酸化マグネシウム添加工程)
図1に示す水酸化マグネシウム添加工程S12では、水酸化マグネシウムをリン酸添加工程後のフッ素含有排水に添加する。水酸化マグネシウムを添加することで、硫酸カルシウムのような沈澱物を発生させることなくフッ素含有排水のpHを上昇させることができる。
(1-4. Magnesium hydroxide addition step)
In the magnesium hydroxide addition step S12 shown in FIG. 1, magnesium hydroxide is added to the fluorine-containing wastewater after the phosphoric acid addition step. By adding magnesium hydroxide, the pH of fluorine-containing wastewater can be raised without generating a precipitate such as calcium sulfate.

水酸化マグネシウムの添加量は、pHが4以上7以下となるまで添加するのが望ましい。pH4未満では、水酸化マグネシウムの添加量が少なすぎるため、後の工程である消石灰添加工程でpHを上げるために多量の消石灰を添加する必要が生じ、多量の沈澱が生じてしまう。また、pH8を超えると、添加した水酸化マグネシウムが溶解せずやはり沈澱量の増加につながってしまう。水酸化マグネシウムの添加量を、pH4以上7以下となるよう調整することで、無用な沈澱物の生成を抑制しながら効率的にフッ素を分離除去することができる。 It is desirable to add magnesium hydroxide until the pH is 4 or more and 7 or less. If the pH is less than 4, the amount of magnesium hydroxide added is too small, so that it is necessary to add a large amount of slaked lime in order to raise the pH in the subsequent step of adding slaked lime, resulting in a large amount of precipitation. Further, when the pH exceeds 8, the added magnesium hydroxide does not dissolve, which also leads to an increase in the amount of precipitation. By adjusting the amount of magnesium hydroxide added so that the pH is 4 or more and 7 or less, fluorine can be efficiently separated and removed while suppressing the formation of unnecessary precipitates.

(1-5.フッ素沈澱除去工程)
図1に示すフッ素沈澱除去工程S13では、水酸化マグネシウム添加工程後のフッ素含有排水中のフッ素をフッ素含有沈澱物として沈澱させて除去する。具体的には、リン酸添加工程S11で添加したリン酸と、水酸化マグネシウム添加工程S12で添加した水酸化マグネシウムと、フッ素沈澱除去工程S13で添加する消石灰により、フッ素含有沈澱物が生成しフッ素の分離除去が可能となる。
(1-5. Fluorine precipitate removal step)
In the fluorine precipitate removing step S13 shown in FIG. 1, fluorine in the fluorine-containing wastewater after the magnesium hydroxide addition step is precipitated and removed as a fluorine-containing precipitate. Specifically, phosphoric acid added in the phosphoric acid addition step S11, magnesium hydroxide added in the magnesium hydroxide addition step S12, and slaked lime added in the fluorine precipitate removal step S13 produce a fluorine-containing precipitate and fluorine. Can be separated and removed.

フッ素沈澱除去工程S13において、消石灰の添加量を、pHが7.1以上9.0以下となるまで添加するのが望ましい。pH7.1未満では、消石灰の添加量が少なすぎるため、十分にフッ素含有沈澱物を生成することができず、排水中にフッ素が残留してしまう。また、pH9.0を超えると、添加した消石灰がフッ素含有排水中の硫酸イオンと反応し、多量の沈澱物が生じてしまう。消石灰の添加量を、pH7.1以上9以下となるよう調整することで、無用な沈澱物の生成を抑制しながら効率的にフッ素を分離除去することができる。 In the fluorine precipitation removing step S13, it is desirable to add the amount of slaked lime until the pH becomes 7.1 or more and 9.0 or less. If the pH is less than 7.1, the amount of slaked lime added is too small, so that a sufficient fluorine-containing precipitate cannot be produced, and fluorine remains in the waste water. Further, when the pH exceeds 9.0, the added slaked lime reacts with sulfate ions in the fluorine-containing wastewater, and a large amount of precipitate is generated. By adjusting the amount of slaked lime added to pH 7.1 or more and 9 or less, fluorine can be efficiently separated and removed while suppressing the formation of unnecessary precipitates.

フッ素沈澱除去工程S13では、消石灰を添加したフッ素含有排水に、濾過処理を施してフッ素をフッ素含有沈澱物として分離除去し、フッ素除去排水が得られる。このフッ素除去排水は、引き続いて排水処理施設に送られ、一般の排水と共に中和や酸化還元等の方法によって、重金属や有機物等を分離し、無害化された後に排出される。 In the fluorine precipitate removing step S13, the fluorine-containing wastewater to which slaked lime is added is subjected to a filtration treatment to separate and remove fluorine as a fluorine-containing precipitate, and the fluorine-removed wastewater is obtained. This fluorine-removed wastewater is subsequently sent to a wastewater treatment facility, where heavy metals, organic substances, etc. are separated together with general wastewater by methods such as neutralization and redox, and then discharged after being detoxified.

以下に示す実施例及び比較例によって本発明を更に詳細に説明するが、本発明は、これらの実施例及び比較例によって何ら限定されるものではない。 The present invention will be described in more detail with reference to Examples and Comparative Examples shown below, but the present invention is not limited to these Examples and Comparative Examples.

実施例1では、フッ素濃度800mg/L(フッ素量80mg(4.2mmol))、硫酸30g/Lである非鉄金属製錬工程の排水(フッ素含有排水)100mLを始液としてビーカーに入れ、リン酸を0.1g添加した。この時のフッ素に対するリンのモル比(P/F)は、0.24であった。次に、リン酸を添加したフッ素含有排水のビーカーに、pHが6になるよう水酸化マグネシウムを添加した。さらに、pHが8になるよう粉末状の消石灰を添加し、スターラーで1時間撹拌し、固液分離した。固液分離後のろ液(フッ素除去排水)のフッ素濃度は、蒸留分離吸光光度法を用いて分析した。また、水分を含む澱物は、60℃で24時間乾燥させた後、重量を測定した。ろ液のフッ素濃度は330mg/Lであり、澱物重量は0.4gであった。 In Example 1, 100 mL of non-ferrous metal smelting process wastewater (fluorine-containing wastewater) having a fluorine concentration of 800 mg / L (fluorine amount 80 mg (4.2 mmol)) and sulfuric acid of 30 g / L was placed in a beaker as a starting liquid and phosphoric acid was added. 0.1 g was added. The molar ratio (P / F) of phosphorus to fluorine at this time was 0.24. Next, magnesium hydroxide was added to a beaker of fluorine-containing wastewater to which phosphoric acid was added so that the pH became 6. Further, powdered slaked lime was added so that the pH became 8, and the mixture was stirred with a stirrer for 1 hour and separated into solid and liquid. The fluorine concentration of the filtrate (fluorine-removed wastewater) after solid-liquid separation was analyzed using the distillation separation absorptiometry. The water-containing starch was dried at 60 ° C. for 24 hours and then weighed. The fluorine concentration of the filtrate was 330 mg / L, and the weight of the precipitate was 0.4 g.

(実施例2から実施例6)
実施例2から実施例6では、リン酸添加量を表1に記載のとおりとした以外は、実施例1と同様の操作を行い、固液分離後のろ液のフッ素濃度と澱物重量を測定した。ろ液(フッ素除去排水)のフッ素濃度と澱物重量は、それぞれ表1に記載のとおりであった。
(Examples 2 to 6)
In Examples 2 to 6, the same operation as in Example 1 was carried out except that the amount of phosphoric acid added was as shown in Table 1, and the fluorine concentration and the starch weight of the filtrate after solid-liquid separation were adjusted. It was measured. The fluorine concentration and the starch weight of the filtrate (fluorine-removed wastewater) are as shown in Table 1, respectively.

Figure 0007102876000001
Figure 0007102876000001

(比較例1から比較例6)
比較例1から比較例6では、実施例1に記載の始液に、表1に記載のリン酸を添加し、さらに消石灰をpHが8になるよう粉末状の消石灰を添加した以外は、実施例と同じ操作を行い、固液分離後のろ液のフッ素濃度と澱物重量を測定した。ろ液(フッ素除去排水)のフッ素濃度と澱物重量は、それぞれ表1に記載のとおりであった。
(Comparative Example 1 to Comparative Example 6)
In Comparative Examples 1 to 6, the phosphoric acid shown in Table 1 was added to the starting liquid described in Example 1, and slaked lime was further added in powder form so that the pH became 8. The same operation as in the example was carried out, and the fluorine concentration and the starch weight of the filtrate after solid-liquid separation were measured. The fluorine concentration and the starch weight of the filtrate (fluorine-removed wastewater) are as shown in Table 1, respectively.

表1のデータを、横軸にろ液(フッ素除去排水)中のフッ素(F)濃度(mg/L)、縦軸に澱物量(g/100mL)を示す図2にあらわした。ここで、澱物量は、ろ液(フッ素除去排水)100mL当たりの澱物重量を示す。図2から、フッ素除去排水中のフッ素濃度が実施例と比較例とで同等である場合、澱物量は、実施例の方が比較例よりも明らかに低減していることがわかった。これは、実施例の場合、リン酸を添加して低下したpHを上げるために水酸化マグネシウムを添加したため、後に添加する消石灰の添加量を低減できたため、石膏を主とした沈澱の発生が抑制されたためと考えられる。また図2において、実施例1から6及び比較例1から6のプロットは、右から順に、フッ素に対するリンのモル比(P/F)が0.24、0.72、1.46、2.19、2.91及び4.86における測定値となっているが、P/Fが0.24から1.46の範囲において、ろ液(フッ素除去排水)中のフッ素(F)濃度の低下量に対する澱物量の増加がより少なくなっているのがわかる。 The data in Table 1 is shown in FIG. 2 in which the horizontal axis shows the fluorine (F) concentration (mg / L) in the filtrate (fluorine-removed wastewater) and the vertical axis shows the amount of starch (g / 100 mL). Here, the amount of starch indicates the weight of starch per 100 mL of filtrate (fluorine-removed wastewater). From FIG. 2, it was found that when the fluorine concentration in the fluorine-removed wastewater was the same in the example and the comparative example, the amount of starch was clearly reduced in the example than in the comparative example. This is because, in the case of the example, since magnesium hydroxide was added to raise the lowered pH by adding phosphoric acid, the amount of slaked lime added later could be reduced, so that the occurrence of precipitation mainly of gypsum was suppressed. It is probable that it was done. Further, in FIG. 2, in the plots of Examples 1 to 6 and Comparative Examples 1 to 6, the molar ratios (P / F) of phosphorus to fluorine are 0.24, 0.72, 1.46, and 2. Although the measured values are 19, 2.91 and 4.86, the amount of decrease in the fluorine (F) concentration in the filtrate (fluorine-removed wastewater) in the range of P / F of 0.24 to 1.46. It can be seen that the increase in the amount of fluoride with respect to is less.

以上の結果から、硫酸イオンを含むフッ素含有排水に対して、リン酸、水酸化マグネシウムおよび消石灰を添加することにより、沈澱物の生成を抑制しながら効率よくフッ素を分離除去することができることがわかる。 From the above results, it can be seen that by adding phosphoric acid, magnesium hydroxide and slaked lime to the fluorine-containing wastewater containing sulfate ions, fluorine can be efficiently separated and removed while suppressing the formation of precipitates. ..

なお、上記のように本発明の各実施形態及び各実施例について詳細に説明したが、本発明の新規事項及び効果から実体的に逸脱しない多くの変形が可能であることは、当業者には、容易に理解できるであろう。従って、このような変形例は、全て本発明の範囲に含まれるものとする。 Although each embodiment and each embodiment of the present invention have been described in detail as described above, those skilled in the art will be able to make many modifications that do not substantially deviate from the new matters and effects of the present invention. , Will be easy to understand. Therefore, all such modifications are included in the scope of the present invention.

例えば、明細書又は図面において、少なくとも一度、より広義又は同義な異なる用語と共に記載された用語は、明細書又は図面のいかなる箇所においても、その異なる用語に置き換えることができる。また、フッ素除去方法の構成、動作も本発明の各実施形態及び各実施例で説明したものに限定されず、種々の変形実施が可能である。 For example, a term described at least once in a specification or drawing with a different term in a broader or synonymous manner may be replaced by that different term anywhere in the specification or drawing. Further, the configuration and operation of the fluorine removing method are not limited to those described in each embodiment and each embodiment of the present invention, and various modifications can be carried out.

S11 リン酸添加工程、S12 水酸化マグネシウム添加工程、S13 フッ素沈澱除去工程 S11 Phosphoric acid addition step, S12 Magnesium hydroxide addition step, S13 Fluorine precipitation removal step

Claims (4)

非鉄金属製錬工程から生じる硫酸イオンを含むフッ素含有排水からのフッ素除去方法であって、
前記フッ素含有排水にリン酸を添加するリン酸添加工程と、
前記リン酸添加工程後のフッ素含有排水に水酸化マグネシウムを添加する水酸化マグネシウム添加工程と、
前記水酸化マグネシウム添加工程後のフッ素含有排水に消石灰を添加して、生成したフッ素含有沈澱物を分離除去するフッ素沈澱除去工程とを有し、
前記水酸化マグネシウム添加工程におけるフッ素含有排水のpHが4以上7以下となるように前記水酸化マグネシウムの添加量を調整することを特徴とするフッ素除去方法。
A method for removing fluorine from fluorine-containing wastewater containing sulfate ions generated from a non-ferrous metal smelting process.
A phosphoric acid addition step of adding phosphoric acid to the fluorine-containing wastewater, and
A magnesium hydroxide addition step of adding magnesium hydroxide to the fluorine-containing wastewater after the phosphoric acid addition step,
It has a fluorine precipitate removing step of adding slaked lime to the fluorine-containing wastewater after the magnesium hydroxide addition step to separate and remove the generated fluorine-containing precipitate.
A method for removing fluorine , which comprises adjusting the amount of magnesium hydroxide added so that the pH of the fluorine-containing wastewater in the magnesium hydroxide addition step is 4 or more and 7 or less .
前記リン酸の添加量を、前記フッ素含有排水中のフッ素(F)に対する前記リン酸中のリン(P)のモル比(P/F)が0.2以上5.0以下となるように調整することを特徴とする請求項1記載のフッ素除去方法。 The amount of the phosphoric acid added is adjusted so that the molar ratio (P / F) of the phosphorus (P) in the phosphoric acid to the fluorine (F) in the fluorine-containing wastewater is 0.2 or more and 5.0 or less. The method for removing fluorine according to claim 1, wherein the method is used. 前記フッ素沈澱除去工程におけるフッ素含有排水のpHが7.1以上9.0以下となるように前記消石灰の添加量を調整することを特徴とする請求項1または2記載のフッ素除去方法。 The fluorine removing method according to claim 1 or 2 , wherein the amount of slaked lime added is adjusted so that the pH of the fluorine-containing wastewater in the fluorine precipitation removing step is 7.1 or more and 9.0 or less. 前記リン酸の添加量を、前記フッ素含有排水中のフッ素(F)に対する前記リン酸中のリン(P)のモル比(P/F)が0.25以上1.5以下となるように調整することを特徴とする請求項1乃至請求項の何れか1項に記載のフッ素除去方法。 The amount of the phosphoric acid added is adjusted so that the molar ratio (P / F) of the phosphorus (P) in the phosphoric acid to the fluorine (F) in the fluorine-containing wastewater is 0.25 or more and 1.5 or less. The fluorine removing method according to any one of claims 1 to 3 , wherein the method is used.
JP2018071951A 2018-04-03 2018-04-03 Fluorine removal method Active JP7102876B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018071951A JP7102876B2 (en) 2018-04-03 2018-04-03 Fluorine removal method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018071951A JP7102876B2 (en) 2018-04-03 2018-04-03 Fluorine removal method

Publications (2)

Publication Number Publication Date
JP2019181329A JP2019181329A (en) 2019-10-24
JP7102876B2 true JP7102876B2 (en) 2022-07-20

Family

ID=68338685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018071951A Active JP7102876B2 (en) 2018-04-03 2018-04-03 Fluorine removal method

Country Status (1)

Country Link
JP (1) JP7102876B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111922027A (en) * 2020-06-18 2020-11-13 吉安创成环保科技有限责任公司 Stabilization and solidification method and application of inorganic fluoride landfill waste

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001340870A (en) 2000-03-31 2001-12-11 Sumitomo Metal Mining Co Ltd Method for treating fluorine-containing wastewater
JP2002316172A (en) 2001-04-19 2002-10-29 Taiheiyo Cement Corp Wastewater treatment method
JP2008188484A (en) 2007-01-31 2008-08-21 Onoda Chemical Industry Co Ltd Treatment method of fluorine-containing wastewater
WO2008120704A1 (en) 2007-03-30 2008-10-09 Kurita Water Industries Ltd. Fluorine-containing wastewater treating apparatus and treating method
JP2011000534A (en) 2009-06-18 2011-01-06 Institute Of National Colleges Of Technology Japan Fluorine-containing wastewater treatment method
JP2016203130A (en) 2015-04-28 2016-12-08 住友金属鉱山株式会社 Method for separating fluorine from fluorine-containing wastewater

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4226710A (en) * 1979-02-12 1980-10-07 Andco Industries, Inc. Process for purifying water containing fluoride ion
JPS6075393A (en) * 1983-09-30 1985-04-27 Nippon Chem Ind Co Ltd:The Treatment of waste water containing lower phosphoric acid
JPH10263558A (en) * 1997-03-26 1998-10-06 Japan Organo Co Ltd Treatment of fluorine-containing desulfurized waste water

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001340870A (en) 2000-03-31 2001-12-11 Sumitomo Metal Mining Co Ltd Method for treating fluorine-containing wastewater
JP2002316172A (en) 2001-04-19 2002-10-29 Taiheiyo Cement Corp Wastewater treatment method
JP2008188484A (en) 2007-01-31 2008-08-21 Onoda Chemical Industry Co Ltd Treatment method of fluorine-containing wastewater
WO2008120704A1 (en) 2007-03-30 2008-10-09 Kurita Water Industries Ltd. Fluorine-containing wastewater treating apparatus and treating method
JP2011000534A (en) 2009-06-18 2011-01-06 Institute Of National Colleges Of Technology Japan Fluorine-containing wastewater treatment method
JP2016203130A (en) 2015-04-28 2016-12-08 住友金属鉱山株式会社 Method for separating fluorine from fluorine-containing wastewater

Also Published As

Publication number Publication date
JP2019181329A (en) 2019-10-24

Similar Documents

Publication Publication Date Title
RU2238246C2 (en) Method for reducing of dissolved metal and non-metal concentration in aqueous solution
JP6986226B2 (en) Wastewater treatment method
JP6743491B2 (en) Waste acid treatment method
JP6350379B2 (en) Fluorine separation method from fluorine-containing wastewater
JP6364716B2 (en) Heavy metal removal method
JP7102875B2 (en) Fluorine removal method
JP3820622B2 (en) Cement production equipment extraction dust processing method
JP6485290B2 (en) Fluorine separation method from fluorine-containing wastewater
JP7102876B2 (en) Fluorine removal method
JP3212875B2 (en) Arsenic recovery method
JP2008142650A (en) Method for removing selenium from selenate-containing liquid
US11479490B2 (en) Method of treating wastewater
JP6742596B2 (en) High-quality gypsum manufacturing method
JP2003225633A (en) Method of treating chloride-containing dust
JP5187199B2 (en) Fluorine separation method from fluorine-containing wastewater
JP6962017B2 (en) Waste acid treatment method
JP2006150333A (en) Treatment method for dust
JP2003137545A (en) Method for manufacturing waste acid gypsum
JP6724433B2 (en) Wastewater treatment method
JP5028742B2 (en) Dust disposal method
JP2015212401A (en) Production method off rhenium sulfide
JP7083782B2 (en) Treatment method of wastewater containing fluorine
JP4239801B2 (en) Method for producing waste acid gypsum
JP3901191B2 (en) Cement production equipment bleed dust treatment method
JP5493903B2 (en) Mercury removal method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220620

R150 Certificate of patent or registration of utility model

Ref document number: 7102876

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150