JP7021746B2 - 処理装置および処理方法 - Google Patents

処理装置および処理方法 Download PDF

Info

Publication number
JP7021746B2
JP7021746B2 JP2018114751A JP2018114751A JP7021746B2 JP 7021746 B2 JP7021746 B2 JP 7021746B2 JP 2018114751 A JP2018114751 A JP 2018114751A JP 2018114751 A JP2018114751 A JP 2018114751A JP 7021746 B2 JP7021746 B2 JP 7021746B2
Authority
JP
Japan
Prior art keywords
unit
processing
amount
flow path
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018114751A
Other languages
English (en)
Other versions
JP2019220512A (ja
Inventor
彰夫 橋詰
敦 園田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Screen Holdings Co Ltd
Original Assignee
Screen Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Screen Holdings Co Ltd filed Critical Screen Holdings Co Ltd
Priority to JP2018114751A priority Critical patent/JP7021746B2/ja
Publication of JP2019220512A publication Critical patent/JP2019220512A/ja
Application granted granted Critical
Publication of JP7021746B2 publication Critical patent/JP7021746B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Weting (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Description

本発明は、被処理体に対してエッチング処理や洗浄処理、現像処理等の処理液を用いた処理を行う処理装置および処理方法に関する。
処理装置の各部に設けられた様々な測定器によって、処理装置の各部で異常が生じているか否か判定される。例えば、特許文献1では、パージ処理に用いたパージガスの排出管に排気流量を測定する測定部を設け、測定部の測定結果に基づいてパージ処理の良否を判定する技術が提案されている。また、近年、様々な分野で省エネルギー化が求められており、例えば、特許文献2では、マンションの排水経路に水力発電装置を設けることで発電する技術が提案されている。
国際公開第2015/118782号 特開2006-233779号公報
従来の処理装置では、装置内の各部に測定器を設けることで装置内の各部における異常の検知は行われたが、発電ユニットを処理装置に設け、当該発電ユニットを用いて処理装置の状態に係る情報を取得することは提案されていない。
開示の技術の1つの側面は、処理装置の流路に設けられた発電ユニットを用いて、当該処理装置の状態に係る情報を取得することを課題とする。
開示の技術の1つの側面は、次のような処理装置によって例示される。本処理装置は、被処理体を処理する処理ユニットと、前記処理ユニットと接続し、前記被処理体の処理に係る流体が通過する流路と、前記流路に設けられ、前記流体から受ける運動エネルギーを基に発電する発電ユニットと、前記発電ユニットから得られる流体通過評価値を検知する検知ユニットと、を備えることを特徴とする。
開示の技術において、被処理体とは、例えば、半導体基板、ガラス基板、液晶パネル等を挙げることができる。また、処理装置が実行する処理は、例えば、洗浄処理、塗布処理、現像処理等を挙げることができる。被処理体の処理に係る流体とは、例えば、被処理体に吐出したり塗布したりする薬液や、被処理体周囲を覆う雰囲気(不活性ガス:窒素(N)やアルゴン(Ar)やヘリウム(He)や窒素と水素の混合気体(N+H)、窒素とヘリウムの混合気体(N+He))を挙げることができる。被処理体の処理に係る流体は純水であってもよい。発電ユニットは、例えば、水車発電機や風力発電機である。発電ユニットは、例えば、流体から圧力を受けることで発電する圧電素子を含んでもよい。また、発電ユニットは、例えば、流体が通過することによる流路の振動を受けて発電する振動発電素子を含んでもよい。
流体通過評価値は、流体の運動エネルギーの大きさによって変化する値である。流体通過評価値は、例えば、発電ユニットの発電量を挙げることができ、発電ユニットが水車発電機である場合には当該水車発電機が有する水車の回転数、発電ユニットが風力発電機で
ある場合には当該風力発電機が有する風車の回転数を挙げることができる。発電量は、例えば、発電ユニットの発電によって生ずる電力、電力量、電流値、電圧等である。
開示の技術によれば、被処理体の処理に係る流体が通過する流路に設けられた発電ユニットが、当該流路を通過する流体から受ける運動エネルギーを基に発電する。流体の運動エネルギーは、処理装置が正常な場合と異常な場合とで異なることがある。そのため、発電ユニットから流体通過評価値を取得することで、処理装置の異常検知に役立てることができる。
開示の技術は、次の特徴を有してもよい。前記流体通過評価値と、前記流路を通過する前記流体の通過量との対応関係を記憶する記憶部と、前記流体通過評価値と前記対応関係に基づいて、前記流路を通過する流体の通過量を算出する算出ユニットと、をさらに備えることを特徴とする。このような特徴を有することで、流量計を用いなくとも、発電ユニットから得る流体通過評価値を基に流体の通過量を算出することができる。
開示の技術は、次の特徴を有してもよい。前記発電ユニットは、前記流体から圧力を受けて回転する回転部と、前記回転部が回転する運動エネルギーを電気エネルギーに変換することで発電する発電部と、を有することを特徴とする。このような特徴を有することで、例えば、水車を有する水車発電機や風車を有する風力発電機を開示の技術に適用することができる。
開示の技術は、次の特徴を有してもよい。前記流路は、前記処理ユニットから排出される流体が通過することを特徴とする。このような特徴を有することで、処理に用いた流体の排出状況を示す流体通過評価値を取得できる。
開示の技術は、次の特徴を有してもよい。前記流体通過評価値に基づいて、前記処理装置の異常を判定する判定ユニットをさらに備えることを特徴とする。このような特徴を有することで、処理装置の異常を判定することができる。異常の判定では、前記流体通過評価値が所定の許容範囲を逸脱する場合に、前記処理装置に異常があると判定してもよい。
開示の技術は、次の特徴を有してもよい。前記処理ユニットに接続し、前記処理ユニットに前記流体を供給する供給流路と、前記供給流路に設けられ、前記供給流路を通過する流体の供給量を測定する測定ユニットと、をさらに備え、前記判定ユニットは、前記供給量と前記通過量とに基づいて、前記処理装置の異常を判定することを特徴とする。前記測定ユニットは、前記供給流路に設けられた流量計であってもよい。また、前記判定ユニットは、前記供給量と前記通過量との差の絶対値が、第1閾値以上である場合に、前記処理装置に異常があると判定してもよい。このような特徴を有することで、供給量に対する排出量を示す流体通過評価値を取得でき、供給量に対する排出量に異常がないか判定することができる。
開示の技術は、次の特徴を有してもよい。前記判定ユニットは、前記供給量から前記通過量を減算した値が、第2閾値以上である場合に、前記流路に詰まりが発生していると判定することを特徴とする。このような特徴を有することで、処理装置の流路に詰まりが発生していることを検知できる。
開示の技術は、次の特徴を有してもよい。前記流路内を洗浄する洗浄ユニットをさらに備え、前記判定ユニットは、前記流路に詰まりが発生していると判定すると、前記洗浄ユニットを駆動して、前記流路内の洗浄を行う。このような特徴を有することで、処理装置の流路において詰まりが生じても、洗浄することで詰まりの状態を改善することができる。
開示の技術は、次の特徴を有してもよい。前記処理装置は、複数の処理を含む一連の処理を被処理体に対して行う装置であり、前記一連の処理に含まれる処理の夫々について、当該処理が実行されているときにおける前記流体通過評価値の許容範囲との対応関係を記憶する記憶部をさらに備え、前記判定ユニットは、前記判定の時に実行している前記処理に対応付けられた前記許容範囲を前記流体通過評価値が逸脱している場合に、前記処理装置の異常を判定する。このような特徴を有することで、処理装置が複数の処理を含む一連の処理を被処理体に実行する場合に、前記判定の時に実行している処理に対応する適切な許容範囲に基づいて、処理装置の異常を判定することができる。
開示の技術は、方法の側面から把握することも可能である。
本処理装置は、処理装置の流路に設けられた発電ユニットを用いて、当該処理装置の状態に係る情報を取得することができる。
図1は、実施形態に係る基板処理装置の構成の一例を示す図である。 図2は、実施形態に係る基板処理ユニットの構成の一例を示す図である。 図3は、実施形態に係る基板処理装置が有する処理チャンバーの構成の一例を示す図である。 図4は、実施形態に係る基板処理装置の機能ブロック図の一例である。 図5は、排水量と水車発電機が有する水車の回転数との関係を例示する図である。 図6は、排水量と水車発電機が発電する発電量との関係を例示する図である。 図7は、実施形態に係る基板処理ユニットの異常を検知する処理フローの一例である。 図8は、第1変形例における排水量および排気量を測定する処理フローの一例である。 図9は、第2変形例に係る基板処理ユニットの異常を検知する処理フローの一例を示す図である。 図10は、第3変形例に係る気液分離ユニットの一例を示す図である。 図11は、第3変形例に係る処理液の配管に詰まりが生じていることを検知する処理フローの一例を示す図である。 図12は、第4変形例に係る閾値管理テーブルの一例を示す図である。 図13は、第4変形例に係る基板処理ユニットの異常を検知する処理フローの一例である。 図14は、第5変形例に係る基板処理ユニットにおいて、処理チャンバー周辺の構成の一例を示す図である。 図15は、第6変形例に係る基板処理装置の構成の一例を示す図である。
以下、図面を参照して、一実施形態に係る基板処理装置および基板処理装置を用いた基板処理方法について説明する。以下に示す実施形態の構成は例示であり、開示の技術は実施形態の構成に限定されない。
<実施形態>
図1は、実施形態に係る基板処理装置の構成の一例を示す図である。この基板処理装置100は、一種以上の薬液及び純水を含む処理液を用いて基板に対してエッチング処理や
洗浄処理(以下、単に“処理”ともいう)を施すものである。処理液は、例えば、硫酸(HSO)、SPM(硫酸と過酸化水素水との混合液)、リン酸(HPO)水溶液、SC1(アンモニアと過酸化水素の混合水溶液)、SC2(アンモニアと塩酸の混合水溶液)、フッ化水素(HF)水溶液、純水等である。
基板処理装置100は、基板処理ユニット10および蓄電ユニット20を含む。基板処理ユニット10および蓄電ユニット20は、工場の床Fの床上に設けられており、廃液配管61、排気配管62は床Fの床下に設けられる。基板処理装置100は、基板処理装置100の管理者からの入力を受け付けるキーボード101や機器の異常等を報知するブザー102、警告灯103も備えている。基板処理装置100は、「処理装置」の一例である。以下、図1を参照して、基板処理装置100について説明する。
基板処理ユニット10は、基板に対して処理を行うユニットである。基板処理ユニット10は、1枚ずつの基板各々に対して処理液を吐出して処理する枚様式であってもよいし、複数の基板をまとめて処理液に浸漬して処理するバッチ式であってもよい。基板処理ユニット10では、処理液を処理に適した温度に調整し、調整した処理液を用いて基板に対する処理を行う。また、基板処理ユニット10には、基板処理装置100における各種制御を行う情報処理装置である制御装置50が設けられる。基板処理ユニット10は、「処理ユニット」の一例である。
基板処理ユニット10では、処理に用いられてライフタイムが経過した処理液は、排出可能な温度にまで冷却されて、廃液配管61を介して工場に設けられた廃液配管である工場廃液配管200にドレイン(排出)される。また、基板処理ユニット10は、処理液の濃度制御や貯留槽内の処理液の入替等において、処理液を廃液配管61を介して工場廃液配管200にドレインする。
基板処理ユニット10は、基板を処理するチャンバー内に清浄化された外気や窒素等の気体を供給して、処理対象の基板周囲における雰囲気を処理に好適な状態に保つ。基板処理ユニット10は、チャンバー内に供給した気体を、排気配管62を介して工場排気配管210に排気する。
廃液配管61の管路途中には、水車発電機70が設けられる。床Fから水車発電機70までの距離は、概ね5mから15m程度であり、通常は10m程度である。水車発電機70は、水車71と発電機72とを含む。水車71は、例えば、衝動水車や反動水車である。発電機72は、例えば、永久磁石同期タイプの発電機を採用することができる。水車発電機70では、工場廃液配管200に向けて廃液配管61を流れる廃液から受ける運動エネルギーによって水車71が回転し、回転する水車71によって発電機72内のタービンが回転することで発電が行われる。すなわち、水車発電機70は、廃液から受ける運動エネルギーを電気エネルギーに変換しているということができる。廃液配管61は、「流路」の一例である。水車発電機70は、「発電ユニット」の一例である。水車71は、「回転部」の一例である。発電機72は、「発電部」の一例である。
廃液配管61による廃液のドレインはポンプ等を用いずに自重によるドレインが行われることが多い。そのため、水車71は、廃液配管61の管路途中であって、1m以上の落差を確保できる位置に設けられることが好ましい。このような位置に水車71が設けられることにより、水車発電機70の発電効率を向上させることができる。水車発電機70と蓄電ユニット20とは、送電線51によって接続される。水車発電機70は、発電した電力を送電線51を介して蓄電ユニット20に送電する。
送電線51には、電流計91が設けられる。電流計91は、送電線51を流れる電流の
電流値を測定する。すなわち、電流計91は、水車発電機70が蓄電ユニット20に送電する電流の電流値を測定する。制御装置50と電流計91とは、通信ケーブル41によって接続される。制御装置50は、例えば、通信ケーブル41を介して取得した電流計91の測定結果を基に、水車発電機70の発電量を測定する。制御装置50は、例えば、水車71の単位時間当たりの回転数等に基づいて、水車発電機70の発電量を測定してもよい。上記発電量、電流値、水車71の単位時間当たりの回転数を取得する制御装置50は、「検知ユニット」の一例である。上記発電量、電流値、水車71の単位時間当たりの回転数は、「流体通過評価値」の一例である。
排気配管62の管路途中には、風力発電機80が設けられる。床Fから風力発電機80までの距離は、概ね5mから15m程度であり、通常は10m程度である。風力発電機80は、風車81と発電機82とを含む。発電機82は、例えば、永久磁石同期タイプの発電機を採用することができる。風力発電機80では、工場排気配管210に向けて排気配管62を流れる排気の運動エネルギーによって風車81が回転し、回転する風車81によって発電機82内のタービンが回転することで発電が行われる。すなわち、風力発電機80は、排気から受ける運動エネルギーを電気エネルギーに変換しているということができる。風力発電機80と蓄電ユニット20とは、送電線52によって接続される。風力発電機80は、発電した電力を送電線52を介して蓄電ユニット20に送電する。排気配管62は、「流路」の一例である。風力発電機80は、「発電ユニット」の一例である。風車81は、「回転部」の一例である。発電機82は、「発電部」の一例である。
送電線52には、電流計92が設けられる。電流計92は、送電線52を流れる電流の電流値を測定する。すなわち、電流計92は、風力発電機80が蓄電ユニット20に送電する電流の電流値を測定する。制御装置50と電流計92とは、通信ケーブル42によって接続される。制御装置50は、例えば、通信ケーブル42を介して取得した電流計92の測定結果を基に、風力発電機80の発電量を測定する。制御装置50は、例えば、風車81の単位時間当たりの回転数等に基づいて、風力発電機80の発電量を測定してもよい。上記電流値や風車81の単位時間当たりの回転数等を取得する制御装置50は、「検知ユニット」の一例である。上記発電量、電流値、風車81の単位時間当たりの回転数は、「流体通過評価値」の一例である。
蓄電ユニット20は、電力を蓄電するユニットであり、例えば、ニッケル水素電池、リチウムイオン電池、鉛蓄電池、ナトリウム硫黄電池等である。蓄電ユニット20と基板処理ユニット10とは、送電線53によって電気的に接続される。水車発電機70が発電した電力は送電線51を介して蓄電ユニット20に送電される。また、風力発電機80が発電した電力は、送電線52を介して蓄電ユニット20に送電される。蓄電ユニット20は送電された電力を蓄電する。蓄電ユニット20は、蓄電した電力を送電線53を介して基板処理ユニット10に供給してもよい。
<基板処理装置の構成>
図2は、実施形態に係る基板処理ユニットの構成の一例を示す図である。図2では、枚様式の基板処理ユニット10が例示されている。以下、図2を参照して、基板処理ユニット10についてより詳細に説明する。
処理液供給源17には処理液が貯留される。処理液供給源17とタンク12とは、処理液供給管155によって接続される。処理液供給管155には、開閉弁141(例えば、ゲートバルブ)、調整弁32(例えば、ニードルバルブ)および瞬時流量計33(例えば、超音波流量計)が処理液供給源17側からタンク12に向けてこの順で設けられており、開閉弁141が開弁されることでタンク12への処理液の供給を開始し、開閉弁141が閉弁されることでタンク12への処理液の供給を停止する。処理液供給源17からタン
ク12に供給される処理液の流量は、調整弁32によって制御される。瞬時流量計33は、処理液供給管155を流れる処理液の単位時間当たりの流量を計測する。
タンク12には、処理液供給管155を介して処理液供給源17から処理液が供給される。タンク12は、供給された処理液を貯留する。タンク12は、供給管151によって、処理チャンバー11と接続される。供給管151は、一端がタンク12の底部(またはその近傍)に接続され、他端が処理チャンバー11に接続される配管である。供給管151には、供給管151内を流れる処理液を加熱するヒーター131及びポンプ132が設けられる。ヒーター131により処理に適した温度に調整された処理液は、ポンプ132によって供給管151を介して処理チャンバー11に圧送される。
タンク12の底部には開閉弁145を備えるタンク廃液管154が設けられている。タンク廃液管154は、一端がタンク12の底部(またはその近傍)に接続され、他端が図1に例示した廃液配管61に接続される配管である。タンク12に貯留される処理液の全液交換を実施する際には、開閉弁145が開弁されてタンク廃液管154および廃液配管61を介してタンク12内の処理液が工場廃液配管200にドレイン(排出)される。
循環配管152は、一端が供給管151の管路途中151pに接続され、他端がタンク12に接続される配管である。供給管151において、循環配管152が接続される管路途中151pよりもヒーター131の方がタンク12側に設けられるため、循環配管152にはヒーター131によって加熱された処理液が流入する。
温度計133は、循環配管152に設けられる。上記の通り、ヒーター131によって加熱された処理液が循環配管152に流入するため、温度計133はヒーター131によって加熱された処理液の温度を計測できる。
濃度計134は、循環配管152に設けられ、処理液中の所定成分の濃度を計測する。濃度計134は、例えば、導電率を基に処理液中のフッ酸の濃度を計測するものであり、例えば、株式会社堀場製作所のフッ酸濃度モニタ HF-960EMを採用することができる。
配管廃液管156は、一端が循環配管152に接続され、他端が図1に例示した廃液配管61に接続される配管である。配管廃液管156の一端は、循環配管152のうち温度計133および濃度計134よりもタンク12側に接続される。また、循環配管152には、循環配管152のうち配管廃液管156が接続される位置よりもタンク12側に、開閉弁142が設けられる。配管廃液管156には開閉弁143が設けられる。配管廃液管156を介してドレインを行う際には、開閉弁142を閉弁してタンク12への流路を閉塞するとともに、開閉弁144を閉弁して処理チャンバー11への流路を閉塞する。さらに、開閉弁143が開弁されることで循環配管152を流れる処理液が配管廃液管156、廃液配管61を介して工場廃液配管200にドレインされる。
開閉弁144は、供給管151において、管路途中151pよりも処理チャンバー11側に設けられる弁であり、例えば、ゲートバルブである。開閉弁144が閉弁されることで、タンク12から処理チャンバー11への処理液の流路が閉塞され、開閉弁144が開弁されることで、タンク12から処理チャンバー11への処理液の流路が開放される。
雰囲気供給源162は、処理チャンバー11内の雰囲気(不活性ガス:窒素(N)やアルゴン(Ar)やヘリウム(He)や窒素と水素の混合気体(N+H)、窒素とヘリウムの混合気体(N+He))を処理に好適な状態に保ったり、基板に対する処理に用いたりする雰囲気を貯留する。雰囲気供給管158は、一端が雰囲気供給源162に接
続され、他端が処理チャンバー11に接続される配管である。雰囲気供給源162は、雰囲気供給管158を介して、処理チャンバー11内に雰囲気を供給する。
処理チャンバー11は、タンク12から供給される処理液を基板に吐出して基板に対する処理を行う。処理チャンバー11内の雰囲気は、清浄化した外気を導入したり、雰囲気供給源162からの雰囲気を導入したりして、処理に好適な状態に保たれる。
気液配管115は、一端が処理チャンバー11の底部(又はその近傍)に接続され、他端が気液分離ユニット161に接続される配管である。処理チャンバー11で処理に使用された処理液や、処理チャンバー11内に供給された外気や雰囲気は、気液配管115を介して気液分離ユニット161に送出される。
気液分離ユニット161は、処理チャンバー11から気液が混合した状態で流入する処理液と気体(例えば、外気や雰囲気)とを分離するユニットである。気液分離ユニット161には、回収管153と排気配管157が接続される。
回収管153は、一端が気液分離ユニット161に接続され、他端がタンク12に接続される配管である。回収管153には開閉弁146が設けられる。回収管153は、気液分離ユニット161によって分離された処理液をタンク12へ返送する流路となる。換言すれば、回収管153は、処理チャンバー11において処理に用いられた処理液をタンク12へ返送する流路となる。
回収廃液管159は、一端が回収管153に接続され、他端が図1に例示した廃液配管61に接続される配管である。回収廃液管159の一端は、回収管153のうち開閉弁146よりも気液分離ユニット161側に接続される。回収廃液管159の管路途中には、開閉弁147が設けられる。
処理チャンバー11における処理後の処理液を再利用する場合には、開閉弁146が開弁されることでタンク12への流路が確保されるとともに、開閉弁147が閉弁されて回収廃液管159への流路が閉塞される。そして、気液分離ユニット161から回収管153に流入した処理液は、タンク12に返送される。
ライフタイムの経過等の理由により処理液の回収が不要な場合には、開閉弁146が閉弁されてタンク12への流路が閉塞されるとともに、開閉弁147が開弁されて回収廃液管159への流路が確保される。そして、気液分離ユニット161から回収管153に流入した処理液は、回収廃液管159および廃液配管61を介して工場廃液配管200にドレインされる。
排気配管157は、一端が気液分離ユニット161に接続され、他端が排気配管62に接続される配管である。排気配管157は、気液分離ユニット161によって分離された気体を排気配管62に送出する流路となる。気液分離ユニット161によって分離された気体は、排気配管62を介して工場排気配管210へ排気される。
<処理チャンバーの構成>
図3は、実施形態に係る基板処理装置が有する処理チャンバーの構成の一例を示す図である。処理チャンバー11は、基板Wを載置するテーブル111、吐出口112、116、壁113、ファンフィルタユニット114および気液配管115を有する。図3では、さらに、気液分離ユニット161および雰囲気供給源162が例示されている。
テーブル111は、略円柱形状に形成され、処理対象となる基板Wを載置して回転可能
である。吐出口112は、供給管151を介して供給された処理液をテーブルに載置された基板Wに対して吐出する。吐出口116は、雰囲気供給管158を介して雰囲気供給源162から供給された雰囲気を吐出する。テーブル111の周囲は壁113によって囲まれており、基板Wに対して吐出された処理液の飛散が抑制される。ファンフィルタユニット114は、フィルタで清浄化した外気をダウンフローとして処理チャンバー11内に供給する。基板Wは、「被処理体」の一例である。
供給管151における吐出口112の近傍には、積算流量計112aが設けられており、積算流量計112aによって、吐出口112から吐出される処理液の流量を測定可能である。また、雰囲気供給管158における吐出口116の近傍には、積算流量計116aが設けられており、積算流量計116aによって、吐出口116から吐出される雰囲気の流量を測定可能である。供給管151および雰囲気供給管158は、「供給流路」の一例である。積算流量計112aおよび積算流量計116aは、「測定ユニット」の一例である。
ファンフィルタユニット114が導入した外気、吐出口112から吐出された処理液および吐出口116から吐出された雰囲気が混合した気液は、一端が、壁113によって区画された領域内における処理チャンバー11の底部(又はその近傍)に接続された気液配管115を介して、気液分離ユニット161に送出される。気液分離ユニット161は箱状に形成されており、液体を沈殿させることで、導入された気液を気体と液体とに分離する。気液分離ユニット161の側面の上方には排気配管157が接続され、側面の下方には回収管153が接続される。すなわち、気液分離ユニット161に導入された気液は、液体が下方に沈殿して回収管153に送出される一方、気体は上方の排気配管157から排気配管62に送出される。
<基板処理装置の機能ブロック>
基板処理装置100の機能ブロックについて説明する。図4は、実施形態に係る基板処理装置の機能ブロック図の一例である。上記した基板処理ユニット10および蓄電ユニット20は、制御装置50が有する制御部55によって統括的に制御される。制御装置50のハードウェアとしての構成は一般的なコンピュータと同様である。すなわち、制御装置50は、各種演算処理を行うCPU551、基本プログラムを記憶する読み出し専用のメモリであるROM552、各種情報を記憶する読み書き自在のメモリであるRAM553を有する制御部55と、制御部55に接続され、プログラムP等を記憶する記憶部57等を備えている。本実施形態においては、制御部55のCPU551が記憶部57に記憶されたプログラムPを実行することにより、水車発電機70および風力発電機80各々の発電量の取得、処理液の温度調整、基板処理ユニットによる基板への処理の実行、処理液のドレイン等が実行される。
<排水量と水車発電機との関係>
図5は、排水量と水車発電機が有する水車の回転数との関係を例示する図である。図5では、縦軸が水車71の単位時間当たりの回転数を示し、横軸が廃液配管61を単位時間当たりに流れる排水量を示す。以下、本明細書において、単位時間当たりの回転数のことを単に回転数と表記し、単位時間当たりに流れる排水量を単に排水量と表記する。図5を参照すると理解できるように、排水量と回転数とは比例関係にある。すなわち、排水量が増加すると、水車71の回転数も増加する。
図6は、排水量と水車発電機が発電する発電量との関係を例示する図である。図6では、縦軸が水車発電機70の単位時間当たりの発電量を示し、横軸が廃液配管61を単位時間当たりに流れる排水量を示す。以下、本明細書において、単位時間当たりの発電量を単に発電量と表記する。図6を参照すると理解できるように、排水量と発電量とは比例関係
にある。すなわち、排水量が増加すると、水車発電機70の発電量も増加する。
<排気量と風力発電機との関係>
図5および図6を参照して、水車発電機70が有する水車71の回転数および水車発電機70の発電量と、廃液配管61を排水量との関係を説明した。同様のことは、風力発電機80が有する風車81の回転数および風力発電機80の発電量と、排気配管62を流れる単位時間当たりの排気量との関係にも言える。以下、本明細書において、単位時間当たりの排気量を単に排気量と表記する。
排気配管62を流れる排気量と風車81の回転数とは比例関係にあり、排気配管62を流れる排気量が増加すると、風車81の回転数も増加する。また、排気配管62を流れる排気量と風力発電機80の発電量とは比例関係にあり、排気配管62を流れる排気量が増加すると、風力発電機80の発電量も増加する。
記憶部57は、例えば、基板処理ユニット10が正常に運転しているときにおける、水車発電機70の発電量に基づいて、基板処理ユニット10で異常が生じていないと判定できる許容範囲(以下、水車発電量許容範囲と称する)を記憶していてもよい。また、記憶部57は、例えば、基板処理ユニット10が正常に運転しているときにおける、風力発電機80の発電量に基づいて、基板処理ユニット10で異常が生じていないと判定できる許容範囲(以下、風力発電量許容範囲と称する)を記憶していてもよい。制御部55は、例えば、水車発電機70の発電量が水車発電量許容範囲を逸脱した場合に、基板処理ユニット10の異常を検知してもよい。また、制御部55は、風力発電機80の発電量が、風力発電量許容範囲を逸脱した場合に、基板処理ユニット10の異常を検知してもよい。水車発電量許容範囲および風力発電量許容範囲は、「所定の許容範囲」の一例である。
<異常検知の処理フロー>
図7は、実施形態に係る基板処理ユニットの異常を検知する処理フローの一例である。以下、図7を参照して、実施形態に係る基板処理ユニットの異常を検知する処理フローの一例について説明する。
ステップS1では、処理チャンバー11において、基板Wに対する処理が行われる。基板Wに対する処理では、上記の通り、処理液や雰囲気、清浄化された外気等が用いられる。ステップS1の処理は、「処理ステップ」の一例である。
ステップS2では、処理に用いられた処理液、雰囲気および外気等が混合された気液が、気液分離ユニット161に流入する。気液分離ユニット161は、気液を分離し、廃液は廃液配管61に送出され、排気は排気配管62に送出される。ステップS2は、「通過ステップ」の一例である。
ステップS3では、水車発電機70は、廃液配管61内を流れる廃液によって水力発電を行う。風力発電機80は、排気配管62内を流れる排気によって風力発電を行う。ステップS3は、「発電ステップ」の一例である。
ステップS4では、制御部55は、水車発電機70および風力発電機80のそれぞれから、発電量を取得する。ステップS4の処理は、「検知ステップ」の一例である。
制御部55は、水車発電機70から取得した発電量が、記憶部57に記憶した水車発電量許容範囲を逸脱しているか否かを判定する。また、制御部55は、風力発電機80から取得した発電量が、記憶部57に記憶した風力発電量許容範囲を逸脱しているか否かを判定する。水車発電機70の発電量および風力発電機80の発電量の少なくともいずれかに
ついて許容範囲を逸脱している場合、制御部55は異常を検知し(ステップS5でYES)、処理はステップS6に進められる。異常を検知しない場合(ステップS5でNO)、処理は終了する。ステップS6の処理を実行する制御部55は、「判定ユニット」の一例である。ステップS6の処理は、「判定ステップ」の一例である。
ステップS6では、制御部55は、ブザー102から警報音を出力したり、警告灯103を点灯したりして、異常の通知を行う。
<実施形態の効果>
実施形態では、制御部55は、水車発電機70および風力発電機80の発電量を取得する。そのため、実施形態によれば、制御部55は、水車発電機70および風力発電機80それぞれの発電量を管理することができる。制御部55は、水車発電機70および風力発電機80の発電量を、例えば、基板処理装置100の管理者が使用する情報処理装置へ送信してもよい。
実施形態では、制御部55は、水車発電機70および風力発電機80それぞれの発電量と許容範囲とを基に、基板処理ユニット10の異常を検知した。例えば、基板処理ユニット10が正常に稼働しているときよりも風力発電機80の発電量が少ない場合、処理チャンバー11内の雰囲気が、基板Wの処理に好適な状態になっていないことが疑われる。また、例えば、基板処理ユニット10が正常に稼働しているときよりも、水車発電機70の発電量が少ない場合、廃液の流路のいずこか(例えば、気液分離ユニット161)において、つまりが生じていることが疑われる。実施形態によれば、水車発電機70および風力発電機80それぞれの発電量と許容範囲とを基に、このような異常を検知するとともに、基板処理装置100の管理者に対してブザー102や警告灯103によって通知することができる。
実施形態では、基板処理ユニット10全体からの排水を行う廃液配管61に設けられた水車発電機70の発電量や、基板処理ユニット10全体からの排気を行う排気配管62に設けられた風力発電機80の発電量を基に、基板処理ユニット10の異常が判定された。そのため、実施形態によれば、基板処理ユニット10の各部ではなく、基板処理ユニット10全体のいずこかで生じた異常を検知することができる。
実施形態では、基板処理ユニット10の異常を検知するために、水車発電機70および風力発電機80それぞれの発電量を用いたが、発電量に代えて、水車発電機70の水車71の回転数および風力発電機80の風車81の回転数を用いても、同様の方法により、基板処理ユニット10の異常を検知できる。
実施形態では、水車発電機70および風力発電機80は、それぞれ廃液配管61および排気配管62に設けられた。廃液配管61および排気配管62は、いずれも基板処理ユニット10の外部に露出しているため、水車発電機70および風力発電機80を設けるために、基板処理ユニット10の内部に対する作業は生じない。そのため、実施形態によれば、水車発電機70および風力発電機80を既設の基板処理ユニット10に対して容易に追加することができる。
実施形態では、処理チャンバー11から気液が混合した状態で排出された処理液と気体を気液分離ユニット161によって分離した後の配管に、水車発電機70および風力発電機80を設けた。そのため、廃液中の気体による泡がみ等による水車71の回転効率の低下が抑制される。また、風力発電機80においても、気体を想定して設計された風車81に液体が衝突することが回避されるため、風車81の故障等が抑制される。
実施形態では、廃液配管61を流れる廃液や排気配管62を流れる排気から受ける運動エネルギーを基に、水車発電機70や風力発電機80が発電を行った。発電された電力は、蓄電ユニット20に蓄電されて、基板処理ユニット10に供給される。このような電力を利用できる実施形態によれば、基板処理装置100の省エネルギー化を実現できる。
なお、実施形態では、水車発電機70の発電量および風力発電機80の発電量の双方を用いて基板処理ユニット10の異常を判定したが、水車発電機70の発電量および風力発電機80の発電量のいずれか一方を用いて基板処理ユニット10の異常を判定してもよい。
<第1変形例>
実施形態では、水車発電機70および風力発電機80それぞれの発電量を用いて、基板処理ユニット10の異常を検知した。第1変形例では、水車発電機70および風力発電機80それぞれの発電量を用いて、基板処理ユニット10の排水量および排気量を測定する。
図5および図6を参照して説明したように、水車71の回転数や水車発電機70の発電量と、廃液配管61を流れる排水量とは比例関係にある。そのため、水車71の回転数や水車発電機70の発電量を基に、廃液配管61を流れる通過量(排水量)を測定することができる。同様に、風車81の回転数や風力発電機80の発電量を基に、排気配管62を流れる排気の通過量(排気量)を測定することができる。
<排気量および排水量の測定>
第1変形例では、水車発電機70の発電量と廃液配管61を流れる排水量との対応関係(以下、排水量対応関係と称する)をあらかじめ測定しておき、排水量対応関係を記憶部57に記憶させておく。また、風力発電機80の発電量と排気配管62を流れる排気量との対応関係(以下、排気量対応関係と称する)をあらかじめ測定しておき、排気量対応関係を記憶部57に記憶させておく。制御部55は、水車発電機70から受信した発電量と記憶部57に記憶させた排水量対応関係とを基に、廃液配管61を流れる排水量を測定する。また、制御部55は、風力発電機80から受信した発電量と記憶部57に記憶させた排気量対応関係とを基に、排気配管62を流れる排気量を測定する。
<排気量、排水量の測定フロー>
図8は、第1変形例における排水量および排気量を測定する処理フローの一例である。図7と同一の処理については同一の符号を付し、その説明を省略する。以下、図8を参照して、第1変形例における排水量および排気量を測定する処理フローの一例について説明する。
ステップS1からステップS4の処理は、図7と同一である。そのため、その説明を省略する。ステップS11では、制御部55は、記憶部57に記憶させた排水量対応関係および排気量対応関係を取得する。ステップS12では、制御部55は、ステップS4で取得した水車発電機70の発電量と、ステップS11で取得した排水量対応関係とを基に、廃液配管61を流れる排水量を測定する。さらに、制御部55は、ステップS4で取得した風力発電機80の発電量と、ステップS11で取得した排気量対応関係とを基に、排気配管62を流れる排気量を測定する。ステップS12の処理を実行する制御部55は、「算出ユニット」の一例である。
<第1変形例の効果>
第1変形例では、水車発電機70の発電量と排水量対応関係とを基に、廃液配管61を流れる排水量を測定する。そのため、廃液配管61に別途流量計等を設けなくとも、廃液
配管61の排水量を測定できる。また、第1変形例では、風力発電機80の発電量と排気量対応関係とを基に、排気配管62を流れる排気量を測定する。そのため、排気配管62に別途流量計等を設けなくとも、排気配管62を流れる排気量を測定できる。
<第2変形例>
実施形態では、発電量と許容範囲とに基づいて、基板処理ユニット10の異常が検知された。第2変形例では、処理液の供給量と排水量との差の絶対値、および雰囲気の供給量と排気量との差の絶対値に基づいた、基板処理ユニット10の異常検知について説明する。
まず、処理液の供給量は、図3で説明した積算流量計112aによって測定される。また、雰囲気の供給量は、図3で説明した積算流量計116aによって測定できる。積算流量計112aおよび積算流量計116aの測定結果は制御部55に送信される。
第2変形例では、基板処理ユニット10が正常に運転しているときにおける、積算流量計112aによって測定された処理液の供給量と排水量との差を測定しておき、測定結果の絶対値を閾値(排水量差分閾値と称する)として記憶部57に記憶させる。また、基板処理ユニット10が正常に運転しているときにおける、積算流量計116aによって測定された雰囲気の供給量と排気量との差を測定しておき、測定結果の絶対値を閾値(排気量差分閾値と称する)として記憶部57に記憶させる。排水量差分閾値および排気量差分閾値は、「第1閾値」の一例である。
図9は、第2変形例に係る基板処理ユニットの異常を検知する処理フローの一例を示す図である。図7および図8と同一の処理には同一の符号を付し、その説明を省略する。以下、図9を参照して、第2変形例に係る基板処理ユニットの異常を検知する処理フローの一例について説明する。
ステップS1からS4の処理の後、ステップS11およびステップS12の処理が行われる。ステップS21では、制御部55は、積算流量計112aが測定した処理液の供給量を取得する。また、制御部55は、積算流量計116aが測定した雰囲気の供給量を取得する。
ステップS22では、制御部55は、ステップS21で取得した処理液の供給量とステップS12で測定した排水量との差の絶対値である排水差分量を算出する。また、制御部55は、ステップS21で取得した雰囲気の供給量とステップS12で測定した排気量との差の絶対値である排気差分量を算出する。
ステップS23では、制御部55は、ステップS22で算出した排水差分量が排水量差分閾値を超えている場合に、基板処理ユニット10に異常が発生していると判定する。また、制御部55は、ステップS22で算出した排気差分量が排気量差分閾値を超えている場合に、基板処理ユニット10に異常が発生していると判定する。排水差分量と排水量差分閾値に基づく判定および排気差分量と排気量差分閾値とに基づく判定の少なくとも一方において異常があると判定された場合(ステップS23でYES)、処理はS6に進められる。排水差分量と排水量差分閾値に基づく判定および排気差分量と排気量差分閾値とに基づく判定のいずれにおいても異常が判定されない場合(ステップS23でNO)、処理は終了する。
<第2変形例の効果>
第2変形例では、排水差分量が排水量差分閾値を超えている場合に基板処理ユニット10に異常が発生していると判定する。排水差分量が排水量差分閾値を超えている場合とは
、処理液の供給量から排水量を減算した値が排水量差分閾値を超えている場合と、排水量から処理液の供給量を減算した値が排水量差分閾値を超えている場合とを含む。処理液の供給量から排水量を減算した値が排水量差分閾値を超えている場合には、正常な排水量よりも排水量が減少していることが理解できる。排水量が減少していることから、例えば、用力の異常な変動や基板処理ユニット10のいずこかの配管で詰まりや漏れが生じる異常が発生していることが疑われる。
排水量から処理液の供給量を減算した値が排水量差分閾値を超えている場合には、正常な排水量よりも排水量が増加していることが理解できる。排水量が増加していることから、例えば、気液が正常に分離されずに廃液配管61に流入している場合や、本来他の経路に流れるはずの廃液が廃液配管61に流入する異常が発生していることが疑われる。
また、第2変形例では、排気差分量が排気量差分閾値を超えている場合に基板処理ユニット10に異常が発生していると判定する。排気差分量が排気量差分閾値を超えている場合とは、雰囲気の供給量から排気量を減算した値が排気量差分閾値を超えている場合と、排気量から雰囲気の供給量を減算した値が排気量差分閾値を超えている場合とを含む。雰囲気の供給量から排気量を減算した値が排気量差分閾値を超えている場合には、正常な排気量よりも排気量が減少していることが理解できる。排気量が減少していることから、例えば、用力の異常な変動や基板処理ユニット10のいずこかの配管で詰まりや漏れが生じる異常が生じていることが疑われる。
排気量から雰囲気の供給量を減算した値が排気量差分閾値を超えている場合には、正常な排気量よりも排気量が増加していることが理解できる。排気量が増加していることから、例えば、気液が正常に分離されずに排気配管62に流入している場合や、本来他の経路に流れるはずの排気が排気配管62に流入する異常が発生していることが疑われる。
第2変形例によれば、排水差分量が排水量差分閾値を超えている場合に基板処理ユニット10に異常が発生していると判定することで、上記例示した異常の発生を検知することができる。
なお、ステップS23において、排水差分量と排水量差分閾値とに基づいて基板処理ユニット10に異常が発生しているか否かを判定する場合、制御部55は、排水差分量と排水量差分閾値との差が所定の排水許容値以上である場合に、基板処理ユニット10に異常があると判定してもよい。また、ステップS23において、排気差分量と排気量差分閾値とに基づいて基板処理ユニット10に異常が発生しているか否かを判定する場合、制御部55は、排気差分量と排気量差分閾値との差が所定の排気許容値以上である場合に、基板処理ユニット10に異常があると判定してもよい。
<第3変形例>
第3変形例では、基板処理ユニット10の異常として、気液分離ユニット161近傍において詰まりが生じていることの検知について説明する。
基板処理ユニット10において、回収管153における気液分離ユニット161近傍の部分は、処理液中の成分が溜まりやすいため、他の箇所と比較して詰まりやすいと考えらえる。詰まりが生じると、処理液の排水が阻害される。そのため、処理液の供給量から排水量を減算した値が、基板処理ユニット10が正常に運転している場合と比較して、大きくなると考えられる。そこで、詰まりが生じていると判定できる詰まり閾値をあらかじめ決定しておき、詰まり閾値を記憶部57に記憶させておく。第3変形例では、制御部55は、図9のステップS21で取得した処理液の供給量からステップS12で測定した排水量を引いた量を算出し、算出した当該引いた量が、詰まり閾値以上である場合に、基板処
理ユニット10に異常があると判定する。詰まり閾値は、「第2閾値」の一例である。
図10は、第3変形例に係る気液分離ユニットの一例を示す図である。第3変形例に係る気液分離ユニット161aは、洗浄装置300を有する点で実施形態に係る気液分離ユニット161とは異なる。洗浄装置300は、配管内部を洗浄する洗浄液をその内部に貯留する。洗浄装置300は、貯留した洗浄液を図示しないポンプによって圧送することで、配管内を洗浄する。
洗浄装置300は、洗浄配管310によって回収管153と接続される。洗浄配管310は、一方が洗浄装置300と接続し、他方が回収管153の気液分離ユニット161近傍と接続する。この状態で洗浄装置300が洗浄液を圧送すると、回収管153の気液分離ユニット161近傍を洗浄することができる。洗浄装置300は、「洗浄ユニット」の一例である。
図11は、第3変形例に係る処理液の配管に詰まりが生じていることを検知する処理フローの一例を示す図である。図9と同一の処理には同一の符号を付し、その説明を省略する。以下、図11を参照して、第3変形例に係る処理液の配管に詰まりが生じていることを検知する処理フローの一例について説明する。
まず、図7のステップS1からS4の処理の後、図8のステップS11、S12および図9のステップS21の処理が実行される。ステップS22aでは、制御部55は、ステップS21で取得した処理液の供給量から、ステップS12で測定した排水量を減算する。
ステップS23aでは、制御部55は、ステップS22aにおける減算の結果が、記憶部57に記憶した詰まり閾値以上である場合に、気液分離ユニット161近傍において詰まりが生じていると判定し(ステップS23aでYES)、処理をS6に進める。また、制御部55は、ステップS22aにおける減算の結果が、記憶部57に記憶した詰まり閾値未満である場合には(ステップS23aでNO)、処理を終了する。
ステップS6に続いて、ステップS31では、制御部55は、洗浄装置300を駆動して、洗浄液を回収管153の気液分離ユニット161近傍に圧送させる。これにより、気液分離ユニット161近傍における回収管153の内部を洗浄することができるため、当該箇所の詰まりの状態を改善できる。
<第3変形例の効果>
第3変形例では、処理液の供給量から排水量を減算した値が、詰まり閾値以上である場合に、ブザー102や警告灯103によって通知した。そのため、第3変形例によれば、詰まりが生じている虞があることを基板処理装置100の管理者に通知することができる。
第3変形例では、詰まりがあると判定すると(ステップS23aでYES)、制御部55は、洗浄装置300を駆動して、回収管153の気液分離ユニット161近傍における詰まりを除去する処理を実行した。そのため、第3変形例によれば、気液分離ユニット161近傍が詰まることによる処理液の漏液や排気の不良を抑制することができる。
なお、第3変形例では、詰まりがあると判定すると、通知(ステップS6)と詰まり除去(ステップS31)の双方を実行したが、通知(ステップS6)と詰まり除去(ステップS31)のいずれか一方のみを実行するとしてもよい。例えば、通知のみを実行する場合、通知を受けた基板処理装置100の管理者が基板処理装置100の状態を確認した上
で、キーボード101等により指示を行うことで、洗浄装置300を駆動させてもよい。
<第4変形例>
実施形態および第1~第3変形例では、異常を判定する際の水車発電量許容範囲および風力発電量許容範囲は基板処理ユニット10が実行している処理内容にかかわらず一定であった。第4変形例では、基板処理ユニット10が実行している処理内容に応じて水車発電量許容範囲および風力発電量許容範囲を変動させる構成について説明する。
基板処理ユニット10では、上記の通り、基板Wに対してエッチング処理や洗浄処理等の一連の処理を実行する。一連の処理における処理夫々では、使用される処理液や雰囲気等の量が異なるため、排水量や排気量も異なることになる。そのため、基板処理ユニット10が実行している処理に応じて、水車発電機70や風力発電機80の発電量も変動する。そこで、第4変形例では、基板処理ユニット10が実行している処理に応じて、水車発電量許容範囲および風力発電量許容範囲を変更する。
図12は、第4変形例に係る閾値管理テーブルの一例を示す図である。図12に例示される許容範囲管理テーブル400は、例えば、記憶部57に記憶される。許容範囲管理テーブル400は、「処理内容」、「水車発電量許容範囲」および「風力発電量許容範囲」の各項目を有する。「処理内容」には、処理の内容を示す情報が格納される。「水車発電量許容範囲」には、処理内容に対応する水車発電量許容範囲が格納される。「風力発電量許容範囲」には、処理内容に対応する風力発電量許容範囲が格納される。すなわち、許容範囲管理テーブル400は、処理内容の夫々に対する、水車発電量許容範囲および風力発電量許容範囲の対応を管理する。
制御部55は、基板処理ユニット10に対してある処理を実行させると、当該処理を示す情報を記憶部57に記憶させる。例えば、制御部55は基板処理ユニット10に対して基板Wの水洗処理を実行させると、水洗処理を示す情報を記憶部57に記憶させる。そして、制御部55は、記憶部57に記憶させた処理を示す情報を基に許容範囲管理テーブル400を参照することで、実行中の処理に対応する水車発電量許容範囲および風力発電量許容範囲を取得することができる。
図13は、第4変形例に係る基板処理ユニットの異常を検知する処理フローの一例である。図7と同一の処理には同一の符号を付し、その説明を省略する。以下、図13を参照して、第4変形例に係る基板処理ユニットの異常を検知する処理フローの一例について説明する。
ステップS41では、制御部55は、基板処理ユニット10に対して、処理の実行を指示する。制御部55は、実行を指示した処理の内容を示す情報を記憶部57に記憶させる。
続いて、指示された内容の処理について、ステップS1からS4の処理が実行される。ステップS42では、制御部55は、記憶部57に記憶させた処理の内容を示す情報を取得する。制御部55は、取得した処理の内容を基に、許容範囲管理テーブル400を参照して、基板処理ユニット10が実行している処理に対応する水車発電量許容範囲および風力発電量許容範囲を取得する。
S5aでは、制御部55は、水車発電機70から取得した発電量が、ステップS42で取得した水水車発電量許容範囲を逸脱しているか否かを判定する。また、制御部55は、風力発電機80から取得した発電量が、ステップS42で取得した風力発電量許容範囲を逸脱しているか否かを判定する。水車発電機70の発電量および風力発電機80の発電量
の少なくともいずれかについて、許容範囲を逸脱している場合、制御部55は異常を検知し(ステップS5aでYES)、処理はステップS6に進められる。異常を検知しない場合(ステップS5aでNO)、処理は終了する。
<第4変形例の効果>
第4変形例では、処理内容に応じて水車発電量許容範囲および風力発電量許容範囲を変動させる。そのため、判定を実行する際に実行している処理夫々について、異常の判定をより適切に行うことができる。
<第5変形例>
実施形態および第1~第4変形例では、基板処理ユニット10は一つの処理チャンバー11を有したが、処理チャンバー11は複数であってもよい。図14は、第5変形例に係る基板処理ユニットにおいて、処理チャンバー周辺の構成の一例を示す図である。図14では、複数の処理チャンバー11の夫々から気液混合した状態で流入する処理液と排気を気液分離ユニット161で分離し、処理液は回収管153に、排気は排気配管157に流入する。回収管153に流入した処理液はタンク12に貯留され、貯留された処理液はライフタイムの経過等によりタンク12から廃液配管61にドレインされる。また、排気配管157に流入した排気は、排気配管62に送出される。
複数の処理チャンバー11を基板処理ユニット10が有する場合、処理チャンバー11の夫々から排水および排気がなされる。処理チャンバー11の夫々からの排水は、廃液配管61で合流してドレインされる。また、処理チャンバー11の夫々からの排気は、排気配管62で合流して排気される。そのため、処理チャンバー11が複数ある場合、処理チャンバー11の夫々からの排水や排気が合流する廃液配管61に水車発電機70を設け、排気配管62に風力発電機80を設ければよい。このような構成とすることで、複数の処理チャンバー11のいずれかで異常が発生したことを、水車発電機70の発電量や風力発電機80の発電量を基に判定することができる。なお、処理チャンバー11の夫々に水車発電機70と風力発電機80を設けることを妨げるわけではない。
<第6変形例>
実施形態では、基板処理ユニット10内において処理液の温度調整も行われたが、処理液の温度調整は基板処理ユニット10とは別の装置によって実施されてもよい。第6変形例では、処理液の温度調整は温調制御ユニットが実施し、温度調整された処理液が基板処理ユニット10aに供給される構成について説明する。
図15は、第6変形例に係る基板処理装置の構成の一例を示す図である。第6変形例に係る基板処理装置100aは、温調制御ユニット30を有することと、基板処理ユニット10aが温調制御ユニット30によって温度調整された処理液を処理に用いる点で、実施形態に係る基板処理装置100と異なる。なお、図15では、図示の都合上、排気配管62は省略している。
温調制御ユニット30は、処理に用いる処理液の加熱および冷却を行う。温調制御ユニット30は、例えば、処理液の温度を処理に適した温度に調整し、調整した処理液を供給配管410を介して基板処理ユニット10aに供給する。また、基板処理ユニット10aにおいて処理に用いられた処理液は、返送配管420を介して温調制御ユニット30に返送される。返送された処理液は、温調制御ユニット30によって処理に適した温度に調整され、基板処理ユニット10aに供給されることで、基板処理ユニット10aにおける処理に再利用される。温調制御ユニット30は、再利用が続けられたことによりライフタイムが経過した処理液を廃液可能な温度にまで冷却し、冷却した処理液を廃液配管61aを介して工場に設けられた廃液配管である工場廃液配管200にドレイン(排出)する。
廃液配管61aの管路途中には、廃液配管61と同様に、水車発電機70が設けられる。廃液配管61aに設けられた水車発電機70は、廃液配管61aを流れる廃液によって水車71が回転することで、発電を行う。廃液配管61aに設けられた水車発電機70は、送電線51aを介して蓄電ユニット20に発電した電力を送電する。
送電線51aには、送電線51と同様に、送電線51aを流れる電流の電流値を測定する電流計91aが設けられる。すなわち、電流計91aは、廃液配管61aに設けられた水車発電機70が蓄電ユニット20に送電する電流の電流値を測定する。基板処理ユニット10aの制御装置50と電流計91aとは、通信ケーブル41aによって接続される。基板処理ユニット10aの制御装置50は、例えば、通信ケーブル41aを介して取得した電流計91aの測定結果を基に、廃液配管61aに設けられた水車発電機70の発電量を測定する。
温調制御ユニット30によって温度調整された処理液が供給されるため、基板処理ユニット10aは処理液の加熱に用いるヒーター131を省略してもよいし、基板処理ユニット10が有するヒーターよりも加熱能力の低いヒーターを基板処理ユニット10aのヒーターとして採用してもよい。
上記のような構成を有する基板処理装置100aでは、実施形態において基板処理ユニット10の異常を判定したように、廃液配管61aに設けられた水車発電機70の発電量に基づいて、温調制御ユニット30の異常を検知することができる。図15では図示の都合上省略したが、排気についても同様に、温調制御ユニット30からの排気を工場排気配管に送出する配管に風力発電機80を設けることで、その発電量を基に、温調制御ユニット30の異常を判定できる。
以上説明した実施形態、第1~第6変形例では、発電は水車71や風車81のように、回転体によって行われた。しかしながら、開示の技術における発電は、このような回転体によるものに限定されない。発電は、例えば、廃液配管61を流れる廃液や排気配管62を流れる排気の圧力を受けて発電する圧電素子を用いたものであってもよい。また、廃液配管61や排気配管62に生じる振動を受けて発電する振動発電素子を用いたものであってもよい。すなわち、廃液や排気から運動エネルギーを受けて電気エネルギーに変換する手段であれば、どのような発電手段も開示の技術に適用することが可能である。
以上で開示した実施形態や変形例はそれぞれ組み合わせる事ができる。
10、10a・・・基板処理ユニット
11・・・処理チャンバー
12・・・タンク
17・・・処理液供給源
20・・・蓄電ユニット
25・・・純水供給源
30・・・温調制御ユニット
55・・・制御部
57・・・記憶部
61、61a・・・廃液配管
62・・・排気配管
70・・・水車発電機
71・・・水車
72、82・・・発電機
80・・・風力発電機
81・・・風車
91、91a、92・・・電流計
112a、116a・・・積算流量計
161、161a・・・気液分離ユニット
100、100a・・・基板処理装置
101・・・キーボード
102・・・ブザー
103・・・警告灯
300・・・洗浄装置
200・・・工場廃液配管
210・・・工場排気配管
400・・・許容範囲管理テーブル

Claims (12)

  1. 被処理体を処理する処理ユニットと、
    前記処理ユニットと接続し、前記被処理体の処理に係る流体が通過する流路と、
    前記流路に設けられ、前記流体から受ける運動エネルギーを基に発電する発電ユニットと、
    前記発電ユニットから得られる流体通過評価値を検知する検知ユニットと、
    前記流体通過評価値に基づいて、自装置の異常を判定する判定ユニットと、を備えることを特徴とする、
    処理装置。
  2. 前記流体通過評価値と、前記流路を通過する前記流体の通過量との対応関係を記憶する記憶部と、
    前記流体通過評価値と前記対応関係に基づいて、前記流路を通過する流体の通過量を算出する算出ユニットと、をさらに備えることを特徴とする、
    請求項1に記載の処理装置。
  3. 前記発電ユニットは、
    前記流体から圧力を受けて回転する回転部と、
    前記回転部が回転する運動エネルギーを電気エネルギーに変換することで発電する発電部と、を有することを特徴とする、
    請求項1または2に記載の処理装置。
  4. 前記流路は、前記処理ユニットから排出される流体が通過することを特徴とする、
    請求項1から3のいずれか一項に記載の処理装置。
  5. 前記判定ユニットは、前記流体通過評価値が所定の許容範囲を逸脱する場合に、前記処理装置に異常があると判定する、ことを特徴とする、
    請求項に記載の処理装置。
  6. 前記流路は、前記処理ユニットから排出される流体が通過する流路であり、
    前記処理ユニットに接続し、前記処理ユニットに前記流体を供給する供給流路と、
    前記供給流路に設けられ、前記供給流路を通過する流体の供給量を測定する測定ユニットと、をさらに備え、
    前記判定ユニットは、前記供給量と前記流路を通過する前記流体の通過量とに基づいて、前記処理装置の異常を判定することを特徴とする、
    請求項1から3またはに記載の処理装置。
  7. 前記測定ユニットは、前記供給流路に設けられた流量計である、ことを特徴とする、
    請求項に記載の処理装置。
  8. 前記判定ユニットは、前記供給量と前記通過量との差の絶対値が、第1閾値以上である場合に、前記処理装置に異常があると判定する、ことを特徴とする、
    請求項またはに記載の処理装置。
  9. 前記判定ユニットは、前記供給量から前記通過量を減算した値が、第2閾値以上である場合に、前記流路に詰まりが発生していると判定することを特徴とする、
    請求項からのいずれか一項に記載の処理装置。
  10. 前記流路内を洗浄する洗浄ユニットをさらに備え、
    前記判定ユニットは、前記流路に詰まりが発生していると判定すると、前記洗浄ユニットを駆動して、前記流路内の洗浄を行う、
    請求項に記載の処理装置。
  11. 前記処理装置は、複数の処理を含む一連の処理を被処理体に対して行う装置であり、
    前記一連の処理に含まれる処理の夫々について、当該処理が実行されているときにおける前記流体通過評価値の許容範囲との対応関係を記憶する記憶部をさらに備え、
    前記判定ユニットは、前記判定の時に実行している前記処理に対応付けられた前記許容範囲を前記流体通過評価値が逸脱している場合に、前記処理装置の異常を判定する、
    請求項から10のいずれか一項に記載の処理装置。
  12. 処理装置によって実行される処理方法であって、
    被処理体を処理する処理ステップと、
    前記被処理体の処理に係る流体を流路に通過させる通過ステップと、
    前記流路を流れる前記流体から受ける運動エネルギーを基に発電する発電ステップと、
    前記発電するステップにおいて得られる流体通過評価値を検知する検知ステップと、
    前記流体通過評価値に基づいて、前記処理方法を実行する装置の異常を判定する判定ステップと、を有することを特徴とする、
    処理方法。
JP2018114751A 2018-06-15 2018-06-15 処理装置および処理方法 Active JP7021746B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018114751A JP7021746B2 (ja) 2018-06-15 2018-06-15 処理装置および処理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018114751A JP7021746B2 (ja) 2018-06-15 2018-06-15 処理装置および処理方法

Publications (2)

Publication Number Publication Date
JP2019220512A JP2019220512A (ja) 2019-12-26
JP7021746B2 true JP7021746B2 (ja) 2022-02-17

Family

ID=69096946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018114751A Active JP7021746B2 (ja) 2018-06-15 2018-06-15 処理装置および処理方法

Country Status (1)

Country Link
JP (1) JP7021746B2 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004247509A (ja) 2003-02-13 2004-09-02 Nec Kyushu Ltd ウェット処理装置およびウェット処理方法
JP2006041255A (ja) 2004-07-28 2006-02-09 Tokyo Electron Ltd 処理方法及び処理システム
JP2010040756A (ja) 2008-08-05 2010-02-18 Fujitsu Microelectronics Ltd 半導体製造装置
JP2012507718A (ja) 2008-11-03 2012-03-29 ローズマウント インコーポレイテッド 工業プロセス電力採取機器、および、工業プロセスからプロセス機器の電力を引き出す方法
JP2014056894A (ja) 2012-09-11 2014-03-27 Hitachi Kokusai Electric Inc 基板処理装置、半導体装置の製造方法、及びプログラム
WO2017056359A1 (ja) 2015-09-29 2017-04-06 パナソニックIpマネジメント株式会社 符号変調器、符号復調器、及び、コントローラ

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08122109A (ja) * 1994-10-21 1996-05-17 Fuji Electric Co Ltd 発電機能を付加した流体計測装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004247509A (ja) 2003-02-13 2004-09-02 Nec Kyushu Ltd ウェット処理装置およびウェット処理方法
JP2006041255A (ja) 2004-07-28 2006-02-09 Tokyo Electron Ltd 処理方法及び処理システム
JP2010040756A (ja) 2008-08-05 2010-02-18 Fujitsu Microelectronics Ltd 半導体製造装置
JP2012507718A (ja) 2008-11-03 2012-03-29 ローズマウント インコーポレイテッド 工業プロセス電力採取機器、および、工業プロセスからプロセス機器の電力を引き出す方法
JP2014056894A (ja) 2012-09-11 2014-03-27 Hitachi Kokusai Electric Inc 基板処理装置、半導体装置の製造方法、及びプログラム
WO2017056359A1 (ja) 2015-09-29 2017-04-06 パナソニックIpマネジメント株式会社 符号変調器、符号復調器、及び、コントローラ

Also Published As

Publication number Publication date
JP2019220512A (ja) 2019-12-26

Similar Documents

Publication Publication Date Title
KR101190729B1 (ko) 연료전지 시스템의 냉각수 유량 예측 방법 및 냉각수 정상 순환 판정 방법
JP5862363B2 (ja) 水処理システム
JP2008545088A (ja) 真空ラインおよびそれをモニタリングする方法
US11410861B2 (en) Substrate liquid processing apparatus
WO2018061445A1 (ja) 基板処理装置
TW200918688A (en) Apparatus for generating fluorine-based gas and hydrogen gas
JP7021746B2 (ja) 処理装置および処理方法
KR102208831B1 (ko) 모터펌프의 진단 장치 및 방법
JP6348619B2 (ja) 非加圧のオゾン化脱イオン水(di03)の再循環及び回収システム並びに方法
CN110660708A (zh) 基板处理装置和基板处理方法
JP4216476B2 (ja) Esrfクーラント脱ガス処理
KR20100048403A (ko) 유량 감지 장치, 그리고 이를 구비하는 기판 처리 장치 및 알람 제어 방법
EP1812834B1 (en) Sliding mode method for predictive diagnostics
JP5555994B2 (ja) 燃料電池システム
JP2004153164A (ja) 沸騰薬液の管理方法
JP2006309948A (ja) 燃料電池システム
JP3544329B2 (ja) 基板処理装置
KR101494969B1 (ko) 세정액 생성 장치, 세정액 생성 방법, 기판 세정 장치 및 기판 세정 방법
JP2004039398A (ja) 燃料電池システム
US8778085B2 (en) Dissolved nitrogen concentration monitoring method, substrate cleaning method, and substrate cleaning apparatus
JP6578612B2 (ja) 監視装置、これを備える蒸気タービン設備、及び蒸気タービン設備の監視方法
JP2014120644A (ja) 基板処理装置及びその自己診断方法
JP2007258564A (ja) 基板処理装置及びその方法
JP2022108088A (ja) 処理液供給システムおよび基板処理装置
JP5091931B2 (ja) エッチング液の供給方法、エッチング装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211012

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211014

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220127

R150 Certificate of patent or registration of utility model

Ref document number: 7021746

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150