WO2023083198A1 - 一种回波信号的处理方法、装置、设备及存储介质 - Google Patents
一种回波信号的处理方法、装置、设备及存储介质 Download PDFInfo
- Publication number
- WO2023083198A1 WO2023083198A1 PCT/CN2022/130753 CN2022130753W WO2023083198A1 WO 2023083198 A1 WO2023083198 A1 WO 2023083198A1 CN 2022130753 W CN2022130753 W CN 2022130753W WO 2023083198 A1 WO2023083198 A1 WO 2023083198A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- echo signal
- strongest
- echo
- last
- signal
- Prior art date
Links
- 238000003672 processing method Methods 0.000 title abstract description 12
- 238000013507 mapping Methods 0.000 claims abstract description 23
- 238000000034 method Methods 0.000 claims description 36
- 238000012545 processing Methods 0.000 claims description 25
- 238000005259 measurement Methods 0.000 claims description 14
- 238000004590 computer program Methods 0.000 claims description 12
- 239000000284 extract Substances 0.000 claims description 10
- 239000011521 glass Substances 0.000 claims description 7
- 238000010586 diagram Methods 0.000 description 10
- 230000006870 function Effects 0.000 description 10
- 230000008569 process Effects 0.000 description 8
- 238000005516 engineering process Methods 0.000 description 7
- 238000004364 calculation method Methods 0.000 description 5
- 230000003287 optical effect Effects 0.000 description 5
- 238000001514 detection method Methods 0.000 description 4
- 238000007493 shaping process Methods 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 230000009977 dual effect Effects 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000002310 reflectometry Methods 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 241000533950 Leucojum Species 0.000 description 1
- 230000003190 augmentative effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000002592 echocardiography Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/4802—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/41—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
Definitions
- the present application relates to but not limited to the technical field of laser radar, and in particular relates to a method, device, equipment and storage medium for processing echo signals.
- LiDAR is an object detection technology. Using laser as a signal light source, by emitting laser light to the target object, the reflected signal of the target object is collected, so as to obtain the target object's orientation, speed and other information. Lidar has the advantages of high measurement accuracy and strong anti-interference ability, and is widely used in remote sensing, measurement, intelligent driving, robotics and other fields.
- lidar ranging technology when the laser beam is irradiated on other reflective objects between the lidar and the measured object, an echo signal will also be generated. In this way, the real ranging information may not be obtained, which will affect the accuracy of lidar ranging.
- the present application provides an echo signal processing method, device, equipment and storage medium, so as to improve the accuracy of laser radar ranging.
- a method for processing echo signals including: obtaining the strongest echo signal, the second strongest echo signal, the first echo signal, and the last echo signal within a preset time period and target scene information; wherein, the strongest echo signal is the echo signal with the largest amplitude within the preset time period, the second strongest echo signal is the echo signal with the second largest amplitude within the preset time period, and the first echo signal It is the first echo signal in the preset time period, and the last echo signal is the last echo signal in the preset time period; among the strongest echo signal, second strongest echo signal, first echo signal and last echo signal Among the signals, the first echo signal and the second echo signal corresponding to the target scene information are determined according to the preset mapping relationship between the scene information and the double echo combination.
- the first echo signal and the second echo signal include: the first echo signal and the strongest echo signal; or, the strongest echo signal and the last echo signal; or, the first The echo signal and the last echo signal; or, the first echo signal and the second strongest echo signal.
- the target is determined according to the preset mapping relationship between the scene information and the double echo combination.
- the first echo signal and the second echo signal corresponding to the scene information include: among the strongest echo signal, the second strongest echo signal, the first echo signal and the last echo signal, According to the preset mapping relationship between the scene information and the double echo combination, the third echo signal and the fourth echo signal corresponding to the target scene information are obtained; when the third echo signal and the fourth echo signal are different echo signals , determine the third echo signal as the first echo signal, and determine the fourth echo signal as the second echo signal; when the third echo signal and the fourth echo signal are the same echo signal, Determining the third echo signal as the first echo signal, and determining the fifth echo signal as the second echo signal; wherein, the fifth echo signal is the strongest echo signal, the second strongest echo signal, the first Among the echo signal and the last echo signal, one echo signal different from the third echo signal and the fourth echo signal.
- the third echo signal is the first echo signal, the fourth echo signal is the strongest echo signal, and the fifth echo signal is the second strongest echo signal; or, the third echo signal is the strongest echo signal, the fourth echo signal is the last echo signal, and the fifth echo signal is the second strongest echo signal.
- the third echo signal is the first echo signal
- the fourth echo signal is the strongest echo signal.
- the third echo signal is the strongest echo signal
- the fourth echo signal is the last echo signal.
- obtaining the strongest echo signal, the second strongest echo signal, the first echo signal, and the last echo signal within a preset time period includes: receiving multiple echo signals within a preset time period The first echo signal and the last echo signal are extracted from multiple echo signals according to the receiving time; the amplitude of multiple echo signals is compared to extract the strongest echo signal and the second strongest echo signal.
- the strongest echo signal, the second strongest echo signal, the first echo signal and the last echo signal are echo signals received by a lidar, and, The first echo signal and the second echo signal are used to obtain distance measurement information of the measured object.
- an echo signal processing device which can be a chip or a system-on-chip in a laser radar, and can also be used in a laser radar to implement the first aspect and any one thereof.
- Possible implementations are functional modules of the method.
- the echo signal processing device may implement the functions performed by the laser radar in the first aspect and any possible implementation manner thereof, and the functions may be implemented by executing corresponding software through hardware.
- the hardware or software includes one or more modules with corresponding functions above.
- the echo signal processing device includes: an obtaining module, which is used to obtain the strongest echo signal, the second strongest echo signal, the first echo signal, the last echo signal and target scene information within a preset time period; wherein, the most The strong echo signal is the echo signal with the largest amplitude within the preset time period, the second strongest echo signal is the echo signal with the second largest amplitude within the preset time period, and the first echo signal is the first echo signal within the preset time period.
- the last echo signal is the last echo signal within the preset time period; the determination module is used to select among the strongest echo signal, the second strongest echo signal, the first echo signal and the last echo signal, According to the preset mapping relationship between the scene information and the double echo combination, determine the first echo signal and the second echo signal corresponding to the target scene information, and the first echo signal and the second echo signal are used to obtain the ranging information .
- the first echo signal and the second echo signal include: the first echo signal and the strongest echo signal; or, the strongest echo signal and the last echo signal; or, the first The echo signal and the last echo signal; or, the first echo signal and the second strongest echo signal.
- the determining module is further configured to: among the strongest echo signal, the second strongest echo signal, the first echo signal and the last echo signal, according to preset scene information and double echo Combining the mapping relationship to obtain the third echo signal and the fourth echo signal corresponding to the target scene information; when the third echo signal and the fourth echo signal are different echo signals, the third echo signal is determined as The first echo signal, and determining the fourth echo signal as the second echo signal; when the third echo signal and the fourth echo signal are the same echo signal, determining the third echo signal as the first echo signal an echo signal, and determining the fifth echo signal as the second echo signal; wherein, the fifth echo signal is among the strongest echo signal, the second strongest echo signal, the first echo signal and the last echo signal, An echo signal different from the third echo signal and the fourth echo signal.
- the third echo signal is the first echo signal, the fourth echo signal is the strongest echo signal, and the fifth echo signal is the second strongest echo signal; or, the third echo signal is the strongest echo signal, the fourth echo signal is the last echo signal, and the fifth echo signal is the second strongest echo signal.
- the third echo signal is the first echo signal
- the fourth echo signal is the strongest echo signal.
- the third echo signal is the strongest echo signal
- the fourth echo signal is the last echo signal.
- the obtaining module is further configured to: receive multiple echo signals within a preset time period; extract the first echo signal and the last echo signal from the multiple echo signals according to the receiving time ; Compare the amplitudes of multiple echo signals, and extract the strongest echo signal and the second strongest echo signal.
- the strongest echo signal, the second strongest echo signal, the first echo signal and the last echo signal are echo signals received by a lidar, and, The first echo signal and the second echo signal are used to obtain distance measurement information of the measured object.
- a laser radar including: a memory storing computer-executable instructions; a processor connected to the memory for executing computer-executable instructions to implement the first aspect and The method described in any possible implementation thereof.
- a non-transitory computer storage medium stores computer-executable instructions, and when the computer-executable instructions are executed by a processor, the first aspect and any one thereof can be implemented. Possible implementations of the methods described.
- a computer program product is provided.
- the instructions in the computer program product are executed by a processor, the method described in the first aspect and any possible implementation manner thereof is implemented.
- a computer program is provided.
- the computer program is executed by a processor, the method described in the first aspect and any possible implementation manner thereof is implemented.
- FIG. 1 is a schematic structural diagram of a laser radar in the related art
- Fig. 2 is a schematic flow chart of the first implementation of the echo signal processing method in the embodiment of the present application
- FIG. 3 is a schematic diagram of an echo signal in an embodiment of the present application.
- FIG. 4 is a schematic flowchart of another implementation of the echo signal processing method in the embodiment of the present application.
- FIG. 5 is a schematic diagram of an echo signal in an embodiment of the present application.
- FIG. 6 is a schematic structural diagram of an echo signal processing device in an embodiment of the present application.
- FIG. 7 is a schematic structural diagram of a laser radar in an embodiment of the present application.
- LiDAR light detection and ranging, LiDAR
- the laser radar emits a laser beam through a laser.
- the laser beam encounters a target object and undergoes diffuse reflection.
- the detector receives the reflected beam and determines the distance, orientation, height, speed, Features such as posture and shape.
- LiDAR has a wide range of applications. In addition to being used in the military field, it is also widely used in the field of life, including but not limited to: intelligent driving vehicles, intelligent driving aircraft, three-dimensional (3D) printing, virtual reality, augmented reality, service robots and other fields.
- intelligent driving vehicles intelligent driving aircraft
- 3D three-dimensional
- virtual reality virtual reality
- augmented reality service robots
- the lidar is set in the intelligent driving vehicle, and the lidar can scan the surrounding environment by emitting laser beams quickly and repeatedly, so as to obtain the shape and position of one or more target objects in the surrounding environment , moving point cloud data, etc.
- the above intelligent driving technology may refer to unmanned driving, automatic driving, assisted driving and other technologies.
- FIG. 1 is a schematic structural diagram of a laser radar in the related art.
- the laser radar 10 may include: a light emitting device 101 , a light receiving device 102 and a processor 103 . Wherein, both the light emitting device 101 and the light receiving device 102 are connected to the processor 103 .
- connection relationship among the above-mentioned components may be an electrical connection, and may also be an optical fiber connection.
- the light emitting device 101 and the light receiving device 102 may also respectively include a plurality of optical devices, and the connection relationship between these optical devices may also be a spatial optical transmission connection.
- the processor 103 is used to control the light emitting device 101 and the light receiving device 102, so that the light emitting device 101 and the light receiving device 102 can work normally.
- the processor 103 may provide driving voltages for the light emitting device 101 and the light receiving device 102 respectively, and the processor 103 may also provide control signals for the light emitting device 101 and the light receiving device 102 .
- the processor 103 can be a general-purpose processor, such as a central processing unit (central processing unit, CPU), a network processor (network processor, NP), etc.; the processor 103 can also be a digital signal processor (digital signal processing , DSP), application specific integrated circuit (ASIC), field-programmable gate array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
- a central processing unit central processing unit, CPU
- NP network processor
- DSP digital signal processing
- ASIC application specific integrated circuit
- FPGA field-programmable gate array
- the light emitting device 101 also includes a light source (not shown in FIG. 1 ).
- a light source may refer to a laser, and the number of the laser may be one or more.
- the laser may specifically include a pulsed laser diode (pulsed laser diode, PLD), a semiconductor laser, a fiber laser, and the like.
- PLD pulsed laser diode
- the above-mentioned light sources are used to emit laser beams.
- the processor 103 may send an emission control signal to the light source, thereby triggering the light source to emit the laser beam.
- laser beams may also be referred to as laser pulses, lasers, emitted light beams, and the like.
- Lidar 10 may also include: one or more beam shaping optics and a beam scanning device (not shown in FIG. 1 ).
- beam shaping optics and beam scanning devices focus and project a laser beam toward a specific location in the surrounding environment, such as a target object.
- the beam scanning device and one or more beam shaping optics direct and focus the return wave beam onto the detector.
- a beam scanning device is employed in the optical path between the beam shaping optics and the target object. The beam scanning device actually expands the field of view and increases the sampling density within the lidar's field of view.
- the detection process of the object 104 to be measured by the laser radar is briefly described below in combination with the structure of the laser radar shown in FIG. 1 .
- the laser beam propagates along the emission direction.
- the laser beam encounters the measured object 104 , it is reflected on the surface of the measured object 104 , and the reflected beam is received by the light receiving device 102 of the laser radar.
- the beam reflected by the measured object 104 may be referred to as an echo beam (the laser beam and the echo beam are marked by solid lines in FIG. 1 ).
- the light receiving device 102 After the light receiving device 102 receives the echo beam, it performs photoelectric conversion on the echo beam, that is, converts the echo beam into an electrical signal, and the light receiving device 102 outputs the electrical signal corresponding to the echo beam to the processor 103, and the processor 103 can According to the electric signal of the echo beam, the shape, position, and motion point cloud data of the measured object 104 are obtained.
- the laser radar ranging technology when there are no other reflective objects between the laser radar and the measured object, the laser emits a laser beam, and the light receiving device will only receive an echo signal reflected by the measured object. Therefore, the distance measurement information of the measured object can be obtained through the echo signal.
- the lidar and the measured object there are often other reflective objects between the lidar and the measured object, such as water on the road, glass obstacles, water droplets and snowflakes in rainy and snowy days, etc. Then, when the laser beam is irradiated on these objects, it will also be reflected and generate an echo signal. In this way, only based on the strongest echo signal in the single echo mode may not necessarily obtain real ranging information, which affects the accuracy of lidar ranging.
- an embodiment of the present application provides a method for processing echo signals, which can be applied to the above-mentioned laser radar to measure the distance of the measured object.
- FIG. 2 is a schematic flow chart of the first implementation of the echo signal processing method in the embodiment of the present application.
- the echo signal processing method may include:
- the strongest echo signal is the echo signal with the largest amplitude in the preset time period
- the second strongest echo signal is the echo signal with the second largest amplitude in the preset time period
- the first echo signal is the echo signal in the preset time period
- the last echo signal is the last echo signal within the preset time period.
- FIG. 3 is a schematic diagram of echo signals in the embodiment of the present application.
- echo signal B echo signal C and echo signal D
- echo signal A is the first echo signal
- echo signal B is the strongest echo signal
- echo signal C is the second strongest echo signal
- the echo signal D is the last echo signal.
- the echo signal A can also be both the first echo signal and the strongest echo signal or the second strongest echo signal
- the echo signal D can be both the last echo signal and the most Strong echo signal or sub-strong echo signal.
- the lidar can obtain target scene information used to represent the scene where the lidar and the measured object are currently located. For example, there are reflective objects with high reflectivity (such as water on the ground, icy roads, snow, glass obstacles, etc.) within the scanning range of the lidar, and extreme weather occurs within the scanning range of the lidar (such as rain , snow, fog, etc.), there are retroreflective objects (such as traffic signs) within the scanning range of the lidar. Of course, there may be other situations in the target scene, which are not specifically limited in this embodiment of the present application.
- the preset time period can be understood as the sampling period of the laser radar, the single-point measurement period, etc., and can also be understood as the time period set according to the distance measurement requirement.
- the preset time period may be 100 ns, 500 ns, 700 ns and so on.
- other situations may also exist, which are not specifically limited in this embodiment of the present application.
- the steps of extracting the strongest echo signal, the second strongest echo signal, the first echo signal and the last echo signal and the step of obtaining the target scene information by lidar can be executed sequentially or simultaneously, or can be executed first. Perform the step of obtaining target scene information and then perform the step of extracting the strongest echo signal, the second strongest echo signal, the first echo signal and the last echo signal, which is not specifically limited in this embodiment of the present application.
- the lidar can obtain the strongest echo signal, the second strongest echo signal, the first echo signal, and the last echo signal within the preset time period through the following methods, specifically: Receive multiple echo signals within a time period, and extract the first echo signal and the last echo signal from the multiple echo signals according to the receiving time (also can be understood as the receiving moment); and, the lidar compares multiple echo signals The amplitude of the signal, so as to extract the strongest echo signal and the second strongest echo signal.
- the first echo signal and the strongest echo signal or the second strongest echo signal may be the same echo signal, or may be different echo signals.
- the last echo signal and the strongest echo signal or the second strongest echo signal may be the same echo signal, or may be different echo signals.
- the laser radar can obtain target scene information through other sensors, and can also analyze the target scene information obtained by analyzing clutter received by itself.
- the lidar is installed on a smart driving vehicle, the vehicle can collect images of the current scene through the image system, and analyze the collected images to determine the current scene, and use the current scene as the target scene, marked by the scene ( That is, the target scene information) is notified to the lidar, so that the lidar can obtain the target scene information.
- the extracted strongest echo signal, sub-strongest echo signal, first echo signal and last echo signal can be stored in a memory (such as a dual-port random access memory (random access memory, RAM) ) for storage in subsequent distance calculations.
- a memory such as a dual-port random access memory (random access memory, RAM)
- a mapping relationship between two echo signals (which may be referred to as a double-echo combination) and scene information may be preset. Then, after the lidar obtains multiple echo signals (that is, echo signal A, echo signal B, echo signal C, and echo signal D in FIG. 3 ) and target scene information through S201, it can use the mapping relationship , to determine the corresponding double echo combination (that is, the first echo signal and the second echo signal). Further, the laser radar can calculate the ranging information of the measured object by using the first echo signal and the second echo signal.
- the double echo combination may include any of the following echo combinations: the first echo signal and the strongest echo signal
- the lidar determines any of the above-mentioned echo combinations, it can perform distance measurement calculation based on the echo combination, and can also report the echo combination to the next-level processor (such as intelligent driving The central control processor, application processor, sensor processor, etc.) for the next-level processor to perform ranging calculations.
- the next-level processor such as intelligent driving The central control processor, application processor, sensor processor, etc.
- the above mapping relationship may be implemented in the form of a mapping table, and the mapping table includes scene information and dual-echo combinations.
- Scenario 1 There are reflective objects with high reflectivity within the scanning range of the LiDAR; Scenario 2: Extreme weather occurs within the scanning range of the LiDAR; Scenario 3: Retroreflective objects such as road signs exist within the scanning range of the LiDAR .
- the corresponding double echo combination may be: the first echo signal and the strongest echo signal, the strongest echo signal and the last echo signal, the first echo signal and the last echo signal. Then, the above mapping table may be shown in Table 1.
- the lidar may also have default settings, that is, there may be a default scene. If the lidar does not obtain the target scene information through S201, the target scene information may be set as null information, default information, or the like. Correspondingly, the default scene may be similar to scene one, corresponding to the first echo signal and the strongest echo signal. Then, the above mapping relationship can still be shown in Table 1 below.
- scene information dual echo combination default scene or scene one First echo signal and strongest echo signal scene two The strongest echo signal and the last echo signal scene three First echo signal and last echo signal
- mapping relationship may be realized by means such as a linked list, a bitmap (bitmap), etc., which is not specifically limited in this embodiment of the present application.
- FIG. 4 is a schematic flowchart of another implementation of the echo signal processing method in the embodiment of the present application. Referring to FIG. 4 , after S201 , S401 to S403 are executed.
- the laser radar obtains the target scene information according to S201, and can determine echo signals corresponding to the target scene information, that is, the third echo signal and the fourth echo signal.
- S402. Determine whether the third echo signal and the fourth echo signal are the same echo signal.
- S403. Determine the third echo signal as the first echo signal, and determine the fourth echo signal as the second echo signal.
- the third echo signal and the fourth echo signal are echo signals of a signal type corresponding to the target scene information.
- the fifth echo signal is an echo signal different from the third echo signal and the fourth echo signal among the strongest echo signal, the second strongest echo signal, the first echo signal and the last echo signal, such as the second strongest echo signal echo signal.
- the fifth echo signal is used to form a double echo combination together with the third echo signal or the fourth echo signal when the third echo signal and the fourth echo signal are the same echo signal (that is, the third echo signal
- the echo signal or the fourth echo signal is determined as the first echo signal, and the fifth echo signal is determined as the second echo signal).
- the third echo signal and the fourth echo signal are different echo signals, the third echo signal can be directly confirmed as the first echo signal, and the fourth echo signal can be confirmed as The second echo signal further forms a double echo combination.
- the fifth echo signal corresponding to the target scene information may be obtained first, and then the third echo signal is confirmed as the first echo signal, And confirming the fifth echo signal as the second echo signal, and then forming a double echo combination.
- the third echo signal or the fourth echo signal and the fifth echo signal can be selected to form a dual echo signal. Echo combination. That is to say, a double-echo combination can be formed by the third echo signal and the fifth echo signal (that is, the third echo signal is confirmed as the first echo signal, and the fifth echo signal is confirmed as the second echo signal). signal); or, a double-echo combination is formed by the fourth echo signal and the fifth echo signal (that is, the fourth echo signal is confirmed as the first echo signal, and the fifth echo signal is confirmed as the second echo signal Signal).
- the lidar may also adopt other strategies to confirm the combination of the double echoes, which is not specifically limited in this embodiment of the present application.
- the above-mentioned double echo combination may include: the first echo signal and the second strongest echo signal, the strongest echo signal and the second strongest echo signal.
- the fifth echo signal is the second strongest echo signal; or, if the third echo signal If the echo signal is the strongest echo signal and the fourth echo signal is the last echo signal, then the fifth echo signal is the second strongest echo signal.
- the double echo combination when the target scene information is the default scene or scene 1, if the first echo signal and the strongest echo signal are the same echo signal, the double echo combination may include echo signal A /echo signal B and echo signal C; in scenario 2, if the strongest echo signal and the last echo signal are the same echo signal, the double echo combination can include echo signal B/echo signal D and Echo signal C.
- Fig. 5 is a schematic diagram of echo signals in the embodiment of the present application.
- the lidar receives 5 echo signals within 700 ns: echo signal a, echo signal b, Echo signal c, echo signal d, and echo signal e.
- Step 1 the laser radar extracts the strongest echo signal and the second strongest echo from echo signal a, echo signal b, echo signal c, echo signal d, and echo signal e signal, the first echo signal, and the last echo signal (such as echo signal c, echo signal d, echo signal a, and echo signal e).
- Step 2 The lidar receives the target scene information sent by the imaging system, such as scene 1.
- step 1 and step 2 may be performed sequentially or simultaneously, or step 2 may be performed first and then step 1 may be performed, which is not specifically limited in this embodiment of the present application.
- Step 3 Lidar refers to Table 1 to obtain the first echo signal and the strongest echo signal corresponding to scene 1 (that is, the third echo signal and the fourth echo signal), such as echo signal a and echo signal c.
- Step 4 The lidar compares whether the first echo signal (such as echo signal a) and the strongest echo signal (such as echo signal c) are the same echo signal.
- Step 5 When it is determined that the echo signal a and the echo signal c are different echo signals, the laser radar determines the echo signal a as the first echo signal, and determines the echo signal c as the second echo signal , to form a double-echo combination.
- the laser radar performs ranging calculation according to the echo signal a and the echo signal c, and obtains the ranging information of the measured object.
- the laser radar receives 5 echo signals within 700 ns: echo signal a', echo signal b', echo signal c', Echo signal d' and echo signal e'.
- Step 1 The lidar extracts the strongest echo signal from the echo signal a', echo signal b', echo signal c', echo signal d' and echo signal e' according to the receiving time and amplitude , the second strongest echo signal, the first echo signal and the last echo signal (such as echo signal a', echo signal d', echo signal a' and echo signal e').
- Step 2 The lidar receives the target scene information sent by the imaging system, such as scene 1.
- step 1 and step 2 may be performed sequentially or simultaneously, or step 2 may be performed first and then step 1 may be performed, which is not specifically limited in this embodiment of the present application.
- Step 3 Referring to Table 1, the laser radar obtains the first echo signal and the strongest echo signal corresponding to scene 1 (that is, the third echo signal and the fourth echo signal), such as echo signal a' and echo Signal a'.
- Step 4 The lidar compares whether the first echo signal (such as echo signal a') and the strongest echo signal (echo signal a') are the same echo signal.
- Step 5 When it is determined that both the first echo signal and the strongest echo signal are the echo signal a', the laser radar obtains the second strongest echo signal (such as the echo signal d'), and determines the echo signal a' as The first echo signal and determining the echo signal d' as the second echo signal form a double echo combination.
- the second strongest echo signal such as the echo signal d'
- the laser radar performs ranging calculation according to the echo signal a' and the echo signal d', and obtains ranging information of the measured object.
- the laser radar after the laser radar emits a beam of laser light, it can extract two echo signals from the received echo signals, so as to perform distance measurement based on these two echo signals, and obtain more realistic distance measurement information. , so as to improve the ranging accuracy of the lidar, and then improve the performance of the lidar.
- An embodiment of the present application also provides an echo signal processing device, which may be a chip or a system-on-chip in a laser radar, or a functional module in a laser radar used for the method described in one or more of the foregoing embodiments.
- the echo signal processing device can realize the functions performed by the lidar described in one or more embodiments above, and these functions can be realized by executing corresponding software through hardware. These hardware or software include one or more modules with corresponding functions mentioned above.
- Fig. 6 is a schematic structural diagram of an echo signal processing device in an embodiment of the present application. Referring to Fig.
- the echo signal processing device 600 may include: an obtaining module 601 for obtaining the most Strong echo signal, sub-strong echo signal, first echo signal, last echo signal and target scene information; among them, the strongest echo signal is the echo signal with the largest amplitude in the preset time period, and the second strongest echo signal The signal is the echo signal with the second largest amplitude in the preset time period, the first echo signal is the first echo signal in the preset time period, and the last echo signal is the last echo signal in the preset time period; determine Module 602, configured to, among the strongest echo signal, the second strongest echo signal, the first echo signal and the last echo signal, determine the target scene information corresponding to the mapping relationship between the preset scene information and the double echo combination. A first echo signal and a second echo signal.
- the first echo signal and the second echo signal may include: the first echo signal and the strongest echo signal; or, the strongest echo signal and the last echo signal; or, The first echo signal and the last echo signal; or, the first echo signal and the second strongest echo signal; or, the strongest echo signal and the second strongest echo signal.
- the determining module 602 is specifically configured to: among the strongest echo signal, the second strongest echo signal, the first echo signal, and the last echo signal, according to preset scene information and double-echo Wave combination mapping relationship, to obtain the third echo signal and the fourth echo signal corresponding to the target scene information; if the third echo signal and the fourth echo signal are different echo signals, then the third echo signal Determine as the first echo signal, and determine the fourth echo signal as the second echo signal; if the third echo signal and the fourth echo signal are the same echo signal, then determine the third echo signal as The first echo signal, and determining the fifth echo signal as the second echo signal; wherein, the fifth echo signal is the strongest echo signal, the second strongest echo signal, the first echo signal and the last echo signal Among them, an echo signal different from the third echo signal and the fourth echo signal.
- the third echo signal is the first echo signal, the fourth echo signal is the strongest echo signal, and the fifth echo signal is the second strongest echo signal; or, the third echo signal is the strongest echo signal, the fourth echo signal is the last echo signal, and the fifth echo signal is the second strongest echo signal.
- the third echo signal is the first echo signal
- the fourth echo signal is the strongest echo signal.
- the third echo signal is the strongest echo signal
- the fourth echo signal is the last echo signal.
- the obtaining module 601 is specifically configured to: receive multiple echo signals within a preset time period; extract the first echo signal and the last echo from the multiple echo signals according to the receiving time signal; compare the amplitudes of multiple echo signals, and extract the strongest echo signal and the second strongest echo signal.
- the obtaining module 601 and the determining module 602 mentioned in the embodiment of the present application may be one or more processors.
- FIG. 7 is a schematic structural diagram of a lidar in an embodiment of the present application.
- the lidar 700 may use general computer hardware, including a processor 701 and a memory 702 .
- the processor 701 and the memory 702 may communicate through a bus 703 .
- At least one processor 701 may constitute any physical device having circuits for performing logic operations on one or more inputs.
- at least one processor may include one or more integrated circuits (ICs), including application specific integrated circuits (ASICs), microchips, microcontrollers, microprocessors, central processing units (central processing units) processing unit (CPU), all or part of a graphics processing unit (graphics processing unit, GPU), digital signal processor (digital signal process, DSP), field programmable gate array (field programmable gate array, FPGA) or suitable for execution Instructions or other circuits that perform logical operations.
- the instructions executed by the at least one processor may, for example, be preloaded into a memory integrated with or embedded in the controller, or may be stored in a separate memory.
- Memory may include random access memory (RAM), read-only memory (ROM), hard disk, optical disk, magnetic media, flash memory, other permanent, fixed, or volatile memory, or is capable of storing instructions any other mechanism.
- at least one processor may include more than one processor. Each processor may have a similar structure, or the processors may have different configurations that are electrically connected or disconnected from each other. For example, a processor may be a separate circuit or integrated in a single circuit. When more than one processor is used, the processors may be configured to operate independently or cooperatively. Processors may be coupled electrically, magnetically, optically, acoustically, mechanically or by other means allowing their interaction.
- the present application also provides a computer-readable storage medium, on which computer instructions are stored, and the instructions are executed by a processor to perform the steps of the above-mentioned calibration method.
- Memory 702 may include computer storage media in the form of volatile and/or non-volatile memory, such as read-only memory and/or random-access memory. Memory 702 may store operating systems, application programs, other program modules, executable code, program data, user data, and the like.
- the memory 702 stores computer-executed instructions for realizing the functions of the obtaining module 601 and the determining module 602 in FIG. 6 .
- the functions/implementation process of the obtaining module 601 and the determining module 602 in FIG. 6 can be implemented by calling the computer-executed instructions stored in the memory 702 by the processor 701 in FIG. 7 .
- specific implementation processes and functions refer to the above-mentioned related embodiments.
- the present application provides a laser radar, including: a memory storing computer-executable instructions; a processor connected to the memory for executing the computer-executable instructions and realizing the feedback as described in one or more of the above-mentioned embodiments. Wave signal processing method.
- the present application provides a non-transitory computer storage medium.
- the computer storage medium stores computer-executable instructions.
- the echo signal processing as described in one or more of the above-mentioned embodiments is realized. method.
- the present application provides a computer program product.
- instructions in the computer program product are executed by a processor, the echo signal processing method described in one or more embodiments above is realized.
- the present application provides a computer program.
- the computer program is executed by a processor, the echo signal processing method described in one or more embodiments above is implemented.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Optical Radar Systems And Details Thereof (AREA)
Abstract
本申请提供一种回波信号的处理方法、装置、设备及存储介质。其中,回波信号的处理方法包括:获得预设时间段内的最强回波信号、次强回波信号、首回波信号、末回波信号以及目标场景信息;其中,最强回波信号为预设时间段内幅值最大的回波信号,次强回波信号为预设时间段内幅值次大的回波信号,首回波信号为预设时间段内第一个回波信号,末回波信号为预设时间段内最后一个回波信号;在最强回波信号、次强回波信号、首回波信号以及末回波信号中,根据预设的场景信息与双回波组合的映射关系,确定目标场景信息对应的第一回波信号和第二回波信号。
Description
相关申请的交叉引用
本申请要求于2021年11月10日提交的名称为“一种回波信号的处理方法、装置、设备及存储介质”的中国专利申请第202111323253.9号的优先权,该申请的公开通过引用被全部结合于此。
本申请涉及但不限于激光雷达技术领域,尤其涉及一种回波信号的处理方法、装置、设备及存储介质。
激光雷达是一种目标探测技术。使用激光作为信号光源,通过向目标对象发射激光,从而采集目标对象的反射信号,以此获得目标对象的方位、速度等信息。激光雷达具有测量精度高、抗干扰能力强等优点,广泛应用于遥感、测量、智能驾驶、机器人等领域。
在激光雷达测距技术中,当激光束照射到激光雷达与被测物体之间其他的反射物体上时,也会产生回波信号。如此,不一定会得到真实的测距信息,影响激光雷达测距的准确性。
发明内容
本申请提供一种回波信号的处理方法、装置、设备及存储介质,以提高激光雷达测距的准确度。
根据本申请实施例的第一方面,提供一种回波信号的处理方法,包括:获得预设时间段内的最强回波信号、次强回波信号、首回波信号、末回波信号以及目标场景信息;其中,最强回波信号为预设时间段内幅值最大的回波信号,次强回波信号为预设时间段内幅值次大的回波信号,首回波信号为预设时间段内第一个回波信号,末回波信号为预设时间段内最后一个回波信号;在最强回波信号、次强回波信号、首回波信号以及末回波信号中,根据预设的场景信息与双回波组合的映射关系,确定目标场景信息对应的第一回波信号和第二回波信号。
在一种可能的实施方式中,第一回波信号和第二回波信号,包括:首回波信号和最 强回波信号;或,最强回波信号和末回波信号;或,首回波信号和末回波信号;或,首回波信号和次强回波信号。
在一种可能的实施方式中,在最强回波信号、次强回波信号、首回波信号以及末回波信号中,根据预设的场景信息与双回波组合的映射关系,确定目标场景信息对应的第一回波信号和第二回波信号,包括:在所述最强回波信号、所述次强回波信号、所述首回波信号以及所述末回波信号中,根据预设的场景信息与双回波组合的映射关系,获得目标场景信息对应的第三回波信号和第四回波信号;当第三回波信号与第四回波信号为不同回波信号时,将第三回波信号确定为第一回波信号,以及将第四回波信号确定为第二回波信号;当第三回波信号与第四回波信号为同一回波信号时,将第三回波信号确定为第一回波信号,以及将第五回波信号确定为第二回波信号;其中,第五回波信号为最强回波信号、次强回波信号、首回波信号以及末回波信号中,不同于第三回波信号和第四回波信号的一个回波信号。
在一种可能的实施方式中,第三回波信号为首回波信号,第四回波信号为最强回波信号,第五回波信号为次强回波信号;或,第三回波信号为最强回波信号,第四回波信号为末回波信号,第五回波信号为次强回波信号。
在一种可能的实施方式中,当目标场景信息表示激光雷达的扫描范围内包括积水路面或玻璃障碍物时,第三回波信号为首回波信号,以及第四回波信号为最强回波信号;或,当目标场景信息表示激光雷达的扫描范围内发生极端天气时,第三回波信号为最强回波信号,以及第四回波信号为末回波信号。
在一种可能的实施方式中,获得预设时间段内的最强回波信号、次强回波信号、首回波信号、末回波信号,包括:在预设时间段内接收多个回波信号;根据接收时间从多个回波信号中提取出首回波信号和末回波信号;比较多个回波信号的幅值,提取出最强回波信号和次强回波信号。
在一种可能的实施方式中,所述最强回波信号、所述次强回波信号、所述首回波信号以及所述末回波信号是由激光雷达接收的回波信号,并且,所述第一回波信号和所述第二回波信号被用于获得被测物体的测距信息。
根据本申请实施例的第二方面,提供一种回波信号的处理装置,该装置可以为激光雷达中的芯片或者片上系统,还可以为激光雷达中用于实现第一方面及其任一种可能的实施方式所述方法的功能模块。该回波信号的处理装置可以实现第一方面及其任一种可能的实施方式所述激光雷达所执行的功能,所述功能可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个上述功能相应的模块。该回波信号的处理装置包 括:获得模块,用于获得预设时间段内的最强回波信号、次强回波信号、首回波信号、末回波信号以及目标场景信息;其中,最强回波信号为预设时间段内幅值最大的回波信号,次强回波信号为预设时间段内幅值次大的回波信号,首回波信号为预设时间段内第一个回波信号,末回波信号为预设时间段内最后一个回波信号;确定模块,用于在最强回波信号、次强回波信号、首回波信号以及末回波信号中,根据预设的场景信息与双回波组合的映射关系,确定目标场景信息对应的第一回波信号和第二回波信号,第一回波信号和第二回波信号用于获得测距信息。
在一种可能的实施方式中,第一回波信号和第二回波信号,包括:首回波信号和最强回波信号;或,最强回波信号和末回波信号;或,首回波信号和末回波信号;或,首回波信号和次强回波信号。
在一种可能的实施方式中,确定模块,进一步用于:在最强回波信号、次强回波信号、首回波信号以及末回波信号中,根据预设的场景信息与双回波组合的映射关系,获得目标场景信息对应的第三回波信号和第四回波信号;当第三回波信号与第四回波信号为不同回波信号时,将第三回波信号确定为第一回波信号,以及将第四回波信号确定为第二回波信号;当第三回波信号与第四回波信号为同一回波信号时,将第三回波信号确定为第一回波信号,以及将第五回波信号确定为第二回波信号;其中,第五回波信号为最强回波信号、次强回波信号、首回波信号以及末回波信号中,不同于第三回波信号和第四回波信号的一个回波信号。
在一种可能的实施方式中,第三回波信号为首回波信号,第四回波信号为最强回波信号,第五回波信号为次强回波信号;或,第三回波信号为最强回波信号,第四回波信号为末回波信号,第五回波信号为次强回波信号。
在一种可能的实施方式中,当目标场景信息表示激光雷达的扫描范围内包括积水路面或玻璃障碍物时,第三回波信号为首回波信号,以及第四回波信号为最强回波信号;或,当目标场景信息表示激光雷达的扫描范围内发生极端天气时,第三回波信号为最强回波信号,以及第四回波信号为末回波信号。
在一种可能的实施方式中,获得模块,进一步用于:在预设时间段内接收多个回波信号;根据接收时间从多个回波信号中提取出首回波信号和末回波信号;比较多个回波信号的幅值,提取出最强回波信号和次强回波信号。
在一种可能的实施方式中,所述最强回波信号、所述次强回波信号、所述首回波信号以及所述末回波信号是由激光雷达接收的回波信号,并且,所述第一回波信号和所述第二回波信号被用于获得被测物体的测距信息。
根据本申请实施例的第三方面,提供一种激光雷达,包括:存储器,存储有计算机可执行指令;处理器,与存储器相连,用于通过执行计算机可执行指令,以实现如第一方面及其任一种可能的实施方式所述的方法。
根据本申请实施例的第四方面,提供一种非瞬态的计算机存储介质,计算机存储介质存储有计算机可执行指令,计算机可执行指令被处理器执行时实现如第一方面及其任一种可能的实施方式所述的方法。
根据本申请实施例的第五方面,提供一种计算机程序产品,当计算机程序产品中的指令被处理器执行时,实现如第一方面及其任一种可能的实施方式所述的方法。
根据本申请实施例的第六方面,提供一种计算机程序,计算机程序被处理器执行时实现如第一方面及其任一种可能的实施方式所述的方法。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本申请。
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本申请的实施例,并与说明书一起用于解释本申请的原理。
图1为相关技术中的一种激光雷达的结构示意图;
图2为本申请实施例中的回波信号的处理方法的第一种实施流程示意图;
图3为本申请实施例中的回波信号的示意图;
图4为本申请实施例中的回波信号的处理方法的另一种实施流程示意图;
图5为本申请实施例中的回波信号的示意图;
图6为本申请实施例中的回波信号的处理装置的结构示意图;
图7为本申请实施例中的一种激光雷达的结构示意图。
以下描述中,为了说明而不是为了限定,提出了诸如特定系统结构、技术之类的具体细节,以便透彻理解本公开实施例。然而,本领域的技术人员应当清楚,在没有这些具体细节的其它实施例中也可以实现本公开。在其它情况中省略对众所周知的系统、装置、电路以及方法的详细说明,以免不必要的细节妨碍本公开的描述。
为了说明本申请所述的技术方案,下面通过具体实施例来进行说明。
激光雷达(light detection and ranging,LiDAR)是一种目标探测技术。激光雷达通过 激光器发出激光光束,激光光束遇到目标物体后发生漫反射,通过探测器接收反射回的光束,并根据发射的光束和反射回的光束确定目标物体的距离、方位、高度、速度、姿态、形状等特征量。
激光雷达的应用领域非常广泛。除了运用在军事领域之外,目前还被广泛应用于生活领域,包括但不限于:智能驾驶车辆、智能驾驶飞机、三维(3D)打印、虚拟现实、增强现实、服务机器人等领域。以智能驾驶技术为例,在智能驾驶车辆中设置激光雷达,激光雷达可通过快速且重复地发射激光束来扫描周围环境,以获取反映周围环境中的一个或多个目标对象的形貌、位置、运动的点云数据等。
需要说明的是,上述智能驾驶技术可以指无人驾驶、自动驾驶、辅助驾驶等技术。
图1为相关技术中的一种激光雷达的结构示意图。如图1所示,激光雷达10可以包括:光发射装置101、光接收装置102和处理器103。其中,光发射装置101、光接收装置102均与处理器103连接。
其中,上述各器件之间的连接关系可以是电性连接,还可以是光纤连接。更具体的,在光发射装置101和光接收装置102中,还可能分别包括多个光学器件,这些光学器件之间的连接关系还可能是空间光传输连接。
处理器103用于实现对光发射装置101和光接收装置102的控制,以使光发射装置101和光接收装置102能够正常工作。示例性的,处理器103可以为光发射装置101和光接收装置102分别提供驱动电压,处理器103还可以为光发射装置101和光接收装置102提供控制信号。
示例性的,处理器103可以是通用处理器,如中央处理器(central processing unit,CPU)、网络处理器(network processor,NP)等;处理器103还可以是数字信号处理器(digital signal processing,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(field-programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。
光发射装置101中还包括光源(图1未示出)。可以理解的,上述光源可以指激光器,激光器的数量可以是一个或者多个。可选的,激光器可以具体包括脉冲激光二极管(pulsed laser diode,PLD)、半导体激光器、光纤激光器等。上述光源用于发射激光束。具体的,处理器103可以向光源发送发射控制信号,从而触发光源发射激光束。
可以理解的,上述激光束也可以称为激光脉冲、激光、发射光束等。
激光雷达10还可以包括:一个或多个束整形光学元件和束扫描装置(图1未示出)。在一方面,束整形光学元件和束扫描装置将激光束朝向周围环境中的特定位置(如 目标物体)聚焦和投射。在另一方面,束扫描装置和一个或更多束整形光学元件将返回波光束引导并聚焦到探测器上。在束整形光学元件与目标物体之间的光路中采用束扫描装置。束扫描装置实际上扩展视场并增大激光雷达的视场内的采样密度。
下面结合图1所示的激光雷达的结构,简单描述激光雷达对被测物体104的探测过程。
参见图1所示,激光束沿发射方向进行传播,当激光束遇到被测物体104后,在被测物体104的表面发生反射,反射回的光束被激光雷达的光接收装置102接收。这里,可以将激光束被被测物体104反射回的光束称为回波光束(图1中激光束和回波光束采用实线标识)。
光接收装置102接收到回波光束后,对回波光束进行光电转换,即将回波光束转换为电信号,光接收装置102将回波光束对应的电信号输出至处理器103,处理器103可以根据回波光束的电信号,获取被测物体104的形貌、位置、运动的点云数据等。
在激光雷达测距技术中,当激光雷达与被测物体之间不存在其他反射物体时,激光器发射一束激光束,光接收装置就只会接收到由被测物体反射的一个回波信号,从而通过这个回波信号可以得到被测物体的测距信息。但是,在实际应用中,激光雷达与被测物体之间往往会存在其他的反射物体,例如路面积水、玻璃障碍物、雨雪天的水珠和雪花等。那么,当激光束照射到这些物体上时,也会发生反射,并产生回波信号。如此,仅根据单回波模式下的最强回波信号不一定会得到真实的测距信息,影响激光雷达测距的准确性。
为了解决上述问题,本申请实施例提供一种回波信号的处理方法,该方法可以应用于上述激光雷达中,以对被测物体进行测距。
那么,图2为本申请实施例中的回波信号的处理方法的第一种实施流程示意图,参见图2所示,该回波信号的处理方法可以包括:
S201,获得预设时间段内的最强回波信号、次强回波信号、首回波信号、末回波信号以及目标场景信息;
其中,最强回波信号为预设时间段内幅值最大的回波信号,次强回波信号为预设时间段内幅值次大的回波信号,首回波信号为预设时间段内第一个回波信号,末回波信号为预设时间段内最后一个回波信号。
可以理解的,激光雷达可以在预设时间段内持续接收回波光束,进而得到多个回波信号,并从这些回波信号中提取最强回波信号、次强回波信号、首回波信号以及末回波信号。示例性的,图3为本申请实施例中的回波信号的示意图,参见图3所示,在预设 时间段内,激光雷达接收到了4个回波信号(即回波信号A、回波信号B、回波信号C以及回波信号D),其中,回波信号A为首回波信号、回波信号B为最强回波信号、回波信号C为次强回波信号以及回波信号D为末回波信号。当然,在一些情况下,回波信号A也可以既是首回波信号,又是最强回波信号或者次强回波信号;同理,回波信号D可以既是末回波信号,又是最强回波信号或者次强回波信号。
进一步地,激光雷达可以获得用于表示激光雷达与被测物体当前所处场景的目标场景信息。例如,激光雷达的扫描范围内存在反射率较高的反射物体(如地面积水的水面、结冰的路面、雪地、玻璃障碍物等)、激光雷达的扫描范围内发生极端天气(如下雨、下雪、有雾等)、激光雷达的扫描范围内存在逆反射物体(如交通指示牌)。当然,目标场景还可以存在其他情况,本申请实施例对此不作具体限定。
在本申请实施例中,预设时间段可以理解为激光雷达的采样周期、单点测量周期等,也可以理解为根据测距需求设置的时间段。示例性的,预设时间段可以为100ns、500ns、700ns等。当然,还可以存在其他情况,本申请实施例对此不做具体限定。
需要说明的是,激光雷达提取最强回波信号、次强回波信号、首回波信号以及末回波信号的步骤与获得目标场景信息的步骤可以顺序执行、也可以同时执行,还可以先执行获得目标场景信息的步骤再执行提取最强回波信号、次强回波信号、首回波信号以及末回波信号的步骤,本申请实施例对此不做具体限定。
可选的,在S201中,激光雷达可以通过以下方法获得预设时间段内的最强回波信号、次强回波信号、首回波信号、末回波信号,具体来说:在预设时间段内接收多个回波信号,并根据接收时间(也可以理解为接收时刻)从多个回波信号中提取出首回波信号和末回波信号;以及,激光雷达比较多个回波信号的幅值,从而提取出最强回波信号和次强回波信号。这里,首回波信号与最强回波信号或次强回波信号可以为同一回波信号,也可以为不同回波信号。同理,末回波信号与最强回波信号或次强回波信号可以为同一回波信号,也可以为不同回波信号。
在一些可能的实施方式中,激光雷达可以通过其他传感器获得目标场景信息,也可以通过自身接收的杂波(clutter)分析得到的目标场景信息。例如,激光雷达安装在智能驾驶车辆上,该车辆可以通过图像系统对当前场景进行图像采集,并对采集到的图像进行分析,以确定当前场景,并将当前场景作为目标场景,以场景标识(即目标场景信息)的方式通知激光雷达,使得激光雷达能够获得目标场景信息。
在一些可能的实施方式中,提取出的最强回波信号、次强回波信号、首回波信号以及末回波信号可以在存储器(如双口随机存取存储器(random access memory,RAM)) 中存储,以供后续测距计算使用。
S202,在最强回波信号、次强回波信号、首回波信号以及末回波信号中,根据预设的场景信息和双回波组合的映射关系,确定目标场景信息对应的第一回波信号和第二回波信号。
可以理解的,可以预先设置两个回波信号(可以称为双回波组合)与场景信息的映射关系。那么,激光雷达在通过S201获得多个回波信号(即图3中的回波信号A、回波信号B、回波信号C、回波信号D)以及目标场景信息后,可以根据该映射关系,确定出对应的双回波组合(即第一回波信号和第二回波信号)。进一步地,激光雷达可以采用第一回波信号和第二回波信号计算被测物体的测距信息。
示例性的,双回波组合可以包括以下任一回波组合:首回波信号和最强回波信号
(如图3所示的回波信号A和回波信号B)、最强回波信号和末回波信号(如图3所示的回波信号B和回波信号D)、首回波信号和末回波信号(如图3所示的回波信号A和回波信号D)。此时,在S202中,激光雷达在确定出上述任一回波组合后,可以基于该回波组合进行测距计算,也可以将该回波组合上报发给下一级处理器(如智能驾驶的中控处理器、应用处理器、传感器处理器等),以供下一级处理器进行测距计算。
在一些可能的实施方式中,上述映射关系可以采用映射表的形式实现,该映射表中包括场景信息以及双回波组合。示例性的,场景一:激光雷达的扫描范围内存在反射率较高的反射物体;场景二:激光雷达的扫描范围内发生极端天气;场景三:激光雷达的扫描范围内存在路牌等逆反射物体。对应的双回波组合可以为:首回波信号和最强回波信号、最强回波信号和末回波信号、首回波信号和末回波信号。那么,上述映射表可以参见表1所示。
进一步地,激光雷达还可以存在缺省设置,即存在默认场景。如果激光雷达通过S201未获得目标场景信息,则可以将目标场景信息设置为空信息、默认信息等。相应的,默认场景可以与场景一类似,与首回波信号和最强回波信号对应。那么,上述映射关系仍可以参见下表1所示。
表1
场景信息 | 双回波组合 |
默认场景或场景一 | 首回波信号和最强回波信号 |
场景二 | 最强回波信号和末回波信号 |
场景三 | 首回波信号和末回波信号 |
当然,上述映射关系可以采用如链表、位图(bitmap)等方式实现,本申请实施例对此不做具体限定。
在一些可能的实施方式中,可能会出现通过S201所获得的首回波信号与最强回波信号或次强回波信号为同一回波信号,和/或末回波信号与最强回波信号或次强回波信号为同一回波信号的情况,那么,若采用两个相同的回波信号进行测距信息的计算,仍然是无法获得准确的测距信息。所以,为了提高测距信息的准确度,上述S202可以包括S401至S403,以保证上报的第一回波信号和第二回波信号是不同的,进而保证得到的测距信息是准确的。具体来说,图4为本申请实施例中的回波信号的处理方法的另一种实施流程示意图,参见图4所示,在S201之后,执行S401至S403。
S401,在最强回波信号、次强回波信号、首回波信号以及末回波信号中,根据上述映射关系,获得目标场景信息对应的第三回波信号和第四回波信号。
可以理解的,激光雷达根据S201获得目标场景信息,能够确定该目标场景信息对应的回波信号,即第三回波信号和第四回波信号。
S402,确定第三回波信号与第四回波信号是否为同一回波信号。
其中,若第三回波信号与第四回波信号为同一回波信号,则执行S403;若第三回波信号与第四回波信号为不同回波信号,则执行S404。
S403,将第三回波信号确定为第一回波信号,以及将第四回波信号确定为第二回波信号。
S404,将第三回波信号或第四回波信号确定为第一回波信号,以及将第五回波信号确定为第二回波信号。
首先,需要说明的是,第三回波信号和第四回波信号为与目标场景信息对应的信号类型的回波信号。第五回波信号为最强回波信号、次强回波信号、首回波信号以及末回波信号中不同于第三回波信号和第四回波信号的一个回波信号,如次强回波信号。第五回波信号用于在第三回波信号与第四回波信号为同一回波信号时,与第三回波信号或第四回波信号一起,组成双回波组合(即将第三回波信号或第四回波信号确定为第一回波信号,将第五回波信号确定为第二回波信号)。
在S403至S404中,若第三回波信号与第四回波信号为不同回波信号,则可以直接将第三回波信号确认为第一回波信号,以及将第四回波信号确认为第二回波信号,进而组成双回波组合。反之,若第三回波信号与第四回波信号为同一回波信号,则可以先获取目标场景信息对应的第五回波信号,然后将第三回波信号确认为第一回波信号,以及将第五回波信号确认为第二回波信号,进而组成双回波组合。
需要说明的是,在S404中,由于第三回波信号与第四回波信号为同一回波信号,那么可以选择第三回波信号或第四回波信号与第五回波信号一起组成双回波组合。也就是 说,可以由第三回波信号和第五回波信号组成双回波组合(即将第三回波信号确认为第一回波信号,以及将第五回波信号确认为第二回波信号);或者,由第四回波信号和第五回波信号组成双回波组合(即将第四回波信号确认为第一回波信号,以及将第五回波信号确认为第二回波信号)。当然,激光雷达还可以采取其他策略确认双回波组合,本申请实施例对此不作具体限定。
示例性的,若第五回波信号为次强回波信号,则上述双回波组合可以包括:首回波信号和次强回波信号、最强回波信号和次强回波信号。
可选的,在S404中,若第三回波信号为首回波信号以及第四回波信号为最强回波信号,则第五回波信号为次强回波信号;或,若第三回波信号为最强回波信号以及第四回波信号为末回波信号,则第五回波信号为次强回波信号。
可以理解的,结合图3和表1,当目标场景信息为默认场景或场景一时,若首回波信号与最强回波信号为同一回波信号,则双回波组合可以包括回波信号A/回波信号B和回波信号C;在场景二下,若最强回波信号与末回波信号为同一回波信号,则双回波组合可以包括回波信号B/回波信号D和回波信号C。
下面以具体实例对上述回波信号的处理方法进行说明。
假设,图5为本申请实施例中的回波信号的示意图,参见图5中(a)所示,激光雷达在700ns内接收到5个回波信号:回波信号a、回波信号b、回波信号c、回波信号d以及回波信号e。
步骤一、激光雷达按照接收时间以及幅值,从回波信号a、回波信号b、回波信号c、回波信号d以及回波信号e中提取出最强回波信号、次强回波信号、首回波信号以及末回波信号(如回波信号c、回波信号d、回波信号a和回波信号e)。
步骤二、激光雷达接收图像系统发送的目标场景信息,如场景一。
这里,步骤一和步骤二可以顺序执行、也可以同时执行,还可以先执行步骤二再执行步骤一,本申请实施例对此不做具体限定。
步骤三、激光雷达参考表1所示,获得场景一对应的首回波信号和最强回波信号(即第三回波信号和第四回波信号),如回波信号a和回波信号c。
步骤四、激光雷达比较首回波信号(如回波信号a)和最强回波信号(如回波信号c)是否为同一回波信号。
步骤五、当确定回波信号a和回波信号c为不同的回波信号时,激光雷达将回波信号a确定为第一回波信号,以及将回波信号c确定为第二回波信号,以此组成双回波组合。
进一步地,激光雷达根据回波信号a和回波信号c进行测距计算,获得被测物体的测 距信息。
在另一实施例中,假设,参见图5中(b)所示,激光雷达在700ns内接收到5个回波信号:回波信号a'、回波信号b'、回波信号c'、回波信号d'以及回波信号e'。
步骤一、激光雷达按照接收时间以及幅值,从回波信号a'、回波信号b'、回波信号c'、回波信号d'以及回波信号e'中提取出最强回波信号、次强回波信号、首回波信号以及末回波信号(如回波信号a'、回波信号d'、回波信号a'和回波信号e')。
步骤二、激光雷达接收图像系统发送的目标场景信息,如场景一。
这里,步骤一和步骤二可以顺序执行、也可以同时执行,还可以先执行步骤二再执行步骤一,本申请实施例对此不做具体限定。
步骤三、激光雷达参考表1所示,获得场景一对应的首回波信号和最强回波信号(即第三回波信号和第四回波信号),如回波信号a'和回波信号a'。
步骤四、激光雷达比较首回波信号(如回波信号a')和最强回波信号(回波信号a')是否为同一回波信号。
步骤五、当确定首回波信号和最强回波信号均为回波信号a'时,激光雷达获得次强回波信号(如回波信号d'),并将回波信号a'确定为第一回波信号,以及将回波信号d'确定为第二回波信号,以此组成双回波组合。
进一步地,激光雷达根据回波信号a'和回波信号d'进行测距计算,获得被测物体的测距信息。
至此,便实现了对回波信号的处理过程。
由此可见,激光雷达在发射一束激光后,可以从接收到的回波信号中提取出两个回波信号,从而根据这两个回波信号进行测距,可以得到较为真实的测距信息,从而提高激光雷达的测距准确性,进而提升激光雷达的性能。
本申请实施例还提供一种回波信号的处理装置,该装置可以为激光雷达中的芯片或者片上系统,还可以为激光雷达中用于上述一个或者多个实施例所述方法的功能模块。该回波信号的处理装置可以实现上述一个或者多个实施例所述激光雷达所执行的功能,这些功能可以通过硬件执行相应的软件实现。这些硬件或软件包括一个或多个上述功能相应的模块。图6为本申请实施例中的回波信号的处理装置的结构示意图,参见图6所示,该回波信号的处理装置600可以包括:获得模块601,用于获得预设时间段内的最强回波信号、次强回波信号、首回波信号、末回波信号以及目标场景信息;其中,最强回波信号为预设时间段内幅值最大的回波信号,次强回波信号为预设时间段内幅值次大的回波信号,首回波信号为预设时间段内第一个回波信号,末回波信号为预设时间段内最 后一个回波信号;确定模块602,用于在最强回波信号、次强回波信号、首回波信号以及末回波信号中,根据预设的场景信息与双回波组合的映射关系,确定目标场景信息对应的第一回波信号和第二回波信号。
在一种可能的实施方式中,第一回波信号和第二回波信号,可以包括:首回波信号和最强回波信号;或,最强回波信号和末回波信号;或,首回波信号和末回波信号;或,首回波信号和次强回波信号;或,最强回波信号和次强回波信号。
在一种可能的实施方式中,确定模块602,具体用于:在最强回波信号、次强回波信号、首回波信号以及末回波信号中,根据预设的场景信息与双回波组合的映射关系,获得目标场景信息对应的第三回波信号和第四回波信号;若第三回波信号与第四回波信号为不同的回波信号,则将第三回波信号确定为第一回波信号,以及将第四回波信号确定为第二回波信号;若第三回波信号与第四回波信号为同一回波信号,则将第三回波信号确定为第一回波信号,以及将第五回波信号确定为第二回波信号;其中,第五回波信号为最强回波信号、次强回波信号、首回波信号以及末回波信号中,不同于第三回波信号和第四回波信号的一个回波信号。
在一种可能的实施方式中,第三回波信号为首回波信号,第四回波信号为最强回波信号,第五回波信号为次强回波信号;或,第三回波信号为最强回波信号,第四回波信号为末回波信号,第五回波信号为次强回波信号。
在一种可能的实施方式中,当目标场景信息表示激光雷达的扫描范围内包括积水路面或玻璃障碍物时,第三回波信号为首回波信号,以及第四回波信号为最强回波信号;或,当目标场景信息表示激光雷达的扫描范围内发生极端天气时,第三回波信号为最强回波信号,以及第四回波信号为末回波信号。
在一种可能的实施方式中,获得模块601,具体用于:在预设时间段内接收多个回波信号;根据接收时间从多个回波信号中提取出首回波信号和末回波信号;比较多个回波信号的幅值,提取出最强回波信号和次强回波信号。
需要说明的是,上述获得模块601和确定模块602的具体实现过程可参考图2至图5实施例的详细描述,为了说明书的简洁,这里不再赘述。
本申请实施例中提到的获得模块601和确定模块602可以为一个或者多个处理器。
本申请实施例提供一种激光雷达,该激光雷达可以为上述一个或者多个实施例中所述的激光雷达。图7为本申请实施例中的一种激光雷达的结构示意图,参见图7所示,激光雷达700,可以采用通用的计算机硬件,包括处理器701和存储器702。
可选的,处理器701和存储器702可以通过总线703通信。
在一些可能的实施方式中,至少一个处理器701可以构成具有对一个或多个输入执行逻辑运算的电路的任何物理设备。例如,至少一个处理器可以包括一个或多个集成电路(integrated circuit,IC),包括专用集成电路(application specific integrated circuit,ASIC)、微芯片、微控制器、微处理器、中央处理单元(central processing unit,CPU)的全部或部分、图形处理单元(graphics processing unit,GPU)、数字信号处理器(digital signal process,DSP)、现场可编程门阵列(field programmable gate array,FPGA)或者适于执行指令或执行逻辑运算的其它电路。由至少一个处理器执行的指令可以例如被预加载到与控制器集成的或嵌入在控制器中的存储器中,或者可以存储在分离的存储器中。存储器可以包括随机存取存储器(random access memory,RAM)、只读存储器(read-only memory,ROM)、硬盘、光盘、磁介质、闪存,其它永久、固定或易失性存储器,或者能够存储指令的任何其它机制。在一些实施例中,至少一个处理器可以包括多于一个处理器。每个处理器可以具有相似的结构,或者处理器可以具有彼此电连接或断开的不同构造。例如,处理器可以是分离的电路或集成在单个电路中。当使用多于一个处理器时,处理器可以被配置为独立地或协作地操作。处理器可以以电、磁、光学、声学、机械或通过允许它们交互的其它手段来耦合。根据本申请的一个实施例,本申请还提供了一种计算机可读存储介质,其上存储有计算机指令,该指令被处理器执行上述标定方法的步骤。存储器702可以包括以易失性和/或非易失性存储器形式的计算机存储媒体,如只读存储器和/或随机存取存储器。存储器702可以存储操作系统、应用程序、其他程序模块、可执行代码、程序数据、用户数据等。
此外,上述存储器702中存储有用于实现图6中的获得模块601和确定模块602的功能的计算机执行指令。图6中的获得模块601和确定模块602的功能/实现过程均可以通过图7中的处理器701调用存储器702中存储的计算机执行指令来实现,具体实现过程和功能参考上述相关实施例。
本申请提供一种激光雷达,包括:存储器,存储有计算机可执行指令;处理器,与存储器相连,用于通过执行计算机可执行指令,并能够实现如上述一个或者多个实施例所述的回波信号的处理方法。
本申请提供一种非瞬态的计算机存储介质,计算机存储介质存储有计算机可执行指令,计算机可执行指令被处理器执行时,实现如上述一个或者多个实施例所述的回波信号的处理方法。
本申请提供一种计算机程序产品,当计算机程序产品中的指令被处理器执行时,实现如上述一个或者多个实施例所述的回波信号的处理方法。
本申请提供一种计算机程序,计算机程序被处理器执行时实现如上述一个或者多个实施例所述的回波信号的处理方法。
本领域技术人员可以理解,上述实施例中各步骤的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
以上所述实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围,均应包含在本申请的保护范围之内。
Claims (18)
- 一种回波信号的处理方法,包括:获得预设时间段内的最强回波信号、次强回波信号、首回波信号、末回波信号以及目标场景信息;其中,所述最强回波信号为所述预设时间段内幅值最大的回波信号,所述次强回波信号为所述预设时间段内幅值次大的回波信号,所述首回波信号为所述预设时间段内第一个回波信号,所述末回波信号为所述预设时间段内最后一个回波信号;在所述最强回波信号、所述次强回波信号、所述首回波信号以及所述末回波信号中,根据预设的场景信息与双回波组合的映射关系,确定所述目标场景信息对应的第一回波信号和第二回波信号。
- 根据权利要求1所述的方法,其中,所述第一回波信号和所述第二回波信号,包括:所述首回波信号和所述最强回波信号;或,所述最强回波信号和所述末回波信号;或,所述首回波信号和所述末回波信号;或,所述首回波信号和所述次强回波信号;或,所述最强回波信号和所述次强回波信号。
- 根据权利要求1所述的方法,其中,所述在所述最强回波信号、所述次强回波信号、所述首回波信号以及所述末回波信号中,根据预设的场景信息与双回波组合的映射关系,确定所述目标场景信息对应的第一回波信号和第二回波信号,包括:在所述最强回波信号、所述次强回波信号、所述首回波信号以及所述末回波信号中,根据预设的场景信息与双回波组合的映射关系,获得所述目标场景信息对应的第三回波信号和第四回波信号;当所述第三回波信号与所述第四回波信号为不同回波信号时,将所述第三回波信号确定为所述第一回波信号,以及将所述第四回波信号确定为所述第二回波信号;当所述第三回波信号与所述第四回波信号为同一回波信号时,将所述第三回波信号确定为所述第一回波信号,以及将第五回波信号确定为所述第二回波信号;其中,所述第五回波信号为所述最强回波信号、所述次强回波信号、所述首回波信号以及所述末回波信号中,不同于所述第三回波信号和所述第四回波信号的一个回波信号。
- 根据权利要求3所述的方法,其中,所述第三回波信号为所述首回波信号,所述第四回波信号为所述最强回波信号,所述第五回波信号为所述次强回波信号;或,所述第三回波信号为所述最强回波信号,所述第四回波信号为所述末回波信号,所述第五回波信号为所述次强回波信号。
- 根据权利要求3所述的方法,其中,当所述目标场景信息表示激光雷达的扫描范围内包括积水路面或玻璃障碍物时,所述第三回波信号为所述首回波信号,以及所述第四回波信号为所述最强回波信号;或,当所述目标场景信息表示所述激光雷达的扫描范围内发生极端天气时,所述第三回波信号为所述最强回波信号,以及所述第四回波信号为所述末回波信号。
- 根据权利要求1所述的方法,其中,所述获得预设时间段内的最强回波信号、次强回波信号、首回波信号、末回波信号,包括:在所述预设时间段内接收多个回波信号;根据接收时间从所述多个回波信号中提取出所述首回波信号和所述末回波信号;比较所述多个回波信号的幅值,提取出所述最强回波信号和所述次强回波信号。
- 根据权利要求1所述的方法,其中,所述最强回波信号、所述次强回波信号、所述首回波信号以及所述末回波信号是由激光雷达接收的回波信号,并且其中,所述第一回波信号和所述第二回波信号被用于获得被测物体的测距信息。
- 一种回波信号的处理装置,包括:获得模块,用于获得预设时间段内的最强回波信号、次强回波信号、首回波信号、末回波信号以及目标场景信息;其中,所述最强回波信号为所述预设时间段内幅值最大的回波信号,所述次强回波信号为所述预设时间段内幅值次大的回波信号,所述首回波信号为所述预设时间段内第一个回波信号,所述末回波信号为所述预设时间段内最后一个回波信号;确定模块,用于在所述最强回波信号、所述次强回波信号、所述首回波信号以及所述末回波信号中,根据预设的场景信息与双回波组合的映射关系,确定所述目标场景信息对应的第一回波信号和第二回波信号。
- 根据权利要求8所述的装置,其中,所述第一回波信号和所述第二回波信号,包括:所述首回波信号和所述最强回波信号;或,所述最强回波信号和所述末回波信号;或,所述首回波信号和所述末回波信号;或,所述首回波信号和所述次强回波信号。
- 根据权利要求8所述的装置,其中,所述确定模块,进一步用于:在所述最强回波信号、所述次强回波信号、所述首回波信号以及所述末回波信号中,根据预设的场景信息与双回波组合的映射关系,获得所述目标场景信息对应的第三回波信号和第四回波信号;当所述第三回波信号与所述第四回波信号为不同回波信号时,将所述第三回波信号确定为所述第一回波信号,以及将所述第四回波信号确定为所述第二回波信号;当所述第三回波信号与所述第四回波信号为同一回波信号时,将所述第三回波信号确定为 所述第一回波信号,以及将第五回波信号确定为所述第二回波信号;其中,所述第五回波信号为所述最强回波信号、所述次强回波信号、所述首回波信号以及所述末回波信号中,不同于所述第三回波信号和所述第四回波信号的一个回波信号。
- 根据权利要求10所述的装置,其中,所述第三回波信号为所述首回波信号,所述第四回波信号为所述最强回波信号,所述第五回波信号为所述次强回波信号;或,所述第三回波信号为所述最强回波信号,所述第四回波信号为所述末回波信号,所述第五回波信号为所述次强回波信号。
- 根据权利要求10所述的装置,其中,当所述目标场景信息表示激光雷达的扫描范围内包括积水路面或玻璃障碍物时,所述第三回波信号为所述首回波信号,以及所述第四回波信号为所述最强回波信号;或,当所述目标场景信息表示所述激光雷达的扫描范围内发生极端天气时,所述第三回波信号为所述最强回波信号,以及所述第四回波信号为所述末回波信号。
- 根据权利要求8所述的装置,其中,所述获得模块,进一步用于:在所述预设时间段内接收多个回波信号;根据接收时间从所述多个回波信号中提取出所述首回波信号和所述末回波信号;比较所述多个回波信号的幅值,提取出所述最强回波信号和所述次强回波信号。
- 根据权利要求8所述的装置,其中,所述最强回波信号、所述次强回波信号、所述首回波信号以及所述末回波信号是由激光雷达接收的回波信号,并且其中,所述第一回波信号和所述第二回波信号被用于获得被测物体的测距信息。
- 一种激光雷达,包括:存储器,存储有计算机可执行指令;处理器,与所述存储器相连,用于通过执行所述计算机可执行指令,以实现如权利要求1至7中任一项所述的方法。
- 一种非瞬态的计算机存储介质,所述计算机存储介质存储有计算机可执行指令,所述计算机可执行指令被处理器执行时实现如权利要求1至7中任一项所述的方法。
- 一种计算机程序产品,当所述计算机程序产品中的指令被处理器执行时,实现如权利要求1-7中任一所述的方法。
- 一种计算机程序,所述计算机程序被处理器执行时实现如权利要求1-7中任一所述的方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111323253.9A CN113759339B (zh) | 2021-11-10 | 2021-11-10 | 一种回波信号的处理方法、装置、设备及存储介质 |
CN202111323253.9 | 2021-11-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023083198A1 true WO2023083198A1 (zh) | 2023-05-19 |
Family
ID=78784844
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/130753 WO2023083198A1 (zh) | 2021-11-10 | 2022-11-09 | 一种回波信号的处理方法、装置、设备及存储介质 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN113759339B (zh) |
WO (1) | WO2023083198A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113759339B (zh) * | 2021-11-10 | 2022-02-25 | 北京一径科技有限公司 | 一种回波信号的处理方法、装置、设备及存储介质 |
CN114814863B (zh) * | 2022-04-22 | 2024-08-06 | 北京一径科技有限公司 | 一种基于sipm的回波检测方法、装置、设备及存储介质 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015194356A (ja) * | 2014-03-31 | 2015-11-05 | パナソニックIpマネジメント株式会社 | 距離測定装置 |
CN109917408A (zh) * | 2019-03-28 | 2019-06-21 | 上海禾赛光电科技有限公司 | 激光雷达的回波处理方法、测距方法及激光雷达 |
CN111308476A (zh) * | 2019-11-27 | 2020-06-19 | 深圳市镭神智能系统有限公司 | 激光雷达回波处理方法、装置、激光雷达系统及存储介质 |
CN113759339A (zh) * | 2021-11-10 | 2021-12-07 | 北京一径科技有限公司 | 一种回波信号的处理方法、装置、设备及存储介质 |
Family Cites Families (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4830061B2 (ja) * | 2005-06-07 | 2011-12-07 | コニカミノルタセンシング株式会社 | 3次元位置計測方法および3次元位置計測に用いる装置 |
TWI333541B (en) * | 2007-06-25 | 2010-11-21 | Asia Optical Co Inc | Laser range finder and related range measurement method |
CN101349756B (zh) * | 2007-07-19 | 2012-01-18 | 亚洲光学股份有限公司 | 激光测距仪及其信号处理方法 |
JP5325361B2 (ja) * | 2009-02-06 | 2013-10-23 | 古野電気株式会社 | レーダ装置 |
DE102011082479A1 (de) * | 2011-09-12 | 2013-03-14 | Robert Bosch Gmbh | Verfahren zum Verstärken eines zur Fahrzeugumfelddetektion geeigneten Echosignals und Vorrichtung zum Durchführen des Verfahrens |
CN102866398B (zh) * | 2012-09-21 | 2014-03-19 | 中国航天空气动力技术研究院 | 一种利用调频连续波雷达进行动目标识别的方法及系统 |
DE102016120969B4 (de) * | 2016-11-03 | 2021-08-19 | Preh Gmbh | Nebelsensor mit Reflexionsanalyse |
CN106918820B (zh) * | 2017-04-14 | 2019-10-29 | 北京佳讯飞鸿电气股份有限公司 | 一种多次反射回波的处理方法及装置 |
CN106990403B (zh) * | 2017-04-28 | 2019-08-02 | 西安电子科技大学 | 基于多波段两级信息融合的低空目标跟踪方法 |
US10921420B2 (en) * | 2017-10-04 | 2021-02-16 | Infineon Technologies Ag | Dual-sided radar systems and methods of formation thereof |
CN108072878B (zh) * | 2017-11-22 | 2021-10-19 | 北京理工大学 | 一种时域超分辨压缩感知全波形激光雷达测距方法及装置 |
US11506764B2 (en) * | 2018-12-26 | 2022-11-22 | Beijing Voyager Technology Co., Ltd. | System and methods for ranging operations using multiple signals |
CN111366947B (zh) * | 2018-12-26 | 2022-04-22 | 武汉万集信息技术有限公司 | 导航激光雷达对场景的识别方法、装置及系统 |
EP3936893B1 (en) * | 2019-04-04 | 2024-03-13 | Huawei Technologies Co., Ltd. | Method and apparatus for processing echo signals |
CN110531348B (zh) * | 2019-08-02 | 2021-09-10 | 陈小年 | 雷达测距方法、装置、计算机设备和存储介质 |
CN112346069B (zh) * | 2019-08-08 | 2022-05-06 | 北京一径科技有限公司 | 激光雷达的回波处理方法及装置、测距方法及装置和激光雷达系统 |
CN112805595B (zh) * | 2019-08-12 | 2024-02-27 | 深圳市速腾聚创科技有限公司 | 一种激光雷达系统 |
WO2021042382A1 (zh) * | 2019-09-06 | 2021-03-11 | 深圳市速腾聚创科技有限公司 | 激光雷达测距方法、装置、计算机设备和存储介质 |
CN112789522B (zh) * | 2019-09-11 | 2022-03-25 | 华为技术有限公司 | 一种目标物的反射率计算方法、装置及相关设备 |
CN112585489B (zh) * | 2019-09-25 | 2023-07-14 | 深圳市速腾聚创科技有限公司 | 激光雷达回波信号处理方法、装置、计算机设备和存储介质 |
CN112585494B (zh) * | 2019-09-26 | 2024-02-27 | 深圳市速腾聚创科技有限公司 | 激光雷达信号处理方法、装置、计算机设备和存储介质 |
WO2021077287A1 (zh) * | 2019-10-22 | 2021-04-29 | 华为技术有限公司 | 一种检测方法、检测装置以及存储介质 |
EP3822658A1 (en) * | 2019-11-15 | 2021-05-19 | Aptiv Technologies Limited | Method and system for processing laser signal taken by laser device |
CN113050071B (zh) * | 2019-12-27 | 2023-05-30 | 北京万集科技股份有限公司 | 激光雷达数据处理方法、装置、设备及存储介质 |
CN111158005B (zh) * | 2019-12-30 | 2023-04-07 | 福瑞泰克智能系统有限公司 | 一种测距方法、装置及设备 |
US20220099812A1 (en) * | 2020-01-24 | 2022-03-31 | Argo Al, LLC | Systems and methods for light detection in lidar systems |
CN113296101A (zh) * | 2020-02-22 | 2021-08-24 | 坎德拉(深圳)科技创新有限公司 | 超声波测距方法、装置、系统及计算机可读存储介质 |
CN113384296B (zh) * | 2020-03-11 | 2023-05-23 | 深圳绿米联创科技有限公司 | 预测行为发生时间的方法、电子设备以及存储介质 |
CN111650585B (zh) * | 2020-08-04 | 2020-11-03 | 中国人民解放军国防科技大学 | 近场毫米波稀疏mimo扫描阵列全聚焦成像方法和装置 |
CN112129379A (zh) * | 2020-08-07 | 2020-12-25 | 厦门万宾科技有限公司 | 抗干扰的动态测距方法及积水动态监测方法 |
CN112255619B (zh) * | 2020-11-11 | 2022-03-29 | 北京一径科技有限公司 | 回波信号干扰确定方法及装置、电子设备及存储介质 |
CN112596062B (zh) * | 2021-01-28 | 2021-07-13 | 锐驰智光(北京)科技有限公司 | 激光雷达的回波信号检测方法、装置及存储介质 |
CN112799047A (zh) * | 2021-03-25 | 2021-05-14 | 中国人民解放军国防科技大学 | 一种基于原子接收机的距离测量雷达系统和方法 |
CN113093145B (zh) * | 2021-06-09 | 2021-10-01 | 深圳市万集科技有限公司 | 目标检测方法及目标检测装置 |
CN113376644B (zh) * | 2021-08-16 | 2021-11-30 | 深圳煜炜光学科技有限公司 | 一种提高激光测距精度的方法与装置 |
-
2021
- 2021-11-10 CN CN202111323253.9A patent/CN113759339B/zh active Active
-
2022
- 2022-11-09 WO PCT/CN2022/130753 patent/WO2023083198A1/zh unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015194356A (ja) * | 2014-03-31 | 2015-11-05 | パナソニックIpマネジメント株式会社 | 距離測定装置 |
CN109917408A (zh) * | 2019-03-28 | 2019-06-21 | 上海禾赛光电科技有限公司 | 激光雷达的回波处理方法、测距方法及激光雷达 |
CN111308476A (zh) * | 2019-11-27 | 2020-06-19 | 深圳市镭神智能系统有限公司 | 激光雷达回波处理方法、装置、激光雷达系统及存储介质 |
CN113759339A (zh) * | 2021-11-10 | 2021-12-07 | 北京一径科技有限公司 | 一种回波信号的处理方法、装置、设备及存储介质 |
Also Published As
Publication number | Publication date |
---|---|
CN113759339A (zh) | 2021-12-07 |
CN113759339B (zh) | 2022-02-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2023083198A1 (zh) | 一种回波信号的处理方法、装置、设备及存储介质 | |
US11821988B2 (en) | Ladar system with intelligent selection of shot patterns based on field of view data | |
US20210278540A1 (en) | Noise Filtering System and Method for Solid-State LiDAR | |
US20200018854A1 (en) | Camera-Gated Lidar System | |
JP2023112133A (ja) | 探測設備及びそのパラメータ調整方法 | |
Reina et al. | Radar‐based perception for autonomous outdoor vehicles | |
WO2018218629A1 (zh) | 一种基于激光雷达的检测方法、装置及探测设备 | |
KR20200098480A (ko) | 3-d lidar 측정들에 기반한 다중 해상도, 동시 위치 측정 및 매핑 | |
CN109387857B (zh) | 激光雷达系统中的跨网段检测方法和设备 | |
WO2021207954A1 (zh) | 一种目标识别的方法和装置 | |
US20160299229A1 (en) | Method and system for detecting objects | |
CN114152935B (zh) | 一种雷达外参标定精度的评估方法、装置及设备 | |
WO2022198637A1 (zh) | 点云滤噪方法、系统和可移动平台 | |
CN114755666B (zh) | 点云膨胀的评估方法、装置及设备 | |
CN114612598A (zh) | 一种点云的处理方法、装置及激光雷达 | |
US20210255289A1 (en) | Light detection method, light detection device, and mobile platform | |
US20230341558A1 (en) | Distance measurement system | |
CN115485582A (zh) | 用于识别激光雷达测量中的光晕的方法和装置 | |
CN110554398B (zh) | 一种激光雷达及探测方法 | |
Zheng et al. | Time-sensitive and distance-tolerant deep learning-based vehicle detection using high-resolution radar bird's-eye-view images | |
US20230090576A1 (en) | Dynamic control and configuration of autonomous navigation systems | |
GB2603476A (en) | Object detection with multiple ranges and resolutions | |
CN114859328B (zh) | 一种mems扫描镜的停摆检测方法、装置及激光雷达 | |
WO2023044688A1 (zh) | 信号处理方法、信号传输方法及装置 | |
US20230184890A1 (en) | Intensity-based lidar-radar target |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22891992 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |