JP6986004B2 - 絶縁抵抗検出装置 - Google Patents

絶縁抵抗検出装置 Download PDF

Info

Publication number
JP6986004B2
JP6986004B2 JP2018226824A JP2018226824A JP6986004B2 JP 6986004 B2 JP6986004 B2 JP 6986004B2 JP 2018226824 A JP2018226824 A JP 2018226824A JP 2018226824 A JP2018226824 A JP 2018226824A JP 6986004 B2 JP6986004 B2 JP 6986004B2
Authority
JP
Japan
Prior art keywords
voltage
insulation resistance
detected
power supply
predetermined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018226824A
Other languages
English (en)
Other versions
JP2020091127A (ja
Inventor
竜太 久保川
真和 幸田
亨 脇本
祐輔 進藤
明 角
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2018226824A priority Critical patent/JP6986004B2/ja
Priority to CN201980079755.6A priority patent/CN113167826A/zh
Priority to PCT/JP2019/044960 priority patent/WO2020116133A1/ja
Publication of JP2020091127A publication Critical patent/JP2020091127A/ja
Priority to US17/337,957 priority patent/US11874339B2/en
Application granted granted Critical
Publication of JP6986004B2 publication Critical patent/JP6986004B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/025Measuring very high resistances, e.g. isolation resistances, i.e. megohm-meters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/16Measuring impedance of element or network through which a current is passing from another source, e.g. cable, power line
    • G01R27/18Measuring resistance to earth, i.e. line to ground
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/40Testing power supplies

Description

本発明は、絶縁抵抗検出装置に関する。
従来、例えば車両において、車両に搭載された電気系統と接地部との間における絶縁抵抗の低下に基づいて、漏電を判定する絶縁抵抗検出装置が知られている(例えば、特許文献1)。この絶縁抵抗検出装置では、電気系統に接続される接続線に対して所定の周波数信号を出力するとともに、その接続線における電圧(波高値)を所定周期で検出し、検出電圧の移動平均値に基づいて絶縁抵抗を検出する。特許文献1の絶縁抵抗検出装置では、前周期までに検出された検出電圧に基づいて有効範囲を設定し、この有効範囲内の検出電圧を用いて移動平均値を算出する。これにより、絶縁抵抗検出の精度向上を図っている。
特開2009−300400号公報
しかし、移動平均値の算出には複数の検出電圧が必要であるため、絶縁抵抗の検出に移動平均値を用いると、ノイズ等に関係なく正確な絶縁抵抗の検出が可能である反面、絶縁抵抗が収束するまでの期間が長くなる、という問題が生じる。例えば、漏電発生時には、検出電圧は急激に変化した後に、変化後の電圧値で安定するものの、移動平均値は緩やかに変化するため、安定するまでに必要な期間が長期化する。この結果、絶縁抵抗が収束するまでの期間が長くなり、漏電判定が遅れる問題が生じる。早期に絶縁抵抗を収束させて、絶縁抵抗を適切に検出可能な技術が望まれている。
本発明は、上記課題を解決するためになされたものであり、その目的は、絶縁抵抗を適切に検出可能な絶縁抵抗検出装置を提供することにある。
本発明は、直流電源と、前記直流電源に接続されかつ接地部から絶縁された電源経路に一端が接続されたカップリングコンデンサと、前記カップリングコンデンサの他端に接続された抵抗と、前記抵抗に接続され、前記抵抗に所定の周波数信号を出力する発振部と、を備える電源システムに適用され、前記発振部が前記抵抗に前記周波数信号を出力した場合における前記カップリングコンデンサと前記抵抗との接続点での電圧を所定周期で検出し、検出電圧の移動平均値に基づき、前記接地部と前記電源経路との間における絶縁抵抗を検出し、前記絶縁抵抗が基準値以下である場合に短絡と判定する絶縁抵抗検出装置であって、前記検出電圧が所定値以上変化した場合に、前記検出電圧が変化後の電圧値で安定するか否かを判定する電圧判定部と、前記電圧判定部により前記検出電圧が変化後の電圧値で安定すると判定された場合に、前記移動平均値に代えて現時点の前記検出電圧に基づいて、前記絶縁抵抗を検出する抵抗検出部と、を備える。
移動平均値を用いて絶縁抵抗を検出するため、ノイズ等に関係なく正確な絶縁抵抗の検出を実施できる。また、接地部と電源経路との間に漏電が発生した場合には、検出電圧が所定値以上変化し、かつその検出電圧が変化後の電圧値で安定状態となる。この場合、移動平均値に代えて現時点の検出電圧に基づいて絶縁抵抗を検出する構成とすることにより、漏電が発生している場合でも早期に絶縁抵抗を収束させることができ、絶縁抵抗を適切に検出することができる。
車両電源システムの全体構成図。 第1実施形態に係る絶縁抵抗検出処理のフローチャート。 システム起動時における検出電圧と移動平均値との推移を示すタイムチャート。 漏電発生時における検出電圧と移動平均値との推移を示すタイムチャート。 第2実施形態に係る絶縁抵抗検出処理のフローチャート。 第2実施形態に係る検出電圧の推移を示すタイムチャート。 第3実施形態に係る絶縁抵抗検出処理のフローチャート。 第3実施形態に係る検出電圧の推移を示すタイムチャート。 その他の実施形態に係る検出電圧の推移を示すタイムチャート。
(第1実施形態)
以下、本発明に係る絶縁抵抗検出装置を具体化した第1実施形態について、図面を参照しつつ説明する。本実施形態の絶縁抵抗検出装置50は、車両に搭載されている。
図1に示すように、本実施形態の車両電源システム100は、回転電機10と、インバータ20と、コンバータ30と、直流電源40と、絶縁抵抗検出装置50とを備えている。本実施形態において、回転電機10は、星形結線された3相の巻線11を備えている。回転電機10のロータは、車両の駆動輪と動力伝達が可能なように接続されている。回転電機10は、例えば同期機である。
回転電機10は、インバータ20及びコンバータ30を介して、直流電源40に接続されている。本実施形態において、直流電源40は、充放電可能な蓄電池であり、複数の電池セル42が直列接続されて構成されている。電池セルとして、例えば、リチウムイオン蓄電池や、ニッケル水素蓄電池を用いることができる。
インバータ20は、U,V,W相それぞれについて、上アームスイッチSIHと下アームスイッチSILとの直列接続体を備えている。本実施形態では、各スイッチSIH,SILとして、ユニポーラ素子であってかつSiCのNチャネルMOSFETが用いられている。上アームスイッチSIHは、ボディダイオードとしての上アームダイオードDIHを有し、下アームスイッチSILは、ボディダイオードとしての下アームダイオードDILを有している。
インバータ20は、回転電機10及びコンバータ30に接続されている。具体的には、各相において、上アームスイッチSIHのソースと下アームスイッチSILのドレインとの接続点には、回転電機10の巻線11の第1端が接続されている。各相の巻線11の第2端は、中性点で接続されている。
コンバータ30は、直流電源40の電源電圧Vbatを昇圧させて、インバータ20に出力する昇圧型のDC−DCコンバータである。コンバータ30は、上アーム変圧スイッチSCHと下アーム変圧スイッチSCLとの直列接続体31と、平滑リアクトル32とを備えている。本実施形態では、各変圧スイッチSCH,SCLとして、ユニポーラ素子であってかつSiCのNチャネルMOSFETが用いられている。上アーム変圧スイッチSCHは、ボディダイオードとしての上アーム変圧ダイオードDCHを有し、下アーム変圧スイッチSCLは、ボディダイオードとしての下アーム変圧ダイオードDCLを有している。
上アーム変圧スイッチSCHのドレインには、インバータ20の各相における上アームスイッチSIHのドレインが接続されている。上アーム変圧スイッチSCHのソースと下アーム変圧スイッチSCLのドレインとの接続点には、平滑リアクトル32の第1端が接続されている。平滑リアクトル32の第2端には、直流電源40の正極端子が接続されている。下アーム変圧スイッチSCLのソースには、直流電源40の負極端子及びインバータ20の各相における下アームスイッチSIHのソースが接続されている。
車両電源システム100は、平滑コンデンサ22と、電源電圧検出部24とを備えている。平滑コンデンサ22は、コンバータ30における上アーム変圧スイッチSCHのドレインと、下アーム変圧スイッチSCLのソースとの間に配置されている。電源電圧検出部24は、平滑コンデンサ22の端子電圧を電源電圧Vbatとして検出する。
直流電源40の正極端子に接続される正極側電源経路L1には、コンバータ30等の電気負荷の正極側端子(例えば、上アーム変圧スイッチSCHのドレイン)が接続されている。同様に、直流電源40の負極端子に接続される負極側電源経路L2には、コンバータ30等の電気負荷の負極側端子(例えば、下アーム変圧スイッチSCLのソース)が接続されている。
正極側電源経路L1及び負極側電源経路L2は、車体などの接地部G1に対して電気的に絶縁されている。これら電源経路L1,L2と、接地部G1との間における抵抗を絶縁抵抗Rnとして表すことができる。また。電源経路L1,L2と、接地部G1との間には、ノイズ除去用のコンデンサや浮遊容量等の対地静電容量が存在し、これらの容量をまとめて絶縁容量Cnとして表す。
なお、回転電機10は、電源経路L1,L2に電気的に接続されている。そのため、回転電機10と、接地部G1との間における抵抗も絶縁抵抗Rnと示し、回転電機10と、接地部G1との間における容量も絶縁容量Cnと示すこととする。
絶縁抵抗検出装置50は、正極側電源経路L1と負極側電源経路L2のうちいずれかに接続されており、接地部G1と電源経路L1,L2との間における絶縁抵抗Rnを検出する。以下、絶縁抵抗検出装置50について説明する。
絶縁抵抗検出装置50は、回路部52と、フィルタ回路54と、制御部56とを備えている。回路部52は、所定周波数の交流信号を出力する発振部53と、抵抗R1と、カップリングコンデンサC1を備えている。発振部53と抵抗R1とカップリングコンデンサC1とは、この順に直列接続されており、発振部53の第1端は、抵抗R1を介してカップリングコンデンサC1に接続されている。発振部53の第2端は、接地部G1に接続されている。
カップリングコンデンサC1は、負極側電源経路L2の接続点M1に接続されている。カップリングコンデンサC1は、低電圧回路である絶縁抵抗検出装置50と、高電圧回路である直流電源40、コンバータ30、インバータ20、及び回転電機10との間で、入力の直流成分を遮断する一方、交流成分を通過させるものである。
回路部52では、発振部53が抵抗R1及びカップリングコンデンサC1を介して交流信号を出力する場合、接続点M2の電圧は、最終的に、発振部53が出力した交流信号を、抵抗R1の抵抗値と絶縁抵抗Rnの抵抗値とで分圧した値となる。フィルタ回路54には、この検出電圧VDが入力される。なお、本実施形態において、交流信号が「周波数信号」に相当する。
フィルタ回路54は、抵抗R1とカップリングコンデンサC1との間の接続点M2に接続されている。フィルタ回路54は、発振部53が抵抗R1に交流電圧を出力した場合における接続点M2での電圧(アナログ信号)を、制御部56の処理に適したデジタル信号に変換して出力するA/D変換回路である。
制御部56は、フィルタ回路54を介して接続点M2の電圧を所定周期で検出し、検出電圧VDの移動平均値VAに基づき、接地部G1と電源経路L1,L2との間における絶縁抵抗Rnを検出する。所定周期は、交流電圧の周期と等しく、略2Hzである。制御部56は、検出した絶縁抵抗Rnを用いて高電圧回路の絶縁状態、すなわち、漏電の有無を判定する。
制御部56は、漏電が生じていると判定した場合、漏電に応じた各種処理を実施する。例えば、警報の出力を実施する。なお、制御部56が提供する機能は、例えば、実体的なメモリ装置に記録されたソフトウェア及びそれを実施するコンピュータ、ハードウェア、又はそれらの組み合わせによって提供することができる。
ところで、移動平均値VAの算出には複数の検出電圧VDが必要であるため、絶縁抵抗Rnの検出に移動平均値VAを用いると、ノイズ等に関係なく正確な絶縁抵抗Rnの検出が可能である反面、絶縁抵抗Rnが収束するまでの期間が長くなる、という問題が生じる。例えば、漏電発生時には、検出電圧VDは急激に変化した後に、変化後の電圧値で安定するものの、移動平均値VAは緩やかに変化するため、安定するまでに必要な期間が長期化する。この結果、絶縁抵抗Rnが収束するまでの期間が長くなり、漏電判定が遅れる問題が生じる。早期に絶縁抵抗Rnを収束させて、絶縁抵抗Rnを適切に検出可能な技術が望まれている。
本実施形態の絶縁抵抗検出装置50では、検出電圧VDが所定値以上変化した場合に、検出電圧VDが変化後の電圧値で安定するか否かを判定し、安定すると判定された場合に、移動平均値VAに代えて現時点の検出電圧VDに基づいて、絶縁抵抗Rnを検出する絶縁抵抗検出処理を実施する。これにより、移動平均値VAに基づいて絶縁抵抗Rnを検出する場合に比べて、早期に絶縁抵抗Rnを収束させることができる。
図2に本実施形態の絶縁抵抗検出処理のフローチャートを示す。制御部56は、車両電源システム100のシステム駆動時、すなわち、絶縁抵抗検出装置50が搭載された車両のイグニッションスイッチがオンに切り替えられている期間に、絶縁抵抗検出処理を所定周期で繰り返し実施する。
絶縁抵抗検出処理を開始すると、まずステップS10において、接続点M2の電圧を検出する。続くステップS12において、車両電源システム100が起動するシステム起動時であるか否かを判定する。制御部56は、イグニッションスイッチのオンへの切り替えからの経過期間を計測しており、この経過期間が基準期間TB(図3参照)よりも短い場合に、システム起動時であると判定する。基準期間TBは、電源電圧Vbatに基づいて予め定められている期間である。なお、本実施形態において、ステップS12の処理が「起動判定部」に相当する。
ステップS12で肯定判定すると、すなわち、システム起動時であると判定された場合に、ステップS14において、ステップS10で検出された検出電圧VDを予め定められた所定電圧に置換する。本実施形態において、所定電圧は、接地部G1と電源経路L1,L2との間に短絡が発生していない状況下、すなわち、漏電が発生していない状況下における接続点M2の電圧である絶縁電圧VFに設定されている。なお、本実施形態において、ステップS14の処理が「電圧置換部」に相当し、絶縁電圧VFが「第1所定電圧」に相当する。
続くステップS16において、変動制限処理を実施する。変動制限処理では、移動平均を用いて検出電圧VDに含まれるノイズを低減する際に、検出電圧VDに対して有効範囲を設定することで、電源電圧Vbatの変化の影響を抑制する処理である。本実施形態では、有効範囲の上限値HUと下限値HDとを、前周期までに検出された検出電圧VDに基づいて設定する。
ステップS18において、移動平均値VAを算出する。移動平均値VAは、現時点から算出期間TA(図3参照)前までに検出された検出電圧VDの平均値である。そのため、ステップS18では、移動平均値VAが絶縁電圧VFのみを用いて算出される。例えば、算出期間TAは、所定周期4周期分の期間であり、最大5個の検出電圧VDを含む。なお、本実施形態において、算出期間TAが「第1期間」に相当する。
一方、ステップS12で否定判定すると、ステップS22において、ステップS10で検出された検出電圧VDが、前周期で検出された検出電圧VDから第1所定値Vtg1以上変化したか否かを判定する。第1所定値Vtg1は、絶縁電圧VFと短絡電圧VN(図4参照)との電圧差に相当する値である。なお、短絡電圧VNは、接地部G1と電源経路L1,L2との間に短絡が発生している状況下、すなわち、漏電が発生している状況下における接続点M2の電圧である。本実施形態において、短絡電圧VNが「第2所定電圧」に相当する。
ステップS22で肯定判定すると、すなわち、検出電圧VDが第1所定値Vtg1以上変化した場合に、ステップS24において、検出電圧VDが変化後の電圧値で安定しているか否かを判定する。具体的には、算出期間TAよりも短い判定期間TCに亘って、検出電圧VDの変化量ΔVが、第1所定値Vtg1よりも小さい第2所定値Vtg2(図4参照)よりも小さくなっているか否かを判定する。例えば、判定期間TCは、所定周期2周期分の期間であり、2個の変化量ΔVを含む。なお、本実施形態において、ステップS22,S24の処理が「電圧判定部」に相当し、判定期間TCが「第2期間」に相当する。
ステップS22又はステップS24で否定判定すると、ステップS26において、変動制限処理を実施する。ステップS26の変動制限処理は、ステップS16の変動制限処理と同一の処理であり、重複した説明を省略する。
ステップS28において、移動平均値VAを算出する。ステップS28で算出される移動平均値VAは、ステップS10で検出された検出電圧VDを用いて算出される点で、ステップS18で算出される移動平均値VAと異なる。
ステップS20,S28で移動平均値VAを算出すると、ステップS34において、移動平均値VAに基づいて絶縁抵抗Rnを検出する。そのため、システム起動時でない場合には、検出電圧VDを用いて算出された移動平均値VAに基づいて絶縁抵抗Rnが検出され、システム起動時である場合には、検出電圧VDを用いて算出された移動平均値VAに代えて、絶縁電圧VFに基づいて絶縁抵抗Rnが検出される。制御部56は、制御部56の記憶部57(図1参照)に記憶された換算情報を用いて、移動平均値VAから絶縁抵抗Rnを検出する。なお、記憶部57は、例えば、ROM、書き換え可能な不揮発性メモリ等によって構成されている。
一方、ステップS24で肯定判定すると、すなわち、検出電圧VDが変化後の電圧値で安定すると判定された場合に、ステップS34において、移動平均値VAに代えて、ステップS10で検出された検出電圧VD、すなわち、現時点の検出電圧VDに基づいて絶縁抵抗Rnを検出する。記憶部57には、移動平均値VAから絶縁抵抗Rnを検出する換算情報とともに、検出電圧VDから絶縁抵抗Rnを検出する換算情報が記憶されている。なお、本実施形態において、ステップS34の処理が「抵抗検出部」に相当する。
続くステップS36において、判定期間TCにおける絶縁抵抗RnのばらつきΔRを算出する。続くステップS38において、ステップS42で算出した絶縁抵抗RnのばらつきΔRが基準ばらつきΔRkよりも小さいか否かを判定する。基準ばらつきΔRkは、絶縁抵抗Rnの収束を示すばらつきである。
ステップS38で否定判定すると、絶縁抵抗検出処理を終了する。一方、ステップS38で肯定判定すると、ステップS40において、記憶部57に記憶されていた絶縁抵抗Rnを、現時点の絶縁抵抗Rnに更新する。
ステップS42において、ステップS40で更新された絶縁抵抗Rnを用いて漏電判定処理を実施する。例えば、漏電判定処理では、ステップS40で更新された絶縁抵抗Rnが基準値以下である場合に、漏電と判定する。また例えば、ステップS40で更新された絶縁抵抗Rnと電源電圧Vbatとの比に基づいて、漏電の有無を判定する。続くステップS44において、ステップS42の処理結果に基づいて、漏電が生じているか否かを判定する。
ステップS42で否定判定すると、絶縁抵抗検出処理を終了する。一方、ステップS42で肯定判定すると、ステップS44において、漏電発生の警告を出力し、絶縁抵抗検出処理を終了する。制御部56は、漏電発生の警告とともに、例えば、直流電源40からの電力供給や充電を停止し、高電圧回路と直流電源40との通電を遮断する処理を実施してもよい。具体的には、高電圧回路と直流電源40との通電を遮断すべく、上,下アーム変圧スイッチSCH,SCLそれぞれに対応する駆動信号を、上,下アーム変圧スイッチSCH,SCLに出力する等の処理を実施してもよい。
続いて、図3、図4に、絶縁抵抗検出処理の一例を示す。図3は、システム起動時における検出電圧VDと移動平均値VAとの推移を示し、図4は、漏電発生時における検出電圧VDと移動平均値VAとの推移を示す。図3、図4において、(a)は、検出電圧VDの推移を示し、(b)は、移動平均値VAの推移を示す。なお、図3では、検出電圧VD及び検出電圧VDのみを用いて算出された移動平均値VAが、三角の点で示され、絶縁電圧VF及び絶縁電圧VFを用いて算出された移動平均値VAが丸の点で示されている。
図3に示すように、システム起動時には、コンバータ30やインバータ20に流れる電流の変化に伴って電源電圧Vbatが変化し、それに伴い基準期間TBにおいて検出電圧VDが変化する。そのため、移動平均値VAは、基準期間TBの経過後、算出期間TAが経過した後に安定し、移動平均値VAから検出される絶縁抵抗Rnは、さらに判定期間TCが経過した後に収束したと判定される。そのため、システム起動時において、絶縁抵抗Rnが収束したと判定されるまでには、基準期間TBに加え、算出期間TAと判定期間TCとを加算した加算期間TDが必要とされ、絶縁抵抗Rnを収束させるまでの期間が長期化していた。
本実施形態では、システム起動時と判定された場合に、基準期間TBにおいて、検出電圧VDが絶縁電圧VFに置換され、この絶縁電圧VFを用いて移動平均値VAが算出される。そのため、漏電が発生していない場合、移動平均値VAは、基準期間TBの経過後すぐに安定し、絶縁抵抗Rnは、基準期間TBの経過後、判定期間TCが経過した後に収束したと判定される。そのため、システム起動時において早期に絶縁抵抗Rnを収束させることができる。
また、図4に示すように、漏電発生時には、検出電圧VDは絶縁電圧VFから短絡電圧VNに変化した後に、変化後の短絡電圧VNで安定する。そのため、検出電圧VDは、漏電発生後、判定期間TCが経過した後に安定したと判定される。一方、移動平均値VAは、漏電発生後、算出期間TAが経過した後に安定し、移動平均値VAから検出される絶縁抵抗Rnは、さらに判定期間TCが経過した後に収束したと判定される。そのため、漏電発生時において、絶縁抵抗Rnが収束したと判定されるまでには、算出期間TAと判定期間TCとを加算した加算期間TDが必要とされ、絶縁抵抗Rnを収束させるまでの期間が長期化していた。
本実施形態では、検出電圧VDが第1所定値Vtg1以上変化した後に、変化後の電圧値で安定したと判定された場合に、移動平均値VAに代えて現時点の検出電圧VDに基づいて絶縁抵抗Rnが検出される。検出電圧VDに基づいて検出される絶縁抵抗Rnは、現時点の検出電圧VDに基づく絶縁抵抗Rnの算出開始後、判定期間TCが経過した後に、すなわち、漏電発生後、2倍の判定期間TCが経過した後に収束したと判定される。そのため、漏電発生時において早期に絶縁抵抗Rnを収束させることができる。
以上説明した本実施形態によれば、以下の効果を奏する。
・本実施形態では、移動平均値VAを用いて絶縁抵抗Rnを検出するため、ノイズ等に関係なく正確な絶縁抵抗Rnの検出を実施できる。また、接地部G1と電源経路L1,L2との間に短絡が発生した場合、すなわち、漏電が発生した場合には、検出電圧VDが第1所定値Vtg1以上変化し、かつその検出電圧VDが変化後の電圧値で安定状態となる。この場合、移動平均値VAに代えて現時点の検出電圧VDに基づいて絶縁抵抗Rnを検出する構成とすることにより、漏電が発生している場合でも早期に絶縁抵抗Rnを収束させることができ、絶縁抵抗Rnを適切に検出することができる。
・本実施形態では、検出電圧VDの安定判定に用いる判定期間TCは、移動平均値VAの算出に用いる算出期間TAよりも短い。そのため、検出電圧VDの安定を判定した後に絶縁抵抗Rnを検出しても、移動平均値VAに基づいて絶縁抵抗Rnを検出する場合に比べて早期に絶縁抵抗Rnを検出することができる。
・特に、本実施形態では、検出電圧VDが第1所定値Vtg1以上変化した後に、判定期間TCに亘って、検出電圧VDの変化量ΔVが第2所定値Vtg2よりも小さくなっている場合に、検出電圧VDが変化後の電圧値で安定していると判定する。これにより、変化量ΔVを用いて、検出電圧VDが安定していることを好適に判定することができる。
・漏電が発生する場合以外に、システム起動時にも検出電圧VDの変化が生じうる。本実施形態では、システム起動時に、予め定められた所定電圧に基づいて絶縁抵抗Rnを検出する構成とすることにより、システム起動時においても早期に絶縁抵抗Rnを収束させることができ、絶縁抵抗Rnを適切に検出することができる。
・具体的には、システム起動後の基準期間TBにおいて、検出電圧VDを所定電圧に置換し、置換された所定電圧を用いて移動平均値VAを算出するとともに、この移動平均値VAに基づいて絶縁抵抗Rnを検出する。これにより、移動平均値VAを早期に安定させることができ、この移動平均値VAを用いて早期に絶縁抵抗Rnを収束させることができる。
・特に、本実施形態では、所定電圧が絶縁電圧VFに設定されている。そのため、接地部G1と電源経路L1,L2との間に短絡が発生していない場合に、移動平均値VAを早期に安定させることができる。
(第2実施形態)
以下、第2実施形態について、第1実施形態との相違点を中心に図5、図6を参照しつつ説明する。本実施形態では、記憶部57に予め定められた複数の所定電圧が記憶されている点で第1実施形態と異なる。なお、本実施形態では、所定電圧として、絶縁電圧VFと、短絡電圧VNと、絶縁電圧VFと短絡電圧VNとの中央電圧VMとが記憶されている。
図5に、第2実施形態における絶縁抵抗検出処理のフローチャートを示す。図5に示すように、本実施形態の絶縁抵抗検出処理では、ステップS12で肯定判定すると、すなわち、システム起動時であると判定された場合に、ステップS50において、記憶部57に記憶された複数の所定電圧からいずれかを選択する選択処理を実施し、ステップS14に進む。
図6に、選択処理の一例を示す。図6において、(a)は、前回のシステム駆動時における検出電圧VDの推移を示し、(b)は、今回のシステム駆動時における検出電圧VDの推移を示す。
図6(a)に示すように、前回のシステム駆動時に漏電が発生していない場合、前回のシステム駆動時では、検出電圧VDとして絶縁電圧VFが検出される。そのため、前回のシステム終了時には、記憶部57に記憶されていた絶縁抵抗Rnが、絶縁電圧VFに対応する絶縁抵抗Rnに更新される。
この場合、今回のシステム起動時でも、電源電圧Vbatが安定した後には、検出電圧VDとして絶縁電圧VFが検出されることが予想される。この場合に、システム起動後の基準期間TBにおいて、検出電圧VDが置換される所定電圧が短絡電圧VNや中央電圧VMであると、所定電圧(短絡電圧VNや中央電圧VM)と検出電圧VD(絶縁電圧VF)との電圧差に基づいて、移動平均値VAが安定するまでの期間が長期化し、早期に絶縁抵抗Rnを収束させることができない問題が生じる。
本実施形態では、前回のシステム駆動時において検出された絶縁抵抗Rnに基づいて、所定電圧を選択する選択処理を実施する。具体的には、図6(b)に示すように、記憶部57に記憶された3つの所定電圧のうち、前回のシステム終了時に更新された絶縁抵抗Rnに対応する検出電圧に最も近い絶縁電圧VFが選択され、選択された絶縁電圧VFに基づいて絶縁抵抗Rnが検出される。そのため、所定電圧と検出電圧VDとの電圧差が生じることを抑制することができ、移動平均値VAが安定するまでの期間を短縮することができる。この結果、早期に絶縁抵抗Rnを収束させることができる。
・以上説明した本実施形態によれば、前回のシステム駆動時において検出された絶縁抵抗Rnに基づいて所定電圧を選択することにより、適切な所定電圧を用いて、早期に絶縁抵抗Rnを収束させることができる。
(第3実施形態)
以下、第3実施形態について、第1実施形態との相違点を中心に図7、図8を参照しつつ説明する。本実施形態では、システム起動時であると判定された場合に、絶縁抵抗Rnの検出を禁止する点で第1実施形態と異なる。
また、本実施形態では、システム起動時の判定に用いられる基準期間TBを設定可能である点で第1実施形態と異なる。図7に、第3実施形態における絶縁抵抗検出処理のフローチャートを示す。図7に示すように、本実施形態の絶縁抵抗検出処理では、ステップS10で検出電圧VDを検出すると、ステップS60において、基準期間TBが設定されているか否かを判定する。
ステップS60で肯定判定すると、ステップS12に進む。一方、ステップS60で否定判定すると、ステップS62において、電源電圧Vbatを取得する。続くステップS64において、ステップS62で取得された電源電圧Vbatに基づいて基準期間TBの長さを設定する基準期間設定処理を実施し、ステップS12に進む。基準期間設定処理は、システム駆動時のうち、システム起動時に実施される。したがって、基準期間TBの長さは、システム起動時における電源電圧Vbatに基づいて設定される。なお、本実施形態において、ステップS62の処理が「電圧取得部」に相当する。
ステップS12では、ステップS64で設定された基準期間TBに基づいて、システム起動時であるか否かを判定する。ステップS12で肯定判定すると、すなわち、システム起動時であると判定された場合に、漏電の有無を判定することなく絶縁抵抗検出処理を終了する。そのため、基準期間TBは、漏電判定を禁止する禁止期間ということができる。
図8に、基準期間設定処理の一例を示す。図8において、(a)は、電源電圧Vbatが高電圧である場合における検出電圧VDの推移を示し、(b)は、電源電圧Vbatが低電圧である場合における検出電圧VDの推移を示す。
図8に示すように、システム起動時において検出電圧VDが変化する期間は、電源電圧Vbatが高いほど長い。そのため、電源電圧Vbatによらず一定の基準期間TBが設定された場合、例えば電源電圧Vbatが高電圧である場合において、基準期間TBを超えて検出電圧VDが変化し、検出電圧VDの変化により絶縁抵抗Rnが誤検出される問題が生じる。
本実施形態では、電源電圧Vbatに基づいて基準期間TBの長さを設定する基準期間設定処理を実施する。具体的には、電源電圧Vbatが高いほど基準期間TBが長く設定される。そのため、基準期間TBを超えて検出電圧VDが変化することを抑制することができ、検出電圧VDの変化による絶縁抵抗Rnの誤検出を好適に抑制することができる。
・以上説明した本実施形態によれば、システム起動時に、漏電判定を禁止することにより、検出電圧VDの変化による漏電の誤判定を抑制することができる。
・システム起動時では、電源電圧Vbatが大きいほど、検出電圧VDが安定するまでの期間が長い。本実施形態では、電源電圧Vbatに基づいて基準期間TBの長さを設定することにより、漏電の誤判定を好適に抑制することができる。
(その他の実施形態)
なお、上記各実施形態は、以下のように変更して実施してもよい。
・上記各実施形態において、絶縁抵抗検出装置50は負極側電源経路L2に接続されているが、正極側電源経路L1に接続されてもよい。
・周波数信号として、正弦波状の交流信号を用いてもよければ、矩形波状の交流信号を用いてもよい。
・上記各実施形態において、検出電圧VDが変化後の電圧値で安定していると判定された場合に、現時点の検出電圧VDのみに基づいて絶縁抵抗Rnを検出する例を示したが、これに限られない。例えば、安定判定に用いられる判定期間TCに検出される検出電圧VD(現時点の検出電圧VDを含む)の平均値に基づいて絶縁抵抗Rnを検出してもよい。
・上記各実施形態において、検出電圧VDが変化後の電圧値で安定しているか否かを判定する判定条件として、検出電圧VDの変化量ΔVが第2所定値Vtg2よりも小さくなることを用いる例を示したが、これに限られない。
例えば、図9(a)に矢印YAで示すように、判定期間TCに亘って、検出電圧VDが減少を継続していることを判定条件としてもよければ、判定期間TCに亘って、検出電圧VDが増加を継続していることを判定条件としてもよい。この場合、検出電圧VDが増加または減少を継続しており、増加と減少とを交互に繰り返さないため、検出電圧VDが安定していると判定することができる。
また例えば、図9(b)に示すように、判定期間TCに亘って、検出電圧VDの傾きθ1,θ2の絶対値が、閾値よりも小さくなっていることを判定条件としてもよい。この場合、検出電圧VDの傾きθ1,θ2を用いて、検出電圧VDが安定していることを好適に判定することができる。
・上記各実施形態において、禁止期間とシステム起動時と判定される期間が等しい例を示したが、これらの期間は異なっていてもよい。また、システム起動時の判定条件として、イグニッションスイッチのオンへの切り替えからの経過期間を用いる例を示したが、これに限られない。例えば、検出電圧VDの変化量が所定範囲に収まっていることを判定条件としてもよい。
・上記各実施形態において、予め定められた所定電圧に基づいて絶縁抵抗Rnを検出する形態として、所定電圧を用いて移動平均値VAを算出し、この移動平均値VAに基づいて絶縁抵抗Rnを検出する形態を示したが、これに限られない。例えば、移動平均値VAを算出することなく、所定電圧から直接的に絶縁抵抗Rnを検出してもよい。
・上記各実施形態において、予め定められた所定電圧が絶縁電圧VFである例を示したが、これに限られず、短絡電圧VNや中央電圧VMであってもよい。例えば、所定電圧が短絡電圧VNであることで、接地部G1と電源経路L1,L2との間に漏電が発生している場合に、移動平均値VAを早期に安定させることができる。
・また、所定電圧は、絶縁電圧VFと短絡電圧VNとの中間値であってもよい。ここで、「中間値」とは、絶縁電圧VFと短絡電圧VNとの間の電圧を意味し、中央電圧VMを含む。これにより、接地部G1と電源経路L1,L2との間に漏電が発生していない場合と、漏電が発生している場合とのいずれの場合においても、移動平均値VAを早期に安定させることができる。
・上記各実施形態において記載した各期間の長さは、一例であり、上記長さに限られない。また、上記各実施形態において、検出電圧VDの変化が生じうる場合として、システム起動時と漏電発生時とを示したが、これらに限られない。例えば、漏電が発生した後に漏電が解消した場合にも、検出電圧VDの変化が生じうる。
本開示に記載の制御部及びその手法は、コンピュータプログラムにより具体化された一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリを構成することによって提供された専用コンピュータにより、実現されてもよい。あるいは、本開示に記載の制御部及びその手法は、一つ以上の専用ハードウェア論理回路によってプロセッサを構成することによって提供された専用コンピュータにより、実現されてもよい。もしくは、本開示に記載の制御部及びその手法は、一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリと一つ以上のハードウェア論理回路によって構成されたプロセッサとの組み合わせにより構成された一つ以上の専用コンピュータにより、実現されてもよい。また、コンピュータプログラムは、コンピュータにより実行されるインストラクションとして、コンピュータ読み取り可能な非遷移有形記録媒体に記憶されていてもよい。
40…直流電源、50…絶縁抵抗検出装置、53…発振部、100…車両電源システム、C1…カップリングコンデンサ、G1…接地部、L1,L2…電源経路、R1…抵抗、Rn…絶縁抵抗、VA…移動平均値、VD…検出電圧。

Claims (13)

  1. 直流電源(40)と、
    前記直流電源に接続されかつ接地部(G1)から絶縁された電源経路(L1,L2)に一端が接続されたカップリングコンデンサ(C1)と、
    前記カップリングコンデンサの他端に接続された抵抗(R1)と、
    前記抵抗に接続され、前記抵抗に所定の周波数信号を出力する発振部(53)と、
    を備える電源システム(100)に適用され、前記発振部が前記抵抗に前記周波数信号を出力した場合における前記カップリングコンデンサと前記抵抗との接続点での電圧を所定周期で検出し、検出電圧(VD)の移動平均値(VA)に基づき、前記接地部と前記電源経路との間における絶縁抵抗(Rn)を検出し、前記絶縁抵抗が基準値以下である場合に短絡と判定する絶縁抵抗検出装置(50)であって、
    前記検出電圧が所定値(Vtg1)以上変化した場合に、前記検出電圧が変化後の電圧値で安定するか否かを判定する電圧判定部(S22,S24)と、
    前記電圧判定部により前記検出電圧が変化後の電圧値で安定すると判定された場合に、前記移動平均値に代えて現時点の前記検出電圧に基づいて、前記絶縁抵抗を検出する抵抗検出部(S34)と、を備える絶縁抵抗検出装置。
  2. 前記移動平均値は、第1期間(TA)における前記検出電圧を用いて算出され、
    前記電圧判定部は、前記第1期間よりも短い第2期間(TC)に亘って、前記検出電圧が安定するか否かを判定する請求項1に記載の絶縁抵抗検出装置。
  3. 前記所定値は、第1所定値(Vtg1)であり、
    前記電圧判定部は、前記検出電圧が前記第1所定値以上変化した後に、前記第2期間に亘って、前記検出電圧の変化量(ΔV)が前記第1所定値よりも小さい第2所定値(Vtg2)と比べて小さくなっている場合に、前記検出電圧が変化後の電圧値で安定していると判定する請求項2に記載の絶縁抵抗検出装置。
  4. 前記電圧判定部は、前記第2期間に亘って、前記検出電圧が増加または減少を継続している場合に、前記検出電圧が変化後の電圧値で安定していると判定する請求項2または請求項3に記載の絶縁抵抗検出装置。
  5. 前記電圧判定部は、前記第2期間に亘って、前記検出電圧の傾き(θ1,θ2)の絶対値が閾値よりも小さくなっている場合に、前記検出電圧が変化後の電圧値で安定していると判定する請求項2から請求項4までのいずれか一項に記載の絶縁抵抗検出装置。
  6. 前記電源システムが起動するシステム起動時であることを判定する起動判定部(S12)を備え、
    前記抵抗検出部は、前記起動判定部によりシステム起動時であると判定された場合に、前記移動平均値に代えて、予め定められた所定電圧(VF,VN,VM)に基づいて、前記絶縁抵抗を検出する請求項1から請求項5までのいずれか一項に記載の絶縁抵抗検出装置。
  7. 前記起動判定部によりシステム起動時であると判定された場合に、前記検出電圧を前記所定電圧に置換する電圧置換部(S14)を備え、
    前記抵抗検出部は、前記電圧置換部により置換された前記所定電圧を用いて算出される前記移動平均値に基づいて、前記絶縁抵抗を検出する請求項6に記載の絶縁抵抗検出装置。
  8. 前記所定電圧は、前記接地部と前記電源経路との間に短絡が発生していない状況下における前記接続点での電圧である請求項6または請求項7に記載の絶縁抵抗検出装置。
  9. 前記所定電圧は、前記接地部と前記電源経路との間に短絡が発生している状況下における前記接続点での電圧である請求項6または請求項7に記載の絶縁抵抗検出装置。
  10. 前記所定電圧は、前記接地部と前記電源経路との間に漏電が発生していない状況下における第1所定電圧(VF)と、前記接地部と前記電源経路との間に漏電が発生している状況下における第2所定電圧(VN)との中間値である請求項6または請求項7に記載の絶縁抵抗検出装置。
  11. 予め定められた複数の前記所定電圧を記憶する記憶部(57)を備え、
    前記抵抗検出部は、前回のシステム駆動時において検出された前記絶縁抵抗に基づいて前記複数の前記所定電圧からいずれかを選択し、選択された前記所定電圧に基づいて、前記絶縁抵抗を検出する請求項6または請求項7に記載の絶縁抵抗検出装置。
  12. 前記電源システムが起動するシステム起動時であることを判定する起動判定部(S12)を備え、
    前記抵抗検出部は、前記起動判定部によりシステム起動時であると判定された場合に、短絡判定を禁止する請求項1から請求項5までのいずれか一項に記載の絶縁抵抗検出装置。
  13. システム起動時における前記直流電源の電源電圧を取得する電圧取得部(S62)を備え、
    前記抵抗検出部は、前記電源電圧に基づいて短絡判定を禁止する禁止期間(TB)の長さを設定する請求項12に記載の絶縁抵抗検出装置。
JP2018226824A 2018-12-03 2018-12-03 絶縁抵抗検出装置 Active JP6986004B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018226824A JP6986004B2 (ja) 2018-12-03 2018-12-03 絶縁抵抗検出装置
CN201980079755.6A CN113167826A (zh) 2018-12-03 2019-11-15 绝缘电阻检测装置
PCT/JP2019/044960 WO2020116133A1 (ja) 2018-12-03 2019-11-15 絶縁抵抗検出装置
US17/337,957 US11874339B2 (en) 2018-12-03 2021-06-03 Insulation resistance determination apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018226824A JP6986004B2 (ja) 2018-12-03 2018-12-03 絶縁抵抗検出装置

Publications (2)

Publication Number Publication Date
JP2020091127A JP2020091127A (ja) 2020-06-11
JP6986004B2 true JP6986004B2 (ja) 2021-12-22

Family

ID=70975433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018226824A Active JP6986004B2 (ja) 2018-12-03 2018-12-03 絶縁抵抗検出装置

Country Status (4)

Country Link
US (1) US11874339B2 (ja)
JP (1) JP6986004B2 (ja)
CN (1) CN113167826A (ja)
WO (1) WO2020116133A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021107289A1 (ko) * 2019-11-28 2021-06-03 엘에스일렉트릭㈜ 절연 감시 장치 및 그 절연 감시 장치의 제어 방법
FR3119681B1 (fr) * 2021-02-09 2022-12-23 Psa Automobiles Sa Procede d’autorisation ou de refus de mesure d’un defaut d’isolation d’une batterie
KR102519122B1 (ko) * 2021-06-25 2023-04-06 충북대학교 산학협력단 절연 감시 장치 및 측정 오류를 개선하는 방법
CN113791278B (zh) * 2021-09-30 2023-06-30 蜂巢能源科技有限公司 电池包绝缘电阻检测方法、装置及电池包和车辆
US20230280384A1 (en) * 2022-03-07 2023-09-07 Volvo Car Corporation Isolation resistance monitoring for high voltage systems
CN114670643B (zh) * 2022-03-30 2023-05-23 重庆长安新能源汽车科技有限公司 一种绝缘故障诊断方法、装置、控制器及介质
CN114740266B (zh) * 2022-04-08 2023-06-13 东方电气集团东方电机有限公司 绝缘监测方法、装置、电子设备和存储介质

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005114496A (ja) * 2003-10-07 2005-04-28 Yazaki Corp 状態検出方法及び絶縁抵抗低下検出器
JP2006322792A (ja) * 2005-05-18 2006-11-30 Toyota Motor Corp 漏電検出装置および漏電検出方法
US7863910B2 (en) * 2005-08-29 2011-01-04 Nec Corporation Insulation resistance detecting apparatus
US20080197855A1 (en) * 2005-08-29 2008-08-21 Toyota Jidosha Kabushiki Kaisha Insulation Resistance Drop Detector and Failure Self-Diagnosis Method for Insulation Resistance Drop Detector
JP4834393B2 (ja) * 2005-12-09 2011-12-14 矢崎総業株式会社 状態検出方法及び絶縁抵抗低下検出器
WO2008016179A1 (fr) * 2006-08-04 2008-02-07 Toyota Jidosha Kabushiki Kaisha Système de détermination de résistance d'isolement, appareil de détermination de résistance d'isolement et procédé de détermination de résistance d'isolement
JP5072727B2 (ja) * 2008-06-17 2012-11-14 株式会社日本自動車部品総合研究所 絶縁抵抗検出装置および絶縁抵抗検出方法
JP5097032B2 (ja) * 2008-06-30 2012-12-12 株式会社日本自動車部品総合研究所 絶縁抵抗検出装置
JP4565036B2 (ja) * 2009-01-05 2010-10-20 ファナック株式会社 モータの絶縁劣化検出装置
JP5417862B2 (ja) * 2009-01-27 2014-02-19 日産自動車株式会社 車両用地絡検出装置
EP2613162B1 (en) * 2010-08-31 2018-03-28 Panasonic Intellectual Property Management Co., Ltd. Insulation resistance detection device for vehicle
JP5708576B2 (ja) * 2012-07-02 2015-04-30 株式会社デンソー 絶縁低下検出装置
WO2015075821A1 (ja) * 2013-11-22 2015-05-28 三菱電機株式会社 絶縁検出器及び電気機器
DE102014204870A1 (de) * 2014-03-17 2015-09-17 Continental Automotive Gmbh Vorrichtung und Verfahren zur Überwachung einer elektrischen Isolation bei einem Bordnetz eines Fahrzeugs
JP6229584B2 (ja) * 2014-04-23 2017-11-15 株式会社デンソー 地絡判定装置
US10725115B2 (en) * 2014-10-16 2020-07-28 Ford Global Technologies, Llc Methods and apparatus for detecting electrical leakage in a vehicle
EP3147679B1 (en) * 2015-09-22 2018-05-16 Fico Triad, S.A. System and method for assisting the start of an electrically powered vehicle
ITUB20159266A1 (it) * 2015-12-18 2017-06-18 Magneti Marelli Spa Dispositivo elettronico, sistema e metodo per misure di resistenza di isolamento, con funzioni di auto-diagnosi 5 e di diagnosi di perdita di isolamento di un apparato elettrico energizzato rispetto a massa.
CN111060842A (zh) * 2018-10-16 2020-04-24 株式会社电装 漏电判断系统
US11598812B2 (en) * 2018-11-15 2023-03-07 Lear Corporation Methods and systems for performing diagnostic processes with reduced processing time
JP7022050B2 (ja) * 2018-12-07 2022-02-17 株式会社デンソー 絶縁抵抗検出装置

Also Published As

Publication number Publication date
CN113167826A (zh) 2021-07-23
JP2020091127A (ja) 2020-06-11
US11874339B2 (en) 2024-01-16
WO2020116133A1 (ja) 2020-06-11
US20210293896A1 (en) 2021-09-23

Similar Documents

Publication Publication Date Title
JP6986004B2 (ja) 絶縁抵抗検出装置
US9255957B2 (en) Earth fault detection circuit and power source device
JP4599260B2 (ja) 電源制御装置、電源制御方法、プログラム及び記録媒体
EP2963798B1 (en) Dc-ac conversion device and control circuit
JP6295858B2 (ja) バッテリ管理装置
JP7022050B2 (ja) 絶縁抵抗検出装置
US11101793B2 (en) Drive circuit
JP6464752B2 (ja) 漏電判定装置
CN111060842A (zh) 漏电判断系统
JP6668102B2 (ja) 劣化検出装置および劣化検出方法
JP6804320B2 (ja) 地絡検出装置、電源システム
JP7169935B2 (ja) 漏電判定装置
JP6136820B2 (ja) 電池監視装置、蓄電装置および電池監視方法
JP6654417B2 (ja) オフセット電圧生成装置及びオフセット電圧生成方法
JP6394428B2 (ja) 漏電判定装置
JP7458397B2 (ja) 漏電検出装置、車両用電源システム
JP7302508B2 (ja) 制御装置
JP6822584B2 (ja) 漏電検知回路
JP6836411B2 (ja) 地絡検出装置、電源システム
CN110764599B (zh) 复位控制装置及方法
WO2022131171A1 (ja) 電池監視装置
JP7243543B2 (ja) 漏電判定装置
JP7453778B2 (ja) 駆動システム
KR20230064434A (ko) 차량의 전력 공급 장치
JP2012143017A (ja) 充電スタンド及び充電プラグの接続状態判断方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211102

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211126

R150 Certificate of patent or registration of utility model

Ref document number: 6986004

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150