JP6975567B2 - 電動車両 - Google Patents

電動車両 Download PDF

Info

Publication number
JP6975567B2
JP6975567B2 JP2017140422A JP2017140422A JP6975567B2 JP 6975567 B2 JP6975567 B2 JP 6975567B2 JP 2017140422 A JP2017140422 A JP 2017140422A JP 2017140422 A JP2017140422 A JP 2017140422A JP 6975567 B2 JP6975567 B2 JP 6975567B2
Authority
JP
Japan
Prior art keywords
heat
transmission
inverter
electric
electric vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017140422A
Other languages
English (en)
Other versions
JP2019022374A (ja
Inventor
朋也 佐藤
将浩 兼重
崇仁 大塚
祐大 三明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Subaru Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Subaru Corp filed Critical Subaru Corp
Priority to JP2017140422A priority Critical patent/JP6975567B2/ja
Publication of JP2019022374A publication Critical patent/JP2019022374A/ja
Application granted granted Critical
Publication of JP6975567B2 publication Critical patent/JP6975567B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)

Description

本発明は、走行用モータを駆動するインバータとトランスミッションとを有する電動車両に関する。
トランスミッションはフリクション低減のため暖機を行う必要がある。一般に、旧来のエンジン車では、エンジンの排熱又はエンジン冷却液を利用してトランスミッションの暖機を行っている。エンジン冷却液を利用する場合、例えばMCV(Multi Control Valve)を用いて高温のエンジン冷却液がトランスミッション側へ送られ、トランスミッションオイルウォーマを介してトランスミッションオイルが加熱される。
近年、自動車のエンジンは高効率化され、エンジンから得られる廃熱が少なくなっている。HEV(Hybrid Electric Vehicle)等のエンジンを有する電動車両においても同様である。また、エンジンを搭載しないEV(Electric Vehicle)では、そもそもエンジンの廃熱が得られない。このような状況から、HEV又はEVなどの電動車両では、熱源として、PTC(Positive Temperature Coefficient)ヒータなどの電熱器が採用されることがある。
特許文献1には、本発明に関連する技術として、通電によりモータを発熱させて蓄熱槽に蓄熱し、冷温時において蓄熱槽の熱で電池ユニットを加熱する技術が開示されている。特許文献2には、本発明に関連する技術として、バッテリの充電器又はバッテリの廃熱を利用してミッションオイルを加熱する技術が開示されている。
特開2014−158393号 国際公開第2011/015436号
先に述べたように、トランスミッションはフリクション低減のため暖機を行う必要がある。しかしながら、近年のエンジン車及び電動車両では、熱源の不足により、必要なときにトランスミッションの暖機を行えない場合がある。
トランスミッションの暖機は車両の走行前或いは走行直後など車両の機構が温まっていないときに行う必要がある。一方、気温の低いときには車両の走行前或いは走行直後に車室の暖房に大きな熱量が使用される場合があり、両者が重なると非常に大きな熱量が必要となる。このため、熱源として電熱器を有する電動車両において、トランスミッションの暖機に電熱器の熱を利用したとしても、車室の暖房と暖機とが重なったときに熱量不足が生じることが予想される。この場合、熱量不足により、必要なときにトランスミッションを暖機できないという課題が生じる。一方、熱量不足が生じないように大きな電熱器を設けると、部品の搭載スペースの増大並びに車両重量の増加という課題が生じる。
また、特許文献1又は特許文献2に示されるように、他の機能部品を発熱させたり、他の機能部品の廃熱を利用したりすることで、熱源専用の部品を増やすことなく熱源の増強を図ることができる。しかしながら、特許文献1のようにモータに通電を行って発熱させる構成では、モータのコイルと、バッテリ及びモータ間の電力ケーブルとの全体に熱が発生するなど、発熱箇所が分散して熱を効率的に利用しにくいという課題がある。また、特許文献2のように充電器の廃熱又はバッテリの廃熱を利用する構成では、必要なときに能動的に熱を発生させることが難しく、さらに少ない熱量しか得られないという課題がある。
本発明は、熱源専用の部品を増やすことなく必要なときに効率的に熱を発生させてトランスミッションの暖機を行うことのできる電動車両を提供することを目的とする。
請求項1記載の発明は、
駆動輪に動力を伝達するトランスミッションと、
走行用モータを駆動するインバータと、
前記インバータと前記トランスミッションとの間で熱媒体を循環させて、前記インバータの熱を前記トランスミッションへ輸送可能な熱輸送部と、
前記走行用モータの電力を供給するバッテリと、
外部電源から前記バッテリの充電電力を入力する充電コネクタと、
を備え
前記充電コネクタが前記充電電力を入力する期間に、前記充電コネクタから入力された電力の一部により前記インバータを発熱させ、かつ前記熱輸送部が前記インバータの熱を前記トランスミッションへ輸送することを特徴とする電動車両である。
請求項2記載の発明は、請求項1記載の電動車両において、
前記熱媒体から熱を放出するラジエタと、
前記熱媒体の流れを前記ラジエタ側と前記トランスミッション側とに切り替える切替弁と、
前記トランスミッションの暖機中に前記熱媒体を前記トランスミッションへ流し、前記トランスミッションの暖機完了後に、前記熱媒体を前記ラジエタへ流すように前記切替弁を切り替える切替制御部と、
を更に備えることを特徴とする。
請求項記載の発明は、請求項1又は請求項記載の電動車両において、
前記トランスミッションは、トランスミッションオイルの一部が溜まるオイル溜まり部と、前記オイル溜まり部に溜まったトランスミッションオイルと前記熱媒体との間で熱を交換する熱交換部とを有することを特徴とする。
請求項記載の発明は、請求項1から請求項のいずれか一項に記載の電動車両において、
前記インバータを制御して前記走行用モータを駆動するモータ駆動処理、及び、前記インバータを制御して前記インバータに前記モータ駆動処理のときよりも大きい熱損失を発生させる電熱駆動処理を実行可能な制御部を備え、
前記熱輸送部は、前記電熱駆動処理により前記インバータで発生された熱を前記トランスミッションへ輸送可能であることを特徴とする。
請求項記載の発明は、請求項記載の電動車両において、
前記電熱駆動処理は、前記モータ駆動処理のときよりも高い周波数で前記インバータを動作させる処理、或いは、前記モータ駆動処理のときよりも立ち上り又は立下りの緩い駆
動パルスで前記インバータを動作させる処理であることを特徴とする。
本発明によれば、インバータを利用することで熱源を増強して必要なときに効率的に熱を発生することができる。さらに、熱輸送部によってこの熱を効率的にトランスミッションへ輸送できる。したがって、熱源専用の部品を増やすことなく必要なときに効率的に熱を発生させてトランスミッションの暖機を行うことができる。
本発明の実施形態1に係る電動車両の要部を示す構成図である。 電熱駆動パルスとモータ駆動パルスとを示す図である。 電熱駆動パルスの変形例を示す図である。 トランスミッション暖機処理の手順を示すフローチャートである。
以下、本発明の実施形態について図面を参照して詳細に説明する。図1は、本発明の実施形態1に係る電動車両の要部を示す構成図である。
本実施形態の電動車両1は、PHEV(Plug-in Hybrid Electric Vehicle)又はEVなどである。電動車両1は、走行用モータ2、高電圧バッテリ3、インレット4、車載充電器5、ジャンクションボックス6、インバータ12、ドライブ回路14、ECU16、冷却液回路20、冷却液回路制御部26及びトランスミッション30を備える。これらのうち、冷却液回路20が本発明に係る熱輸送部の一例に相当し、高電圧バッテリ3が本発明に係るバッテリの一例に相当し、インレット4が本発明に係る充電コネクタの一例に相当する。また、ECU16が本発明に係る制御部の一例に相当し、冷却液回路制御部26が本発明に係る切替制御部の一例に相当する。
インレット4は、電動車両1の外部から充電ガンが差し込まれて充電電力を入力可能な電力入力部である。
車載充電器5は、インレット4から入力された充電電力の電圧を充電電圧に変換し、ジャンクションボックス6を介して高電圧バッテリ3へ出力する。
ジャンクションボックス6は、高電圧バッテリ3、車載充電器5及びインバータ12の間で高電圧が加えられる電力線を結合する。
高電圧バッテリ3は、例えばリチウムイオン電池又はニッケル水素電池などの二次電池であり、走行用モータ2を駆動する電力を蓄積及びインバータ12を介して走行用モータ2へ供給する。
走行用モータ2は、例えば三相交流モータであり、電動車両の走行用の動力を発生する。走行用モータ2で発生される動力は、トランスミッション30を含む動力伝達機構を介して図示略の駆動輪へ伝達される。
インバータ12は、走行用モータ2を駆動する電力変換回路であり、さらに、熱源として機能する回路である。インバータ12は、複数のスイッチング素子T11〜T32を備え、走行用モータ2を駆動する際、高電圧バッテリ3の直流電圧から交流電圧を生成して走行用モータ2に出力する。スイッチング素子T11〜T32は、例えばIGBT(Insulated Gate Bipolar Transistor)又はサイリスタなどのパワー半導体である。図1の例では、インバータ12として三相インバータが適用されている。インバータ12の内部には、熱媒体としての冷却液の通路が設けられ、複数のスイッチング素子T11〜T32はヒートシンクを介して冷却液に放熱可能に取り付けられている。
ECU16は、電動車両1のモータ走行中、インバータ12を制御して走行用モータ2を駆動させるモータ駆動処理を行う。ECU16には、図示しないアクセルペダル及びブレーキペダルの操作信号を含む運転操作信号が入力される。ECU16は、電動車両1のモータ走行中、運転操作信号に基づいてPWM(Pulse Width Modulation)制御によりインバータ12を動作させて、走行用モータ2から運転操作信号に応じたトルクを出力させる。また、ECU16は、熱の供給を要するときにインバータ12を発熱させる電熱駆動処理を実行可能である。電熱駆動処理とは、走行用モータ2を駆動するときよりもインバータ12の熱損失が高くなる駆動方式でインバータ12を動作させる処理である。電熱駆動処理については後述する。
ドライブ回路14は、ECU16から入力される制御パルスに基づいて、複数のスイッチング素子T11〜T32をそれぞれ動作させる複数の駆動パルスVg11〜Vg32を生成する。具体的には、ドライブ回路14は、アイソレータを介してECU16とインバータ12とを絶縁し、ECU16から制御パルスを入力する。さらに、ドライブ回路14は、制御パルスを増幅及び波形整形して駆動パルスVg11〜Vg32を生成し、スイッチング素子T11〜T32の各制御端子(例えばゲート端子)へ出力する。駆動パルスVg11〜Vg32はスイッチング素子T11〜T32の制御端子をそれぞれ駆動し、これによりスイッチング素子T11〜T32がそれぞれ動作する。
冷却液回路20は、冷却液を循環させてインバータ12の熱を輸送する。冷却液回路20は、冷却液を流す配管21a〜21d、冷却液を圧送する電動ポンプ22、切替弁23、冷却液から空気へ熱を放出させるラジエタ24を備える。また、冷却液回路20は、インバータ12の冷却液の通路と、オイル溜まり熱交換機31の冷却液の通路とを含む。図1において、電動ポンプ22は「W/P」(Water Pump)と記す。冷却液回路20は、インバータ12とオイル溜まり熱交換機31との間で冷却液を循環可能である。
切替弁23は、冷却液回路20の冷却液の流れる経路を切り替える弁である。切替弁23は、インバータ12とラジエタ24との間で冷却液が循環する経路と、インバータ12とオイル溜まり熱交換機31との間で冷却液が循環する経路とを切り替えることができる。
冷却液回路制御部26は、電動ポンプ22と切替弁23とを制御する。冷却液回路制御部26はECU16を含む他のECUと通信を行って、これらと連係動作する。
トランスミッション30は、動力伝達の減速比を切り替える機構を備える。トランスミッション30では、機構のフリクション抑制のため、所定の油路に沿って循環するようにトランスミッションオイルが各部に供給される。トランスミッション30は、更に、トランスミッションオイルを圧送するメカポンプ33と、トランスミッションオイルを下方で受けるオイルパン32と、オイル溜まり熱交換機31とを備える。本明細書においては、トランスミッション30の暖機とは、トランスミッション30の動力伝達機構の加熱を意味するだけでなく、オイル溜まり熱交換機31のトランスミッションオイルの加熱も含むものとする。
オイル溜まり熱交換機31は、トランスミッションオイルの一部が溜められるオイル溜まり部31aと、オイル溜まり部に熱交換可能に冷却液の通路が設けられた熱交換部31bと、オイル溜まり部の周囲を覆う断熱部31cとを有する。断熱部31cは、例えばオイルパン32を構成する材料よりも断熱性の高い材料により構成され、オイル溜まり部に溜まったトランスミッションオイルに断熱作用を及ぼす。断熱部31cの材料は、板材の内部に空気の層を設け、空気により断熱性を向上した材料であってもよい。オイル溜まり部31aは、メカポンプ33が回転してトランスミッションオイルが循環し始めることで、溜まったトランスミッションオイルを油路へ流すように構成される。なお、オイル溜まり熱交換機31は動力を伝達する機構を覆うトランスミッションケースの外に配置されていてもよい。
<電熱駆動処理>
図2は、電熱駆動パルスとモータ駆動パルスとを示す図である。
ECU16は、電熱駆動処理において、ドライブ回路14を介して、図2の電熱駆動パルスPh1をインバータ12へ出力することで、インバータ12を発熱させる。
電熱駆動パルスPh1は、走行用モータ2を駆動するときよりも熱損失が大きくなるようにスイッチング素子T11〜T32を動作させる高損失用の駆動パルスである。具体的には、図2の「電熱駆動パルス−Vg11、Vg12」の波形に示すように、電熱駆動パルスPh1は、所定期間T0、短い周期でハイレベルとロウレベルとを繰り返す駆動パルスである。電熱駆動パルスPh1中の個々のパルスの周波数は、走行用モータ2を駆動する際に出力されるモータ駆動パルス(図2の「モータ駆動パルスVg11」を参照)の周波数、すなわちPWM制御の周波数(1/τpwm)よりも高い周波数である。例えばPWM制御の周波数(1/τpwm)が50Hz〜10kHzであるのに対して、電熱駆動パルスPh1の周波数は例えば100kHz〜10MHzである。電熱駆動パルスPh1は、インバータ12の同一相の上アームと下アームとを構成する一対のスイッチング素子(例えばスイッチング素子T11、T12)を同時にオンする期間が生じるように同期して出力される。1つの電熱駆動パルスPh1が出力される所定期間T0は、スイッチング素子T11〜T32に大きな劣化が生じないように短い期間に設定される。また、電熱駆動パルスPh1は、スイッチング素子T11〜T32に大きな劣化が生じないようにインターバルT1を開け、かつ、継続して発熱するように繰り返し出力される。なお、電熱駆動パルスPh1としては、短い周期でロウレベル、ハイレベル、ロウレベルと遷移する複数のパルスを含んだ図2の信号の他、同様の速さでロウレベル、ハイレベル、ロウレベルと遷移する1つのパルス信号が採用されてもよい。
スイッチング素子T11〜T32は、一般に、ターンオン時又はターンオフ時に電流が流れると熱損失が大きくなるという性質を有する。例えば、ターンオン時又はターンオフ時には、スイッチング素子T11〜T32に比較的に大きな抵抗が生じ、この状態で電流が流れることで熱損失としてジュール熱が発生する。電熱駆動パルスPh1は、上述のようにインバータ12の同一相の上アームと下アームとで微小な期間の短絡を発生させる。すなわち、このときに、ジャンクションボックス6からインバータ12の同一相の上アーム及び下アームを通る電流経路に短絡電流が流れる。さらに、高周波の電熱駆動パルスPh1は、スイッチング素子T11〜T32のターンオンとターンオフを多く発生させるので、この間、インバータ12の同一相の上アームと下アームとの部分に比較的に大きな抵抗が生じる。これらの作用により、電熱駆動パルスPh1が出力されたスイッチング素子(例えばスイッチング素子T11、T12)で集中的に熱を発生させることができる。発生した熱は、ヒートシンクを介して冷却液回路20の冷却液に放出される。
なお、電熱駆動パルスPh1は、第1相のスイッチング素子T11、T12だけでなく、第2相のスイッチング素子T21、T22、及び第3相のスイッチング素子T31、T32に出力されてもよい。また、インターバルT1が変更されて、冷却液の温度が調整されるように構成されてもよい。
<電熱駆動パルスの変形例>
図3は、電熱駆動パルスの変形例を示す図である。
ECU16は、ドライブ回路14を介して、図3の電熱駆動パルスPh2をインバータ12へ出力することで、電熱駆動処理を行ってもよい。電熱駆動パルスPh2は、走行用モータ2を駆動するときよりも熱損失が大きくなるようにスイッチング素子T11、T12を動作させる高損失用の駆動パルスである。具体的には、電熱駆動パルスPh2は、モータ駆動パルスに比べて立ち上り及び立下りが緩慢にされたパルスである。電熱駆動パルスPh2は、走行用モータ2を駆動する際に出力されるPWM周期のモータ駆動パルスと同程度のパルス幅を有していてもよい。電熱駆動パルスPh2は、インバータ12の同一相の上アームと下アームとを構成する一対のスイッチング素子(例えばスイッチング素子T11、T12)を同時にオンする期間が生じるように同期して出力される。ECU16は、スイッチング素子T11、T12に大きな劣化が生じないようにインターバルT1を開け、かつ、スイッチング素子T11、T12が継続して発熱するように電熱駆動パルスPh2を繰り返し出力する。
電熱駆動パルスPh2は、立ち上りと立下りが緩慢であるため、ターンオン時とターンオフ時にスイッチング素子T11に比較的に大きな抵抗が生じる。さらに、電熱駆動パルスPh2は、実施形態1と同様に、インバータ12の同一相の上アームと下アームとを短絡させる期間が生じるように、同一相の一対のスイッチング素子(例えばスイッチング素子T11、T12)に同期して出力される。したがって、電熱駆動パルスPh2によって、スイッチング素子T11、T12に抵抗が生じた状態で電流を流すことができ、スイッチング素子T11、T12を集中的に発熱させることができる。なお、電熱駆動パルスPh2は、第1相のスイッチング素子T11、T12だけでなく、第2相のスイッチング素子T21、T22、及び第3相のスイッチング素子T31、T32に出力されてもよい。
<トランスミッション暖機処理>
続いて、ECU16と冷却液回路制御部26とが連携して実行するトランスミッション暖機処理について説明する。図4は、トランスミッション暖機処理の手順を示すフローチャートである。
トランスミッション暖機処理は、インレット4を介した高電圧バッテリ3の充電処理中にECU16と冷却液回路制御部26とにより実行される。充電の開始によりトランスミッション暖機処理が開始されると、ECU16は、先ず、トランスミッション30(図4では「TM」と記す)の暖機の要否を判断する(ステップS1)。暖機の要否判断のアルゴリズムは電動車両ごとに適宜設定可能である。例えば、充電開始直後に暖機要となる設定、或いは、充電終了予定時刻の所定時間前になったときに暖機要となる設定が採用されてもよい。或いは、電動車両の乗員が電動車両の走行開始の予定時刻を入力し、この予定時刻の所定時間前になったときに暖機要となる設定、充電中に乗員の所定の操作があった場合に暖機要となる設定など、様々な設定が採用されてもよい。
ステップS1の判断の結果、暖機要と判断された場合には、冷却液回路制御部26が、電動ポンプ22を作動させる(ステップS2)。続いて、冷却液回路制御部26が、切替弁23をトランスミッション30側(すなわち配管21bと配管21cとが連通する状態)に切り替える(ステップS3)。ステップS2、S3の処理により、冷却液回路20において、冷却液がラジエタ24を通らずにインバータ12とオイル溜まり熱交換機31とを循環するように流れる。
続いて、ECU16は、インバータ12にドライブ回路14を介して電熱駆動パルスPh1を出力し、インバータ12の電熱駆動処理を実行する(ステップS4)。これにより、インバータ12のスイッチング素子T11〜T32が発熱し、インバータ12を流れる冷却液に熱が放出される。さらに、加熱された冷却液がオイル溜まり熱交換機31に流れて、そこに溜められたトランスミッションオイルを加熱する。トランスミッション30では、機構が停止しているため、トランスミッションオイルの流れはなく、オイル溜まり熱交換機31に溜まっているトランスミッションオイルが加熱される。このとき、オイル溜まり熱交換機31の断熱部31cによって、加熱されたトランスミッションオイルからその外部へ熱が放出することが抑制され、オイル溜まり熱交換機31内のトランスミッションオイルを効率的に加熱できる。また、オイル溜まり熱交換機31内のトランスミッションオイルが蓄熱する。
ステップS4の電熱駆動処理は、インレット4から供給される充電電力の一部が利用されて行われる。したがって、電熱駆動処理により、高電圧バッテリ3の充電率が低下して、電動車両1のモータ走行の航続距離が短くなるといった不都合が生じない。
インバータ12の電熱駆動処理及び冷却液の圧送が行われている間、ECU16は暖機終了の条件となったか判断する(ステップS5)。暖機終了の条件は、例えばオイル溜まり熱交換機31のトランスミッションオイルの温度が所定温度になった場合、暖機時間が所定時間に達した場合、充電が終了した場合など、適宜設定可能である。
ステップS5の判断で終了となった場合、ECU16はインバータ12の電熱駆動処理を終了し(ステップS6)、冷却液回路制御部26が切替弁23をラジエタ24側(すなわち配管21bと21dとが連通する状態)に切り替える(ステップS7)。これにより、暖機完了後に冷却液がインバータ12とラジエタ24とを循環してインバータ12が冷却される。そして、トランスミッション暖機処理が終了する。
トランスミッション暖機処理が終了して電動車両1が走行すると、トランスミッション30が駆動することでメカポンプ33が作動し、オイル溜まり熱交換機31内の加熱されたトランスミッションオイルが油路に沿って流れる。加熱されたトランスミッションオイルによりトランスミッション30が暖機されてフリクションが抑制される。また、加熱されたトランスミッションオイルにより、トランスミッション30がスムーズに回転されるため、電動車両1の燃費又は電費が向上し、電動車両1の航続距離を延ばすことができる。
以上のように、本実施形態の電動車両1によれば、インバータ12を利用することで熱源を増強して必要なときに効率的に熱を発生することができる。さらに、冷却液回路20の冷却液の循環によって効率的な熱の輸送が実現される。したがって、熱源専用の部品を増やすことなく、必要なときにインバータ12から効率的に熱を発生させ、例えば車室の暖房と重なるような場合でも、トランスミッション30の暖機を行うことができる。
さらに、本実施形態の電動車両1によれば、トランスミッション30の暖機中、冷却液がラジエタ24を通らずにインバータ12とオイル溜まり熱交換機31とを循環するように切替弁23が切り替えられる。したがって、インバータ12で発生した熱がラジエタ24で無駄に排出されてしまうことが抑制され、効率的にトランスミッション30の暖機を実現できる。
さらに、本実施形態の電動車両1によれば、高電圧バッテリ3の充電中にインバータ12の発熱によりトランスミッション30の暖機が行われるので、暖機のために高電圧バッテリ3の充電率が低下せず、電動車両1の航続距離が短くなることがない。また、電動車両1の走行前に充電を行うことで、走行前のタイミングでトランスミッション30を暖機できる。さらに、電動車両1が、エンジンを有するハイブリッド電気自動車である場合、エンジンが始動しない電動車両1の走行前のタイミングでトランスミッション30を暖機できる。
さらに、本実施形態の電動車両1によれば、オイル溜まり熱交換機31により、トランスミッションオイルの一部が高温の冷却液により加熱されるので、トランスミッション30が駆動される前にトランスミッションオイルに効率的に蓄熱することができる。そして、トランスミッション30が駆動したときに加熱されたトランスミッションオイルが油路を介して各部に供給されて、トランスミッション30のフリクション抑制及びスムーズな駆動を実現できる。したがって、トランスミッション暖機処理の終了から電動車両1の走行までに期間が開いても、暖機処理の効果が失われにくい。
また、本実施形態の電動車両1によれば、電熱駆動処理によってインバータ12を能動的に発熱することができる。また、電熱駆動パルスPh1、Ph2によってインバータ12を動作させて熱を発生させるので、スイッチング素子T11〜T32に集中的に発熱を行わせることができる。したがって、より効率的に必要なタイミングでインバータ12を発熱をさせることができる。
以上、本発明の実施形態について説明した。しかし、本発明は上記実施形態に限られるものでない。例えば、上記実施形態では、PHEV又はEVにおけるインレット4を介した充電中に電熱駆動処理を用いたトランスミッション30の暖機処理を実行する例を示したが、充電中でない期間にこの暖機処理を実行してもよい。例えば、電動車両1の起動時に暖機処理を実行したり、走行開始時に暖機処理を実行してもよい。また、走行用モータ2の駆動時など、電熱駆動処理を行わなくてもインバータ12が発熱するときには、電熱駆動処理を用いずにインバータ12の熱によりトランスミッション30の暖機処理を行ってもよい。また、モータ走行の開始時に電熱駆動処理を用いた暖機処理を行う場合、インバータ12にモータ走行駆動パルスと電熱駆動パルスとを重ねて出力することで、走行用モータ2の駆動とインバータ12の電熱駆動処理とを並行的に実行してもよい。また、充電中に電熱駆動処理を用いたトランスミッション30の暖機処理を行う場合でも、車載充電器を介さない急速充電による充電中に行うようにしてもよい。
また、上記実施形態では、冷却液を熱媒体とした例を示したが、熱媒体としては冷却液以外の媒体が適用されてもよい。また、上記実施形態では、オイル溜まり熱交換機31においてトランスミッションオイルと冷却液との間で熱交換を行ってトランスミッション30を暖機する例を示したが、トランスミッションケースを高温の冷却液で加熱する方式を採用してもよい。
また、上記実施形態では、電熱駆動処理としてインバータの同一相の上アームと下アームとを同時にオンしてインバータを短絡させる例を示した。しかし、電熱駆動処理は、例えば図1のスイッチング素子T11、T22を同時にオンにするなど、走行用モータ2のコイルを介してスイッチング素子に電流を流す方式としてもよい。この場合でも、スイッチング素子に生じた抵抗等によりスイッチング素子において集中的に熱を発生させることができる。
また、上記実施形態では、電熱駆動処理を行う制御部と冷却液の経路を切り替える切替制御部として、ECU16と冷却液回路制御部26とを適用した例を示した。しかし、1つのECUが両方の制御を行う構成、又は他のECUを含めた複数のECUがこれらの制御を行う構成を採用してもよい。また、本発明は、外部電源から充電する構成を持たないHEV(Hybrid Electric Vehicle)に適用されてもよい。その他、実施形態で示した細部は、発明の趣旨を逸脱しない範囲で適宜変更可能である。
1 電動車両
2 走行用モータ
3 高電圧バッテリ
4 インレット(充電コネクタ)
12 インバータ
16 ECU(制御部)
20 冷却液回路(熱輸送部)
22 電動ポンプ
23 切替弁
24 ラジエタ
26 冷却液回路制御部(切替制御部)
30 トランスミッション
31 オイル溜まり熱交換機
31a オイル溜まり部
31b 熱交換部
31c 断熱部
32 オイルパン
33 メカポンプ
Ph1、Ph2 電熱駆動パルス

Claims (5)

  1. 駆動輪に動力を伝達するトランスミッションと、
    走行用モータを駆動するインバータと、
    前記インバータと前記トランスミッションとの間で熱媒体を循環させて、前記インバータの熱を前記トランスミッションへ輸送可能な熱輸送部と、
    前記走行用モータの電力を供給するバッテリと、
    外部電源から前記バッテリの充電電力を入力する充電コネクタと、
    を備え
    前記充電コネクタが前記充電電力を入力する期間に、前記充電コネクタから入力された電力の一部により前記インバータを発熱させ、かつ前記熱輸送部が前記インバータの熱を前記トランスミッションへ輸送することを特徴とする電動車両。
  2. 前記熱媒体から熱を放出するラジエタと、
    前記熱媒体の流れを前記ラジエタ側と前記トランスミッション側とに切り替える切替弁と、
    前記トランスミッションの暖機中に前記熱媒体を前記トランスミッションへ流し、前記トランスミッションの暖機完了後に、前記熱媒体を前記ラジエタへ流すように前記切替弁を切り替える切替制御部と、
    を更に備えることを特徴とする請求項1記載の電動車両。
  3. 前記トランスミッションは、トランスミッションオイルの一部が溜まるオイル溜まり部と、前記オイル溜まり部に溜まったトランスミッションオイルと前記熱媒体との間で熱を交換する熱交換部とを有することを特徴とする請求項1又は請求項に記載の電動車両。
  4. 前記インバータを制御して前記走行用モータを駆動するモータ駆動処理、及び、前記インバータを制御して前記インバータに前記モータ駆動処理のときよりも大きい熱損失を発生させる電熱駆動処理を実行可能な制御部を備え、
    前記熱輸送部は、前記電熱駆動処理により前記インバータで発生された熱を前記トランスミッションへ輸送可能であることを特徴とする請求項1から請求項のいずれか一項に記載の電動車両。
  5. 前記電熱駆動処理は、前記モータ駆動処理のときよりも高い周波数で前記インバータを動作させる処理、或いは、前記モータ駆動処理のときよりも立ち上り又は立下りの緩い駆動パルスで前記インバータを動作させる処理であることを特徴とする請求項記載の電動車両。
JP2017140422A 2017-07-20 2017-07-20 電動車両 Active JP6975567B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017140422A JP6975567B2 (ja) 2017-07-20 2017-07-20 電動車両

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017140422A JP6975567B2 (ja) 2017-07-20 2017-07-20 電動車両

Publications (2)

Publication Number Publication Date
JP2019022374A JP2019022374A (ja) 2019-02-07
JP6975567B2 true JP6975567B2 (ja) 2021-12-01

Family

ID=65353181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017140422A Active JP6975567B2 (ja) 2017-07-20 2017-07-20 電動車両

Country Status (1)

Country Link
JP (1) JP6975567B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113613918B (zh) * 2019-04-08 2024-02-27 日立安斯泰莫株式会社 车辆用控制装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4140562B2 (ja) * 2003-12-16 2008-08-27 トヨタ自動車株式会社 冷却システムおよびハイブリッド自動車
JP2012005223A (ja) * 2010-06-16 2012-01-05 Aisin Aw Co Ltd 車両用充電装置
JP2013095409A (ja) * 2011-11-07 2013-05-20 Aisin Seiki Co Ltd バッテリ暖機装置およびバッテリ暖機方法
JP6149987B2 (ja) * 2015-11-24 2017-06-21 トヨタ自動車株式会社 車両用冷却装置

Also Published As

Publication number Publication date
JP2019022374A (ja) 2019-02-07

Similar Documents

Publication Publication Date Title
JP7094908B2 (ja) ハイブリッド車両のバッテリ昇温装置
CN109263436B (zh) 停车采暖系统
JP2013095409A (ja) バッテリ暖機装置およびバッテリ暖機方法
JP5158215B2 (ja) ハイブリッド車両の制御装置
JP5583212B2 (ja) ハイブリッド車両におけるエンジンオイル及びミッションオイルの加熱のための方法及び装置
WO2015111477A1 (ja) 車両用空調装置
JP6024584B2 (ja) ハイブリッド車両
US20120247715A1 (en) Heat Exchanger Arrangement
JP6311622B2 (ja) 車両の熱管理システム
JP5310943B2 (ja) 車両の温度管理システム
JP2010023527A (ja) 車両用蓄熱制御装置及び車両用蓄冷制御装置。
JP2015081089A (ja) 電気自動車の冷却システム、及び、冷却システムを駆動する方法
JP2013507290A (ja) ハイブリッド電気自動車の蓄電池の温度を制御する装置及び方法
JP2013018420A (ja) 電気駆動車両の暖房装置
JP2020514178A (ja) 液冷媒移送回路を含むハイブリッド電気自動車のための冷却システムを作動させる方法
JP2011156982A (ja) 車両空調用ヒータシステム
JP2019055649A (ja) バッテリー温度制御システム
JP6975567B2 (ja) 電動車両
JP2013151176A (ja) ハイブリッド車両の制御装置
JP2014073746A (ja) ハイブリッド車の制御装置
JP2018188112A (ja) モータ制御装置
JP7072355B2 (ja) 電動車両の熱供給装置
JP6249347B2 (ja) 電池システム
JP2016084062A (ja) ハイブリッド自動車
US20230373350A1 (en) Thermal energy management system and method for traction battery of an electrified vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211012

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211108

R150 Certificate of patent or registration of utility model

Ref document number: 6975567

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150