JP7015802B2 - 電子装置および方法 - Google Patents

電子装置および方法 Download PDF

Info

Publication number
JP7015802B2
JP7015802B2 JP2019050178A JP2019050178A JP7015802B2 JP 7015802 B2 JP7015802 B2 JP 7015802B2 JP 2019050178 A JP2019050178 A JP 2019050178A JP 2019050178 A JP2019050178 A JP 2019050178A JP 7015802 B2 JP7015802 B2 JP 7015802B2
Authority
JP
Japan
Prior art keywords
time
light
light receiving
unit
electronic device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019050178A
Other languages
English (en)
Other versions
JP2020153707A (ja
Inventor
英徳 大國
トァン タン タ
智史 近藤
明秀 崔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2019050178A priority Critical patent/JP7015802B2/ja
Priority to US16/564,406 priority patent/US11828874B2/en
Publication of JP2020153707A publication Critical patent/JP2020153707A/ja
Application granted granted Critical
Publication of JP7015802B2 publication Critical patent/JP7015802B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/4808Evaluating distance, position or velocity data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4861Circuits for detection, sampling, integration or read-out
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4865Time delay measurement, e.g. time-of-flight measurement, time of arrival measurement or determining the exact position of a peak

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Measurement Of Optical Distance (AREA)

Description

本発明の実施形態は、距離を測定する電子装置および方法に関する。
光を出射してから、物体に反射した反射光を受光するまでの時間を用いて、この物体までの距離を測定する電子装置が開発されている。この物体に反射した反射光を受光するまでの時間の誤差を抑え、この物体までの距離を測定する精度を向上させることができる電子装置が望まれる。
本発明の実施形態が解決しようとする課題は、対象の物体までの距離における測定の精度を向上させることができる電子装置および方法を提供することである。
上記課題を解決するために、実施形態の電子装置は、距離を算出する電子装置であって、パルス光を出射する光源と、光を受光し、受光した光を示す信号を出力する複数の光受光器を有する受光部と、前記信号に基づいて、光を受光するまでの受光時間を出力する複数の計測器を有する計測部と、前記受光時間に基づいて、受光時間の分布を算出し、この受光時間の分布に基づいて、反射光を含む光が受光された時間帯を決定し、前記受光時間のうち、前記時間帯に含まれる第1時間に基づいて、パルス光が出射されてから物体によって反射された反射光を含む光が受光された第2時間を決定し、前記第2時間に基づいて、前記電子装置から前記物体までの距離を算出する処理部を備え、前記第1時間は、前記反射光が受光された時間帯に含まれる受光時間のうち、最も早い時間および最も遅い時間であり、前記第2時間は、前記最も早い時間および前記最も遅い時間に基づく時間である
第1の実施形態における電子装置100を含んだ距離測定システム図。 光源101によるパルス光の出射および受光部102が出力する信号を説明するための図。 電子装置100の動作のフローチャート。 受光時間と受光時間分布のヒストグラムを説明するための図。 頻度算出区間に含まれる受光時間からのToFの算出を説明するための図。 頻度算出区間に含まれる受光時間の標準偏差を説明するための図。 頻度算出区間に含まれる受光時間から算出されたToFの精度を説明するための図。 第1の実施形態に適用可能な頻度算出区間の一例。 第1の実施形態に適用可能な頻度算出区間の他の例。 第1の実施形態に適用可能な受光時間分布のヒストグラムに対するしきい値を説明するための図。 電子装置150を含んだ距離測定システム図。 二次元における物体の配置を説明するための図。 二次元における物体の配置図を説明するための図。 三次元における物体の配置を説明するための図。 三次元における物体の配置図を説明するための図。 電子装置100を含んだ移動体500の構成図。
以下、発明を実施するための実施形態について説明する。
(第1の実施形態)
図1は、本実施形態における距離測定システムを表している。この距離測定システムにおいて電子装置100は、物体200との間の距離を測定する電子装置である。
電子装置100は光源101と、受光部102と、計測部103と、処理部110とを備える。光源101は物体200に対して時間幅を有する電磁波を出射する。この時間幅を以降パルス幅と称し、この電磁波を以降パルス光と称する。このパルス光は、物体200において反射し、反射したパルス光の一部(以降、反射光とも称する)が受光部102で受光される。
また、図1が表すように、受光部102は反射光以外の光も受光する。例えば、電子装置100以外の機器によって発された光(照明やランプの点灯)や太陽光に由来する光などである。以降、この反射光以外の光を、環境光と称する。
計測部103は、光源101がパルス光を出射した時刻から、受光部102が光を受光した時刻までの時間(以降、受光時間とも称する)を計測する。受光部102は反射光の他に環境光も受光するため、計測部103が計測する受光時間は複数存在する。
処理部110は、この複数の受光時間から、パルス光を出射してから反射光を受光するまでの時間(Time of Flight:以降ToFとも称する)を決定する。
処理部110は、このToFをもとに、以下に示す式(1)によって電子装置100と物体200の間の距離dを算出する。
Figure 0007015802000001

ここで、cは光速(約3×10m/s)を表す。
この距離dの精度を向上させるには、ToFの精度を向上させる必要がある。ToFの精度を向上させるために、環境光の影響を軽減する必要がある。本実施形態の電子装置100において、受光部102は複数の受光器を備え、計測部103は複数の計測器を備える。それぞれの受光器がパルス光や環境光の光子を受光し、受光器に対応する計測器が光源101によってパルス光が出射されてから受光器によって光子が受光されるまでの時間(以降、光の場合と同様に受光時間とも称する)を計測する。
受光器は一度光子を受光すると、受光器に依存した所定の時間だけ次の光子を受光することができなくなる。この所定の時間でも光子を受光することができるように、受光部102は複数の受光器を備える。計測部103は複数の受光器それぞれにおける受光時間を計測するため、受光器に対応した計測器を備える。
処理部110は、受光器が光子を受光するまでの時間を含む受光時間データを生成する。この受光時間データから、所定の時間帯に含まれる受光時間(以降、受光時間分布と称する)を算出する。本実施形態ではこの受光時間分布は、所定の時間帯に含まれる受光時間をカウントして算出される。
実施形態にて用いるパルス光は光子数の密度が環境光に比べて高い。そのため、パルス光の所定の時間帯に含まれる光子数は環境光よりも多くなる。したがって、同じ時間帯において、計測されるパルス光の受光時間の数は計測される環境光の受光時間の数よりも多い。すなわち、同じ時間帯において計測される反射光の受光時間の数は、計測される環境光の受光時間の数よりも多い。
電子装置100は、この受光時間分布に基づいて、受光器によって反射光が受光された時間帯を選択する。さらに、電子装置100は、反射光が受光された時間帯に基づいてToFを決定する。以降、反射光が受光されたとは、受光器によって反射光が受光されたことを表す。電子装置100は、決定したToFおよび式(1)に基づいて、距離dを算出する。
受光時間データから反射光が受光された時間帯を選択し、ToFを決定することで、電子装置100は環境光の影響を軽減して反射光を判定し、ToFの精度を向上させることができる。また、電子装置100はToFの誤差の発生を低減させることができ、ToFの精度を向上させることができる。すなわち、電子装置100は距離dを精度よく算出することができる。
電子装置100は、光源101、受光部102、計測部103、および処理部110の他に、記憶部104、出力部105を備える。処理部110は、制御部111、生成部112、データ処理部113、選択部114、および算出部115を備える。
光源101は、制御部111から指令を受け、物体200に対してパルス光を出射する装置である。例えば、光源101は、レーザーダイオードなどのレーザー光源と、パルスを生成する回路を組み合わせたものでよい。また、光源101は、LED(Light Emitting Diode)や各種のランプと、パルスを生成する回路と組み合わせたものでもよい。
また、光源101が出射するパルス光について、周波数帯域の限定はない。パルス光は例えば可視光でもよいし、赤外線、近赤外線、紫外線でもよいし、これらの組み合わせでもよい。本実施形態におけるパルス光は一例として、可視光成分を含んでいるものとする。
また、光源101が出射するパルス光について、形状の限定はない。矩形状であってもよいし、三角形状であってもよいし、sinc関数状であってもよいし、ガウス曲線状であってもよい。
光源101が制御部111から受ける指令としては、出射するパルス光のパルス幅(例えば24nsなど)や形状、パルス光を出射するタイミングおよび方角などが挙げられる。
光源101が出射したパルス光は、物体200によって反射され、反射光となって受光部102に入射する。この反射光は物体200におけるパルス光の拡散反射光および鏡面反射光のいずれかであってもよいし、組み合わせであってもよい。
受光部102は、複数の受光器を備える。それぞれの受光器は光子を受光し、光子を受光したことを示す信号を出力する。この信号は計測部103の対応する計測器に送られ、受光時間の計測に使われる。本実施形態では一例として、受光部102は3つの受光器102a、102bおよび102cを備える。
受光器102a、102bおよび102cは、光子を検出することができれば機器の種類は任意である。例えば、フォトダイオード、光電子増倍管などである。フォトダイオードとして、光の検出感度が高いアバランシェフォトダイオード(Avalanche Photo Diode:APD)を用いてもよい。このAPDはガイガーモードで用いられてもよい。このAPDのアレイとして、MPPC(Multi Pixel Photon Counter)を用いてもよい。また、光電子増倍管として、シリコン光電子増倍管(SiPM)を用いてもよい。本実施形態では一例として、APDをガイガーモードで用いているものとする。
受光器102a、102bおよび102cは光子を受光し、光子を受光したことを示す信号を出力するものであって、受光する光子を区別しない。すなわち、受光器102a、102bおよび102cは、反射光および環境光を区別しない。
なお、反射光とはパルス光が物体200によって反射された光であり、環境光が物体200によって反射された光は含まず、環境光に分類されるものとする。
計測部103は、複数の計測器103a、103bおよび103cを備える。それぞれの計測器は対応する受光器から送られる信号に基づいて、受光時間を計測する。例えば、計測器103aは受光器103aから送られる信号に基づいて、受光時間を計測する。計測器103bおよび103cも、計測器103aの場合と同様である。計測部103は、制御部111から受光時間の計測を開始する時刻から終了する時刻までの時間範囲(以降、計測範囲とも称する)などの指令を受ける。
計測部103はこれらの指令および受光部102から送られる信号に基づいて、受光時間を計測する。受光部102は反射光と環境光を区別せずに光子を受光するため、計測部103が計測する受光時間は、反射光と環境光の区別なく計測される。この受光時間は、生成部112で計測範囲内における受光時間が含まれる受光時間データの生成に使われる。すなわち、この受光時間データは反射光および環境光の受光時間が含まれている。この受光時間データから反射光を受光した時刻の決定が行われる。
なお、計測部103はあらかじめ電子装置100の構成要素間における伝送にかかる時間を計測し、計測したToFを修正するようにしてもよい。この修正したToFも、光源101よりパルス光が出射されてから、反射光が受光部102に受光されるまでの時間に含まれる。
計測器103a、103bおよび103cは、制御部111からの指令および受光部102から送られる信号に基づいて受光時間を計測することができれば、機器の種類は任意である。本実施形態では一例として、時間/ディジタル変換器(Time to Digital Converter:TDC)を用いる。
記憶部104は情報を保持する電子装置である。本実施形態では、例えば生成部112が生成する受光時間データを保持する。
記憶部104はメモリ等であり、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、PROM(Programmable ROM)、EPROM(Erasable PROM)、EEPROM(Electrically EPROM)、フラッシュメモリ、レジスタなどである。
制御部111は、光源101、計測部103、および生成部112に指令を送る。光源101に対する指令は、出射するパルス光のパルス幅(例えば24nsなど)や形状、パルス光の出射を開始する時刻および方角などである。
計測部103に対する指令は、受光時間の計測を開始する時刻から終了する時刻までの計測範囲などである。制御部111が光源101および計測部103に送る指令において、パルス光の出射を開始する時刻および受光時間の計測を開始する時刻は一致する。この一致とは、ToFの決定に影響を及ぼさない程度の時間のずれを含む。また、この一致とは、それぞれの指令を送る経路に遅延等が存在する場合、その遅延を考慮した時間のずれも含む。
生成部112に対する指令は、生成する受光時間データの対象となる時間の範囲である。一例として、本実施形態ではこの時間範囲は計測範囲と同様とする。すなわち、制御部111は、生成部112に対して、計測部103が送ってきた受光時間が、計測範囲内であれば受光時間データに含め、計測範囲外であれば受光時間データに含めないように指令する。
生成部112は、制御部111から送られる指令に基づいて、計測部103から送られる受光時間を並べた受光時間データを生成する。この受光時間データには、計測範囲内における反射光および環境光の受光時間がともに含まれる。この受光時間データから、反射光が受光された時間帯の選択が行われる。
生成部112は、生成した受光時間データを記憶部104に保持させる。また、生成部112は受光時間データの生成が終わった後に、データ処理部113に対して受光時間データが利用可能であることを通知する。
データ処理部113は、記憶部104に保持された受光時間データに基づいて、所定の時間帯に含まれる受光時間を表す受光時間分布を算出する。受光時間データには反射光および環境光の受光時間がともに含まれている。データ処理部113が受光時間データに基づいて受光時間分布を算出することで、選択部114が反射光の受光時間の決定を行うことが可能となる。
なお、データ処理部113は、この受光時間分布の算出を任意の方法で行うことが可能である。本実施形態では一例として、データ処理部113はこの受光時間分布のヒストグラムを算出する。
選択部114は、ToFを決定する。選択部114は、ToFを決定するために、データ処理部113から送られた受光時間分布に基づいて、反射光が受光された時間帯を選択する。所定の時間帯に含まれる反射光の受光時間の数は、環境光の受光時間の数より多いため、選択部114は受光時間の数が多い時間帯を、反射光が受光された時間帯として選択する。
選択部114は選択した反射光が受光された時間帯および記憶部104から読みだした受光時間データから、反射光が受光された時間帯における受光時間を抽出する。選択部114は、この抽出した受光時間に基づいて、ToFを決定する。このToFは算出部115に送られ、距離dの算出に使われる。
算出部115は、選択部114から送られたToFおよび式(1)に基づいて、電子装置100と物体200の間の距離dを算出する。この距離dは出力部105に送られる。距離dの出力部105への伝達は制御部111の指令に基づいて行われてもよい。
出力部105は、算出部115から送られた距離dを含む情報を出力する。出力先として、距離dに少なくとも基づいて動作する装置およびシステム、表示部を有する電子装置、距離dを保持する記憶装置(図示しない)など、限定されない。なお、これらの装置およびシステムは、電子装置100内部にあっても、外部にあってもよい。また、距離dを示す情報の様式も、データとして使用可能なフォーマット、テキスト、2次元図および3次元図など限定されない。また、出力の様式も、有線でもよいし無線でもよい。
制御部111、生成部112、データ処理部113、選択部114、算出部115が含まれる処理部110は、ハードウェアの制御装置と演算装置を含む電子回路(プロセッサ)である。プロセッサの例としては、汎用目的プロセッサ、中央処理装置(CPU)、マイクロプロセッサ、ディジタル信号プロセッサ(DSP)、およびその組み合わせが可能である。
以上に電子装置100の構成要素を説明した。この構成要素間における接続は有線であってもよいし、無線であってもよい。また、電子装置100はIC(Integrated Circuit)、LSI(Large Scale Integration)などの集積回路で実装される。1チップ上にまとめて実装されてもよいし、一部の構成要素が別のチップ上に実装されてもよい。
本実施形態における電子装置100は距離dの算出にあたり、受光した光の頻度を表す受光時間分布を算出して反射光が受光された時間帯を選択する。電子装置100は、この反射光が受光された時間帯に基づいてToFを決定し、距離dを算出する。本実施形態における電子装置100の距離dの算出における動作を、図2から図5を用いて説明する。
図2は、時刻ごとの光源101によるパルス光の出射および受光部102が出力する信号を表している。受光部102が出力する信号は、受光部102が光を受光したことを表している。
図3は電子装置100の距離dの算出における動作のフローチャートである。以下、動作のフローチャートを参照しながら図2および電子装置100の動作を説明する。
まず、受光時間データを生成するまでの電子装置100の動作を、ステップS101からステップS103を用いて説明する。電子装置100はあらかじめ定めた計測範囲およびパルス光を用いて、計測範囲内において光子を受光した時間を計測し、受光時間データを生成する。この受光時間データには計測範囲内における反射光および環境光の受光時間がともに含まれている。
制御部111は、計測範囲およびパルス光の内容など、受光時間データの生成に必要となる指令を光源101、計測部103、および生成部112に対して送る(ステップS101)。
具体的には、制御部111は、光源101が出射するパルス光のパルス幅や形状、パルス光を出射する開始時刻および方角を指令する。本実施形態では一例として、制御部111は光源101に対してパルス幅PWで矩形状のパルス光を、物体200が存在する方角に向けて開始時刻0で出射するように指令する。
制御部111は、計測部103に対して受光部102が光を受光した時刻の計測を行う範囲である計測範囲を指令する。図2では、本実施形態における計測範囲は光源101が出射する時刻0から時刻t1の時間長TMであると表されている。この時間長TMは、制御部111によって所定の値が設定されている。なお、この指令は計測部103に備えられる計測器103a、103bおよび103cに伝えられる。
制御部111は、生成部112に対して生成する受光時間データの対象となる時間の範囲を指令する。本実施形態では、この時間の範囲は計測範囲を表す。
次に、光源101はパルス光を出射する(ステップS102)。図2では、光源101は時刻0にパルス幅PWのパルス光を出射することが表されている。光源101の出射と同じ時刻において、計測器103a、103bおよび103cは受光時間の計測を開始する。
光源101から出射されたパルス光は、距離の計測対象である物体200で少なくとも一部反射され、反射光となって受光器102a、102bおよび102cに受光される。
受光器102a、102bおよび102cは光子を受光すると、対応する計測器103a、103bおよび103cに光子を受光したことを表す信号を送る。計測器103a、103bおよび103cは、この信号に基づいて受光時間を計測し、生成部112に送る。
図2では、計測範囲において、時刻tR1から時刻tR12において計測器103a、103bおよび103cが光子を受光したことが表されている。パルス光が出射された時刻は時刻0なので、計測器103a、103bおよび103cが計測した受光時間は、受光時間tR1から受光時間tR12である。計測器103a、103bおよび103cは、これらの受光時間tR1から受光時間tR12を、生成部112に送る。
生成部112は、計測器103a、103bおよび103cから送られた受光時間を並べた受光時間データを生成する(ステップS103)。本実施形態では、この受光時間データには受光時間tR1から受光時間tR12までが含まれている。生成部112は、この受光時間データを記憶部104に保持させる。
計測範囲終了後、生成部112はデータ処理部113に対して、受光時間データが利用可能であることを通知する。図2では、計測範囲の終端は時刻t1であるので、生成部112は時刻t1以降にデータ処理部113に対して、受光時間データが利用可能であることを通知する。
以上に受光時間データを生成するまでの電子装置100の動作を説明した。続いて、距離dを算出するまでの電子装置100の動作を、ステップS104からステップS107を用いて説明する。電子装置100は、生成した受光時間データに基づいて、受光時間分布を算出する。電子装置100は、算出した受光時間分布に基づいて、反射光が受光された時間帯を選択する。電子装置100は、この反射光が受光された時間帯に基づいてToFを決定し、距離dを算出する。
データ処理部113は、生成部112からの通知を受けて、記憶部104に保持されている受光時間データに基づいて、受光時間分布を算出する(ステップS104)。すなわち、データ処理部113は計測範囲終了後に受光時間分布を算出する。この受光時間分布は、所定の時間帯に含まれる受光時間をカウントした、ヒストグラムの形で算出される。具体的に、この受光時間分布の算出を、図4を用いて説明する。
図4には、受光時間データに含まれる受光時間およびデータ処理部113が算出する受光時間分布が表されている。以降、受光時間をカウントするための所定の時間帯を、頻度算出区間と称する。図4には、頻度算出区間の時間長はTAと表されている。この時間長TAは、データ処理部113によって所定の値が設定される。本実施形態では一例として、時間長TAは、光源101が出射するパルス光のパルス幅PWと同じであるとする。
データ処理部113は、所定の受光時間を中心とした時間長TAの頻度算出区間に含まれる受光時間をカウントする。この所定の受光時間は、受光時間0から受光時間TMから任意に選ばれる。データ処理部113は、そのカウント数をこの所定の受光時間における受光時間分布とする。データ処理部113は、この所定の受光時間を変えながらそれぞれの所定の受光時間における受光時間分布を算出し、受光時間分布のヒストグラムを算出する。本実施形態では一例として、受光時間0から1nsごとに受光時間分布を算出し、受光時間分布のヒストグラムを算出する。
一例として、図4に表される受光時間tACにおける受光時間分布の算出について説明する。データ処理部113は、受光時間tACを中心とした時間長TAの頻度算出区間に含まれる受光時間をカウントする。図4に表される頻度算出区間は、受光時間tA1から受光時間tA2までの区間である。受光時間tA1から受光時間tA2までの頻度算出区間に含まれる受光時間は、受光時間tR4から受光時間tR11までである。データ処理部113は、このカウント数を時間tACにおける受光時間分布Fmaxとする。データ処理部113は、算出した受光時間分布のヒストグラムを、選択部114に送る。
選択部114は、算出した受光時間分布のヒストグラムに基づいて、反射光が受光された時間帯を選択する(ステップS105)。具体的には、選択部114は受光時間分布のヒストグラムのうち、最も受光時間の数が多い頻度算出区間を、反射光が受光された時間帯として選択する。
上で説明したように、同じ時間帯において計測される反射光の受光時間の数は、計測される環境光の受光時間の数よりも多いためである。本実施形態では一例として、選択部114は受光時間tA1から受光時間tA2までの頻度算出区間を、反射光が受光された時間帯として選択する。
選択部114は、この反射光が受光された時間帯に基づいて、ToFを決定する(ステップS106)。この決定について、図5を用いて説明する。選択部114は、反射光が受光された時間帯に含まれる受光時間を、記憶部103に保持される受光時間データから抽出する。図5では、時間tA1から時間tA2までの頻度算出区間に含まれる受光時間として、受光時間tR4から受光時間tR11が表されている。
選択部114は、抽出した受光時間に基づいて、ToFを決定する。本実施形態では一例として、選択部114は、この頻度算出区間に含まれる最初の受光時間tR4および最後の受光時間tR11の平均値を、ToFとして決定する。この決定方法である理由は、電子装置100の動作説明が終了した後に説明する。選択部114は、決定したToFを、算出部115に送る。
算出部115は、選択部114から送られたToFおよび式(1)に基づいて、距離dを算出する(ステップS107)。この算出した距離dは、出力部105に送られる。
次に、出力部105は、算出部115から送られた距離dを含む情報を出力する(ステップS108)。出力先および出力の様式は、上に説明したように限定されない。
次に、制御部111は、電子装置100の動作を終了させる終了指令が届いているか否かを確認する(ステップS108)。この終了指令は、電子装置100の動作を本フローで終了させる指令である。この終了指令は、ユーザによる電子装置100への入力や、終了指令を含んだ信号を電子装置100が取得するなどして制御部111に伝えられる。この終了指令は、直ちに電子装置100の動作を終了させる指令であってもよい。
制御部111にこの終了指令が届いていない場合(ステップS108:No)、ステップS101に戻る。一方、制御部111にこの終了指令が届いている場合(ステップS108:Yes)、フローは終了し、電子装置100は動作を終了する。
以上に、本実施形態における電子装置100の動作を説明した。以下に、ToFの決定方法について、図6および図7を用いて説明する。なお、本実施形態で説明した受光時間tR4から受光時間tR11までは、実際にパルス光が出射されてから反射光が受光されるまでの時間でもあるとする。
実施形態にて用いるパルス光は一般的にコヒーレント状態である。このコヒーレント状態であるパルス光の出射光子数は、ポアソン分布に従う。パルス光として出射される光子数は常に一定ではないため、パルス光が出射されてから反射光が受光されるまでの時間にはずれが生じる可能性がある。
また、パルス光が出射されてから反射光が受光されるまでの時間における、最初の受光時間tR4および最後の受光時間tR11以外は、前の(あるいは後の)受光時間に含まれる誤差が累積する。そのため、受光時間にずれが生じる可能性が、受光時間tR4および受光時間tR11と比較して高くなる。
図6は、受光時間tR4から受光時間tR11までのそれぞれの受光時間を複数回計測した場合における標準偏差を表している。受光時間tR4、受光時間tR11の標準偏差は小さい。一方、受光時間tR7および受光時間tR8など、反射光が受光された時間帯の中心に向かう時間ほど標準偏差は大きくなる。受光時間tR4および受光時間tR11の平均値において標準偏差が小さく、ToFとして誤差を含む可能性が低いことが表されている。
図7は決定したToFの誤差を説明するための図である。図7には、受光時間tR4、受光時間tR11、受光時間tR4と受光時間tR11の平均値、および受光時間tR4から受光時間tR11までの平均値をそれぞれToFにした場合において、ToFの出現頻度が表されている。ToFaveは、上に説明した4つの受光時間にそれぞれ対応するToFの決定を複数回行った場合における平均値を表す。
例えば受光時間tR4をToFとした場合(以降、ToFtR4とも称する)、このToFtR4を複数回決定した場合における平均値をToFaveとして図示している。受光時間tR11をToFとした場合(以降、ToFtR11と称する)、このToFtR11を複数回決定した場合における平均値をToFaveとして図示している。
受光時間tR4から受光時間tR11までの平均値をToFとした場合、このToFは誤差を含む可能性が高い。図6で説明したように、標準偏差が大きい受光時間がToFの決定に用いられるためである。
一方、図6で説明した標準偏差が小さい受光時間に基づいて決定されたToFすなわち受光時間tR4、受光時間tR11、および受光時間tR4と受光時間tR11の平均値は特定の値を取る可能性が高く、誤差を含む可能性が低い。
距離dの精度を高めるにあたり、ToFに誤差が含まれる可能性が低い方法がよい。したがって本実施形態では、反射光が受光された時間帯に含まれる受光時間のうち、最初の受光時間tR4および最後の受光時間tR11の平均値に基づいてToFが決定されている。次点として、反射光が受光された時間帯に含まれる受光時間のうち、最初の受光時間tR4および最後の受光時間tR11のいずれかをToFとしてもよい。
以上に本実施形態を説明したが、変形例は様々に実装、実行可能である。以下に電子装置100の動作における変形例を説明する。例えば本実施形態では、ステップS101において、制御部111が光源101、計測部103、生成部112に対して指令している。変形例として、さらに電子装置100の他の構成要素への指令および通知を加えてもよいし、説明した指令とは異なる内容で指令してもよいし、説明した指令のうち少なくとも一部の指令をしないようにしてもよい。
変形例として、制御部111が加える指令および通知の例を以下に示す。制御部111は受光部102に対して光源101が出射するパルス光についての情報を通知するようにしてもよい。パルス光についての情報とは、例えばパルス光のパルス幅、出射時刻、形状、出射方角などである。
制御部111は、受光部102に対して、所定の時間帯に光子を受光したことを表す信号を出力させる指令を送るようにしてもよい。例えば、図2に表される本実施形態では、制御部111は受光部102に対して、時刻0から時刻t1までの計測範囲に光子を受光したことを表す信号を計測部103に対して送るように指令してもよい。この指令は受光器102が備える受光器102a、102bおよび102cに送られる。
制御部111は計測部103に対して計測範囲を指令せず、受光時間の計測を開始させる指令および受光時間の計測を終了させる指令をそれぞれ送るようにしてもよい。すなわち図2に表される本実施形態では、制御部111は計測部103に時刻0から受光時間の計測を開始する指令を送り、時刻t1に受光時間の計測を終了する指令を送るようにしてもよい。また、制御部111は時刻0に計測部103に対して即時に受光時間の計測を開始させる指令を送り、時刻t1に計測部103に対して即時に受光時間の計測を終了させる指令を送るようにしてもよい。なお、これらの指令は、計測部103が備える計測器103a、103bおよび103cに送られる。
さらに、変形例として、光源101、計測部103、および生成部112は、本実施形態で説明した指令の内容の一部をあらかじめ設定していてもよい。これに伴い、制御部111による指令が一部行われなくてもよい。例えば、光源101はパルス幅PWで矩形状のパルス光を出射するように設定され、制御部111はパルス光を出射する時刻およびパルス光を出射する方角を指令するようにしてもよい。
また、計測部103および生成部112は、あらかじめ計測範囲の時間長TMを設定しておき、制御部111から受光時間の計測を開始する指令を受けて、計測範囲を設定するようにしてもよい。
また、制御部111の指令の変形例として、本実施形態では、計測範囲は時刻0を始端としているが、計測範囲の始端は時刻0からに限定されない。例えば、受光時間の計測を行う時刻が計測範囲内に含まれていなくてもよい。反射光を受光する時刻がある程度予測できる場合はその時刻周辺(例えば前後10ns)を計測範囲とするなど、制御部111は、所定の時間帯を計測範囲とすることが可能である。この場合でも、計測部103は受光時間の計測の開始時刻は光源101によるパルス光の出射時刻と一致する。
本実施形態では、計測部103および生成部112はステップS103においてパルス光が出射される時刻を時刻0として受光時間を計測し、受光時間データを生成している。この時刻の設定は本実施形態の場合に限定されない。変形例として、パルス光が出射される時刻として0以外を割り当てるようにしてもよい。図2に表される本実施形態を一例とすると、計測部103および生成部113は、現実の時刻を用いて受光時間の計測および受光時間データの生成を行うようにしてもよい。
ステップS103の変形例として、計測部103および生成部112は時刻をもとに計測および受光時間データを生成するようにしてもよい。例えば、計測部103に備えられる計測器103a、103bおよび103cは、対応する受光器が光子を受光した時刻を生成部112に送るようにしてもよい。生成部は、パルス光が出射された時刻および受光器が光子を受光した時刻を並べた受光時間データを生成するようにしてもよい。
なお、この場合でも本実施形態で説明した電子装置100の動作と同様である。相違点は、この変形例では時刻であるので、選択部114は反射光が受光された時刻を決定するにとどまる。算出部115で反射光が受光された時刻からパルス光が出射された時刻を減算してToFを算出する。この相違点以外の電子装置100の動作は、本実施形態の場合と同様である。
ステップS103の変形例として、生成部112は制御部111から計測範囲の指令を受けず、電子装置100の動作中は受光時間データを生成するとしてもよい。なお、変形例を行う場合、制御部111はデータ処理部113に対して、受光時間データから受光時間分布を算出する対象となる時間の範囲を指令するようにしてもよい。
本実施形態では、データ処理部113はステップS104において、生成部112の通知を受けて受光時間分布を算出している。変形例として、データ処理部113は制御部111から指令を受けて受光時間分布を算出するようにしてもよい。この場合、生成部112は計測範囲における受光時間データの生成を完了した通知を制御部111に送る。
ステップS104の変形例として、データ処理部113は計測範囲が終了しなくとも受光時間分布を算出するようにしてもよい。例えばデータ処理部113は現在の時刻と連動した受光時間における受光時間分布を算出するようにしてもよいし、現在の時刻より所定時間前の時刻と連動した受光時間における受光時間分布を算出するようにしてもよい。
ステップS104の変形例として、本実施形態で説明した頻度算出区間は、所定の受光時間を中心とする場合に限定されない。例えば図8には、変形例の1つとして、受光時間tA1から時間長TAだけ後の区間を頻度算出区間とする例が表されている。図9には、変形例の1つとして、受光時間tA2から時間長TAだけ前の区間を頻度算出区間とする例が表されている。
ステップS104の変形例として、本実施形態で説明した頻度算出区間の時間長TAは、パルス幅PWに限定されない。データ処理部113は時間長TAを任意に設定することが可能である。なお、反射光はパルス幅PWに収まる可能性が高いため、時間長TAをパルス幅以上とすると受光時間分布から反射光が受光された時間帯を選択できる可能性が高い。
ステップS104の変形例として、データ処理部113は算出した受光時間分布を記憶部104に保持させるようにしてもよい。ステップS105に移行する段階で、制御部111から選択部114に指令が送られ、選択部114が受光時間分布を記憶部104から読みだすようにしてもよい。
本実施形態では、選択部114はステップS105において受光時間分布のヒストグラムに基づいて、反射光が受光された時間帯を選択する。変形例として、選択部114は、受光時間分布のヒストグラムにしきい値を設定するようにしてもよい。
この変形例を、図10を用いて説明する。図10には、本実施形態で説明した図4に加えて、受光時間分布にしきい値FTが設定されている。選択部114は、複数の頻度算出区間のうち、含まれる受光時間の数がしきい値FT以上であって、最も含まれる受光時間の数が多い時間帯を、反射光が受光された時間帯として選択してもよい。
しきい値を設定することで、計測範囲内では反射光が受光されなかった場合に、ToFの誤計測を防ぐことが可能である。また、変形例として、選択部114は計測範囲内では反射光が受光されなかった場合に、制御部111に通知するようにしてもよいし、出力部105に対してユーザにエラーを知らせる情報を出力させるようにしてもよい。制御部111は、この通知を受けると、以前のステップからやり直すようにしてもよい。例えば、本実施形態で説明したステップS101からやり直すようにしてもよい。
ステップS104およびステップS105の変形例として、データ処理部113は受光時間分布のヒストグラムを算出せず、選択部114は反射光が受光された時間帯を選択するようにしてもよい。例えば、選択部114は受光時間を中心とした頻度算出区間を設定し、この頻度算出区間に含まれる受光時間の数の多さで反射光が受光された時間帯を選択するようにしてもよい。
設定される頻度算出区間が少なくなることにより、処理部110の負担が軽減される。
本実施形態では、選択部114はステップS106において、ToFは、反射光が受光された時間帯に含まれる受光時間のうち、最初の受光時間tR4および最後の受光時間tR11の平均値としていた。ToFは、この平均値に限定されない。図6および図7で説明したように、選択部114はToFに誤差が含まれる可能性が低くなるように決定すればよい。変形例として、例えばToFは図6において標準偏差が小さい受光時間tR4、受光時間tR11であってもよい。ToFは、反射光が受光された時間帯に含まれる受光時間のうち、最初および最後から2番目の受光時間tR5および受光時間tR10の平均値であってもよい。
この他にも、選択部114は本実施形態および変形例で説明した受光時間とは異なる方法を用いて計測された受光時間を用いても、本実施形態と同様に反射光を受光した時刻を選択することが可能である。
ステップS106の変形例として、選択部114は決定したToFを、記憶部104に保持させるようにしてもよい。ステップS106に移行する段階で、制御部111から算出部115に指令が送られ、算出部115がこのToFを記憶部104から読みだすようにしてもよい。
本実施形態では、算出部115はステップS107において、ToFおよび式(1)に基づいて、電子装置100と物体200の間の距離dを算出する。この距離dは出力部105に送られる。変形例として、算出部115は、ToFおよび距離dの少なくとも一方を記憶部104に保持させるようにしてもよい。ステップS108に移行する段階で、制御部111から出力部105に指令が送られ、出力部105がToFおよび距離dの少なくとも一方を記憶部104から読みだすようにしてもよい。
本実施形態では、出力部105はステップS108において距離dを含む情報を出力している。変形例として、出力部105はToFを算出部115から受け取り、ToFを含む情報として出力するようにしてもよい。また出力部105は、距離dを含む情報およびToFを含む情報を組み合わせて出力するようにしてもよい。
本実施形態で説明した各ステップにおける指令、データおよび情報の伝達は、制御部111の指令によって行われるようにしてもよい。
以上に電子装置100の動作における変形例を説明した。続けて、以下に電子装置100の構成における変形例を説明する。
本実施形態では、制御部111はステップS101において光源101がパルス光を出射する時刻と、生成部113がデータ生成を開始する時刻を同じ時刻として指令する。変形例として、光源101が出射したパルス光の一部を反射させ、その光を受光することで生成部113にデータ生成開始の指令が送られるようにしてもよい。変形例では、データ生成開始の指令は光源101がパルス光を出射した直後となる。
一例として、このような電子装置150を、図11を用いて説明する。電子装置150は、電子装置100に加えて、反射部106および検出部107を備えている。電子装置160に含まれる構成要素のうち、電子装置100に含まれる構成要素には同じ符号を付して説明を省略する。
反射部106は、光源101から出射されたパルス光の一部を反射し、残りのパルス光を透過する。
検出部107は、反射部106によって反射されたパルス光を検出し、光源101からパルス光が出射されたことを示す信号を計測部103および生成部112に送る。計測部103は、この信号を受けた時刻をパルス光が出射された時刻として設定する。計測範囲は、この設定された時刻に基づいて決定される。生成部112は、この信号を受けた時刻をパルス光が出射された時刻として設定し、受光時間データを生成する。
なお、この変形例では、制御部111は計測部103および生成部112に対して、受光時間の計測の開始、受光時間データの生成の開始を指令しない。制御部111は計測部103および生成部112に対して、計測範囲の時間長TM、受光時間の計測の終了、受光時間データの生成の終了を指示するようにしてもよい。
変形例で説明した、パルス光が出射された時刻の扱いを除いて、電子装置150の動作は本実施形態で説明した電子装置100の動作と同様であるので、以降の動作の説明を省略する。
また、検出部107は、反射部106によって反射されたパルス光を検出し、受光時間の計測を開始する指令を計測部103に、受光時間データの生成を開始する指令を生成部112に送るようにしてもよい。また、検出部107は、光源101からパルス光が出射されたことを示す信号を制御部111に送るようにしてもよい。
この信号を受けた制御部111は計測部103に受光時間の計測を開始する指令を、生成部113に受光時間データの生成を開始する指令を送るようにしてもよい。制御部111は、パルス光の出射時刻から一定の時間が経過しても検出部107から信号を受けない場合、ステップS101からやり直すようにしてもよいし、出力部105に対してユーザにエラーを知らせる情報を出力させるようにしてもよい。
このようにすることで、故障などの理由で光源101からパルス光が出射されない場合に対応することができる。
本実施形態および変形例で説明した処理部110における動作は、プログラムを処理することにより実現するようにしてもよい。例えば、このプログラムを組み込んだ汎用コンピュータに、処理部110における動作を行わせるようにしてもよい。
このプログラムは、インストール可能な形式または実行可能な形式のファイルでCD-ROM、メモリカード、CD-RおよびDVD(Digital Versatile Disk)などのコンピュータで読み取り可能な記憶媒体に記憶されて提供されてもよい。また、このプログラムは、インターネット等のネットワークに接続されたコンピュータ上に格納し、ネットワーク経由で提供されるようにしてもよいし、ROM、HDD、SSDなどの記憶媒体に組み込んで提供されるようにしてもよい。
以上に、本実施形態およびその変形例を説明した。続けて、以下に本実施形態で説明した電子装置100の適用例について説明する。
本実施形態では、電子装置100は物体200までの距離dを算出していた。適用例として、電子装置100はパルス光を様々な方角に出射し、反射光を受光してToFを決定することにより、電子装置100の周囲における物体の配置を表す配置図を作成することが可能である。
電子装置100がこの配置図を作成する場合について、図12を用いて説明する。図12には、電子装置100の周囲に物体200aから物体200eまでが配置されている。
電子装置100は様々な方角にパルス光を出射し、本実施形態と同様に電子装置100および物体200aから200eまでの距離を算出する。算出部115は、この距離に基づいて周囲の物体の配置を表す配置図を作成する。
作成した配置図の一例を、図13に表す。算出部115は、物体200aから200eまでの座標に点をプロットし、物体200aから200eまでの配置図を作成することができる。
この点が含む座標の情報は、直交座標でも極座標でもよいし、絶対座標(世界座標)でも相対座標でもよい。相対座標としては、例えば電子装置100の重心を基準としてもよいし、光源101の位置を基準としてもよい。また、座標の情報を表示する手段は点に限定されず、ベクトルであってもよい。
この配置図は、例えば電子装置100が搭載された自動運転を行う移動体が、動力部を制御するために使われる。また、この配置図に位置情報を付加して障害物データとすることにより、自動運転を行う移動体が取得し、利用しやすくなる。この位置情報の取得は既存の方法が利用可能である。
図13に説明した配置図は平面であったが、三次元点における三次元空間(実空間)を表すようにしてもよい。三次元空間における配置図の一例を、図14および図15を用いて説明する。
図14には、電子装置100の周囲に物体200fおよび200gが配置されていることが表されている。電子装置100は様々な方角にパルス光を出射し、本実施形態と同様に電子装置100および物体200fおよび200gの距離を算出する。算出部115は、この距離に基づいて周囲の物体の配置を表す配置図を作成する。
作成した配置図の一例を、図15に表す。算出部115は、物体200fおよび200gの座標に点をプロットし、物体200fおよび200gの配置図を作成することができる。
二次元の配置図の場合と同様に、この三次元点が含む座標の情報は、直交座標でも極座標でもよいし、絶対位置(世界位置)でも相対位置でもよい。相対位置としては、例えば電子装置100の重心を基準としてもよいし、光源101の位置を基準としてもよい。また、座標の情報を表示する手段は三次元点に限定されず、三次元ベクトルであってもよい。
この三次元の配置図においても、二次元の配置図場合と同様に、位置情報を付加して障害物データとしてもよい。
算出部115は、作成したこの配置図を、出力部105に送ってもよいし、記憶部103に保持させるようにしてもよい。出力部105は、本実施形態で説明した距離dと同様に、出力先に出力する。
また、この配置図の適用例は物体の位置に限定されない。例えば、内視鏡に適用すれば体内の状態を三次元図で表現することが可能であるし、建築物に適用すれば、建築物の状態を二次元図および三次元図で表現することが可能である。体内の状態とは例えば、臓器の配置、腫れ、くぼみ、穴、腫瘍の存在の有無などである。建築物の状態とは例えば、異常なし、ひび割れ、凹凸、穴、たわみなどである。なお、これらの例も配置図として含まれる。
さらなる適用例として、この配置図を利用して移動を行う移動体について説明する。この移動体の一例を、図16に表す。移動体500は、移動可能な物であって、例えば車両、台車、飛行可能な物体(有人飛行機、無人飛行機(例えば、UAV(Unmanned AerialVehicle)、ドローン))、ロボット(先端可動式の内視鏡を含む)などである。また、移動体500は、例えば、人による運転操作を介して進行する移動体や、人による運転操作を介さずに自動的に進行(自律進行)可能な移動体である。一例として、以下に移動体500が自律進行可能な四輪自動車である場合を説明する。
この移動体500は、電子装置100に加えて、動力制御部501、取得部502、動力部503を備える。また、出力部105は算出部115が作成した配置図を動力制御部501に送るものとする。
動力制御部501は、動力部502の駆動を指令する。より具体的には、動力制御部501は、出力部105から送られた配置図および取得部501から送られた情報に基づいて、移動体500が移動する方向、速度および加速度を決定し、この方向、速度および加速度を実現する動力部502の駆動を指令する。
この動力制御部501の指令によって、移動体500のアクセル量、ブレーキ量、操舵角などが制御される。例えば、動力制御部501は、障害物などの物体を避けて現在進行中の車線を保ち、かつ前方車両との車間距離を所定距離以上保つように移動体500の駆動の制御を行う。
動力部502は、移動体500に搭載された駆動デバイスである。動力部502は、例えば、エンジン、モータ、車輪、などである。動力部502は、動力制御部501の指令によって駆動し、移動体500を駆動させる。
取得部503は、自律進行に必要な各種情報を取得する。例えば、移動体500の位置情報、移動体500の周囲の画像、移動体500の周囲の移動体から送られる相対位置情報などである。取得部503は、これらの各種情報を取得するために、ミリ波レーダセンサ、音波によって物体を探知するソナーセンサ、超音波センサ、ステレオカメラ、単眼カメラ、有線又または無線による通信機などのうちから、任意の装置を含む。
なお、動力制御部501は本実施形態で説明したプロセッサなどで実装される。動力制御部501および取得部502を1チップ上で実装するようにしてもよいし、別々に実装するようにしてもよい。また、動力制御部501および取得部502を電子装置100の内部に組み込むようにしてもよい。この場合、動力制御部501は処理部110に組み込まれていてもよい。
以上説明したように、移動体500は、パルス光を出射して反射光を受光することで作成した、物体の配置を表す配置図に少なくとも基づいて、障害物などの物体を回避しつつ自律進行を行うことが可能である。
この適用例では自律進行可能な四輪自動車である場合を説明したが、移動体500の例に挙げた他の移動体であっても、動力部502が異なるが、同様に自律進行可能である。
例えば移動体500がドローンであれば、動力部502は羽根を回転させるモータおよび羽根の角度を調整するモータである。動力制御部501は、配置図および取得部503に基づいて、羽根を回転させるモータの回転数、羽根の角度を調整するモータの角度、およびモータの各加速度などを決定し、動力部502に指令する。動力部502が動力部501の指令に基づいて駆動することで、移動体500は自律進行が可能である。
例えば移動体500がロボットであれば、動力部502は腕部および脚部の少なくとも一方を旋回、回転、角度調整を行うモータである。この腕部は例えばロボットアームなどである。また、このロボットが先端可動式の内視鏡であれば、可動部がこの腕部に含まれるものとする。この脚部は例えば車輪および関節を有する下肢などであってもよい。動力制御部501は、配置図および取得部503に基づいて、腕部および脚部におけるモータの回転数、モータの角度、およびモータの各加速度などを決定し、動力部502に指令する。動力部502が動力部501の指令に基づいて駆動することで、移動体500は自律進行が可能である。
以上に、本実施形態、変形例、および適用例を説明したが、これらは組み合わせて行われるようにしてもよい。
以上説明したように、本実施形態における電子装置および変形例における電子装置は、パルス光を出射してToFを決定するための受光時間のデータを生成する。この電子装置は、受光時間のデータに基づいて受光時間分布を算出する。この電子装置は、受光時間分布に基づいて、反射光が受光された時間帯を選択する。この電子装置は反射光が受光された時間帯に含まれる受光時間のうち、最初の受光時間および最後の受光時間の少なくとも一方に基づいてToFを決定する。この電子装置は、決定したToFに基づいて、パルス光を反射した物体との距離を算出する。このようにすることで、環境光の影響を抑え、パルス光として出射される光子数の誤差の影響を抑え、距離測定の精度を向上させることができる。
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規の実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
100:電子装置
101:光源
102:受光部
103:計測部
104:記憶部
105:出力部
106:反射部
107:検出部
110:処理部
111:制御部
112:生成部
113:データ処理部
114:選択部
115:算出部
150:電子装置
200:物体
200a~g:物体
500:移動体
501:動力制御部
502:動力部
503:取得部

Claims (11)

  1. 距離を算出する電子装置であって、
    パルス光を出射する光源と、
    光を受光し、受光した光を示す信号を出力する複数の光受光器を有する受光部と、
    前記信号に基づいて、光を受光するまでの受光時間を出力する複数の計測器を有する計測部と、
    前記受光時間に基づいて、受光時間の分布を算出し、
    前記受光時間の分布に基づいて、反射光を含む光が受光された時間帯を決定し、
    前記受光時間のうち、前記時間帯に含まれる第1時間に基づいて、パルス光が出射されてから物体によって反射された反射光を含む光が受光された第2時間を決定し、
    前記第2時間に基づいて、前記電子装置から前記物体までの距離を算出する処理部と、
    を備え、
    前記第1時間は、前記反射光が受光された時間帯に含まれる受光時間のうち、最も早い時間および最も遅い時間であり、
    前記第2時間は、前記最も早い時間および前記最も遅い時間に基づく時間である、電子装置。
  2. 前記処理部は、前記受光時間のうち、第1時間帯に対して含まれる受光時間の数に基づいて、前記受光時間の分布を算出する、請求項1に記載の電子装置。
  3. 前記処理部は、前記受光時間の分布のうち、含まれる受光時間の数が最大となる時間帯を、前記反射光が受光された時間帯として決定する、
    請求項1または2に記載の電子装置。
  4. 前記反射光が受光された時間帯の長さは、前記パルス光のパルス幅以上である、請求項1乃至3のいずれか1つに記載の電子装置。
  5. 前記第2時間は、前記最も早い時間および前記最も遅い時間の平均時間である、請求項1乃至4のいずれか1つに記載の電子装置。
  6. 前記パルス光の一部を反射する反射部と、
    前記反射部によって反射された前記パルス光を検出し、前記計測部に通知する検出部をさらに備え、
    前記計測部は、前記通知に基づいて前記受光時間を計測する、請求項1乃至5のいずれか1つに記載の電子装置。
  7. 前記処理部は、前記第2時間および前記距離の少なくとも一方に基づいて、前記物体の座標を示す情報を含む配置図を作成する、請求項1乃至6のいずれか1つに記載の電子装置。
  8. 前記配置図に基づいて、移動体の動力部に対する指令を決定する動力制御部をさらに備える、請求項7に記載の電子装置。
  9. 前記電子装置から前記物体までの距離を示す情報、および前記第2時間を示す情報のうち、少なくとも1つを出力する出力部をさらに備える、請求項1乃至8のいずれか1つに記載の電子装置。
  10. 前記受光時間を示す情報、前記第1時間を示す情報、第2時間を示す情報、および前記電子装置から前記物体までの距離を示す情報を示す情報のうち、少なくとも1つを保持する記憶部をさらに備える、請求項1乃至9のいずれか1つに記載の電子装置。
  11. 電子装置が距離を算出する方法であって、
    パルス光を出射し、
    光を受光して受光した光を示す信号を出力し、
    前記信号に基づいて、光を受光するまでの受光時間を出力し、
    前記受光時間に基づいて、受光時間の分布を算出し、
    前記受光時間の分布に基づいて、反射光を含む光が受光された時間帯を決定し、
    前記受光時間のうち、前記時間帯に含まれる第1時間に基づいて、パルス光が出射されてから物体によって反射された反射光を含む光が受光された第2時間を決定し、
    前記第2時間に基づいて、前記電子装置から前記物体までの距離を算出し、
    前記第1時間は、前記反射光が受光された時間帯に含まれる受光時間のうち、最も早い時間および最も遅い時間であり、
    前記第2時間は、前記最も早い時間および前記最も遅い時間に基づく時間である、方法。
JP2019050178A 2019-03-18 2019-03-18 電子装置および方法 Active JP7015802B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019050178A JP7015802B2 (ja) 2019-03-18 2019-03-18 電子装置および方法
US16/564,406 US11828874B2 (en) 2019-03-18 2019-09-09 Electronic apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019050178A JP7015802B2 (ja) 2019-03-18 2019-03-18 電子装置および方法

Publications (2)

Publication Number Publication Date
JP2020153707A JP2020153707A (ja) 2020-09-24
JP7015802B2 true JP7015802B2 (ja) 2022-02-03

Family

ID=72515943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019050178A Active JP7015802B2 (ja) 2019-03-18 2019-03-18 電子装置および方法

Country Status (2)

Country Link
US (1) US11828874B2 (ja)
JP (1) JP7015802B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019032206A (ja) * 2017-08-07 2019-02-28 ソニーセミコンダクタソリューションズ株式会社 距離センサ、距離測定装置、および画像センサ
US11480686B2 (en) * 2019-03-27 2022-10-25 Zoox, Inc. Identifying and/or removing false positive detections from lidar sensor output
US11740335B2 (en) 2019-03-27 2023-08-29 Zoox, Inc. Identifying and/or removing false positive detections from LIDAR sensor output
US11573302B2 (en) * 2019-10-17 2023-02-07 Argo AI, LLC LiDAR system comprising a Geiger-mode avalanche photodiode-based receiver having pixels with multiple-return capability
WO2021181990A1 (ja) * 2020-03-13 2021-09-16 日本電気株式会社 処理装置、処理方法及びプログラム

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007225342A (ja) 2006-02-21 2007-09-06 Toyota Motor Corp 3次元測定装置及び3次元測定装置を搭載した自律移動装置
JP2010091377A (ja) 2008-10-07 2010-04-22 Toyota Motor Corp 光学式測距装置及び方法
US20150041625A1 (en) 2013-08-06 2015-02-12 Stmicroelectronics (Research & Development) Limited Time to digital converter and applications thereof
JP2018040656A (ja) 2016-09-07 2018-03-15 オムロンオートモーティブエレクトロニクス株式会社 距離測定装置
JP2018091760A (ja) 2016-12-05 2018-06-14 株式会社豊田中央研究所 光学測定装置、光学測定方法、及び光学測定プログラム
US20180164415A1 (en) 2016-12-12 2018-06-14 Sensl Technologies Ltd Histogram Readout Method and Circuit for Determining the Time of Flight of a Photon
WO2018211762A1 (ja) 2017-05-15 2018-11-22 シャープ株式会社 光センサ、電子機器、演算装置、及び光センサと検知対象物との距離を測定する方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3771346B2 (ja) * 1997-03-10 2006-04-26 浜松ホトニクス株式会社 距離測定装置
EP1382979B1 (en) * 2001-04-25 2008-03-05 Nikon Corporation Range finder, range finding method, and photoelectric transducing circuit
US7513428B2 (en) * 2001-11-21 2009-04-07 Metrologic Instruments, Inc. Planar laser illumination and imaging device employing laser current modulation to generate spectral components and reduce temporal coherence of laser beam, so as to achieve a reduction in speckle-pattern noise during time-averaged detection of images of objects illuminated thereby during imaging operations
US7178396B2 (en) * 2004-08-17 2007-02-20 Steve Carkner Accoustical apparatus and method for measuring water level in a ground water well having obstructions
WO2006077588A2 (en) * 2005-01-20 2006-07-27 Elbit Systems Electro-Optics Elop Ltd. Laser obstacle detection and display
CN102662176A (zh) * 2005-07-04 2012-09-12 株式会社尼康美景 距离测量设备
JP5374731B2 (ja) * 2008-11-26 2013-12-25 独立行政法人日本原子力研究開発機構 レーザー駆動粒子線照射装置およびレーザー駆動粒子線照射装置の動作方法
WO2010149593A1 (en) * 2009-06-22 2010-12-29 Toyota Motor Europe Nv/Sa Pulsed light optical rangefinder
US9784887B1 (en) * 2013-08-12 2017-10-10 Physical Optics Corporation Meteorological sensing systems and methods
EP3032277B1 (de) * 2014-12-12 2021-04-07 Leica Geosystems AG Lasertracker
US11388788B2 (en) * 2015-09-10 2022-07-12 Brava Home, Inc. In-oven camera and computer vision systems and methods
KR102406327B1 (ko) * 2016-02-02 2022-06-10 삼성전자주식회사 출력 장치를 제어하는 방법 및 장치
US9641259B1 (en) * 2016-06-20 2017-05-02 Rockwell Automation Technologies, Inc. System and method for pulsed based receiver photo sensor
US20200149980A1 (en) * 2017-04-10 2020-05-14 Etegent Technologies Ltd. Distributed active mechanical waveguide sensor with damping
DE102018201220A1 (de) * 2018-01-26 2019-08-01 Osram Gmbh Abstandsdetektionssystem, Verfahren für ein Abstandsdetektionssystem und Fahrzeug
EP3521856B1 (en) * 2018-01-31 2023-09-13 ams AG Time-of-flight arrangement and method for a time-of-flight measurement
EP3732501A4 (en) * 2018-02-13 2021-08-25 Sense Photonics, Inc. PROCESSES AND SYSTEMS FOR HIGH-RESOLUTION FLASH LIDAR WITH LARGE RANGE
WO2019164500A1 (en) * 2018-02-23 2019-08-29 Sony Mobile Communications Inc. Methods of modeling a 3d object, and related devices and computer program products
JP6440152B1 (ja) * 2018-03-08 2018-12-19 レーザーテック株式会社 検査装置及び検査方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007225342A (ja) 2006-02-21 2007-09-06 Toyota Motor Corp 3次元測定装置及び3次元測定装置を搭載した自律移動装置
JP2010091377A (ja) 2008-10-07 2010-04-22 Toyota Motor Corp 光学式測距装置及び方法
US20150041625A1 (en) 2013-08-06 2015-02-12 Stmicroelectronics (Research & Development) Limited Time to digital converter and applications thereof
JP2018040656A (ja) 2016-09-07 2018-03-15 オムロンオートモーティブエレクトロニクス株式会社 距離測定装置
JP2018091760A (ja) 2016-12-05 2018-06-14 株式会社豊田中央研究所 光学測定装置、光学測定方法、及び光学測定プログラム
US20180164415A1 (en) 2016-12-12 2018-06-14 Sensl Technologies Ltd Histogram Readout Method and Circuit for Determining the Time of Flight of a Photon
WO2018211762A1 (ja) 2017-05-15 2018-11-22 シャープ株式会社 光センサ、電子機器、演算装置、及び光センサと検知対象物との距離を測定する方法

Also Published As

Publication number Publication date
US11828874B2 (en) 2023-11-28
US20200300975A1 (en) 2020-09-24
JP2020153707A (ja) 2020-09-24

Similar Documents

Publication Publication Date Title
JP7015802B2 (ja) 電子装置および方法
JP7015801B2 (ja) 電子装置および方法
JP6970703B2 (ja) 電子装置および方法
JP2020515855A (ja) 統合化されたlidar照明出力制御
WO2018218629A1 (zh) 一种基于激光雷达的检测方法、装置及探测设备
JP6676814B2 (ja) ライダー強度に基づく物体検出
KR102664396B1 (ko) 라이다 장치 및 그 동작 방법
WO2020191727A1 (zh) 一种雷达功率控制方法及装置
WO2023103198A1 (zh) 一种计算测距系统相对外参的方法、装置和存储介质
JP2018119852A (ja) 位置特定装置、位置特定方法、位置特定システム、位置特定用プログラム、無人航空機および無人航空機識別用ターゲット
WO2023083198A1 (zh) 一种回波信号的处理方法、装置、设备及存储介质
CN114612598A (zh) 一种点云的处理方法、装置及激光雷达
JP7032062B2 (ja) 点群データ処理装置、移動ロボット、移動ロボットシステム、および点群データ処理方法
CN110687545B (zh) 一种高精度激光雷达系统
JP6186863B2 (ja) 測距装置及びプログラム
JP2019039867A (ja) 位置測定装置、位置測定方法および位置測定用プログラム
WO2021136284A1 (zh) 三维测距方法和装置
JP6470658B2 (ja) レーザ計測システムおよびレーザ計測方法
KR20230063363A (ko) 장거리, 고해상도 lidar을 위한 장치 및 방법들
KR101991119B1 (ko) 스캐닝 라이다 장치 및 이를 이용한 스캐닝 방법
WO2021102648A1 (zh) 反射率的测量方法、装置、可移动平台和计算机可读介质
JP7310587B2 (ja) 測距装置、測距方法、および測距プログラム
JP2021081850A (ja) 位置推定装置、位置推定方法およびプログラム
US20220075036A1 (en) Range estimation for lidar systems using a detector array
CN208188339U (zh) 一种机载激光雷达3d成像系统

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20190603

RD07 Notification of extinguishment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7427

Effective date: 20190617

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190603

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210618

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220124