JP7006549B2 - 燃料電池 - Google Patents

燃料電池 Download PDF

Info

Publication number
JP7006549B2
JP7006549B2 JP2018175236A JP2018175236A JP7006549B2 JP 7006549 B2 JP7006549 B2 JP 7006549B2 JP 2018175236 A JP2018175236 A JP 2018175236A JP 2018175236 A JP2018175236 A JP 2018175236A JP 7006549 B2 JP7006549 B2 JP 7006549B2
Authority
JP
Japan
Prior art keywords
flow path
cooling water
groove
grooves
path groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018175236A
Other languages
English (en)
Other versions
JP2020047483A (ja
Inventor
貴宏 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2018175236A priority Critical patent/JP7006549B2/ja
Publication of JP2020047483A publication Critical patent/JP2020047483A/ja
Application granted granted Critical
Publication of JP7006549B2 publication Critical patent/JP7006549B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

本発明は、燃料電池に関する。
例えば、燃料電池には、一方の面に燃料ガスまたは酸化剤ガスの流路溝が設けられ、他方の面に冷却媒体の流路溝が設けられたセパレータを備えられる(例えば特許文献1参照)。セパレータは、燃料ガスまたは酸化剤ガスの流路溝と冷却媒体の流路溝が交互に並ぶように、例えばプレス加工などにより凹凸状に形成されている。
アノード側のセパレータは燃料ガスの流路溝を有し、カソード側のセパレータは酸化剤ガスの流路溝を有する。アノード側のセパレータとカソード側のセパレータは、MEGA(Membrane Electrode Gus diffusion layer Assembly)を挟んで冷却媒体の流路溝が設けられた面同士が向き合うように重ね合わせられる。
特開2007-165257号公報
セパレータの平面視で燃料ガスの流路溝と酸化剤ガスの流路溝が交差する領域ではアノード側及びカソード側の各セパレータの冷却媒体の流路溝が合流するため、冷却媒体の流路溝は全体として網目状の形態を有する。冷却媒体は、網目状の流路溝をジグザグに流れて進行方向を頻繁に変えるため、一定方向に進む場合より圧力損失が高くなる。このため、燃料電池の冷却効率が低下するおそれがある。
そこで本発明は上記の課題に鑑みてなされたものであり、冷却媒体の圧力損失を低減することができる燃料電池を提供することを目的とする。
本明細書に記載の燃料電池は、酸化剤ガスが流れる複数の第1流路溝が一方の面に設けられ、前記複数の第1流路溝の間に冷却媒体が流れる複数の第2流路溝が他方の面に設けられた第1セパレータと、燃料ガスが流れる複数の第3流路溝が一方の面に設けられ、前記複数の第3流路溝の間に前記冷却媒体が流れる複数の第4流路溝が他方の面に設けられた第2セパレータとを有し、前記第1セパレータと前記第2セパレータは、前記複数の第2流路溝が設けられた面と前記複数の第4流路溝が設けられた面が対向するように重ね合わせられ、平面視で前記複数の第1流路溝と前記複数の第3流路溝が交差する複数の交差部のうち、一部の交差部において、当該第1流路溝の底部と当該第3流路溝の底部の間を前記冷却媒体が通過するように、前記第1流路溝の底部と前記第3流路溝の底部が間隔をおいて対向し、前記複数の交差部は、前記酸化剤ガス及び前記燃料ガスにより発電する発電領域に対して、前記複数の第2流路溝及び前記複数の第4流路溝の上流側または下流側に位置する
本発明によれば、燃料電池の冷却媒体の圧力損失を低減することができる。
燃料電池の一例を示す分解斜視図である。 酸化剤ガス及び燃料ガスの各流路溝の一例を示す平面図である。 カソードセパレータの冷却水の流路溝の一例を示す平面図である。 アノードセパレータの冷却水の流路溝の一例を示す平面図である。 比較例における冷却水の経路を示す平面図である。 A-A線に沿ったカソードセパレータ及びアノードセパレータの断面図である。 実施例における冷却水の経路を示す平面図である。 B-B線に沿ったカソードセパレータ及びアノードセパレータの断面図である。 D-D線に沿った流路溝の一例を示す断面図である。 C-C線に沿ったカソードセパレータ及びアノードセパレータの断面図である。 他の実施例におけるB-B線に沿ったカソードセパレータ及びアノードセパレータの断面図である。
図1は、燃料電池の一例を示す分解斜視図である。燃料電池スタックは、複数の燃料電池をスタックして、その両端にエンドプレートを配置して各エンドプレートの間を締結することにより構成されている。
燃料電池は、カソードセパレータ1、アノードセパレータ2と、フレーム3と、MEGA5とを有する。符号P1はMEA50の断面を示す。MEGA5には、膜電極接合体(MEA: Membrane Electrode Assembly)50、及びMEA50を挟む一対のガス拡散層51,52が含まれる。MEA50には、電解質膜50a、カソード電極触媒層50c、及びアノード電極触媒層50bが含まれる。
電解質膜50aは、例えば、湿潤状態で良好なプロトン電導性を示すイオン交換樹脂膜を含む。このようなイオン交換樹脂膜としては、例えば、ナフィオン(登録商標)などの、イオン交換基としてスルホン酸基を有するフッ素樹脂系のものが挙げられる。
アノード電極触媒層50b及びカソード電極触媒層50cは、それぞれ、触媒担持導電性粒子とプロトン伝導性電解質を含む、ガス拡散性を有する多孔質層として形成されている。例えば、アノード電極触媒層50b及びカソード電極触媒層50cは、白金担持カーボンとプロトン伝導性電解質を含む分散溶液である触媒インクの乾燥塗膜として形成される。
アノード電極触媒層50bには一方のガス拡散層52を介し水素ガスなどの燃料ガスが供給され、カソード電極触媒層50cには他方のガス拡散層51を介し空気などの酸化剤ガスが供給される。ガス拡散層51,52は、例えば、カーボンペーパーなどの基材に撥水性のマイクロポーラス層を積層することにより形成される。なお、マイクロポーラス層としては、例えばPTFE(polytetrafluoroethylene)などの撥水性樹脂とカーボンブラックなどの導電性材料などを含んで形成される。
MEA50は、酸化剤ガス及び燃料ガスを用いた電気化学反応により発電する。酸化剤ガスは、カソードセパレータ1からガス拡散層51を介してMEA50に供給され、燃料ガスは、燃料電池スタックにおいて隣接する他の燃料電池のアノードセパレータ2からガス拡散層52を介してMEA50に供給される。
カソードセパレータ1は燃料電池のカソード側に配置され、アノードセパレータ2は燃料電池のアノード側に配置されている。燃料電池スタックにおいて、カソードセパレータ1は、MEGA5に隣接する他の燃料電池のアノードセパレータ2との間にフレーム3及びMEGA5を挟み、アノードセパレータ2は、アノードセパレータ2に隣接する他の燃料電池のカソードセパレータ1との間に、その燃料電池のフレーム3及びMEGA5を挟む。なお、カソードセパレータ1は第1セパレータの一例であり、アノードセパレータ2は第2セパレータの一例である。
カソードセパレータ1及びアノードセパレータ2は、例えば金属板などにより構成され、矩形状の外形を有する。なお、カソードセパレータ1及びアノードセパレータ2は、金属に限定されず、例えばカーボン成型により形成されてもよい。カソードセパレータ1及びアノードセパレータ2は接着剤また溶接により互いに接合され、カソードセパレータ1は例えば接着剤によりフレーム3に接着されている。
フレーム3は、一例として矩形状の外形を有する樹脂シートにより構成される。フレーム3の材料としては、例えばポリエチレンテレフタレート(PET: Polyethylene Terephthalate)系樹脂、シンジオタクチックポリスチレン(SPS; Syndiotactic Polystyrene)系樹脂、及びポリプロピレン(PP: Polypropylene)系樹脂などが挙げられる。
フレーム3の中央部には矩形状の開口30が設けられている。開口30は、MEGA5に対応する位置に設けられ、その縁にはMEA50の外周側の端部が接着される。これにより、MEGA5はフレーム3に固定される。
カソードセパレータ1には、一端に沿って貫通孔11~13が並ぶように設けられ、反対側の他端に沿って貫通孔14~16が並ぶように設けられている。アノードセパレータ2には、一端に沿って貫通孔21~23が並ぶように設けられ、反対側の他端に沿って貫通孔24~26が並ぶように設けられている。また、フレーム3には、一端に沿って貫通孔31~33が並ぶように設けられ、反対側の他端に沿って貫通孔34~36が並ぶように設けられている。
貫通孔11,21,31は、燃料電池のスタック時に互いに重なり合うことにより燃料ガス供給マニホルドを構成する。燃料ガスは、矢印Hinで示されるように、燃料ガス供給マニホルド内を燃料電池スタックの積層方向に流れることにより各燃料電池に供給される。
貫通孔16,26,36は、燃料電池のスタック時に互いに重なり合うことにより燃料ガス排出マニホルドを構成する。発電に用いられた燃料ガスは、矢印Houtで示されるように、各燃料電池から燃料ガス排出マニホルド内を燃料電池スタックの積層方向に流れて排出される。
貫通孔12,22,32は、燃料電池のスタック時に互いに重なり合うことにより冷却水供給マニホルドを構成する。冷却水は、矢印Cinで示されるように、冷却水供給マニホルド内を燃料電池スタックの積層方向に流れることにより各燃料電池に供給される。なお、冷却水は、燃料電池を冷却する冷却媒体の一例である。
貫通孔15,25,35は、燃料電池のスタック時に互いに重なり合うことにより冷却水排出マニホルドを構成する。燃料電池の冷却に用いられた冷却水は、矢印Coutで示されるように、冷却水排出マニホルド内を燃料電池スタックの積層方向に流れることにより各燃料電池から排出される。
貫通孔14,24,34は、燃料電池のスタック時に互いに重なり合うことにより酸化剤ガス供給マニホルドを構成する。酸化剤ガスは、矢印Ainで示されるように、酸化剤ガス供給マニホルド内を燃料電池スタックの積層方向に流れることにより各燃料電池に供給される。
貫通孔13,23,33は、燃料電池のスタック時に互いに重なり合うことにより酸化剤ガス排出マニホルドを構成する。発電に用いられた酸化剤ガスは、矢印Aoutで示されるように、酸化剤ガス排出マニホルド内を燃料電池スタックの積層方向に流れることにより各燃料電池から排出される。
カソードセパレータ1は、一方の面1aに酸化剤ガスの流路溝が設けられ、その反対側の面1bに冷却水の流路溝が設けられたカソード流路部1cを有する。アノードセパレータ2は、一方の面2aに燃料ガスの流路溝が設けられ、その反対側の面2bに冷却水の流路溝が設けられたアノード流路部2cを有する。
カソードセパレータ1とアノードセパレータ2は、冷却水の流路溝が設けられた面1b,2b同士が対向するように重ね合わせられる。冷却水は、供給側の貫通孔12からカソード流路部1c及びアノード流路部2cの流路溝を通って排出側の貫通孔15に流れ込む。
カソードセパレータ1は、酸化剤ガスの流路溝が設けられた面1aがMEGA5のガス拡散層51に対向するように積層される。酸化剤ガスは、供給側の貫通孔14から流路溝を通って排出側の貫通孔13に流れ込む。
アノードセパレータ2は、燃料ガスの流路溝が設けられた面2aが、燃料電池スタックにおいて隣接する他の燃料電池のMEGA5のガス拡散層52に対向するように積層される。燃料ガスは、供給側の貫通孔21から流路溝を通って排出側の貫通孔26に流れ込む。
次に各流路溝の構成について述べる。
図2は、酸化剤ガス及び燃料ガスの各流路溝の一例を示す平面図である。より具体的には、図2は、図1に示された方向Vに従ってカソードセパレータ1の面1aとアノードセパレータ2の面2aを重ねて平面視したときの酸化剤ガス及び燃料ガスの各流路溝を示す図である。
カソード流路部1cの面1a側には、複数の流路溝を含む上流域流路溝群10b、中流域流路溝群10a、及び下流域流路溝群10cが形成されている。上流域流路溝群10b、中流域流路溝群10a、及び下流域流路溝群10cは互いに連通し、上流域流路溝群10bは供給側の貫通孔14と接続され、下流域流路溝群10cは排出側の貫通孔13と接続されている。酸化剤ガスは、矢印で示されるように、供給側の貫通孔14から上流域流路溝群10b、中流域流路溝群10a、及び下流域流路溝群10cをこの順に経由して排出側の貫通孔13に流れ込む。
アノード流路部2cの面2a側には、複数の流路溝を含む上流域流路溝群20b、中流域流路溝群20a、及び下流域流路溝群20cが形成されている。上流域流路溝群20b、中流域流路溝群20a、及び下流域流路溝群20cは互いに連通し、上流域流路溝群20bは供給側の貫通孔21と接続され、下流域流路溝群20cは排出側の貫通孔26と接続されている。燃料ガスは、矢印で示されるように、供給側の貫通孔21から上流域流路溝群20b、中流域流路溝群20a、及び下流域流路溝群20cをこの順に経由して排出側の貫通孔26に流れ込む。
酸化剤ガス及び燃料ガスの中流域流路溝群10a,20aは平面視でMEA50に重なる。酸化剤ガスは中流域流路溝群10aとMEA50の間で受け渡しされ、燃料ガスは中流域流路溝群20aとMEA50の間で受け渡しされる。このため、中流域流路溝群10a,20aは発電が行われる発電領域に該当する。
中流域流路溝群10a,20aには、一例としてカソードセパレータ1及びアノードセパレータ2の長辺に沿った平行な複数の流路溝が含まれるが、これに限定されず、例えばサーペンタイン状に配置された複数の流路溝が含まれてもよい。また、上流域流路溝群10b,20bには、中流域流路溝群10a,20aと接続されるように、長辺に対して傾斜した平行な複数の流路溝が含まれ、下流域流路溝群10c,20cには、中流域流路溝群10a,20aと接続されるように、長辺に対して傾斜した平行な複数の流路溝が含まれる。
酸化剤ガスの貫通孔13,14はカソードセパレータ1の一組の対角の近傍に位置し、燃料ガスの貫通孔21,26は、アノードセパレータ2の上記の一組とは重ならない別の一組の対角の近傍に位置する。このため、長辺に対して傾斜した酸化剤ガスの流路溝と燃料ガスの流路溝の一部は、符号P2,P3で示されるように平面視で交差する。
次に冷却水の流路溝について述べる。
図3は、カソードセパレータ1の冷却水の流路溝の一例を示す平面図である。図3には、図2との比較が容易となるように、図1の方向Vに従って、冷却水の流路溝が形成された面1bをその反対側の面1aから透かして平面視したときの冷却水の流路溝が示されている。
カソード流路部1cの面1b側には、複数の流路溝を含む上流域流路溝群19b、中流域流路溝群19a、及び下流域流路溝群19cが形成されている。上流域流路溝群19b、中流域流路溝群19a、及び下流域流路溝群19cは互いに連通し、上流域流路溝群19bは供給側の貫通孔12と接続され、下流域流路溝群19cは排出側の貫通孔15と接続されている。冷却水は、矢印で示されるように、供給側の貫通孔12から上流域流路溝群19b、中流域流路溝群19a、及び下流域流路溝群19cをこの順に経由して排出側の貫通孔15に流れ込む。
カソード流路部1cは、冷却水の流路溝が酸化剤ガスの流路溝平面上で互い違いに配置されるように、例えばプレス加工などにより凹凸形状に形成されている。このため、冷却水の流路溝は反対側の面1aの酸化剤ガスの流路溝の間に設けられている。つまり、冷却水の流路溝は酸化剤ガスの流路溝の壁として機能し、逆に酸化剤ガスの流路溝は冷却水の流路溝の壁として機能する。
図4は、アノードセパレータ2の冷却水の流路溝の一例を示す平面図である。図4には、図1の方向Vに従って、冷却水の流路溝が形成された面2bを平面視したときの冷却水の流路溝が示されている。
アノード流路部2cの面2b側には、複数の流路溝を含む上流域流路溝群29b、中流域流路溝群29a、及び下流域流路溝群29cが形成されている。上流域流路溝群29b、中流域流路溝群29a、及び下流域流路溝群29cは互いに連通し、上流域流路溝群29bは供給側の貫通孔22と接続され、下流域流路溝群29cは排出側の貫通孔25と接続されている。冷却水は、矢印で示されるように、供給側の貫通孔22から上流域流路溝群29b、中流域流路溝群29a、及び下流域流路溝群29cをこの順に経由して排出側の貫通孔25に流れ込む。
アノード流路部2cは、冷却水の流路溝が燃料ガスの流路溝平面上で互い違いに配置されるように、例えばプレス加工などにより凹凸形状に形成されている。このため、冷却水の流路溝は反対側の面2aの燃料ガスの流路溝の間に設けられている。つまり、冷却水の流路溝は燃料ガスの流路溝の壁として機能し、逆に燃料ガスの流路溝は冷却水の流路溝の壁として機能する。
次に冷却水が流れる経路について述べる。
図5は、比較例における冷却水の経路を示す平面図である。図5には、図2~図4の符号P3の領域を平面視したときの酸化剤ガスの流路溝100、燃料ガスの流路溝200、及び冷却水の流路溝101,201が部分的に示されている。図5の紙面右方向は各マニホルド側であり、図5の紙面左方向は発電領域側である。
図6は、A-A線に沿ったカソードセパレータ1及びアノードセパレータ2の断面図である。より具体的には、図6は、カソードセパレータ1側から斜視したときの断面の一部を示す。なお、A-A線は、矢印で示される冷却水の経路の一部に沿っている。
符号P3の領域では、発電に使用された酸化剤ガスが、発電領域から酸化剤ガス排出マニホルドに向かって流路溝100を流れる。また、燃料ガスは、燃料ガス供給マニホルドから発電領域に向かって流路溝200を流れる。酸化剤ガスの流路溝100と燃料ガスの流路溝200が交差する交差部Pでは、カソードセパレータ1とアノードセパレータ2の間の支持剛性が得られるように各流路溝100,200の底部100a,200a同士が接触している。このため、冷却水は交差部Pを通過することができない。
冷却水は、冷却水供給マニホルドから発電領域に向かってアノードセパレータ2の流路溝201とカソードセパレータ1の流路溝101を流れる。流路溝201,101同士の交差部P’では、各流路溝101,201の底部101a,201a同士が間隔をおいて対向しているため、各流路溝101,201を流れる冷却水が合流する。なお、図5では、A-A線上の交差部P’のみが符号で示されている。
冷却水は、交差部P’において部分的に流路溝101,201の一方から他方に流れ込む。なお、図6には、冷却水が流路溝201から流路溝101に流れ込む経路が矢印で示されているが、これとは逆に流路溝101から流路溝201に流れ込む経路も存在する。このため、冷却水の流路溝101,201は全体として網目状の形態を有する。
冷却水は、一例として、図5の矢印で示されるように、酸化剤ガス及び燃料ガスの各流路溝100,200の交差部Pを避けるように冷却水の流路溝101,201の交差部P’で進行方向を変えながらジグザグに流れる。このように、冷却水は進行方向を頻繁に変えるため、一定方向に進む場合より圧力損失が高くなる。このため、燃料電池の冷却効率が低下するおそれがある。
そこで、実施例の燃料電池では、各流路溝100,200の底部100a,200aの間を冷却水が流れるように、一部の交差部Pにおいて酸化剤ガスの流路溝100及び燃料ガスの流路溝200の少なくとも一方が浅く形成されている。これにより、冷却水が進行方向を変える頻度が低下するため、冷却水の圧力損失の増加が抑制される。
図7は、実施例における冷却水の経路Ka,Kbを示す平面図である。図7には、図2~図4の符号P3の領域を平面視したときの酸化剤ガスの流路溝110,111、燃料ガスの流路溝210,211、及び冷却水の流路溝112,212が部分的に示されている。
また、図7の紙面右方向は各マニホルド側であり、図7の紙面左方向は発電領域側である。なお、酸化剤ガスの流路溝110,111は第1流路溝の一例であり、冷却水の流路溝112は第2流路溝の一例である。また、燃料ガスの流路溝210,211は第3流路溝の一例であり、冷却水の流路溝212は第4流路溝の一例である。
図8は、B-B線に沿ったカソードセパレータ1及びアノードセパレータ2の断面図である。より具体的には、図8は、カソードセパレータ1側から斜視したときの断面の一部を示す。なお、B-B線は、矢印で示される冷却水の経路Kaの一部に沿っている。
本例において、カソードセパレータ1の冷却水の流路溝112の深さは比較例と同様に一定であるが、酸化剤ガスの流路溝110,111の深さは相違する。流路溝110,111は冷却水の流路溝112を挟んで交互に配置されており、一方の流路溝110は他方の流路溝111より浅く形成されている。
また、アノードセパレータ2の冷却水の流路溝212の深さは比較例と同様に一定であるが、燃料ガスの流路溝210,211の深さは相違する。流路溝210,211は冷却水の流路溝212を挟んで交互に配置されており、一方の流路溝211は他方の流路溝210より浅く形成されている。なお、流路溝111,210の深さは比較例の流路溝100,200と同一である。
このため、浅い流路溝110,211同士が交差する交差部Qでは、各流路溝110,211の底部110a,211aの間に、冷却水が通過できる隙間Lが存在する。つまり、各流路溝110,211の底部110a,211aは間隔をおいて対向している。一方、深い流路溝111,210同士が交差する交差部Rでは、カソードセパレータ1とアノードセパレータ2の間の支持剛性が得られるように各流路溝111,210の底部111a,210a同士が接触している。このため、冷却水は交差部Rを通過することができない。
冷却水の流路溝112,212同士が交差する交差部P’では、比較例と同様に、各流路溝112,212の底部112a,212a同士が間隔をおいて対向しているため、各流路溝112,212を流れる冷却水は合流する。なお、図7では、B-B線上の交差部P’のみが符号で示されている。
冷却水の流路溝112,212の交差部P’同士は、浅い流路溝110,211同士の交差部Qを介して隣り合う。冷却水は、図8に矢印で示されるように、冷却水供給マニホルド側の交差部P’から、浅い流路溝110,211の底部110a,211aの間の隙間Lを通って発電領域側の交差部P’に流れ込む。
図8の矢印で示されるように、一例として冷却水は、冷却水供給マニホルド側の交差部P’において流路溝212から隙間Lに流れ込み、発電領域側の交差部P’において流路溝112に流れ込む。しかし、図示は省略するが、冷却水供給マニホルド側の交差部P’において流路溝112から隙間Lに流れ込み、発電領域側の交差部P’の流路溝212に流れ込む冷却水の経路も存在する。
このように、酸化剤ガスの流路溝110と燃料ガスの流路溝211の各底部110a,211aは間隔をおいて対向しているため、冷却水は、冷却水供給マニホルド側の流路溝112,212から隙間Lを流れて発電領域側の流路溝112,212に流れ込むことができる。
したがって、冷却水は、図7に示される経路Kaのように、深い流路溝111,210同士の交差部Rを避けるように冷却水の流路溝112,212の交差部P’で進行方向を変えながら流れるが、浅い流路溝110,211同士の交差部Qでは発電領域に向かって真っ直ぐに流れることができる。したがって、冷却水の進行方向を変える頻度が比較例より低減されるため、冷却水の圧力損失の増加が抑制される。
また、図8に示されるように、深い流路溝111,210の底部111a,210aの両端には、底部111a,210aに対する段差が生ずるように段差部111b,210bが設けられている。以下に述べるように、深い流路溝111は、段差部111bを有するため、浅い流路溝110との間で酸化剤ガスの圧力損失の差分が低減される。
図9は、D-D線(図8参照)に沿った流路溝111の一例を示す断面図である。より具体的には、図9は流路溝111内の酸化剤ガスの流れる方向に沿った断面を示す。図9において、図8と共通する構成には同一の符号を付し、その説明は省略する。
流路溝111は、例えば酸化剤ガスが流れる方向に沿って一定間隔で凸部111cが設けられている。凸部111cの上部は、例えば段差部111bの高さに一致する。
凸部111c、段差部111b、及び底部111aで確定される空間内には、点線の矢印で示されるように、酸化剤ガスの渦が発生する。酸化剤ガスの渦は、上部の酸化剤ガスの流れを実質的に阻害しないため、圧力損失には寄与しない。このため、段差部111bの高さ位置を浅い流路溝110の底部110aの位置に合わせることにより深い流路溝111と浅い流路溝110の間の流路断面積の差分が低減される。
これにより、深い流路溝111と浅い流路溝110との間の酸化剤ガスの圧力損失の差分が低減される。なお、燃料ガスの流路溝210にも上記と同様に構成を備えることにより底部210aに燃料ガスの渦が生ずるため、流路溝210と流路溝211との間の酸化剤ガスの圧力損失の差分が低減される。
このように、深い流路溝111,210と浅い流路溝110,211との間で圧力損失の差分が低減されるため、発電領域に流れる酸化剤ガス及び燃料ガスの流量の偏りが低減されて燃料電池の発電効率が向上する。
また、図7に示される経路Kbのように、冷却水は、深い流路溝111と浅い流路溝211が交差する交差部T、及び深い流路溝210と浅い流路溝110が交差する交差部Sでも、発電領域に向かって真っ直ぐに流れることができるため、さらに圧力損失が低減される。
図10は、C-C線に沿ったカソードセパレータ1及びアノードセパレータ2の断面図である。より具体的には、図10は、カソードセパレータ1側から斜視したときの断面の一部を示す。なお、C-C線は、矢印で示される冷却水の経路Kbに沿う。図10において、図8と共通する構成には同一の符号を付し、その説明は省略する。
交差部Sにおいて、浅い流路溝110の底部110aと深い流路溝210の底部210aの間には、冷却水が流れる隙間Mが存在する。つまり、各流路溝110,210の底部110a,210aは間隔をおいて対向している。また、交差部Tにおいて、浅い流路溝211の底部211aと深い流路溝111の底部111aの間には、冷却水が流れる隙間Nが存在する。つまり、各流路溝111,211の底部111a,211aは間隔をおいて対向している。
このため、冷却水は、経路Kbに沿って、冷却水供給マニホルドから発電領域に向かって交差部S,Tにおける各隙間M,Nを通り真っ直ぐに流れることができる。これにより、冷却水の進路が変わる頻度が比較例より低減されるため、冷却水の圧力損失が低減される。
上記のように、酸化剤ガスが流れる複数の流路溝110,111と燃料ガスが流れる複数の流路溝210,211が交差する複数の交差部Q,R,S,Tのうち、一部の交差部Q,S,Tにおいて流路溝110,111の底部110a,111aと流路溝210,211の底部210a,211aは、冷却水が各底部110a,111a,210a,211aの間を通過するように、間隔をおいて対向している。このため、冷却水が底部110a,111a,210a,211a同士の間の隙間を流れることにより、冷却水の進行方向を変える頻度が比較例より低減されるため、冷却水の圧力損失の増加が抑制される。
本例において、カソードセパレータ1及びアノードセパレータ2のそれぞれに浅い流路溝110,211が設けられているが、浅い流路溝110,211はカソードセパレータ1及びアノードセパレータ2の一方だけに設けられてもよい。
図11は、他の実施例におけるB-B線に沿ったカソードセパレータ1及びアノードセパレータ2の断面図である。図11において、図6及び図8と共通する構成には同一の符号を付し、その説明は省略する。
本例において、アノードセパレータ2は、比較例と同一の流路溝200,201を有する。このため、燃料ガスの流路溝200の深さは一様である。なお、流路溝200は第3流路溝の一例であり、流路溝201は第4流路溝の一例である。
流路溝200と深い流路溝111が交差する交差部Rにおいて、カソードセパレータ1とアノードセパレータ2の間の支持剛性が得られるように各流路溝111,200の底部111a,200a同士は接触する。また、流路溝200と浅い流路溝110が交差する交差部Qにおいて、各流路溝110,200の底部110a,200aの間には、冷却水が流れる隙間Kが存在する。つまり、各流路溝110,200の底部110a,200aは間隔をおいて対向している。
したがって、図7に示される経路Kaのように、冷却水は、流路溝111,200の交差部Rを避けるように冷却水の流路溝112,201の交差部P’で進行方向を変えながら流れるが、流路溝110,200の交差部Qでは発電領域に向かって真っ直ぐに流れることができる。これにより、冷却水の進行方向を変える頻度が比較例より低減されるため、冷却水の圧力損失の増加が抑制される。
上記のように、酸化剤ガスが流れる複数の流路溝110,111と燃料ガスが流れる複数の流路溝200が交差する複数の交差部Q,Rのうち、一部の交差部Qにおいて流路溝110の底部110aと流路溝200の底部200aは、冷却水が各底部110a,200aの間を通過するように間隔をおいて対向している。このため、冷却水が底部110a,200a同士の間の隙間Kを流れることにより、冷却水の進行方向を変える頻度が比較例より低減されるため、冷却水の圧力損失の増加が抑制される。
なお、本例ではアノードセパレータ2に一様な深さの流路溝200が設けられているが、これに代えて、カソードセパレータ1に比較例と同様の一様な深さの流路溝100が設けられてもよい。この場合、流路溝211は他の流路溝210より浅くなっているため、冷却水は流路溝211と流路溝100の底部211a,100aの間を流れることができ、冷却水の圧力損失の増加が抑制される。
また、上記の構成は、図2~図3の符号P2で示された領域にも適用することができる。この場合、発電領域から冷却水排出マニホルドに向かう冷却水の圧力損失が低減されるため、冷却水の排出性能が向上する。
また、各実施例において、カソードセパレータ1及びアノードセパレータ2の中流域流路溝群10a,20aはそれぞれストレート形状の流路溝を有するが、これに限定されず、カウンターフロー形状の流路溝を有してもよい。この場合、中流域流路溝群10a,20aにおいて、酸化剤ガスの流路溝と燃料ガスの流路溝が平面視で交差する交差部の一部に上記と同様の構成を適用してもよい。
また、上記の実施例では、流路溝110,111,210,211ごとに深さが異なるが、1つの流路溝において、酸化剤ガスまたは燃料ガスの流れる方向に沿って深さが変化してもよい。この場合、酸化剤ガス及び燃料ガスの各流路溝の交差部のうち、少なくとも一方の流路溝が浅い交差部では各流路溝の底部同士の間に隙間が存在するため、冷却水が交差部を流れることができ、上記と同様の効果が得られる。
上述した実施形態は本発明の好適な実施の例である。但し、これに限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変形実施可能である。
1 カソードセパレータ
2 アノードセパレータ
1a,1b,2a,2b 面
100,101,110~112 流路溝
200,201,210~212 流路溝
100a,101a,110a~112a 底部
200a,201a,210a~212a 底部
P~T,P’ 交差部

Claims (1)

  1. 酸化剤ガスが流れる複数の第1流路溝が一方の面に設けられ、前記複数の第1流路溝の間に冷却媒体が流れる複数の第2流路溝が他方の面に設けられた第1セパレータと、
    燃料ガスが流れる複数の第3流路溝が一方の面に設けられ、前記複数の第3流路溝の間に前記冷却媒体が流れる複数の第4流路溝が他方の面に設けられた第2セパレータとを有し、
    前記第1セパレータと前記第2セパレータは、前記複数の第2流路溝が設けられた面と前記複数の第4流路溝が設けられた面が対向するように重ね合わせられ、
    平面視で前記複数の第1流路溝と前記複数の第3流路溝が交差する複数の交差部のうち、一部の交差部において、当該第1流路溝の底部と当該第3流路溝の底部の間を前記冷却媒体が通過するように、前記第1流路溝の底部と前記第3流路溝の底部が間隔をおいて対向し、
    前記複数の交差部は、前記酸化剤ガス及び前記燃料ガスにより発電する発電領域に対して、前記複数の第2流路溝及び前記複数の第4流路溝の上流側または下流側に位置することを特徴とする燃料電池。
JP2018175236A 2018-09-19 2018-09-19 燃料電池 Active JP7006549B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018175236A JP7006549B2 (ja) 2018-09-19 2018-09-19 燃料電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018175236A JP7006549B2 (ja) 2018-09-19 2018-09-19 燃料電池

Publications (2)

Publication Number Publication Date
JP2020047483A JP2020047483A (ja) 2020-03-26
JP7006549B2 true JP7006549B2 (ja) 2022-02-10

Family

ID=69901571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018175236A Active JP7006549B2 (ja) 2018-09-19 2018-09-19 燃料電池

Country Status (1)

Country Link
JP (1) JP7006549B2 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003338300A (ja) 2002-05-17 2003-11-28 Honda Motor Co Ltd 燃料電池
JP2009277417A (ja) 2008-05-13 2009-11-26 Toyota Motor Corp 燃料電池用セパレータ
JP2012234824A (ja) 2006-10-16 2012-11-29 Hyundai Hysco 燃料電池用金属分離板
JP2015072757A (ja) 2013-10-02 2015-04-16 トヨタ自動車株式会社 セパレータおよび燃料電池
JP2015173108A (ja) 2014-02-19 2015-10-01 トヨタ紡織株式会社 燃料電池用セパレータ
JP2016015222A (ja) 2014-07-01 2016-01-28 トヨタ紡織株式会社 燃料電池用セパレータ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003338300A (ja) 2002-05-17 2003-11-28 Honda Motor Co Ltd 燃料電池
JP2012234824A (ja) 2006-10-16 2012-11-29 Hyundai Hysco 燃料電池用金属分離板
JP2009277417A (ja) 2008-05-13 2009-11-26 Toyota Motor Corp 燃料電池用セパレータ
JP2015072757A (ja) 2013-10-02 2015-04-16 トヨタ自動車株式会社 セパレータおよび燃料電池
JP2015173108A (ja) 2014-02-19 2015-10-01 トヨタ紡織株式会社 燃料電池用セパレータ
JP2016015222A (ja) 2014-07-01 2016-01-28 トヨタ紡織株式会社 燃料電池用セパレータ

Also Published As

Publication number Publication date
JP2020047483A (ja) 2020-03-26

Similar Documents

Publication Publication Date Title
US11476472B2 (en) Separator plate for an electrochemical system
JP2009043578A (ja) 燃料電池
KR101806620B1 (ko) 연료전지 스택
JP2012248460A (ja) 燃料電池ユニット及び燃料電池スタック
JP5449838B2 (ja) 燃料電池スタック
US9490487B2 (en) Fuel cell
JP6663553B2 (ja) 燃料電池
CA3001024C (en) Resin frame and separator configuration in a fuel cell
JP6897471B2 (ja) 燃料電池用ガス流路形成板および燃料電池スタック
JP6658486B2 (ja) 燃料電池用セパレータ及び燃料電池
JP5584731B2 (ja) 燃料電池
JP7006549B2 (ja) 燃料電池
JP2012221619A (ja) 燃料電池セル
JP2020140944A (ja) 燃料電池
WO2021014677A1 (ja) 燃料電池スタック
US10700366B2 (en) Fuel cell having a metal separator with a flat portion
JP5443254B2 (ja) 燃料電池
JP7070291B2 (ja) 燃料電池スタック
JP7176490B2 (ja) 燃料電池スタック
JP7496377B2 (ja) 発電セル
US20230223563A1 (en) Power generation cell
JP7131497B2 (ja) 燃料電池
JP2010027332A (ja) 燃料電池
WO2021199500A1 (ja) 燃料電池用セパレータ
JP2008123901A (ja) 燃料電池

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211220

R151 Written notification of patent or utility model registration

Ref document number: 7006549

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151