JP7014362B2 - スマートグリッドシステム及びその電力管理方法 - Google Patents

スマートグリッドシステム及びその電力管理方法 Download PDF

Info

Publication number
JP7014362B2
JP7014362B2 JP2020196269A JP2020196269A JP7014362B2 JP 7014362 B2 JP7014362 B2 JP 7014362B2 JP 2020196269 A JP2020196269 A JP 2020196269A JP 2020196269 A JP2020196269 A JP 2020196269A JP 7014362 B2 JP7014362 B2 JP 7014362B2
Authority
JP
Japan
Prior art keywords
slave
power
master
duty signal
conversion device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020196269A
Other languages
English (en)
Other versions
JP2021141794A (ja
Inventor
陳信宏
蔡宗翰
林信晃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Delta Electronics Inc
Original Assignee
Delta Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Delta Electronics Inc filed Critical Delta Electronics Inc
Publication of JP2021141794A publication Critical patent/JP2021141794A/ja
Application granted granted Critical
Publication of JP7014362B2 publication Critical patent/JP7014362B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/40Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation wherein a plurality of decentralised, dispersed or local energy generation technologies are operated simultaneously
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Health & Medical Sciences (AREA)
  • Economics (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • General Health & Medical Sciences (AREA)
  • Human Resources & Organizations (AREA)
  • Marketing (AREA)
  • Primary Health Care (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Inverter Devices (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Description

本開示の実施例は、スマートグリッドシステムに関し、且つ特にスマートグリッドシステム及びその電力管理方法に関する。
従来のスマートグリッドでは、ユーザー側と電力グリッドの電源側との間の電力の売買には、監視システム(例えばリモートコントロールシステム(Remote Control System、RCS))が必要であり、これにより、ユーザー側の電力変換装置が電力会社の電力規制を受け入れることができる。上記の監視システムは、まず電力計(power meter)で測定されたメインラインの電力情報を受信する必要があり、分析が完了した後、さらに対応的に、通信の方法(例えばRS-485通信又はワイヤレスフィデリティ(WiFi)など)を通じてコマンドをユーザー側の各電力変換装置の各々に送信することによって、ユーザー側の電力変換装置は要求を満たすエネルギーを放出することができる。しかしながら、一部のユーザーは、売電せずに電力を自家消費したいが、変換装置は電力会社の管理下にないので、誤って電力網に電力を供給する場合がある。このような場合を避けるためにも、監視システムが必要であり、だたし、上記の各電力変換装置の各々の通信プロセス中に伝送、待機、受信、ポーリング(Polling)などの時間遅延が避けられないため、リアルタイムで対応できず、所定の時間内にエネルギーを調整できなく、それにより現在の規制要件に違反する可能性がある。
本開示は、負荷と交流グリッドに適用されるスマートグリッドシステムを提出することを目的とする。前記スマートグリッドシステムは、電流測定値を提供するように、前記交流グリッドを流れる全電流を測定するための電流測定ユニットと、前記交流グリッドにカップリングされ、且つ前記負荷に給電するための複数の変換装置と、を備える。前記複数の変換装置は、マスター変換装置と、複数のスレーブ変換装置と、を含み、前記マスター変換装置が、前記電流測定値を受信し、前記電流測定値に従って前記マスター変換装置の出力電力を制御し第1のデューティ信号を提供するために使用される。前記マスター変換装置にカップリングされる前記複数のスレーブ変換装置の1番目のものは、前記第1のデューティ信号を受信し、前記第1のデューティ信号に従って前記複数のスレーブ変換装置の1番目のものの出力電力を制御するために使用される。前記マスター変換装置と前記複数のスレーブ変換装置との間はデイジーチェーンで通信する。
いくつかの実施例において、上記の複数のスレーブ変換装置の1番目のものは、さらに前記第1のデューティ信号に従って第2のデューティ信号を提供するために使用される。
いくつかの実施例において、上記の複数のスレーブ変換装置の2番目のものは、前記第2のデューティ信号を受信し、前記第2のデューティ信号に従って前記複数のスレーブ変換装置の2番目のものの出力電力を制御するために使用される。
いくつかの実施例において、上記の複数の変換装置の各々は、直流電力を受信するための直流入力ポートと、交流電力を出力するための交流出力ポートと、少なくとも前記直流電力に従って前記交流電力を制御するためのマイクロコントローラーユニットと、を含む。
いくつかの実施例において、上記の複数の変換装置の各々は、前記電流測定値を受信するための電流測定ポートをさらに含む。前記マスター変換装置の前記電流測定ポートは前記電流測定値を受信するために使用される。
いくつかの実施例において、上記のマスター変換装置の前記マイクロコントローラーユニットは、前記直流電力と前記電流測定値に従って、前記マスター変換装置の前記交流出力ポートから出力された前記交流電力を制御するために使用される。
いくつかの実施例において、上記の複数の変換装置の各々は、入力/出力ポートをさらに含む。前記複数のマスター変換装置の前記入力/出力ポートは、前記第1のデューティ信号を提供するために使用される。前記複数のスレーブ変換装置の1番目のものの前記入力/出力ポートは、前記第1のデューティ信号を受信し且つ前記第2のデューティ信号を提供するために使用される。
いくつかの実施例において、上記の複数のスレーブ変換装置の1番目のものの前記マイクロコントローラーユニットは、前記直流電力と前記第1のデューティ信号に従って、前記複数のスレーブ変換装置の1番目のものの前記交流出力ポートから出力された前記交流電力を制御するために使用される。
いくつかの実施例において、上記のマスター変換装置は、前記電流測定値に従って前記全電流の流れ方向を判断し、且つ前記全電流の流れ方向に従って前記マスター変換装置の出力電力を制御し前記第1のデューティ信号を提供する。
いくつかの実施例において、上記のマスター変換装置は、前記電流測定値が電流設定値より小さいか否かを判断することによって、前記マスター変換装置の出力電力を制御し前記第1のデューティ信号を提供する。
本開示は、電流測定値を提供するように、交流グリッドを流れる全電流を測定することと、前記交流グリッドにカップリングされる複数の変換装置のマスター変換装置によって前記電流測定値を受信し、前記マスター変換装置は前記電流測定値に従って前記マスター変換装置の出力電力を制御し第1のデューティ信号を提供することと、前記マスター変換装置にカップリングされる前記複数の変換装置の複数のスレーブ変換装置の1番目のものによって前記第1のデューティ信号を受信し、前記複数のスレーブ変換装置の1番目のものは前記第1のデューティ信号に従って前記複数のスレーブ変換装置の1番目のものの出力電力を制御することと、を含むスマートグリッドシステムの電力管理方法を提供することを目的とする。前記複数の変換装置は負荷に給電するために使用される。前記マスター変換装置と前記複数のスレーブ変換装置との間はデイジーチェーンで通信する。
いくつかの実施例において、上記の複数のスレーブ変換装置の1番目のものは前記第1のデューティ信号に従って第2のデューティ信号を提供する。
いくつかの実施例において、上記のスマートグリッドシステムの電力管理方法は、前記複数のスレーブ変換装置の2番目のものによって前記第2のデューティ信号を受信し、前記複数のスレーブ変換装置の2番目のものは前記第2のデューティ信号に従って前記複数のスレーブ変換装置の2番目のものの出力電力を制御することをさらに含む。
いくつかの実施例において、上記のマスター変換装置は、前記電流測定値に従って前記全電流の流れ方向を判断し、且つ前記全電流の流れ方向に応じて前記マスター変換装置の出力電力を制御し前記第1のデューティ信号を提供する。
いくつかの実施例において、前記全電流の流れ方向が前記負荷に流れると、前記マスター変換装置は前記第1のデューティ信号のデューティ比を増加し、前記全電流の流れ方向が前記負荷に流れないと、前記マスター変換装置は前記第1のデューティ信号のデューティ比を減少する。
いくつかの実施例において、前記第1のデューティ信号のデューティ比を増加又は減少した後に、前記マスター変換装置は再び前記全電流の流れ方向を判断し、前記全電流の流れ方向が前記負荷に流れると、前記マスター変換装置は前記第1のデューティ信号のデューティ比を調整しなく、前記全電流の流れ方向は前記負荷に流れないと、前記マスター変換装置は第1のデューティ信号のデューティ比を減少する。
いくつかの実施例において、上記のマスター変換装置は、前記電流測定値が電流設定値より小さいか否かを判断することによって、前記マスター変換装置の出力電力を制御し前記第1のデューティ信号を提供する。
いくつかの実施例において、前記電流測定値が前記電流設定値より小さいと、前記マスター変換装置は前記第1のデューティ信号のデューティ比を増加し、前記電流測定値が前記電流設定値以上であると、前記マスター変換装置は前記第1のデューティ信号のデューティ比を減少する。
いくつかの実施例において、上記の前記第1のデューティ信号のデューティ比を増加又は減少した後に、前記マスター変換装置は再び前記電流測定値が前記電流設定値より小さいか否かを判断し、前記電流測定値が前記電流設定値より小さいと、前記マスター変換装置は前記第1のデューティ信号のデューティ比を調整しなく、前記電流測定値が前記電流設定値以上であると、前記マスター変換装置は前記第1のデューティ信号のデューティ比を減少する。
いくつかの実施例において、上記の複数のスレーブ変換装置の1番目のものは前記第1のデューティ信号のデューティ比が減少するか否かを判断し、前記第1のデューティ信号のデューティ比が減少すると、前記複数のスレーブ変換装置の1番目のものは前記複数のスレーブ変換装置の1番目のものの出力電力を減少し、前記第1のデューティ信号のデューティ比が減少しないと、前記複数のスレーブ変換装置の1番目のものは前記複数のスレーブ変換装置の1番目のものの出力電力が前記複数のスレーブ変換装置の1番目のものの自体の最大電力に達するか否かを判断し、前記複数のスレーブ変換装置の1番目のものの出力電力が前記自体の最大電力に達すると、前記複数のスレーブ変換装置の1番目のものは前記複数のスレーブ変換装置の1番目のものの出力電力を調整しなく、前記複数のスレーブ変換装置の1番目のものの出力電力が前記自体の最大電力に達していないと、前記複数のスレーブ変換装置の1番目のものは前記複数のスレーブ変換装置の1番目のものの出力電力を増加する。
本開示の上記の特徴と利点をより明らかに理解しやすくするために、以下、実施例を挙げ、図面を参照して詳細に説明する。
以下、添付図面を参照して詳しく説明することにより、本開示の態様をよりよく了解することができる。注意すべきなのは、業界標準の慣行によれば、各特徴は一定の縮尺で描かれていない。実質的に、検討をより明確にするために、各特徴のサイズを任意に拡大又は縮小することができる。
本開示の実施例によるスマートグリッドシステムを示すアーキテクチャ模式図である。 本開示の実施例によるスマートグリッドシステムのマスター変換装置を示すアーキテクチャ模式図である。 本開示の実施例によるスマートグリッドシステムのスレーブ変換装置を示すアーキテクチャ模式図である。 本開示の実施例によるスマートグリッドシステムのスレーブ変換装置を示すアーキテクチャ模式図である。 本開示の実施例によるスマートグリッドシステムの通信方法を示す模式図である。 本開示の実施例によるスマートグリッドシステムの電力管理方法を示すフローチャートである。 本開示の実施例によるスマートグリッドシステムのマスター変換装置及びスレーブ変換装置の電力制御方法の第1の適用例を示すフローチャートである。 本開示の実施例によるスマートグリッドシステムのマスター変換装置及びスレーブ変換装置の電力制御方法の第2の適用例を示すフローチャートである。 本開示の実施例によるスマートグリッドシステムのスレーブ変換装置の自体の電力制御方法の適用例を示すフローチャートである。
以下、本発明の実施例を詳細に検討する。しかしながら、理解すべきなのは、実施例は様々な特定の内容で実施されることができる多くの適用可能な概念を提供する。検討及び開示された実施例は、本発明の範囲を限定するためのものではなく、説明するためのものだけである。ここで使用された「第1の」、「第2の」、「第3の」、…などは、順序又は順位の意味を特定する意味ではなく、同一の技術用語で記述される素子又は操作を区別するためのものだけである。
図1は本開示の実施例によるスマートグリッドシステム100を示すアーキテクチャ模式図である。スマートグリッドシステム100は、交流グリッド110、電流測定ユニット120、負荷130、変換装置140、140、140及び直流電力装置150、150、150を備える。
図1に示すように、変換装置140、140、140は、交流グリッド110にカップリングされ且つ負荷130にカップリングされる。本開示の実施例において、負荷130は、一般的な家庭用負荷又は交流電力を受け入れる任意の負荷を表すために使用できる。図1に示すように、変換装置140、140、140は、それぞれ直流電力装置150、150、150にカップリングされ、本開示の実施例において、各直流電力装置150、150、150は、回生電源、二次電池又は直流電力を提供できるその他の装置を含んでもよい。本開示の実施例において、変換装置140、140、140はそれぞれ直流電力装置150、150、150から直流電力を受信し且つ交流電力を負荷130に出力する。
図1に示すように、電流測定ユニット120は交流グリッド110と変換装置140との間にカップリングされる。本開示の実施例において、電流測定ユニット120は変流器(Current Transformer;CT)又はホールセンサ(Hall Sensor)であってもよく、電流測定値(即ち、メインラインを流れる電流値)を変換装置140に提供するように、交流グリッド110を流れる全電流を測定するために使用される。本開示の実施例において、さらに、電流測定ユニット120により提供された電流測定値に従って交流グリッド110を流れる全電流の流れ方向を取得することができる。
変換装置140、140、140はマスター(Master)変換装置140とスレーブ(Slave)変換装置140、140を含む。図2aは、本開示の実施例によるスマートグリッドシステム100のマスター変換装置140を示すアーキテクチャ模式図である。図2bは、本開示の実施例によるスマートグリッドシステム100のスレーブ変換装置140を示すアーキテクチャ模式図である。図2cは、本開示の実施例によるスマートグリッドシステム100のスレーブ変換装置140を示すアーキテクチャ模式図である。
注意すべきなのは、上記のスレーブ(Slave)変換装置140、140の数は適用する場合によって異なり、2つに限定されない。
図2a、図2b、図2cに示すように、マスター変換装置140とスレーブ変換装置140、140の各々は、直流コンバーター11(DC-to-DC converter)、インバーター12(DC-to-AC converter)、センサー13、ブレーカ14、マイクロコントロールユニット15、通信ユニット16、通信ポート17、電流/電圧測定ユニット18、入力/出力(Input/Output;I/O)ポートI/O、I/O及び電流測定ポートCTを含んでもよい。
マスター変換装置140とスレーブ変換装置140、140の各々は直流入力ポートINと交流出力ポートOUTをさらに含む。マスター変換装置140とスレーブ変換装置140、140の直流入力ポートINはそれぞれ直流電力装置150、150、150と直流コンバーター11との間に設けられ、マスター変換装置140とスレーブ変換装置140、140は直流入力ポートINから直流電力装置150、150、150が出力された直流電力をそれぞれ受信する。交流出力ポートOUTはブレーカ14と交流グリッド110との間に設けられ、マスター変換装置140とスレーブ変換装置140、140は交流出力ポートOUTから交流電力を交流グリッド110に出力する。
直流コンバーター11は、直流入力ポートINから直流電力を受信して変換し、変換された直流電力を出力するようにするために使用され、例えば直流電力を昇圧するための直流コンバーターとする。インバーター12は、直流コンバーター11から出力された変換後の直流電力を交流電力に変換するために使用される。センサー13は、インバーター12から出力された交流電力を感知するために使用される。ブレーカ14は、対応する変換装置(140、140又は140)がインバーター12によって変換された交流電力を正常に出力することができることを確認する場合に、ブレーカ14をオンにし、それにより交流電力を交流出力ポートOUTから出力して交流グリッド110に併入させる。
電流/電圧測定ユニット18は、変換装置(140、140又は140)の内部で測定される必要がある電流/電圧を測定するために使用される。電流/電圧測定ユニット18は測定された電流/電圧をマイクロコントロールユニット15に伝送する。マイクロコントロールユニット15は受信された電流/電圧に従って、それを乗算して電力情報を取得する。
マイクロコントロールユニット15は、マイクロコントローラーユニット(Micro Control Unit;MCU)、マイクロプロセッサ(Micro Processor Unit;MPU)、特定用途向け集積回路(Application-specific integrated circuit;ASIC)又はシステムオンチップ(System on a Chip;SoC)の中の1つであってもよい。
既知のスマートグリッドシステムにおいて、通信ユニット16を介して計算された電力情報(電流と電圧情報を含んでもよい)を通信ポート17によって無線(wireless)(例えばワイヤレスフィデリティ(WiFi))又は有線(wired)(例えばRS-485又はCAN bus)の通信方法で監視システムに接続し、さらに、管理センター(例えば民間又は国営の電力会社又は電力事業機構)と通信し、管理センターは電力ディスパッチ又は電力管理を行うために依拠を提供し、スマートグリッドシステムの電力情報の把握、統合及び管理を実現する。しかしながら、売電せずに電力を自家消費する場合では、このアーキテクチャの通信方法の処理中に、伝送、待機、受信、ポーリング(Polling)などの時間遅延が避けられないため、リアルタイムで応答できず、所定の時間内にエネルギーを調整できなく、それにより現行の規制要件に違反する可能性がある。
図3は、本開示の実施例によるスマートグリッドシステム100の通信方法を示す模式図である。図3に示すように、マスター変換装置140とスレーブ変換装置140、140との間はデイジーチェーン(daisy chain)で通信し、言い換えると、マスター変換装置140とスレーブ変換装置140、140とは入力/出力ポートI/O、I/Oを介してデイジーチェーンで逐一に直列に接続される。図2a、図2b、図2c及び図3を併せて参照されたく、本開示の実施例において、マスター変換装置140の電流測定ポートCTは、電流測定ユニット120により測定された電流測定値を受信するために使用される。マスター変換装置140のマイクロコントロールユニット15は、直流電力装置150から出力された直流電力と電流測定ユニット120から出力された電流測定値に従って、マスター変換装置140の交流出力ポートOUTから出力された交流電力を制御し、言い換えると、マスター変換装置140のマイクロコントロールユニット15は、直流電力装置150から出力された直流電力と電流測定ユニット120から出力された電流測定値に従って、マスター変換装置140の出力電力を制御するために使用される。なお、マスター変換装置140のマイクロコントロールユニット15は、さらに電流測定ユニット120から出力された電流測定値に従って入力/出力ポートI/Oを介して第1のデューティ(Duty)信号をスレーブ変換装置140に提供し、前記スレーブ変換装置140とマスター変換装置140との通信方法が直列カップリングである。
スレーブ変換装置140の入力/出力ポートI/Oは、マスター変換装置140から提供された第1のデューティ信号を受信するために使用され、且つスレーブ変換装置140のマイクロコントロールユニット15は、直流電力装置150から出力された直流電力と第1のデューティ信号に従って、スレーブ変換装置140の交流出力ポートOUTから出力された交流電力を制御するために使用され、言い換えると、スレーブ変換装置140のマイクロコントロールユニット15は、直流電力装置150から出力された直流電力と第1のデューティ信号に従って、スレーブ変換装置140の出力電力を制御するために使用される。なお、スレーブ変換装置140のマイクロコントロールユニット15はさらに、第1のデューティ信号に従って入力/出力ポートI/Oを介して第2のデューティ信号をスレーブ変換装置140に提供するために使用され、前記スレーブ変換装置140とスレーブ変換装置140との通信方法が直列カップリングである。
スレーブ変換装置140の入力/出力ポートI/Oは、スレーブ変換装置140から提供された第2のデューティ信号を受信するために使用され、且つスレーブ変換装置140のマイクロコントロールユニット15は、第2のデューティ信号に従ってスレーブ変換装置140の交流出力ポートOUTから出力された交流電力を制御するために使用され、言い換えると、スレーブ変換装置140のマイクロコントロールユニット15は、第2のデューティ信号に従ってスレーブ変換装置140の出力電力を制御するために使用される。
本開示の実施例において、上記の第1のデューティ信号と第2のデューティ信号は、パルス幅変調(Pulse Width Modulation;PWM)を使用して方形波を変調することにより生成されるデューティ比(Duty Ratio又はDuty Cycle)が0%~100%の方形波信号である。本開示の実施例において、第1のデューティ信号のデューティ比が大きいほど、スレーブ変換装置140の出力電力も大きくなる。言い換えると、マスター変換装置140は提供された第1のデューティ信号のデューティ比を増加すると、スレーブ変換装置140の出力電力も増加し、マスター変換装置140は提供された第1のデューティ信号のデューティ比を減少すると、スレーブ変換装置140の出力電力も減少する。本開示の実施例において、第2のデューティ信号のデューティは大きいほど、スレーブ変換装置140の出力電力も大きくなる。言い換えると、スレーブ変換装置140は提供された第2のデューティ信号のデューティ比を増加すると、スレーブ変換装置140の出力電力も増加し、スレーブ変換装置140は提供された第2のデューティ信号のデューティ比を減少すると、スレーブ変換装置140の出力電力も減少する。しかしながら、デューティ比と出力電力の傾向はこれらに限定されず、逆の構成を設定することもでき、例えばデューティ比が大きいほど、出力電力が低くなる。
既知のスマートグリッドシステムと比べて、本開示の実施例によるスマートグリッドシステム100は、メインラインの電力情報を監視し、通信を介して各変換装置に対して電力制御を行うための監視システムを別途に設置する必要がないため、本開示の実施例によるスマートグリッドシステム100は、複雑な周辺回線を配置する必要がなく、装置の取り付けコストを削減するだけでなく、装置を維持する人力と時間コストを削減することもでき、密な回線の配置を減らすことで電磁干渉の可能性を減少することができ、さらに、送信電力の損失を低減させて、人力と時間を節約し、周辺回線を簡素化し、電磁干渉を減少し、そしてハードウェアコストを削減する目的を達成する。
また、既知のスマートグリッドシステムと比べて、本開示の実施例によるスマートグリッドシステム100は、監視システムを介してワイヤレスフィデリティ(WiFi)、RS-485又はCAN busなどの通信方法によって各変換装置にコマンドを送信するものではなく、本開示の実施例によるスマートグリッドシステム100のマスター変換装置140とスレーブ変換装置140、140との間はデイジーチェーン(daisy chain)で通信し且つデイジーチェーンで入力/出力ポートI/O、I/Oを介してコマンド(第1のデューティ信号、第2のデューティ信号)を伝送し、デイジーチェーンの通信方法はそれぞれ独立し、且つ送信されたコマンドのエネルギーは前の変換装置によって提供されるものであり、不必要な伝送、待機、受信、ポーリング(Polling)などの時間遅延を避ける。具体的に、本開示の実施例によるスマートグリッドシステム100は、比較的小さな時間遅延を有するため、リアルタイムで応答でき、且つ所定の時間内にエネルギーを調整することができて、現在の規制要件を満たすようにする。
図4は本開示の実施例によるスマートグリッドシステム100の電力管理方法1000を示すフローチャートである。図1と図4を併せて参照されたく、電力管理方法1000は、工程1100-1400を含む。工程1100では、スマートグリッドシステム100の電流測定ユニット120は、電流測定値を提供するように、交流グリッド110を流れる全電流を測定する。工程1200では、マスター変換装置140は電流測定ユニット120から電流測定値を受信し、且つ電流測定値に従ってマスター変換装置140の出力電力を制御し、第1のデューティ信号をマスター変換装置140との通信方法が直列カップリングであるスレーブ変換装置140に提供する。工程1300では、スレーブ変換装置140はマスター変換装置140から第1のデューティ信号を受信し、且つ第1のデューティ信号に従ってスレーブ変換装置140の出力電力を制御し、第2のデューティ信号をスレーブ変換装置140に提供し、該スレーブ変換装置140とスレーブ変換装置140との通信方法が直列カップリングである。工程1400では、スレーブ変換装置140はスレーブ変換装置140から第2のデューティ信号を受信し、且つ第2のデューティ信号に応じてスレーブ変換装置140の出力電力を制御する。
図5は本開示の実施例によるスマートグリッドシステム100のマスター変換装置140とスレーブ変換装置140の電力制御方法の第1の適用例を示すフローチャートである。図5に示すように、工程2100では、スマートグリッドシステム100のマスター変換装置140は電流測定ユニット120から電流測定値を受信し、且つ電流測定値に応じて交流グリッド110を流れる全電流の流れ方向を判断する。次に、工程2200では、マスター変換装置140は交流グリッド110を流れる全電流の流れ方向が負荷130に流れるか否かを判断し、交流グリッド110の全電流が負荷に流れると、全ての変換装置によって提供された電力は、負荷が使用するのに十分ではないことが理解できる。マスター変換装置140は交流グリッド110を流れる全電流の流れ方向が負荷130に流れると判断する場合、工程2300に進み、マスター変換装置140は交流グリッド110を流れる全電流の流れ方向が負荷130に流れないと、工程2400に進む。工程2300では、マスター変換装置140はマスター変換装置140の出力電力を増加し、且つ第1のデューティ信号のデューティ比を増加することにより、スレーブ変換装置140の出力電力を増加させ、且つ次に、工程2500に進む。工程2400では、マスター変換装置140はマスター変換装置140の出力電力を減少し、且つ第1のデューティ信号のデューティ比を減少することにより、スレーブ変換装置140の出力電力を減少させ、且つ次に、工程2500に進む。工程2500では、マスター変換装置140は再び電流測定ユニット120から電流測定値を受信し、且つ再び電流測定値に従って交流グリッド110を流れる全電流の流れ方向を判断する。続いて、工程2600では、マスター変換装置140は再び交流グリッド110を流れる全電流の流れ方向が負荷130に流れるか否かを判断し、マスター変換装置140は交流グリッド110を流れる全電流の流れ方向が負荷130に流れると判断する場合、第1のデューティ信号のデューティ比を調整しなく、このように、フローチャート全体を繰り返して実行し、マスター変換装置140は交流グリッド110を流れる全電流の流れ方向が負荷130に流れないと判断する場合、工程2400に戻る。
具体的に、本開示の実施例によるスマートグリッドシステム100のマスター変換装置140とスレーブ変換装置140の電力制御方法の第1の適用例は、変換装置から出力された交流電力が負荷130のみに流れ、交流グリッド110に流れない適用例であり、即ち、電力会社に売電せずに自主制御の適用方法である。この第1の適用例では、マスター変換装置140は交流グリッド110を流れる全電流の流れ方向に従ってマスター変換装置140の出力電力を制御し、且つ交流グリッド110を流れる全電流の流れ方向に従って第1のデューティ信号のデューティ比を調整し、スレーブ変換装置140の出力電力を制御するようにする。
図6は本開示の実施例によるスマートグリッドシステム100のマスター変換装置140とスレーブ変換装置140の電力制御方法の第2の適用例を示すフローチャートである。図6に示すように、工程3100では、スマートグリッドシステム100のマスター変換装置140は電流測定ユニット120から電流測定値を受信し、且つ電流測定値が電流設定値より小さいか否かを判断し、前記電流設定値は、例えば操作者による適用する場合に応じて設定された電流閾値又は任意の装置を介してマスター変換装置に送信された電流閾値である。次に、工程3200では、マスター変換装置140は電流測定値が電流設定値より小さいと判断する場合、工程3300に進み、マスター変換装置140は電流測定値が電流設定値以上であると判断する場合、工程3400に進む。工程3300では、マスター変換装置140は、マスター変換装置140の出力電力を増加し、且つ第1のデューティ信号のデューティ比を増加することで、スレーブ変換装置140の出力電力を増加させ、且つ次に工程3500に進む。工程3400では、マスター変換装置140は、マスター変換装置140の出力電力を減少し、且つ第1のデューティ信号のデューティ比を減少することで、スレーブ変換装置140の出力電力を減少させ、且つ次に工程3500に進む。工程3500では、マスター変換装置140は再び電流測定ユニット120から電流測定値を受信し、且つ再び電流測定値が電流設定値より小さいか否かを判断する。次に、工程3600では、マスター変換装置140は電流測定値が電流設定値より小さいと判断する場合、第1のデューティ信号のデューティ比を調整しなく、マスター変換装置140は電流測定値が電流設定値以上であると判断する場合、工程3400に戻る。
具体的に、本開示の実施例によるスマートグリッドシステム100のマスター変換装置140とスレーブ変換装置140の電力制御方法の第2の適用例は、電流設定値を設定することによりスマートグリッドシステム100から交流グリッドに出力するエネルギーを制限するものであり、言い換えると、第2の適用例は、変換装置から出力された交流電力が交流グリッド110に流れることを可能にする適用例であり、即ち、自主制御で電力会社に売電する適用方法である。この第2の適用例において、マスター変換装置140は電流測定値が電流設定値より小さいか否かを判断することによりマスター変換装置140の出力電力を制御し、且つ電流測定値が電流設定値より小さいか否かを判断することにより第1のデューティ信号のデューティ比を調整して、スレーブ変換装置140の出力電力を調整するようにする。第2の適用例は、電流設定値のみが第1の適用例と異なり、第1の適用例は電流を交流グリッドに出力することを避けるように電流設定値を設定し、第2の適用例は、必要に応じて電流設定値を増加し、電流を交流グリッドに出力することを許可することができる。
図7は本開示の実施例によるスマートグリッドシステム100のスレーブ変換装置140及び/又は140の自主電力制御方法の適用例を示すフローチャートである。図7に示すように、工程4100では、スマートグリッドシステム100のスレーブ変換装置は、受信されたデューティ信号のデューティ比が減少するか否かを判断する。例えば、スレーブ変換装置140は受信された第1のデューティ信号のデューティ比が減少するか否かを判断する。また例えば、スレーブ変換装置140は受信された第2のデューティ信号のデューティ比が減少するか否かを判断する。次に、工程4200では、スレーブ変換装置は受信されたデューティ信号のデューティ比が減少すると判断する場合、工程4300に進み、スレーブ変換装置は受信されたデューティ信号のデューティ比が減少しないと判断する場合、工程4400に進む。工程4300では、スレーブ変換装置はその出力電力を減少する。例えば、スレーブ変換装置140は、受信された第1のデューティ信号のデューティ比が減少すると判断する場合、スレーブ変換装置140の出力電力を減少し且つ第2のデューティ信号のデューティ比を減少する。また例えば、スレーブ変換装置140は、受信された第2のデューティ信号のデューティ比が減少すると判断する場合、スレーブ変換装置140の出力電力を減少する。工程4400では、スレーブ変換装置はその出力電力が自体の最大電力に達するか否かを判断し、且つ次に、工程4500に進む。例えば、スレーブ変換装置140はスレーブ変換装置140の出力電力がスレーブ変換装置140の自体の最大電力に達するか否かを判断する。また例えば、スレーブ変換装置140はスレーブ変換装置140の出力電力がスレーブ変換装置140の自体の最大電力に達するか否かを判断する。工程4500では、スレーブ変換装置はその出力電力がその自体の最大電力に達すると判断する場合、その出力電力を調整しなく、スレーブ変換装置はその出力電力がその自体の最大電力に達していないと判断し、工程4600に進む。工程4600では、スレーブ変換装置はその出力電力を増加する。例えば、スレーブ変換装置140はスレーブ変換装置140の出力電力がスレーブ変換装置140の自体の最大電力に達していないと判断する場合、スレーブ変換装置140の出力電力を増加し且つ第2のデューティ信号のデューティ比を増加する。また例えば、スレーブ変換装置140は、スレーブ変換装置140の出力電力がスレーブ変換装置140の自体の最大電力に達していないと判断する場合、スレーブ変換装置140の出力電力を増加する。
具体的に、本開示の実施例によるスマートグリッドシステム100のスレーブ変換装置140及び/又は140の自体の電力制御方法の適用例は、スレーブ変換装置140/140が受信された第1/第2のデューティ信号のデューティ比及びその自体の最大電力に応じてその出力電力を制御することを説明した。
ところで、本開示の実施例において、現在の規制要件を満たすために、エネルギーを交流グリッドに送信しないように、一定の時間内に変換装置の出力電力を低下する必要があるため、本開示の実施例によるスマートグリッドシステムは、比較的遅い速度で変換装置の出力電力を増加させることを可能にし、且つ変換装置の出力電力の増加は、全ての変換装置の出力電力が同時に増加してもよいか、各変換装置の出力電力が異なる時点で個別に増加してもよく、しなしながら、現在の規制要件を満たすために、リアルタイムで変換装置の出力電力を降下するように、比較的速い速度で同時に全ての変換装置の出力電力を降下する必要がある。本開示の実施例によるスマートグリッドシステムは、上記のメカニズムを介して自体グリッドのバランスをとる。
以上のように、本開示はスマートグリッドシステム及びスマートグリッドシステムの電力管理方法を提出し、1つのマスター変換装置によって、交流グリッドを流れる全電流の電流測定値を電力ディスパッチ又は電力管理の依拠として、各変換装置の出力電力を調整することにより、スマートグリッドシステムの電力情報の把握、統合及び管理を実現し、且つ同時に現在の規制要件を満たすことができる。
以上で複数の実施例の特徴を叙述するため、当業者は本開示の態様をより良く理解することができる。当業者は、本開示を容易に他のプロセス及び構造を設計又は修正する基礎として、それにより、ここで記載されるこれらの実施例と同じ目標及び/又は同じ利点を達成できることを理解すべきである。当業者は、これらの同等の構造が本開示の精神及び範囲から逸脱せず、また、本開示の精神及び範囲から逸脱せずに様々な変形、置換及び変更を行うことができることも理解される。
100 スマートグリッドシステム
110 交流グリッド
120 電流測定ユニット
130 負荷
1400、1401、140 変換装置
1500、1501、150 直流電力装置
1000 電力管理方法
1100~1400、2100~26003100~36004100~4600 工程
11 直流コンバーター
12 インバーター
13 センサー
14 ブレーカ
15 マイクロコントロールユニット
16 通信ユニット
17 通信ポート
18 電流/電圧測定ユニット
IN 直流入力ポート
OUT 交流出力ポート
I/O1、I/O 入力/出力ポート
CT 電流測定ポート

Claims (20)

  1. 負荷と交流グリッドに適用されるスマートグリッドシステムであって、
    電流測定値を提供するように、前記交流グリッドを流れる全電流を測定するための電流測定ユニットと、
    前記交流グリッドにカップリングされて、且つ前記負荷に給電するための複数の変換装置と、
    を備え、
    前記複数の変換装置は、マスター変換装置と、複数のスレーブ変換装置と、を含み、
    前記マスター変換装置が、前記電流測定値を受信し、前記電流測定値に従って前記マスター変換装置の出力電力を制御し第1のデューティ信号を提供するために使用され、
    前記マスター変換装置にカップリングされる前記複数のスレーブ変換装置の1番目のものは、前記第1のデューティ信号を受信し、前記第1のデューティ信号に従って前記複数のスレーブ変換装置の1番目のものの出力電力を制御するために使用され、
    前記マスター変換装置と前記複数のスレーブ変換装置との間はデイジーチェーンで通信するスマートグリッドシステム。
  2. 前記複数のスレーブ変換装置の前記1番目のものは、さらに前記第1のデューティ信号に従って第2のデューティ信号を提供するために使用される請求項1に記載のスマートグリッドシステム。
  3. 前記複数のスレーブ変換装置の2番目のものは、前記第2のデューティ信号を受信し、前記第2のデューティ信号に従って前記複数のスレーブ変換装置の前記2番目のものの出力電力を制御するために使用される請求項2に記載のスマートグリッドシステム。
  4. 前記複数の変換装置の各々は、
    直流電力を受信するための直流入力ポートと、
    交流電力を出力するための交流出力ポートと、
    少なくとも前記直流電力に従って前記交流電力を制御するためのマイクロコントローラーユニットと、
    を含む請求項2に記載のスマートグリッドシステム。
  5. 前記複数の変換装置の各々は、電流測定ポートをさらに含み、前記マスター変換装置の前記電流測定ポートは前記電流測定値を受信するために使用される請求項4に記載のスマートグリッドシステム。
  6. 前記マスター変換装置の前記マイクロコントローラーユニットは、前記直流電力と前記電流測定値に従って前記マスター変換装置の前記交流出力ポートから出力された前記交流電力を制御するために使用される請求項4に記載のスマートグリッドシステム。
  7. 前記複数の変換装置の各々は、入力/出力ポートをさらに含み、前記マスター変換装置の前記入力/出力ポートは前記第1のデューティ信号を提供するために使用され、前記複数のスレーブ変換装置の前記1番目のものの前記入力/出力ポートは前記第1のデューティ信号を受信し且つ前記第2のデューティ信号を提供するために使用される請求項4に記載のスマートグリッドシステム。
  8. 前記複数のスレーブ変換装置の前記1番目のものの前記マイクロコントローラーユニットは、前記直流電力と前記第1のデューティ信号に従って前記複数のスレーブ変換装置の前記1番目のものの前記交流出力ポートから出力された前記交流電力を制御するために使用される請求項4に記載のスマートグリッドシステム。
  9. 前記マスター変換装置は、前記電流測定値に従って前記全電流の流れ方向を判断し、且つ前記全電流の流れ方向に従って前記マスター変換装置の出力電力を制御し前記第1のデューティ信号を提供する請求項1に記載のスマートグリッドシステム。
  10. 前記マスター変換装置は、前記電流測定値が電流設定値より小さいか否かを判断することによって、前記マスター変換装置の出力電力を制御し前記第1のデューティ信号を提供する請求項1に記載のスマートグリッドシステム。
  11. 電流測定値を提供するように、交流グリッドを流れる全電流を測定することと、
    前記交流グリッドにカップリングされる複数の変換装置のマスター変換装置によって前記電流測定値を受信し、前記マスター変換装置が前記電流測定値に従って前記マスター変換装置の出力電力を制御し第1のデューティ信号を提供することと、
    前記マスター変換装置にカップリングされる前記複数の変換装置の複数のスレーブ変換装置の1番目のものによって前記第1のデューティ信号を受信し、前記複数のスレーブ変換装置の前記1番目のものは前記第1のデューティ信号に従って前記複数のスレーブ変換装置の前記1番目のものの出力電力を制御することと、
    を含み、
    前記複数の変換装置は負荷に給電するために使用され、前記マスター変換装置と前記複数のスレーブ変換装置との間はデイジーチェーンで通信するスマートグリッドシステムの電力管理方法。
  12. 前記複数のスレーブ変換装置の前記1番目のものは、前記第1のデューティ信号に従って第2のデューティ信号を提供する請求項11に記載のスマートグリッドシステムの電力管理方法。
  13. 前記複数のスレーブ変換装置の2番目のものによって前記第2のデューティ信号を受信し、前記複数のスレーブ変換装置の前記2番目のものが前記第2のデューティ信号に従って前記複数のスレーブ変換装置の前記2番目のものの出力電力を制御することをさらに含む請求項12に記載のスマートグリッドシステムの電力管理方法。
  14. 前記マスター変換装置は前記電流測定値に従って前記全電流の流れ方向を判断し、且つ前記全電流の流れ方向に応じて前記マスター変換装置の出力電力を制御し前記第1のデューティ信号を提供する請求項11に記載のスマートグリッドシステムの電力管理方法。
  15. 前記全電流の流れ方向が前記負荷に流れると、前記マスター変換装置は前記第1のデューティ信号のデューティ比を増加し、
    前記全電流の流れ方向が前記負荷に流れないと、前記マスター変換装置は前記第1のデューティ信号のデューティ比を減少する請求項14に記載のスマートグリッドシステムの電力管理方法。
  16. 前記第1のデューティ信号のデューティ比を増加又は減少した後に、前記マスター変換装置は再び前記全電流の流れ方向を判断し、
    前記全電流の流れ方向が前記負荷に流れると、前記マスター変換装置は前記第1のデューティ信号のデューティ比を調整しなく、
    前記全電流の流れ方向は前記負荷に流れないと、前記マスター変換装置は第1のデューティ信号のデューティ比を減少する請求項15に記載のスマートグリッドシステムの電力管理方法。
  17. 前記マスター変換装置は、前記電流測定値が電流設定値より小さいか否かを判断することによって、前記マスター変換装置の出力電力を制御し前記第1のデューティ信号を提供する請求項12に記載のスマートグリッドシステムの電力管理方法。
  18. 前記電流測定値が前記電流設定値より小さいと、前記マスター変換装置は前記第1のデューティ信号のデューティ比を増加し、
    前記電流測定値が前記電流設定値以上であると、前記マスター変換装置は前記第1のデューティ信号のデューティ比を減少する請求項17に記載のスマートグリッドシステムの電力管理方法。
  19. 前記第1のデューティ信号のデューティ比を増加又は減少した後に、前記マスター変換装置は再び前記電流測定値が前記電流設定値より小さいか否かを判断し、
    前記電流測定値が前記電流設定値より小さいと、前記マスター変換装置は前記第1のデューティ信号のデューティ比を調整しなく、
    前記電流測定値が前記電流設定値以上であると、前記マスター変換装置は前記第1のデューティ信号のデューティ比を減少する請求項18に記載のスマートグリッドシステムの電力管理方法。
  20. 前記複数のスレーブ変換装置の前記1番目のものは、前記第1のデューティ信号のデューティ比が減少するか否かを判断し、
    前記第1のデューティ信号のデューティ比が減少すると、前記複数のスレーブ変換装置の前記1番目のものは前記複数のスレーブ変換装置の前記1番目のものの出力電力を減少し、
    前記第1のデューティ信号のデューティ比が減少しないと、前記複数のスレーブ変換装置の前記1番目のものは前記複数のスレーブ変換装置の前記1番目のものの出力電力が前記複数のスレーブ変換装置の前記1番目のものの自体の最大電力に達するか否かを判断し、
    前記複数のスレーブ変換装置の前記1番目のものの出力電力が前記自体の最大電力に達すると、前記複数のスレーブ変換装置の前記1番目のものは前記複数のスレーブ変換装置の前記1番目のものの出力電力を調整しなく、
    前記複数のスレーブ変換装置の前記1番目のものの出力電力が前記自体の最大電力に達していないと、前記複数のスレーブ変換装置の前記1番目のものは前記複数のスレーブ変換装置の前記1番目のものの出力電力を増加する請求項17に記載のスマートグリッドシステムの電力管理方法。
JP2020196269A 2020-03-04 2020-11-26 スマートグリッドシステム及びその電力管理方法 Active JP7014362B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010144066.3A CN113364114A (zh) 2020-03-04 2020-03-04 智慧电网系统及其功率管理方法
CN202010144066.3 2020-03-04

Publications (2)

Publication Number Publication Date
JP2021141794A JP2021141794A (ja) 2021-09-16
JP7014362B2 true JP7014362B2 (ja) 2022-02-01

Family

ID=74194580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020196269A Active JP7014362B2 (ja) 2020-03-04 2020-11-26 スマートグリッドシステム及びその電力管理方法

Country Status (4)

Country Link
US (1) US11381087B2 (ja)
EP (1) EP3876379A1 (ja)
JP (1) JP7014362B2 (ja)
CN (1) CN113364114A (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008182836A (ja) 2007-01-25 2008-08-07 Daihen Corp 系統連系インバータ装置及びこの系統連系インバータ装置の電力制御方法
JP2015198458A (ja) 2014-03-31 2015-11-09 ミツミ電機株式会社 インバータシステム及び複数のインバータの並列同期運転制御方法
JP2015231264A (ja) 2014-06-04 2015-12-21 東芝機械株式会社 インバータ発電システム及びインバータ発電装置
JP2016086603A (ja) 2014-10-28 2016-05-19 株式会社ノーリツ パワーコンディショナ
JP2017017792A (ja) 2015-06-29 2017-01-19 新電元工業株式会社 分散型電源装置
JP2018078751A (ja) 2016-11-10 2018-05-17 株式会社ダイヘン 電源システム及び電源装置
JP2018098838A (ja) 2016-12-08 2018-06-21 日立化成株式会社 電源システム

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8120203B2 (en) * 2008-07-18 2012-02-21 Intersil Americas Inc. Intelligent management of current sharing group
US8693228B2 (en) 2009-02-19 2014-04-08 Stefan Matan Power transfer management for local power sources of a grid-tied load
CN102365812B (zh) * 2009-04-01 2015-11-25 瑞典爱立信有限公司 电力转换器系统中的电流共享配置
US20120091817A1 (en) 2010-10-18 2012-04-19 Advanced Energy Industries, Inc. System, method, and apparatus for ac grid connection of series-connected inverters
TW201306435A (zh) 2011-07-21 2013-02-01 Univ Nat Cheng Kung 太陽能發電裝置及太陽能發電系統
US9142965B2 (en) * 2011-07-28 2015-09-22 Tigo Energy, Inc. Systems and methods to combine strings of solar panels
CN104659804B (zh) 2013-11-20 2017-03-08 沈阳工业大学 含有混合储能的微电网及其控制方法
US20160087442A1 (en) 2014-07-04 2016-03-24 Stefan Matan Modular power grid
US10879695B2 (en) 2014-07-04 2020-12-29 Apparent Labs, LLC Grid network gateway aggregation
US11063431B2 (en) 2014-07-04 2021-07-13 Apparent Labs Llc Hierarchical and distributed power grid control
EP3168951B1 (en) * 2014-07-10 2020-11-04 Kyocera Corporation Power generation device, power generation system and power generation method
US20170294663A1 (en) * 2014-09-26 2017-10-12 Kyocera Corporation Power supply apparatus, power supply system, and power supply method
US9871379B2 (en) 2015-02-18 2018-01-16 Cyboenergy, Inc. Smart microgrids and dual-output off-grid power inverters with DC source flexibility
AU2016262457A1 (en) * 2015-05-08 2017-12-21 Sunculture Solar, Inc. Solar power generation, distribution, and communication system
WO2016189875A1 (ja) * 2015-05-26 2016-12-01 京セラ株式会社 発電装置、発電システム、および発電システムの制御方法
US10050445B2 (en) 2015-07-13 2018-08-14 Sparq Systems Inc. PV inverter with micro/nano-grid integration capability
US10305286B2 (en) 2015-08-14 2019-05-28 Solarcity Corporation Multiple inverter power control systems in an energy generation system
TWM579410U (zh) * 2019-01-08 2019-06-11 台達電子工業股份有限公司 智慧電網系統及其電源轉換裝置
CN111416431A (zh) * 2019-01-08 2020-07-14 台达电子工业股份有限公司 智能电网整合系统及其电力信息处理方法
TWI728728B (zh) * 2020-03-04 2021-05-21 台達電子工業股份有限公司 智慧電網系統及其功率管理方法
CN111313665B (zh) * 2020-03-16 2021-10-15 成都芯源系统有限公司 多相开关变换器及其控制电路和故障保护方法
CN112838619B (zh) * 2020-12-30 2023-03-28 山东大学 一种基于高速串行光纤的储能变流器并联运行系统及方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008182836A (ja) 2007-01-25 2008-08-07 Daihen Corp 系統連系インバータ装置及びこの系統連系インバータ装置の電力制御方法
JP2015198458A (ja) 2014-03-31 2015-11-09 ミツミ電機株式会社 インバータシステム及び複数のインバータの並列同期運転制御方法
JP2015231264A (ja) 2014-06-04 2015-12-21 東芝機械株式会社 インバータ発電システム及びインバータ発電装置
JP2016086603A (ja) 2014-10-28 2016-05-19 株式会社ノーリツ パワーコンディショナ
JP2017017792A (ja) 2015-06-29 2017-01-19 新電元工業株式会社 分散型電源装置
JP2018078751A (ja) 2016-11-10 2018-05-17 株式会社ダイヘン 電源システム及び電源装置
JP2018098838A (ja) 2016-12-08 2018-06-21 日立化成株式会社 電源システム

Also Published As

Publication number Publication date
JP2021141794A (ja) 2021-09-16
CN113364114A (zh) 2021-09-07
EP3876379A1 (en) 2021-09-08
US11381087B2 (en) 2022-07-05
US20210281075A1 (en) 2021-09-09

Similar Documents

Publication Publication Date Title
CN105874340B (zh) 动态电压调整电路及方法
CN102468768B (zh) 对电变换器非线性的补偿装置及方法
CA2531854A1 (en) Battery charging system and method
EP3121931B1 (en) Wireless power transfer system having wireless power transfer system-charger
JP5485857B2 (ja) 電力管理システム
TW201310855A (zh) 用於充電至少一電動車的電池之系統、充電器與方法
JP2011101529A (ja) 配電システム
JP3223740U (ja) スマートグリッドシステム及びその電源変換装置
JP7014362B2 (ja) スマートグリッドシステム及びその電力管理方法
TWI728728B (zh) 智慧電網系統及其功率管理方法
KR102403026B1 (ko) 국부적 전력 네트워크 배열
JP6890303B2 (ja) 電力変換装置、電力変換システム、及び直流電源装置
WO2021096866A1 (en) Wireless power transfer with load sharing receivers
CN218005908U (zh) 充电拓扑电路、清洁机器人基站、清洁系统和清洁机器人
CN102163993A (zh) 基于恒定电流源的电力线通信系统
KR101149315B1 (ko) 변전소용 통합 전원 공급 장치
JP2019106825A5 (ja)
CN106530662A (zh) 一种电、水、气、热多表集抄的采集装置及方法
WO2016006470A1 (ja) 送電機器及び非接触電力伝送装置
EP3681010A1 (en) Smart grid integration system and method of processing power information thereof
CN212811295U (zh) 节能供电系统
AU2019100747A4 (en) Power Conversion Apparatus and Smart Grid System Having the Same
TWI685170B (zh) 智能電流控制裝置
JP2015186393A (ja) 送電機器及び非接触電力伝送装置
CN105576838A (zh) 无线能量接收装置、无线能量传输系统及其方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220105