JP7020066B2 - 燃料電池システム - Google Patents

燃料電池システム Download PDF

Info

Publication number
JP7020066B2
JP7020066B2 JP2017219590A JP2017219590A JP7020066B2 JP 7020066 B2 JP7020066 B2 JP 7020066B2 JP 2017219590 A JP2017219590 A JP 2017219590A JP 2017219590 A JP2017219590 A JP 2017219590A JP 7020066 B2 JP7020066 B2 JP 7020066B2
Authority
JP
Japan
Prior art keywords
flow rate
raw material
fuel cell
material gas
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017219590A
Other languages
English (en)
Other versions
JP2019091617A (ja
Inventor
俊介 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Aisin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd, Aisin Corp filed Critical Aisin Seiki Co Ltd
Priority to JP2017219590A priority Critical patent/JP7020066B2/ja
Publication of JP2019091617A publication Critical patent/JP2019091617A/ja
Application granted granted Critical
Publication of JP7020066B2 publication Critical patent/JP7020066B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

本発明は、ガスの流量変化量が一定量以下の状態が一定時間継続したときに該ガスの流れを遮断する遮断機能を有するガスマイコンメータを介して入力される原料ガスを用いて発電する燃料電池システムに関する。
従来、この種の燃料電池システムとしては、継続使用時間オーバー遮断機能を有するガスマイコンメータを介して供給される原料ガスを燃料ガスに改質する改質装置と、燃料ガスと酸化剤ガスとに基づいて化学的反応により発電する燃料電池と、を備えるものが提案されている(例えば、特許文献1参照)。この燃料電池システムでは、ガスマイコンメータを通過した商用ガスの流量に応じた所定時間が経過するまでの間に当該商用ガスの流量の変動が所定幅以内であったときに、燃料電池で発電する発電電流(発電出力)を変動させ、これに伴ってガスマイコンメータを通過する商用ガスの流量を所定幅以上に変動させる。また、燃料電池システムは、発電出力の変動をスタック電流の増加によって行ない、これに伴って発生した余剰電力をバッテリに充電したり発熱体にて熱に変換したり商用電源に逆潮流したりする。
特開2005-346986号公報
上述した燃料電池システムでは、例えば停電時など電力負荷が要求する要求出力の全てを燃料電池の発電出力で賄うと共に電力負荷の変動に追従させるために余剰の発電出力をバッテリの充電や発熱体での熱変換により吸収する自立運転時においては、燃料電池が定格発電出力で運転していると、これ以上、スタック電流を増加させることができないため、原料ガスの流量を変動させることができず、ガスマイコンメータの継続使用時間オーバー遮断を回避することができない。一方、スタック電流を減少させることで、原料ガスの流量を変動させることも考えられるが、発電出力が制限されるため、発電出力が電力負荷を下回り、自立運転を継続することができなくなる場合が生じる。
本発明の燃料電池システムは、負荷が要求する要求出力の全てを燃料電池の発電出力で賄うと共に余剰の発電出力をシステム内で吸収する自立運転時において、自立運転を適切に継続しながらガスマイコンメータの継続使用時間オーバー遮断を回避することを主目的とする。
本発明の燃料電池システムは、上述の主目的を達成するために以下の手段を採った。
本発明の燃料電池システムは、
ガスの流量変化量が一定量以下の状態が一定時間継続したときに該ガスの流れを遮断する遮断機能を有するガスマイコンメータを介して入力される原料ガスを供給する原料ガス供給装置と、
前記原料ガス供給装置により供給された原料ガスを燃料ガスに改質する改質器と、
前記改質器により改質された燃料ガスと酸化剤ガスとに基づいて発電する燃料電池と、
前記燃料電池が発電した直流電力を負荷が使用可能な交流電力に変換する電力変換器と、
前記負荷が要求する要求出力に基づいて前記燃料電池が発電するように目標流量を設定して前記原料ガス供給装置を制御すると共に前記要求出力に応じた電力が前記負荷に出力されるように前記電力変換器を制御する制御装置と、
を備え、
前記制御装置は、前記要求出力の全てを前記燃料電池の発電出力で賄うと共に余剰の発電出力をシステム内で吸収する自立運転状態にあるときに前記遮断機能の作動を回避するための回避制御の実行条件が成立した場合には、前記回避制御として、前記燃料電池の発電出力または電池電流を直前の発電出力または電池電流に保持するように前記電力変換器を制御する出力固定制御または電池電流固定制御を実行すると共に前記原料ガスの流量が所定量増量するように前記原料ガス供給装置を制御する流量増量制御を実行する、
ことを要旨とする。
この本発明の燃料電池システムでは、負荷が要求する要求出力に基づいて燃料電池が発電するように目標流量を設定して原料ガス供給装置を制御すると共に要求出力に応じた電力が負荷にされるように電力変換器を制御するものである。この燃料電池システムにおいて、要求出力の全てを燃料電池の発電出力で賄うと共に余剰の発電出力をシステム内で吸収する自立運転状態にあるときにガスマイコンメータによるガスの遮断を回避するための回避制御の実行条件が成立した場合に、回避制御として、燃料電池の発電出力または電池電流を直前の発電出力または電池電流に保持するように電力変換器を制御する出力固定制御または電池電流固定制御を実行すると共に原料ガスの流量が所定量増量するように原料ガス供給装置を制御する流量増量制御を実行する。このように、燃料電池の発電出力を直前の発電出力に保持しつつ原料ガスの流量を所定量増量することにより、負荷の要求出力とは無関係に燃料電池の発電出力(電池電流)を変動させるものに比して、自立運転を適切に継続しながらガスマイコンメータによるガスの遮断を回避することができる。ここで、「回避制御の実行条件」は、燃料電池が発電している状態において前回に回避制御を実行してから一定時間が経過すると成立するものや、原料ガスの流量変化量が一定量以下の状態が一定時間に亘って継続すると成立するものが含まれる。
こうした本発明の燃料電池システムにおいて、前記制御装置は、前記回避制御として、所定時間に亘って前記出力固定制御または前記電池電流固定制御を実行すると共に前記保持した発電出力または電池電流に応じた目標流量に基づいて前記原料ガス供給装置を制御することにより前記原料ガスの流量を固定する流量固定制御を実行し、前記所定時間が経過すると、前記出力固定制御または前記電池電流固定制御の実行を継続すると共に前記流量増量制御を実行するものとしてもよい。こうすれば、流量固定制御において原料ガスの流量を一定量に保持してガスマイコンメータに基準流量を与えてから流量増量制御において原料ガスの流量を基準流量から所定量増量することとなり、少ない流量変化でガスマイコンメータによるガスの遮断を回避することが可能となる。
この態様の本発明の燃料電池システムにおいて、前記所定時間は、前記原料ガス供給装置から供給される原料ガスの流量が前記目標流量に収束するのに必要な時間を含むものとしてもよい。また、前記所定時間は、前記ガスマイコンメータがガスの流量を認識するのに必要な時間を含むものとしてもよい。
本実施形態の燃料電池システム10の構成の概略を示す構成図である。 パワーコンディショナ70を含む電気系の構成の概略を示す構成図である。 制御装置80のCPU81により実行される自立運転時継続使用時間オーバー遮断回避制御の一例を示すフローチャートである。 継続使用時間オーバー遮断回避制御における発電出力Pと原料ガスの目標ガス流量Fg*の時間変化の様子を示す説明図である。
本発明を実施するための形態について説明する。
図1は本実施形態の燃料電池システム10の構成の概略を示す構成図であり、図2はパワーコンディショナ70を含む電気系の構成の概略を示す構成図である。本実施形態の燃料電池システム10は、図1に示すように、水素を含む燃料ガスと酸素を含む酸化剤ガス(エア)との供給を受けて発電する燃料電池スタック36を有する発電ユニット20と、発電ユニット20の発電に伴って発生する熱を回収して給湯する貯湯タンク101を有する給湯ユニット100と、システム全体を制御する制御装置80と、を備える。
発電ユニット20は、改質水を蒸発させて水蒸気を生成すると共に原料ガス(例えば天然ガスやLPガス)を予熱する気化器32と、原料ガスと水蒸気とから水素を含む燃料ガス(改質ガス)を生成する改質器33と、燃料ガスとエアとにより発電する燃料電池スタック36とを含む発電モジュール30と、気化器32に原料ガスを供給する原料ガス供給装置40と、燃料電池スタック36にエアを供給するエア供給装置50と、改質水を気化器32に供給する改質水供給装置55と、発電モジュール30で発生した排熱を回収する排熱回収装置60と、を備える。これらは、筐体22に収容されている。なお、筐体22には、吸気口22aと排気口22bとが設けられ、吸気口22a付近には外気を取り込んで筐体22の内部を換気するための換気ファン24が設けられ、排気口22b付近には、可燃ガスの漏れを検出するための可燃ガスセンサ91が設けられている。
改質器33は、セラミックなどの担体に改質触媒(例えば、RuまたはNi系の触媒)が担持されて構成され、気化器32から供給された原料ガスと水蒸気との混合ガスを水蒸気改質反応によって燃料ガス(改質ガス)に改質する。
気化器32、改質器33および燃料電池スタック36は、断熱性材料により形成された箱型のモジュールケース31内に収容されている。モジュールケース31内には、燃料電池スタック36の起動や、気化器32における水蒸気の生成、改質器33における水蒸気改質反応に必要な熱を供給するための燃焼部34が設けられている。燃焼部34には燃料電池スタック36を通過した燃料オフガス(アノードオフガス)と酸化剤オフガス(カソードオフガス)とが供給され、これらの混合ガスを点火ヒータ35により点火して燃焼させることにより、燃料電池スタック36や気化器32、改質器33を加熱する。燃料オフガスおよび酸化剤オフガスの燃焼により生成される燃焼排ガスは、燃焼触媒37を介して熱交換器62へ供給される。燃焼触媒37は、燃焼部34で燃え残った燃料ガスを触媒によって再燃焼させる酸化触媒である。
排熱回収装置60は、発電モジュール30から燃焼排ガスが供給される熱交換器62と貯湯水を貯蔵する貯湯タンク101とを接続して貯湯水の循環路を形成する循環配管61を有する。循環配管61には、循環ポンプ63が設けられており、循環ポンプ63を駆動することにより、熱交換器62による貯湯水と燃焼排ガスとの熱交換により貯湯水を加温すると共に加温した貯湯水を貯湯タンク101へ貯湯する。更に、循環配管61には、通過する貯湯水を加熱するためのヒータ63と、通過する貯湯水を冷却するためのラジエータ64とが設けられている。熱交換器62は、凝縮水供給管66を介して改質水タンク57に接続されると共に排気ガス排出管67を介して外気と接続されている。熱交換器62に供給された燃焼排ガスは、貯湯水との熱交換により水蒸気成分が凝縮され、凝縮された水(凝縮水)が図示しない水精製器によって浄化されて改質水タンク57に回収される。また、残りの排気ガス(ガス成分)は、排気ガス排出管67を介して外気へ排出される。
原料ガス供給装置40は、ガス供給源1と気化器32とを接続する原料ガス供給管41を有する。原料ガス供給管41には、ガス供給源1側から順に、原料ガス供給弁(電磁弁)42,43、オリフィス44、原料ガスポンプ45、脱硫器46が設けられており、原料ガス供給弁42,43を開弁した状態で原料ガスポンプ45を駆動することにより、ガス供給源1からの原料ガスを脱硫器46を通過させて気化器32へ供給する。気化器32へ供給された原料ガスは、気化器32を経て改質器33へ供給され、燃料ガスへと改質される。原料ガス供給弁42,43は、直列に接続された2連弁である。脱硫器46は、原料ガスに含まれる硫黄分を除去するものであり、例えば、硫黄化合物をゼオライトなどの吸着剤に吸着させて除去する常温脱硫方式などを採用することができる。なお、脱硫方式は、常温脱硫方式に限られず、種々の方式を採用し得る。また、原燃料ガス供給管41の原燃料ガス供給弁43とオリフィス44との間には、当該原料ガス供給管41内の原燃料ガスの圧力を検出する圧力センサ47が設けられ、オリフィス44と原燃料ガスポンプ45との間には、原料ガス供給管41を流れる原料ガスの単位時間当たりの流量(ガス流量Fg)を検出する流量センサ48が設けられている。
原料ガス供給管41には、ガス供給源1からの原料ガスがガスマイコンメータ(以下、メータという)1aを介して導入される。メータ1aは、ガスの流量変化量が一定量以下の状態が一定時間以上継続したときに、ガスの流れを遮断する継続使用時間オーバー遮断機能を有している。継続使用時間オーバー遮断機能は、例えば、一定時間ごとにガスの流量を積算すると共に経過時間を計測し、今回算出した積算量が前回算出した積算量に対して一定量以上変化していないときには、経過時間の計測を続行し、一定量以上変化しているときには、経過時間の計測を中断する。経過時間の計測を中断すると、経過時間を値0に初期化してから、経過時間の計測を再開する。そして、計測した経過時間が所定時間に到達すると、ガスの流れを遮断する。上記一定時間、すなわち継続使用時間オーバー遮断機能の作動に要する時間は、メータ1aを流れるガスの流量によって異なり、例えば、メータ1aを流れるガスの流量が多い場合には短くなり、メータ1aを流れるガスの流量が少ない場合には長くなる。
エア供給装置50は、外気と連通するフィルタ52と燃料電池スタック36とを接続するエア供給管51を有する。エア供給管51には、エアブロワ53が設けられており、エアブロワ53を駆動することにより、フィルタ52を介して吸入したエアを燃料電池スタック36へ供給する。また、エア供給管51には、エアブロワ53の下流側に、エア供給管51を流れるエアの単位時間当たりの流量を検出する流量センサ54が設けられている。
改質水供給装置55は、改質水を貯蔵する改質水タンク57と気化器32とを接続する改質水供給管56を有する。改質水供給管56には、改質水ポンプ58が設けられており、改質ポンプ58を駆動することにより、改質水タンク57の改質水を気化器32へ供給する。気化器32へ供給された改質水は、気化器32で水蒸気とされ、改質器33における水蒸気改質反応に利用される。また、改質水タンク57には、貯蔵される改質水を精製するための図示しない水精製器が設けられている。
燃料電池スタック36は、酸素イオン伝導体からなる固体電解質と、固体電解質の一方の面に設けられたアノードと、固体電解質の他方の面に設けられたカソードとを備える固体酸化物燃料電池セルが積層されたものとして構成されており、アノードに供給される燃料ガス中の水素とカソードに供給されるエア中の酸素とによる電気化学反応によって発電する。燃料電池スタック36の出力端子にはパワーコンディショナ70を介して商用電源2から負荷4への電力ライン3が接続されている。
パワーコンディショナ70は、図2に示すように、DC/DCコンバータ71とインバータ72とを備える。DC/DCコンバータ71は、燃料電池スタック36から出力された直流電圧を所定電圧(例えば、DC250V~300V)まで昇圧する昇圧コンバータである。インバータ72は、その出力端子が商用電力系統2と負荷4とを接続する電力ライン3にリレー75を介して接続され、DC/DCコンバータ71により昇圧された直流電圧を商用電力系統2と連系可能な交流電圧(例えば、AC200V)に変換するものである。燃料電池スタック36の出力端子に接続された電力ラインには、燃料電池スタック36から出力されるスタック電流(電池電流)Ioutを検出するためのスタック電流センサ73が設けられ、燃料電池スタック36の出力端子間には、燃料電池スタック36のスタック電圧を検出するためのスタック電圧センサ74が設けられている。また、インバータ72の出力端子に接続された電力ラインには、商用電力系統2へ出力される系統出力電流を検出するための系統出力電流センサ76が設けられている。インバータ72は、スタック電流センサ73により検出されるスタック電流Ioutに基づいて当該インバータ72が備える図示しないスイッチング素子をスイッチングすることで、燃料電池スタック36のスタック電流を制御して、発電出力(発電電力)を制御する。
パワーコンディショナ70から分岐した電力ラインには電源基板78が接続されている。電源基板78は、燃料電池スタック36から出力された直流電圧や商用電力系統2からの交流電圧を補機類の作動に適した直流電圧に変換して当該補機類に供給するものである。実施形態では、補機類としては、原料ガス供給弁42,43や原料ガスポンプ45、エアブロワ53、改質水ポンプ58、循環ポンプ63、ヒータ64、ラジエータ65に送風するラジエータファン65aなどがある。
制御装置80は、CPU81を中心としたマイクロプロセッサとして構成されており、CPU81の他に処理プログラムを記憶するROM82と、データを一時的に記憶するRAM83と、計時を行なうタイマ84と、図示しない入出力ポートと、を備える。制御装置80には、圧力センサ47や流量センサ48,54、スタック電流センサ73、スタック電圧センサ74、系統出力電流センサ76、可燃ガスセンサ91などからの各種検出信号が入力ポートを介して入力されている。また、制御装置80からは、換気ファン24のファンモータへの駆動信号や原料ガス供給弁42,43のソレノイドへの駆動信号、原料ガスポンプ45のポンプモータへの駆動信号、エアブロワ53のブロワモータへの駆動信号、改質水ポンプ58のポンプモータへの駆動信号、循環ポンプ63のポンプモータへの駆動信号、ヒータ64への駆動信号、ラジエータファン65aのファンモータへの駆動信号、パワーコンディショナ70のDC/DCコンバータ71やインバータ72への制御信号、リレー75への駆動信号、電源回路75への制御信号、点火ヒータ35への駆動信号、各種情報を表示する表示パネル90への表示信号などが出力ポートを介して出力されている。
こうして構成された燃料電池システム10では、負荷4が要求する要求出力に基づくシステム要求値(システム要求出力)を入力し、入力したシステム要求値に基づいて燃料電池スタック36の目標スタック電流Iout*を設定し、設定した目標スタック電流Iout*に応じて原料ガス供給装置40とエア供給装置50とを制御すると共にパワーコンディショナ70を制御する。具体的には、原料ガス供給装置40の制御は、目標スタック電流Iout*に基づいて原料ガス供給装置40が供給すべき目標ガス流量Fg*を設定し、目標ガス流量Fg*と流量センサ48により検出されるガス流量Fgとの偏差に基づくフィードバック制御によりディーティDgを設定し、設定したデューティDgに基づいて原料ガスポンプ45のポンプモータを制御することにより行なわれる。エア供給装置50の制御は、原料ガスの目標ガス流量Fg*に対して所定の比率(空燃比)となるようにエア供給装置50が供給すべき目標エア流量Fa*を設定し、設定した目標エア流量Fa*と流量センサ54により検出されるエアの流量Faとの偏差に基づくフィードバック制御によりデューティDaを設定し、設定したデューティDaに基づいてエアブロワ53のブロワモータを制御することにより行なわれる。パワーコンディショナ70の制御は、目標スタック電流Iout*とスタック電流センサ73により検出されるスタック電流Ioutとの偏差に基づくフィードバック制御によりインバータ72のPWM信号を生成し、生成したPWM信号によりインバータ72の図示しないスイッチング素子をスイッチングすることにより行なわれる。
また、燃料電池システム10では、燃料電池スタック36の発電出力が負荷4の要求出力を超える余剰出力(余剰電力)が発生した場合には、余剰出力がヒータ64によって消費されるようにヒータ64への通電を制御すると共にヒータ64を通過した貯湯水が冷却されるようにラジエータファン65aを駆動制御する。
次に、燃料電池システム10の自立運転時にメータ1aの継続使用時間オーバー遮断を回避するための動作について説明する。ここで、自立運転は、負荷4が要求する要求出力の全てを燃料電池スタック36の発電出力によって賄うと共に余剰出力をヒータ64による電力消費によって吸収する運転状態であり、例えば、停電など、商用電力系統2が負荷4から切り離された場合に実行される。図3は、制御装置80のCPU81により実行される自立運転時継続使用時間オーバー遮断回避制御の一例を示すフローチャートである。なお、継続使用時間オーバー遮断回避制御は、自立運転時だけでなく、商用電力系統2との連系を伴う通常運転時においても行なわれるが、通常運転時の制御は、本発明の要旨をなさないから省略する。
自立運転時継続使用時間オーバー遮断回避制御が実行されると、制御装置80のCPU81は、まず、前回、継続使用時間オーバー遮断回避制御(自立運転時および通常運転時を含む)を実行してから燃料電池スタック36の発電状態が一定時間以上継続しているか否かを判定する(S100)。一定時間は、メータ1aが継続使用時間オーバー遮断機能の作動に要する時間よりも若干短い時間に定められる。なお、メータ1aはガスの流量変化量が一定量以下の状態が一定時間以上継続すると継続使用時間オーバー遮断機能を作動させることから、流量センサ48により検出されるガス流量Fgに基づいて原料ガスの流量変化量を演算し、演算した流量変化量が一定量以下の状態が一定時間以上継続したか否かを判定することにより行なってもよい。燃料電池スタック36の発電状態が一定時間以上継続していないと判定すると、継続使用時間オーバー遮断機能が作動する虞はないと判断して、自立運転時継続使用時間オーバー遮断回避制御を終了する。
一方、燃料電池スタック36の発電状態が一定時間以上継続していると判定すると、燃料電池スタック36の発電出力を直前の発電出力に固定する出力固定制御を開始する(S110)。出力固定制御は、例えば、システム要求値(システム要求出力)を直前(S100の条件が成立したとき)のシステム要求値に固定し、固定したシステム要求値に基づいて燃料電池スタック36の目標スタック電流Iout*を設定し、目標スタック電流Iout*とスタック電流センサ73により検出されるスタック電流Ioutとに基づいてインバータ72を制御することにより行なう。これにより、発燃料電池スタック36の発電出力は、直前の発電出力に固定される。なお、出力固定制御に代えて、燃料電池スタック36の目標スタック電流Iout*を直前の目標スタック電流に固定するスタック電流固定制御(電池電流固定制御)を実行するものとしてもよい。目標スタック電流Iout*はシステム要求値に基づいて設定され、目標ガス流量Fg*は目標スタック電流Iout*に基づいて設定されるため、システム要求値を直前のシステム要求値に固定することにより、目標ガス流量Fg*を直前の目標ガス流量に固定することができる。これにより、原料ガス供給装置40により供給する原料ガスの流量を固定することができる。
出力固定制御(又はスタック電流固定制御)を開始すると、予め定められた所定時間Tref1が経過するのを待つ(S120)。ここで、所定時間Tref1は、原料ガス供給装置40が供給する原料ガスの流量(流量センサ48により検出されるガス流量Fg)が目標ガス流量Fg*に収束するのに要する時間と、目標ガス流量Fg*に収束した後のガス流量Fgをメータ1aが認識するのに要する時間と、が含まれる。所定時間Tref1が経過したと判定すると、原料ガス供給装置40が供給するガス流量Fgを所定量だけ増量させる流量増量制御を開始する(S130)。流量増量制御は、S110での処理に伴って固定された目標ガス流量Fg*に所定量ΔFgを加えたものを新たな目標ガス流量Fg*に設定することにより行なう。ここで、所定量ΔFgは、継続使用時間オーバー遮断を回避するために必要なガスの流量変化量として予め定められている。
流量増量制御を開始すると、予め定められた所定時間Tref2が経過するのを待つ(S140)。ここで、所定時間Tref2は、メータ1aがガスの流量変化を認識するのに必要な時間として予め定められている。所定時間Tref2が経過したと判定すると、流量増量制御を解除すると共に(S150)、出力固定制御を解除して(S160)、自立運転時継続使用時間オーバー遮断回避制御を終了する。出力固定制御が解除されると、システム要求値は負荷4の要求出力に応じた値に設定され、燃料電池システム10は、回避制御を実行する前の運転状態で運転が行なわれることになる。
図4は、継続使用時間オーバー遮断回避制御における発電出力Pと原料ガスの目標ガス流量Fg*の時間変化の様子を示す説明図である。燃料電池システム10が自立運転しているときには、図示するように、負荷4の要求出力に応じて燃料電池スタック36の発電出力を追従させると共に余剰出力をシステム内で吸収し、メータ1aの継続使用時間オーバー遮断を回避するための回避制御の実行条件が成立すると(時刻T1)、発電出力(システム要求値)を固定する出力固定制御(又はスタック電流固定制御)を開始する。出力固定制御に伴って行なわれる流量固定制御により目標ガス流量Fg*が固定されるため、原料ガスの流量は、時間の経過と共に目標ガス流量Fg*に収束していき、やがて一定量に固定される。そして、原料ガスの流量が一定量に収束するまでに要する時間とメータ1aが一定量となった原料ガスの流量を認識するまでに要する時間とを含む所定時間Tref1が経過するのを待つ。所定時間Tref1が経過すると(時刻T2)、出力固定制御を継続すると共に、原料ガスを一定量から所定量ΔFgだけ増量する流量増量制御を実行し、所定時間Tref2が経過するまで待つ。これにより、所定時間Tref2が経過するまでの間にメータ1aに原料ガスの流量変化を認識させて継続使用時間オーバー遮断機能の作動を回避することができる。所定時間Tref2が経過すると(時刻T3)、流量増量制御と出力固定制御とを解除し、燃料電池システム10の運転状態を元の状態に戻す。
以上説明した実施形態の燃料電池システム10では、負荷4の要求出力の全てを燃料電池スタック36の発電出力で賄うと共に余剰の発電出力をシステム内で吸収する自立運転状態にあるときにメータ1aの継続使用時間オーバー遮断を回避するための回避制御の実行条件が成立した場合に、燃料電池スタック36の発電出力またはスタック電流を直前の発電出力またはスタック電流に保持するようにパワーコンディショナ70(インバータ72)を制御する出力固定制御またはスタック電流固定制御を実行しつつ、原料ガスの流量が所定量増量するように原料ガス供給装置40を制御する流量増量制御を実行する。このように、燃料電池スタック36の発電出力またはスタック電流を直前の発電出力またはスタック電流に保持しつつ原料ガスの流量を所定量増量することにより、負荷4の要求出力とは無関係に燃料電池スタック36の発電出力(発電電力,スタック電流)を変動させるものに比して、自立運転を適切に継続しながらメータ1aの継続使用時間オーバー遮断を回避することができる。
また、実施形態の燃料電池システム10では、 所定時間Tref1に亘って出力固定制御またはスタック電流固定制御を実行すると共に保持した発電出力(システム要求出力)またはスタック電流に応じた目標ガス流量Fg*を設定して原料ガス供給装置40(原料ガスポンプ45)を制御する流量固定制御を実行し、所定時間Tref1が経過すると、出力固定制御またはスタック電流固定制御の実行を継続すると共に目標ガス流量Fg*を所定量増量して原料ガス供給装置40(原料ガスポンプ45)を制御する流量増量制御を実行する。これにより、流量固定制御において原料ガスの流量を一定量に保持してメータ1aに基準流量を与えてから流量増量制御において原料ガスの流量を基準流量から所定量増量することとなり、少ない流量変化でメータ1aによるガスの遮断を回避することが可能となる。
実施形態の燃料電池システム10では、燃料電池スタック36の発電に伴って生じた余剰出力を吸収するためのヒータ64を備えるものとしたが、これに限定されるものではなく、例えば、余剰電力により充電するバッテリなど、余剰出力をシステム内で吸収可能なものであれば、如何なる機器であってもよい。
実施形態の燃料電池システム10では、所定時間Tref1,Tref2を固定値としたが、これに限定されるものではなく、例えば、システム要求値や目標スタック電流Iout*などに応じて可変としてもよい。
実施形態の主要な要素と課題を解決するための手段の欄に記載した発明の主要な要素との対応関係について説明する。実施形態では、原料ガス供給装置40が「原料ガス供給装置」に相当し、改質器33が「改質器」に相当し、燃料電池スタック36が「燃料電池」に相当し、パワーコンディショナ70が「電力変換器」に相当し、制御装置80が「制御装置」に相当する。
なお、実施形態の主要な要素と課題を解決するための手段の欄に記載した発明の主要な要素との対応関係は、実施形態が課題を解決するための手段の欄に記載した発明を実施するための形態を具体的に説明するための一例であることから、課題を解決するための手段の欄に記載した発明の要素を限定するものではない。即ち、課題を解決するための手段の欄に記載した発明についての解釈はその欄の記載に基づいて行なわれるべきものであり、実施形態は課題を解決するための手段の欄に記載した発明の具体的な一例に過ぎないものである。
以上、本発明を実施するための形態について実施形態を用いて説明したが、本発明はこうした実施形態に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において、種々なる形態で実施し得ることは勿論である。
本発明は、燃料電池システムの製造産業などに利用可能である。
1 ガス供給源、1a ガスマイコンメータ、2 商用電源、3 電力ライン、4 負荷、10 燃料電池システム、20 発電ユニット、22 筐体、22a 吸気口、22b 排気口、24 換気ファン、30 発電モジュール、31 モジュールケース、32 気化器、33 改質器、34 燃焼部、35 点火ヒータ、36 燃料電池スタック、37 燃焼触媒、40 原料ガス供給装置、41 原料ガス供給管、42,43 原料ガス供給弁、44 オリフィス、45 原料ガスポンプ、46 脱硫器、47 圧力センサ、48 流量センサ、50 エア供給装置、51 エア供給管、52 フィルタ、53 エアブロワ、54 流量センサ、55 改質水供給装置、56 改質水供給管、57 改質水タンク、58 改質水ポンプ、60 排熱回収装置、61 循環配管、62 熱交換器、63 循環ポンプ、64 ヒータ、65 ラジエータ、65a ラジエータファン、66 凝縮水供給管、67 排気ガス排出管、70 パワーコンディショナ、71 DC/DCコンバータ、72 インバータ、73 スタック電流センサ、74 スタック電圧センサ、75 リレー、76 系統出力電流センサ、78 電源基板、80 制御装置、81 CPU、82 ROM、83 RAM、84 タイマ、90 表示パネル、91 可燃ガスセンサ、100 給湯ユニット、101 貯湯タンク。

Claims (3)

  1. ガスの流量変化量が一定量以下の状態が一定時間継続したときに該ガスの流れを遮断する遮断機能を有するガスマイコンメータを介して入力される原料ガスを供給する原料ガス供給装置と、
    前記原料ガス供給装置により供給された原料ガスを燃料ガスに改質する改質器と、
    前記改質器により改質された燃料ガスと酸化剤ガスとに基づいて発電する燃料電池と、
    前記燃料電池が発電した直流電力を負荷が使用可能な交流電力に変換する電力変換器と、
    前記負荷が要求する要求出力に基づいて前記燃料電池が発電するように目標流量を設定して前記原料ガス供給装置を制御すると共に前記要求出力に応じた電力が前記負荷に出力されるように前記電力変換器を制御する制御装置と、
    を備え、
    前記制御装置は、前記要求出力の全てを前記燃料電池の発電出力で賄うと共に余剰の発電出力をシステム内で吸収する自立運転状態にあるときに前記遮断機能の作動を回避するための回避制御の実行条件が成立した場合には、前記回避制御として、所定時間に亘って前記燃料電池の発電出力または電池電流を直前の発電出力または電池電流に保持するように前記電力変換器を制御する出力固定制御または電池電流固定制御を実行すると共に前記保持した発電出力または電池電流に応じた目標流量に基づいて前記原料ガス供給装置を制御することにより前記原料ガスの流量を固定する流量固定制御を実行し、前記所定時間が経過すると、前記出力固定制御または前記電池電流固定制御の実行を継続すると共に前記原料ガスの流量が所定量増量するように前記原料ガス供給装置を制御する流量増量制御を実行する、
    燃料電池システム。
  2. 請求項に記載の燃料電池システムであって、
    前記所定時間は、前記原料ガス供給装置から供給される原料ガスの流量が前記目標流量に収束するのに必要な時間を含む、
    燃料電池システム。
  3. 請求項またはに記載の燃料電池システムであって、
    前記所定時間は、前記ガスマイコンメータがガスの流量を認識するのに必要な時間を含む、
    燃料電池システム。
JP2017219590A 2017-11-15 2017-11-15 燃料電池システム Active JP7020066B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017219590A JP7020066B2 (ja) 2017-11-15 2017-11-15 燃料電池システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017219590A JP7020066B2 (ja) 2017-11-15 2017-11-15 燃料電池システム

Publications (2)

Publication Number Publication Date
JP2019091617A JP2019091617A (ja) 2019-06-13
JP7020066B2 true JP7020066B2 (ja) 2022-02-16

Family

ID=66837462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017219590A Active JP7020066B2 (ja) 2017-11-15 2017-11-15 燃料電池システム

Country Status (1)

Country Link
JP (1) JP7020066B2 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004185916A (ja) 2002-12-02 2004-07-02 Sanyo Electric Co Ltd 燃料電池システム
JP2009295398A (ja) 2008-06-04 2009-12-17 Fuji Electric Systems Co Ltd 燃料電池発電装置及び燃料電池発電装置の制御方法
JP2014192087A (ja) 2013-03-28 2014-10-06 Panasonic Corp 燃料電池システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004185916A (ja) 2002-12-02 2004-07-02 Sanyo Electric Co Ltd 燃料電池システム
JP2009295398A (ja) 2008-06-04 2009-12-17 Fuji Electric Systems Co Ltd 燃料電池発電装置及び燃料電池発電装置の制御方法
JP2014192087A (ja) 2013-03-28 2014-10-06 Panasonic Corp 燃料電池システム

Also Published As

Publication number Publication date
JP2019091617A (ja) 2019-06-13

Similar Documents

Publication Publication Date Title
JP7234663B2 (ja) 燃料電池システムおよび燃料電池システムの運転方法
JP6984169B2 (ja) 燃料電池システム
WO2013153789A1 (ja) 燃料電池システム及びその運転方法
JP6919322B2 (ja) 燃料電池システム
JP7020066B2 (ja) 燃料電池システム
JP6907688B2 (ja) 燃料電池システム
JP7127427B2 (ja) 燃料電池システム
JP7310277B2 (ja) 燃料電池システム
JP7276015B2 (ja) 燃料電池システム
JP6938918B2 (ja) 燃料電池システム
JP7176279B2 (ja) 燃料電池システム
JP7135563B2 (ja) 燃料電池システム
JP6957980B2 (ja) 燃料電池システム
JP6958078B2 (ja) 燃料電池システム
JP2007179839A (ja) 燃料電池システム
JP2019046706A (ja) 燃料電池システム
JP2018147620A (ja) 燃料電池システム
JP6834435B2 (ja) 燃料電池システム
JP6897301B2 (ja) 燃料電池システム
JP6984170B2 (ja) 燃料電池システム
JP6801331B2 (ja) 燃料電池システム
JP7472805B2 (ja) 燃料電池システム
JP6801345B2 (ja) 燃料電池システム
JP2021150112A (ja) 燃料電池システム
JP6790655B2 (ja) 燃料電池システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201015

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211019

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220117

R150 Certificate of patent or registration of utility model

Ref document number: 7020066

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150