JP7023390B2 - スクロール圧縮機 - Google Patents

スクロール圧縮機 Download PDF

Info

Publication number
JP7023390B2
JP7023390B2 JP2020571974A JP2020571974A JP7023390B2 JP 7023390 B2 JP7023390 B2 JP 7023390B2 JP 2020571974 A JP2020571974 A JP 2020571974A JP 2020571974 A JP2020571974 A JP 2020571974A JP 7023390 B2 JP7023390 B2 JP 7023390B2
Authority
JP
Japan
Prior art keywords
shell
scroll
heat source
source device
tooth tip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020571974A
Other languages
English (en)
Other versions
JPWO2020165985A1 (ja
Inventor
友寿 松井
祐司 ▲高▼村
雄太郎 岩本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2020165985A1 publication Critical patent/JPWO2020165985A1/ja
Application granted granted Critical
Publication of JP7023390B2 publication Critical patent/JP7023390B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/12Casings; Cylinders; Cylinder heads; Fluid connections
    • F04B39/121Casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/06Cooling; Heating; Prevention of freezing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0215Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C27/00Sealing arrangements in rotary-piston pumps specially adapted for elastic fluids
    • F04C27/005Axial sealings for working fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/28Safety arrangements; Monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/04Heating; Cooling; Heat insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2230/00Manufacture
    • F04C2230/60Assembly methods
    • F04C2230/602Gap; Clearance
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/30Casings or housings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/80Other components
    • F04C2240/81Sensor, e.g. electronic sensor for control or monitoring

Description

この発明は、空調機及び冷凍機等に利用されるスクロール圧縮機に関する。
従来のスクロール圧縮機では、固定スクロールを支持するフレームが筒状のシェルの内壁に固定されている。フレームは、シェルの軸方向に延び、且つ固定スクロールの渦巻歯の外周側に位置する筒状の外壁を有しており、外壁の外周面でシェルの内壁に焼嵌等で固定されている。そして、フレームの外壁の軸方向の端面と固定スクロールの台板との接触部分がねじで固定されることで、固定スクロールがフレームの外壁に固定されている。この構成では、フレームの外壁が固定スクロールの渦巻歯の外周側に位置することで、冷媒吸入空間が狭くなる。このため、近年では、冷媒吸入空間を広げる観点からフレームの外壁を無くしたスクロール圧縮機が提案されている(例えば、特許文献1参照)。特許文献1では、フレームの外壁が無くなることで、固定スクロールの固定先が無くなることから、固定スクロールを直接、シェルの内壁に固着する構成としている。
国際公開第2018/078787号
特許文献1のように、固定スクロールがシェルの内壁に固着されている、所謂フレーム外壁レス構造のスクロール圧縮機では、運転中の圧力及び熱により固定スクロール及び揺動スクロールに撓み及び熱膨張が発生し、渦巻歯の歯先が、対向する相手側のスクロールの歯底に接触又は干渉する。これにより、最終的に渦巻歯の歯先の焼付きに至る可能性があった。
この不都合を防止するには、組立時に、渦巻歯の歯先と、対向する相手側のスクロールの歯底との歯先隙間を確保しておく必要がある。しかし、歯先隙間は冷媒ガスの漏れ流路となることから、歯先隙間を広く設定すると、歯先隙間からの冷媒ガスの漏れによって効率が低下するという問題があった。
よって、組立時の歯先隙間は、運転中の歯先接触を防止しつつ冷媒ガスの漏れを抑制できる、最適な歯先隙間に設定することが重要である。そこで、組立時の歯先隙間を最適な歯先隙間に設定するという考え方もあるが、別の考え方として、シェルの温度を調整してシェルを伸縮させることで、運転時の歯先隙間を調整するという考え方もある。しかし、特許文献1では運転中の歯先隙間を調整するという考え方について全く検討されていない。
この発明は、上記のような課題を解決するためになされたもので、所謂フレーム外壁レス構造において、運転中の歯先隙間を調整することが可能なスクロール圧縮機を提供することを目的とする。
この発明に係るスクロール圧縮機は、筒状のシェルと、シェルの内壁に固着された固定スクロールと、固定スクロールに対向して配置された揺動スクロールと、シェルの内壁に固着され、揺動スクロールを支持するフレームと、シェルの外側において固定スクロールとフレームとの間に配置され、シェルを外部から加熱又は冷却する熱源装置とを備えたものである。
この発明によれば、シェルを外部から加熱又は冷却する熱源装置を備えたので、運転中の歯先隙間を調整できる。
この発明の実施の形態1に係るスクロール圧縮機の内部構造を示す概略図である。 この発明の実施の形態1に係るスクロール圧縮機の圧縮機構部の要部拡大概略図である。 図2の圧縮機構部における、圧力の影響による歯先隙間の変化を示した図である。 図2の圧縮機構部における、温度上昇の影響による歯先隙間の変化を示した図である。 運転範囲の説明図である。 シェル側面の表面温度と効率との関係を示すグラフを示した図である。 この発明の実施の形態1に係るスクロール圧縮機における制御装置の制御を示すフローチャートである。 この発明の実施の形態1に係るスクロール圧縮機の熱源装置の変形例の説明図である。
図1は、この発明の実施の形態1に係るスクロール圧縮機の内部構造を示す概略図である。
スクロール圧縮機は、圧縮機構部10と、圧縮機構部10を駆動する駆動機構部20と、駆動機構部20の駆動力を圧縮機構部10に伝達する主軸30とを有している。圧縮機構部10、駆動機構部20及び主軸30は、外郭を構成する密閉容器である筒状のシェル40内に収容されている。シェル40内には更に、フレーム50が収容されている。フレーム50は、シェル40の内周面に焼嵌等によって固定されている。フレーム50は、シェル40内において圧縮機構部10と駆動機構部20との間に配置されている。フレーム50は、中心部に形成された貫通孔を介して主軸30を回転自在に支持すると共に、後述の揺動スクロール12を回転自在に支持する。
シェル40の底部は、冷凍機油を貯蓄する油溜め41となっている。油溜め41内の冷凍機油は、主軸30の下端に取付けられたポンプ31によって吸い上げられ、主軸30内部に軸方向に設けられた給油穴(図示せず)を通ってフレーム50内の油溜まり50a及び各摺動部へ給油される。
シェル40には、外部の冷媒ガスをシェル40内に吸入する吸入管70と、圧縮された冷媒ガスをシェル40外に吐出する吐出管71とが接続されている。
圧縮機構部10は、駆動機構部20により駆動されることで、吸入管70から吸入した圧縮流体である冷媒ガスを圧縮する機能を有している。圧縮機構部10は、固定スクロール11と、固定スクロール11に対向して配置された揺動スクロール12とを有している。
固定スクロール11は、台板11aと、台板11aの一方の面に立設された渦巻の突起である渦巻歯11bとを有している。固定スクロール11は、台板11aの外周面部分でシェル40の内周面に焼嵌等によって固定されている。
揺動スクロール12は、台板12aと、台板12aの一方の面に立設された渦巻の突起である渦巻歯12bとを有している。揺動スクロール12の台板12aの他方の面(以下、背面という)には筒状の揺動ボス部12cが形成されている。揺動ボス部12cには、主軸30の上端に設けられた後述の偏心軸部30aが嵌め込まれている。
揺動スクロール12は、オルダムリング13により、固定スクロール11に対して自転することなく揺動するようになっている。オルダムリング13は、揺動スクロール12の台板12aの背面に設けられた溝とフレーム50に設けられた溝との両方に係止するように設けられ、揺動スクロール12の自転を防止し、公転運動のみ可動な構造となっている。
固定スクロール11と揺動スクロール12とは、渦巻歯11bと渦巻歯12bとを互いに噛み合せるようにして嵌合し、シェル40内に装着される。渦巻歯11bと渦巻歯12bとの間には、相対的に容積が変化する複数の圧縮室15が形成される。
駆動機構部20は、圧縮機構部10で冷媒ガスを圧縮するために、揺動スクロール12を駆動する機能を有している。つまり、駆動機構部20が主軸30を介して揺動スクロール12を駆動することによって、圧縮機構部10で冷媒ガスを圧縮する。駆動機構部20は、固定子21及び回転子22を有している。回転子22は、主軸30に対して圧入等により固定されている。回転子22は、固定子21に通電されることにより回転駆動し、主軸30を回転させる。
主軸30は、上端側に偏心軸部30aを有し、偏心軸部30aが揺動スクロール12の揺動ボス部12c内に設けられた揺動軸受(図示せず)にスライダ14を介して係止されて動力を揺動スクロール12に伝達する。
フレーム50は、径の異なる複数の円筒部がシェル40の軸方向に連なった形状を有し、駆動機構部20側に向かって順に径が小さくなるように構成されている。フレーム50は、所謂外壁レス構造であり、複数の円筒部のうち、固定スクロール11側の円筒部51の外周面がシェル40の内周面に焼嵌等によって固着されている。フレーム50は、中心部に形成された貫通孔を介して主軸30を回転自在に支持すると共に、円筒部51の固定スクロール11側に形成された環状の平坦面51aで揺動スクロール12を回転自在に支持する。
そして、この実施の形態1の特徴とする構成としては、シェル40を外部から加熱又は冷却する熱源装置60を備えたことにある。熱源装置60は、具体的にはヒータなどで構成された加熱部と、クーラなどで構成された冷却部とを備えた構成としてもよいし、加熱と冷却とを同一素子で行えるペルチェ素子を用いる等の構成としてもよい。熱源装置60は、外部電源によって駆動される。
熱源装置60は、シェル40の外側において固定スクロール11とフレーム50との間に配置されている。更に詳しくは、熱源装置60は、シェル40と固定スクロール11との固着位置42と、シェル40とフレーム50との固着位置43との間に配置されている。熱源装置60は、シェル40の外壁40bと接触するように配置されている。また、シェル40の外壁40bには、外壁40bの温度としてシェル側面の表面温度を計測する温度センサ61が配置されている。温度センサ61の計測温度は後述の制御装置62に入力される。
熱源装置60は、温度センサ61の計測温度に基づいて制御装置62によって制御される。制御装置62は、専用のハードウェア、又はメモリに格納されるプログラムを実行するCPUなどで構成される。制御装置62による熱源装置60の制御については後述する。
次に、熱源装置60による運転時の歯先隙間の変化について説明する。ここで、固定スクロール11及び揺動スクロール12の一方のスクロールの渦巻歯と他方のスクロールの台板との隙間を歯先隙間と定義する。
図2は、この発明の実施の形態1に係るスクロール圧縮機の圧縮機構部の要部拡大概略図である。
組立時における固定スクロール11の歯先隙間δ1及び揺動スクロール12の歯先隙間δ2は、予め規定されている。以下、組立時の歯先隙間δ1及び歯先隙間δ2を規定値という。規定値の決定方法については後述する。
固定スクロール11とシェル40との固着位置42の下端と、フレーム50とシェル40との固着位置43の上端との距離Lは、熱源装置60によってシェル40が加熱又は冷却されることで変化する。具体的には、熱源装置60でシェル40が加熱されると、シェル側面の表面温度が上昇し、シェル40が軸方向に膨張して距離Lが拡大する。これにより、歯先隙間が拡大する。一方、熱源装置60でシェル40が冷却されると、シェル側面の表面温度が下降し、シェル40が軸方向に縮小して距離Lが縮小する。これにより、歯先隙間が縮小する。
このように、熱源装置60によってシェル40を加熱又は冷却することで距離Lを変更できるので、歯先隙間を強制的に調整できる。ここで、熱源装置60は、上述したように固定スクロール11とシェル40との固着位置42と、フレーム50とシェル40との固着位置43との間に配置されており、距離Lを変更するにあたって影響の大きい箇所に配置されている。このため、熱源装置60の熱によって効率良くシェル40の伸縮を行えるようになっている。
次に、スクロール圧縮機の動作について説明する。
外部電源から固定子21に電力供給されると、回転子22が回転し、この回転力が主軸30を介して揺動スクロール12に伝達される。揺動スクロール12はオルダムリング13によって自転が防止されることで公転し始める。固定スクロール11と揺動スクロール12とで形成された圧縮室15には、吸入管70からシェル40の内部に吸い込まれた冷媒が連続的に取り込まれる。圧縮室15では、冷媒の吸入→圧縮→吐出が繰り返される。シェル40の下部に貯留されていた潤滑油は、主軸30の回転によって吸い上げられ、各軸受を潤滑した後、シェル40の底部の油溜め41に返油される。
圧縮過程における冷媒ガスは、圧力上昇と共に温度上昇を伴う。このため、圧縮室15を形成している固定スクロール11及び揺動スクロール12には、圧縮ガスによる圧力作用が働く。これと同時に、固定スクロール11及び揺動スクロール12は圧縮ガスからの温度遷移によって熱膨張する。
ここで、運転時の圧力作用よび熱膨張に起因した歯先隙間の変位について説明する。
(圧力による撓み)
図3は、図2の圧縮機構部における、圧力の影響による歯先隙間の変化を示した図である。図3において、点線は、圧力による撓み後のスクロールの位置を示している。なお、図3及び後述の図4において熱源装置60の図示は省略している。
運転中の固定スクロール11には、図3に示すように固定スクロール11の背面側に、吐出圧である高圧が作用する。運転中の圧縮室15は、吐出圧よりも低い昇圧過程の中間圧となっている。そして、圧縮室15の外周側の冷媒吸入空間16は、中間圧よりも低い吸入圧である低圧となっている。
固定スクロール11の周囲の圧力関係は以上の通りであるため、固定スクロール11の台板11aの外周部でシェル40の内壁40aに固定されている固定スクロール11は、図3の点線で示すように、渦巻歯11b側に凸となるように撓む。
一方、運転中の揺動スクロール12には、背面側に、吸入圧である低圧が作用する。また、運転中の圧縮室15は、上述したように中間圧となっている。そして、圧縮室15の外周側の冷媒吸入空間16は上述したように低圧となっている。
揺動スクロール12の周囲の圧力関係は以上の通りであるため、揺動スクロール12の台板12aの背面の外周付近がフレーム50の平坦面51aで支持されている揺動スクロール12は、図3の点線で示すように背面側に凸となるように撓む。
以上のように揺動スクロール12及び固定スクロール11のそれぞれが撓むことで、歯先隙間はそれぞれ、δ1及びδ2からδ1+α1及びδ2+α2に変化する。
(温度上昇による熱膨張)
図4は、図2の圧縮機構部における、温度上昇の影響による歯先隙間の変化を示した図である。
圧縮室15の温度が、吸入ガス及び吐出ガスのそれぞれの温度の影響を受けて温度上昇すると、揺動スクロール12及び固定スクロール11が熱膨張する。この熱膨張により、図4の点線で示すように渦巻歯12b及び渦巻歯11bのそれぞれの歯高が高くなる。これにより歯先隙間が縮小し、それぞれδ1及びδ2からδ1+β1及びδ2+β2に変化する。なお、β1及びβ2は負値である。
以上の圧力による撓みと温度上昇による熱膨張とによって、運転中の揺動スクロール12及び固定スクロール11のそれぞれの歯先隙間は、δ1及びδ2からδ1+α1+β1及びδ2+α2+β2に変化する。このように歯先隙間は、運転中の吸入圧力及び吐出圧力と、吸入温度及び吐出温度とによって、組立時の規定値δ1及び規定値δ2から大きく変化する。
運転中に生じるこのような歯先隙間の変化を踏まえ、従来は、所定の運転範囲での運転中に、歯先隙間が無くなることによる歯先接触が起こらない歯先隙間を、組立時の規定値として定めていた。これに対し、この実施の形態1では、熱源装置60によって歯先隙間を調整することが可能であるため、組立時の規定値を、従来の規定値よりも小さい隙間に設定することが可能である。歯先隙間は圧縮室15の内部漏れ流路となるため、規定値を可能な限り小さく設定することで圧縮機性能を向上できる。
(熱源装置の動作)
熱源装置60は、温度センサ61で計測されたシェル側面の表面温度が、現在の運転条件に応じた目標温度範囲となるように制御装置62によって制御される。運転条件とは、吸入圧力及び吐出圧力である。歯先隙間は、シェル側面の表面温度が高くなると拡大し、シェル側面の表面温度が低くなると縮小する。このようにシェル側面の表面温度と歯先隙間とには相関関係があることから、シェル側面の表面温度が目標温度範囲となるように熱源装置60を制御することで、歯先隙間を最適に保つことが可能である。
ここで、最適な歯先隙間とは、運転中の歯先接触を防止しつつ冷媒ガスの漏れを抑制して効率が高い状態を維持できる隙間を指す。圧縮機では、仕様に応じて運転範囲が設定されており、目標温度範囲は、その運転範囲において歯先隙間がどのように変化するかを事前にモニタリングしたデータを用いて設定される。以下、目標温度範囲の設定方法について、歯先隙間の規定値の決定方法も含めて説明する。
ここでまず、歯先隙間の規定値の決定方法について図5及び図6を用いて説明する。
図5は、運転範囲の説明図である。
図5において、直線で囲まれた領域は、スクロール圧縮機の仕様に応じて設定された運転範囲を示している。運転範囲は、吸入圧力と吐出圧力とによって特定される。吐出圧力には温度のファクターも含まれる。
ここでは、歯先隙間の規定値を、「運転範囲内での運転時に歯先接触が生じない隙間」よりも小さく設定する。そして、そのように設定したスクロール圧縮機を、図5に示した運転範囲内で運転したモニタリング結果が次の図6である。具体的には、図5の運転範囲内のある運転点(つまり、運転条件)での運転時におけるモニタリングデータに基づいて、シェル側面の表面温度とスクロール圧縮機の効率との関係をグラフ化したものが図6である。
図6は、シェル側面の表面温度と効率との関係を示すグラフを示した図である。図6において横軸がシェル側面の表面温度、縦軸がスクロール圧縮機の運転効率(以下、効率という)である。
シェル側面の表面温度と効率との関係は、上に凸のグラフで表される。効率が高いとは、歯先隙間が小さく、圧縮行程での冷媒漏れが少ないことを意味する。このグラフにおいて、あるシェル側面の表面温度より低くなると効率が大幅に低下する傾向があるが、これは、歯先接触によるものである。よって、白丸のプロット点のように、シェル側面の表面温度が、効率がピークとなるシェル側面の表面温度よりも低い運転時には、歯先接触が生じている可能性がある。一方、黒丸のプロット点のように、シェル側面の表面温度が、効率がピークとなるシェル側面の表面温度よりも高い運転時には、歯先隙間が大きすぎて効率が低い運転状態にある。
以上より、シェル側面の表面温度が、最高効率より少し低い効率となる範囲Aにあると、運転範囲内において、歯先接触を回避でき且つ効率のよい運転が可能となる。このようなモニタリング結果を踏まえ、範囲Aが目標温度範囲に設定される。つまり、目標温度範囲には、運転中の歯先接触を回避すると共に、設定値以上の効率が得られる温度範囲が設定される。
図6のグラフは各運転条件毎に求められる。したがって、制御装置62には、各運転条件に応じた目標温度範囲が予め設定されており、制御装置62は現在の運転条件に対応する目標温度範囲に基づいて熱源装置60を制御する。
図7は、この発明の実施の形態1に係るスクロール圧縮機における制御装置の制御を示すフローチャートである。図7のフローチャートの制御は制御間隔毎に実施される。
スクロール圧縮機の運転開始後、制御装置62は、温度センサ61の計測温度が、現在の運転条件に対応する目標温度範囲内にあるかをチェックする(ステップS1)。制御装置62は、温度センサ61の計測温度が目標温度範囲内であれば、熱源装置60を停止する(ステップS2)。一方、温度センサ61の計測温度が目標温度範囲よりも高い場合(ステップS3でYES)、熱源装置60を冷却側で駆動して(ステップS4)、シェル40を縮小させる。これにより歯先隙間を小さくし、効率を上昇させる。また、制御装置62は、温度センサ61の計測温度が目標温度範囲よりも低い場合(ステップS3でNO)には、熱源装置60を加熱側で駆動して(ステップS5)、シェル40を膨張させる。これにより、歯先隙間を広げ、歯先接触が起こらないようにする。
以上説明したように、実施の形態1によれば、シェル40を外部から加熱又は冷却する熱源装置60が、シェル40の外側であって、シェル40の軸方向における固定スクロール11とフレーム50との間に配置されている。これにより、シェル40の軸方向における固定スクロール11とフレーム50との間のシェル部分を加熱又は冷却することが可能となり、当該シェル部分を温度変化させて伸縮させることができる。つまり、歯先隙間を決定する要素である、シェル40の軸方向における固定スクロール11とフレーム50との間の距離Lを自由に変化させることが可能となり、運転中の歯先隙間を強制的に変化させることが可能となる。
実施の形態1では歯先隙間を変化させることが可能であるため、組立時の歯先隙間を広く設定しなくても、歯先接触を回避することができ、圧縮機故障を防止できる。つまり、歯先接触が生じる可能性がある運転時には、熱源装置60によってシェル40を加熱して歯先隙間を広げればよい。
また、実施の形態1において熱源装置60は、シェル40の外壁40bと接触するように配置されているので、熱源装置60の熱を効率良くシェル40の外壁40bに伝達できる。
実施の形態1において制御装置62は、シェル側面の温度が目標温度範囲となるように熱源装置60を制御する。これにより、常に最適な歯先隙間を維持した状態でスクロール圧縮機の運転が可能となり、性能を向上できる。具体的な制御として、制御装置62は、計測温度が目標温度範囲より高い場合、熱源装置60でシェル40を冷却し、計測温度が目標温度範囲より低い場合、熱源装置60でシェル40を加熱する。これにより、シェル40を伸縮させて歯先隙間を最適な歯先隙間に調整できる。
また、制御装置62は、スクロール圧縮機の運転条件に対応する目標温度範囲に基づいて熱源装置60を制御するので、目標温度範囲を運転条件に寄らず固定範囲とした場合に比べて、歯先隙間の調整を適切に行える。
また、低温状態での圧縮機停止中には、シェル40内に冷媒が集まる冷媒寝込み現象が発生することがある。このような冷媒寝込み現象が発生した際には、熱源装置60によってシェル40を加熱することで、圧縮機構部10内の液冷媒を蒸発させることが容易である。よって、寝込み時間を短縮でき、起動不良を回避できる。
スクロール圧縮機の運転が、仮に所定の運転範囲外のイレギュラー運転となった場合でも、熱源装置60によって歯先隙間を一時的に変化させることで、歯先接触による圧縮機故障を防止できる。
なお、この実施の形態1では、熱源装置60が加熱と冷却の両方を行える装置として説明したが、少なくとも一方を行える装置であればよい。熱源装置60が加熱のみを行う装置である場合、組立時の歯先隙間を運転時に歯先接触が生じない隙間よりも小さく設定しておき、歯先接触が生じそうになった際に熱源装置60を駆動させて歯先隙間を広げる利用方法がある。一方、熱源装置60が冷却のみを行う装置である場合、歯先接触が生じない安全側の設計として、組立時の歯先隙間を広く設定しておき、歯先隙間が広がる運転状態の際に熱源装置60を駆動させて歯先隙間を狭める利用方法がある。
また、熱源装置60がクーラ又はヒータ等を用いて加熱又は冷却する装置であるとしたが、次の図8に示すように、冷媒回路を循環する冷媒を用いて加熱又は冷却する構成としてもよい。
図8は、この発明の実施の形態1に係るスクロール圧縮機の熱源装置の変形例の説明図である。
図8は実施の形態1のスクロール圧縮機100を備えた冷凍サイクル装置を示している。この変形例の熱源装置60は、冷凍サイクル装置内の冷媒回路110を循環する冷媒を用いてシェル40を加熱又は冷却するものである。
冷凍サイクル装置は、スクロール圧縮機100、凝縮器101、膨張弁102及び蒸発器103に冷媒を循環させる冷媒回路110を備えている。また、冷凍サイクル装置は、凝縮器101と膨張弁102との間から分岐してスクロール圧縮機100のシェル側面に導かれ、シェル40を加熱する加熱回路104と、加熱回路104を開閉する開閉弁105とを備えている。冷凍サイクル装置は更に、膨張弁102と蒸発器103との間から分岐してスクロール圧縮機100のシェル側面に導かれ、シェル40を冷却する冷却回路106と、冷却回路106を開閉する開閉弁107とを備えている。熱源装置60は加熱回路104及び冷却回路106のそれぞれの一部によって構成されている。
スクロール圧縮機100で圧縮された冷媒は、高温高圧のガス冷媒となる。高温高圧のガス冷媒は凝縮器101に流入する。凝縮器101で冷媒は高温高圧の気体から液体に相変化する。その後、冷媒は、膨張弁102で減圧されて膨張し、低温低圧の二相冷媒となり、蒸発器103へ流入する。蒸発器103では冷媒が液体から気体に相変化する。そして、膨張弁102から流出した冷媒は、スクロール圧縮機100に吸込まれる。
冷媒回路110における冷媒の流れは以上の通りであるため、加熱回路104には、凝縮器101から膨張弁102に向かう高温の冷媒が通過する。このため、開閉弁105を開くことにより、加熱回路104を通過する冷媒によってシェル40が加熱される。冷却回路106には、膨張弁102で減圧されて低温となった冷媒が通過する。このため、開閉弁107を開くことにより、冷却回路106を通過する冷媒によってシェル40が冷却される。
このように、熱源装置60を、冷媒回路110の冷媒によって冷却又は加熱を行う装置として構成してもよい。
10 圧縮機構部、11 固定スクロール、11a 台板、11b 渦巻歯、12 揺動スクロール、12a 台板、12b 渦巻歯、12c 揺動ボス部、13 オルダムリング、14 スライダ、15 圧縮室、16 冷媒吸入空間、20 駆動機構部、21 固定子、22 回転子、30 主軸、30a 偏心軸部、31 ポンプ、40 シェル、40a 内壁、40b 外壁、41 油溜め、42 固着位置、43 固着位置、50 フレーム、50a 油溜まり、51 円筒部、51a 平坦面、52 回転子、60 熱源装置、61 温度センサ、62 制御装置、70 吸入管、71 吐出管、100 スクロール圧縮機、101 凝縮器、102 膨張弁、103 蒸発器、104 加熱回路、105 開閉弁、106 冷却回路、107 開閉弁、110 冷媒回路。

Claims (7)

  1. 筒状のシェルと、
    前記シェルの内壁に固着された固定スクロールと、
    前記固定スクロールに対向して配置された揺動スクロールと、
    前記シェルの内壁に固着され、前記揺動スクロールを支持するフレームと、
    前記シェルの外側において前記固定スクロールと前記フレームとの間に配置され、前記シェルを外部から加熱又は冷却する熱源装置とを備えたスクロール圧縮機。
  2. 前記熱源装置は、前記シェルの外壁と接触するように配置されている請求項1記載のスクロール圧縮機。
  3. 前記熱源装置は、冷媒回路の冷媒によって冷却又は加熱を行う装置である請求項1又は請求項2記載のスクロール圧縮機。
  4. 前記シェルの外壁の温度を計測する温度センサと、
    前記熱源装置を制御する制御装置とを備え、
    前記制御装置は、前記温度センサで計測された計測温度が目標温度範囲内となるように前記熱源装置を制御する請求項1~請求項3の何れか一項に記載のスクロール圧縮機。
  5. 前記制御装置は、前記計測温度が前記目標温度範囲より高い場合、前記熱源装置で前記シェルを冷却し、前記計測温度が前記目標温度範囲より低い場合、前記熱源装置で前記シェルを加熱する請求項4記載のスクロール圧縮機。
  6. 前記制御装置は、スクロール圧縮機の運転条件に対応する前記目標温度範囲に基づいて前記熱源装置を制御する請求項4又は請求項5記載のスクロール圧縮機。
  7. 前記固定スクロール及び前記揺動スクロールはそれぞれ台板及び渦巻歯を備え、
    前記固定スクロール及び前記揺動スクロールの一方のスクロールの前記渦巻歯と他方のスクロールの前記台板との隙間を歯先隙間と定義するとき、
    前記目標温度範囲には、運転中に前記歯先隙間が無くなることによる歯先接触を回避すると共に、設定値以上の運転効率が得られる温度範囲が設定されている請求項4~請求項6の何れか一項に記載のスクロール圧縮機。
JP2020571974A 2019-02-14 2019-02-14 スクロール圧縮機 Active JP7023390B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/005223 WO2020165985A1 (ja) 2019-02-14 2019-02-14 スクロール圧縮機

Publications (2)

Publication Number Publication Date
JPWO2020165985A1 JPWO2020165985A1 (ja) 2021-09-30
JP7023390B2 true JP7023390B2 (ja) 2022-02-21

Family

ID=72044040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020571974A Active JP7023390B2 (ja) 2019-02-14 2019-02-14 スクロール圧縮機

Country Status (5)

Country Link
US (1) US11493046B2 (ja)
JP (1) JP7023390B2 (ja)
CN (1) CN113423952B (ja)
GB (1) GB2593649B (ja)
WO (1) WO2020165985A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114183343A (zh) * 2021-11-16 2022-03-15 北京卫星制造厂有限公司 一种循环泵及循环泵间隙控制方法
CN114776591A (zh) * 2022-05-13 2022-07-22 重庆超力高科技股份有限公司 双级涡旋压缩机

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040166007A1 (en) 2003-02-25 2004-08-26 Schofield Nigel Paul Scroll compressor
JP4318298B2 (ja) 2004-03-30 2009-08-19 株式会社三葉製作所 平板状シート製造装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59203893A (ja) * 1983-05-04 1984-11-19 Hitachi Ltd スクロ−ル流体機械
JPS6338684U (ja) 1986-08-29 1988-03-12
JP2892520B2 (ja) 1991-04-17 1999-05-17 トキコ株式会社 スクロール式流体機械
JPH10148405A (ja) * 1996-11-20 1998-06-02 Hitachi Ltd 冷凍・空気調和機
JPH1182328A (ja) * 1997-09-10 1999-03-26 Anest Iwata Corp 旋回スクロールの回転阻止機構を有したスクロール流体機械
US6490882B2 (en) * 2001-03-27 2002-12-10 Liebert Corporation Method and apparatus for maintaining compressor discharge vapor volume for starting with condensing unit ambient temperatures less than evaporator unit ambient temperatures
JP2008056594A (ja) * 2006-08-30 2008-03-13 Fujifilm Corp 芳香用品およびその製造方法
WO2014169212A1 (en) * 2013-04-12 2014-10-16 Emerson Climate Technologies, Inc. Compressor with flooded start control
US10578103B2 (en) 2015-06-11 2020-03-03 Mitsubishi Electric Corporation Scroll compressor and refrigeration cycle apparatus
WO2017006387A1 (ja) * 2015-07-03 2017-01-12 三菱電機株式会社 ヒートポンプ装置
JP2018035723A (ja) 2016-08-30 2018-03-08 サンデン・オートモーティブコンポーネント株式会社 圧縮機冷却装置
WO2018078787A1 (ja) 2016-10-28 2018-05-03 三菱電機株式会社 スクロール圧縮機、冷凍サイクル装置およびシェル
JP6678811B2 (ja) * 2017-03-06 2020-04-08 三菱電機株式会社 スクロール圧縮機および冷凍サイクル装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040166007A1 (en) 2003-02-25 2004-08-26 Schofield Nigel Paul Scroll compressor
JP4318298B2 (ja) 2004-03-30 2009-08-19 株式会社三葉製作所 平板状シート製造装置

Also Published As

Publication number Publication date
US11493046B2 (en) 2022-11-08
US20220018348A1 (en) 2022-01-20
WO2020165985A1 (ja) 2020-08-20
JPWO2020165985A1 (ja) 2021-09-30
GB2593649A (en) 2021-09-29
CN113423952A (zh) 2021-09-21
GB2593649B (en) 2022-09-07
CN113423952B (zh) 2023-09-15
GB202108951D0 (en) 2021-08-04

Similar Documents

Publication Publication Date Title
JP4147891B2 (ja) 可変vi式インバータスクリュー圧縮機
JP5389173B2 (ja) ヒートポンプ装置、インジェクション対応圧縮機及びインジェクション対応スクロール圧縮機の製造方法
JP5695187B2 (ja) 冷媒圧縮機及びこれを用いた冷凍サイクル装置
US6615598B1 (en) Scroll machine with liquid injection
JP7023390B2 (ja) スクロール圧縮機
JP2000088376A (ja) ヒートポンプ装置
KR100802016B1 (ko) 용량가변 압축기 및 그 기동운전방법
JP2009085156A (ja) 冷凍装置用のスクリュー圧縮機
JPH02245490A (ja) 可変速スクロール圧縮機
JP2012172581A (ja) スクロール圧縮機及びヒートポンプ装置
JP4830964B2 (ja) 給湯装置
US10436202B2 (en) Scroll compressor and refrigeration cycle apparatus
US20230184475A1 (en) Refrigeration cycle apparatus
JP4744331B2 (ja) ヒートポンプ装置
JP7042929B2 (ja) 冷凍サイクル装置
JP6896569B2 (ja) スクロール圧縮機及びその制御方法並びに空気調和装置
JP2008133968A (ja) 冷凍サイクル装置
JP5060352B2 (ja) スクロール膨張機
JP2013113212A (ja) スクロール圧縮機及び冷凍サイクル装置
KR102040967B1 (ko) 압축기의 배압 조절 장치
JP4196814B2 (ja) 冷凍空調装置
JP6350824B2 (ja) 空気調和機
WO2023100271A1 (ja) スクロール圧縮機および冷凍サイクル装置
JPWO2010122812A1 (ja) 冷凍サイクル装置
JP6927911B2 (ja) 冷凍サイクル装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220208

R150 Certificate of patent or registration of utility model

Ref document number: 7023390

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150