JP6974274B2 - 形状測定方法および形状測定装置 - Google Patents

形状測定方法および形状測定装置 Download PDF

Info

Publication number
JP6974274B2
JP6974274B2 JP2018144146A JP2018144146A JP6974274B2 JP 6974274 B2 JP6974274 B2 JP 6974274B2 JP 2018144146 A JP2018144146 A JP 2018144146A JP 2018144146 A JP2018144146 A JP 2018144146A JP 6974274 B2 JP6974274 B2 JP 6974274B2
Authority
JP
Japan
Prior art keywords
probe
measured
surface shape
shape data
work
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018144146A
Other languages
English (en)
Other versions
JP2020020647A (ja
Inventor
康成 長池
俊樹 熊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2018144146A priority Critical patent/JP6974274B2/ja
Publication of JP2020020647A publication Critical patent/JP2020020647A/ja
Application granted granted Critical
Publication of JP6974274B2 publication Critical patent/JP6974274B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • A Measuring Device Byusing Mechanical Method (AREA)

Description

本発明は、形状測定方法および形状測定装置に関する。
例えば、カメラ、顕微鏡等の様々な光学機器に用いられる光学素子の素子表面の製造誤差は、必要な光学性能を得るため、許容範囲内に抑制される必要がある。このため、光学素子の製造工程において、光学素子の素子表面あるいは光学素子を製造する成形型の表面形状などの被測定面を高精度に測定する必要がある。
表面形状を測定する形状測定装置として、触針プローブを表面に追従させて被測定物の表面形状を測定する装置が知られている(例えば、特許文献1および特許文献2を参照)。特許文献1に記載の形状測定装置では、高精度に形成された基準球を被測定物として測定することにより、基準球を基準としてスタイラス(プローブ)の表面の形状誤差を被測定物との接触角に応じて計測しておく。そして、製作誤差が未知の被測定物の面形状を測定する場合には、基準球の測定に基づくスタイラスの表面の形状誤差の大きさを、各測定データから補正する。
また、特許文献2に記載の形状測定装置および形状測定方法では、設計形状が既知の軸対称非球面形状を有する被測定物と、設計形状が既知の球面形状である第1のプローブおよび第2のプローブとを用いて、3種類の面形状測定を行う。これにより、被測定物、第1のプローブ、および第2のプローブの少なくとも1つの真の表面形状を測定する。
特許第4794753号公報 特許第4766851号公報
特許文献1に記載の形状測定装置では、スタイラスの形状誤差が、基準球の形状測定に基づいて求められる。そのため、基準球の表面形状の製作誤差は極めて微小であることが前提になっている。しかしながら、現実には、基準球の製作誤差をなくすことはできないため、スタイラスの形状誤差の補正に基準球の製作誤差が付加されてしまうという問題がある。
さらに、スタイラスの校正は、スタイラスを替えるごとに行う必要がある。このため、基準球は、取り扱いおよび経年変化等によって、表面形状が変化しないように厳重に管理する必要があるという問題がある。また、そのような管理が難しい場合には、スタイラスの校正の度に、基準球の表面形状のデータを更新する必要があるため、校正作業に時間がかかってしまうという問題がある。
特許文献2に記載の技術によれば、基準球のような形状誤差が微小な校正治具を用いる必要がなく、形状測定装置のみを使用して、高精度な測定が可能になる。しかし、特許文献2に記載の技術は、軸対称非球面形状を有する被測定物を被測定面の面頂を通る2次元断面のみに適用される。そのため、被測定物の三次元形状を測定する場合には、被測定面の面頂を通る多数の2次元断面で測定を行う必要がある。このため、1断面における各測定で、3種類の面形状測定が必要になるため、測定に時間がかかるという問題がある。
さらに、プローブによる測定経路が、被測定物の面頂を外れて測定されると、測定誤差になるため、高精度の三次元測定が行えないおそれがあるという問題もある。また、特許文献2に記載の技術では、例えば、自由曲面など、軸対称非球面以外の形状の被測定物は測定できないという問題がある。
本発明は、上述のような問題に鑑みてなされたものであり、形状誤差が測定対象の形状誤差に比べて微小に形成された校正用基準部材を使用しなくても、設計形状が既知の種々の三次元面形状を有する被測定物の面形状が高精度に測定できる形状測定方法および形状測定装置を提供することを目的とする。
上記の課題を解決するために、本発明の1態様に係る形状測定方法は、設計形状が既知である被測定物にプローブを接触させて、被測定物の表面を少なくとも異なる2方向に走査して三次元表面形状を評価する形状測定方法において、前記プローブを支持するプローブ支持手段に第1のプローブを装着し、前記被測定物を支持する被測定物支持手段に支持された被測定物の三次元表面形状を測定して第1面形状データを得る第1の三次元形状測定工程と、前記プローブ支持手段に第2のプローブを装着し、前記被測定物支持手段に支持された前記被測定物の三次元表面形状を測定して第2面形状データを得る第2の三次元測定工程と、前記プローブ支持手段に前記第2のプローブを装着した状態で、前記被測定物支持手段に支持された前記第1のプローブの三次元形状を測定して第3面形状データを得る第3の三次元測定工程と、前記第2のプローブと前記被測定物の少なくとも一方の向きを変えた状態で、前記プローブ支持手段に前記第2のプローブを装着し、前記被測定物支持手段に支持された前記被測定物の三次元表面形状を測定して第4面形状データを得る第4の三次元形状測定工程と、前記第1面形状データ、前記第2面形状データ、前記第3面形状データ、および前記第4面形状データに基づいて、前記被測定物の表面形状を算出する演算工程と、を備える。
前記演算工程において、前記第1面形状データ、前記第2面形状データ、前記第3面形状データ、および前記第4面形状データに対して複数のアフィン変換を施した結果の加重平均から前記被測定物の表面形状を算出してもよい。
前記第4の三次元形状測定工程において、前記第2のプローブと前記被測定物の少なくとも一方は、中心軸周りに90°回転または−90°回転している状態であってもよい。
本発明の1態様に係る形状測定装置は、設計形状が既知の被測定面を有する被測定物に設計形状が既知のプローブ面を有するプローブを接触させて、前記被測定面の三次元的な表面形状を測定する形状測定装置であって、第1表面を有する第1ワークを保持する第1保持部と、凸形状の第2表面を有する第2ワークを保持する第2保持部と、前記第1保持部および前記第2保持部を、測定基準面の法線である測定基準軸線に沿う方向および前記測定基準軸線に直交し互いに交差する少なくとも2方向に相対平行移動可能に移動する移動機構と、前記第1表面に前記第2表面を当接させた状態で前記第1ワークおよび前記第2ワークを相対平行移動させ、前記第2ワークの代表点の3次元的な移動軌跡を前記第2表面の設計形状に基づいて換算することによって前記第1表面の面形状データを取得する面形状データ取得部と、前記第1ワークとして前記被測定面を前記第1表面とする前記被測定物が前記第1保持部に保持され、前記第2ワークとして設計形状が既知の凸面で構成された第1プローブ面を前記第2表面として有する第1プローブを前記被測定物に対して第1測定姿勢で前記第2保持部に保持された場合に、前記面形状データである第1面形状データを取得し、前記第1ワークとして前記被測定面を前記第1表面とする前記被測定物が前記第1保持部に保持され、前記第2ワークとして設計形状が既知の凸面で構成された第2プローブ面を前記第2表面として有する第2プローブを前記被測定物に対して第2測定姿勢で前記第2保持部に保持された場合に、前記面形状データである第2面形状データを取得し、前記第1面形状データの取得時の前記第1表面に対する相対平行移動の各正方向と、前記第2面形状データの取得時の前記第2表面に対する相対平行移動の各正方向とが、互いに一致するように、前記第1ワークとして前記第1プローブを、前記第2ワークとして第2プローブを、それぞれ保持された場合に、前記面形状データである第3面形状データを取得し、前記第2のプローブと前記被測定物の少なくとも一方の向きを変えた状態で、前記第1ワークとして前記被測定物が前記第1保持部に保持され、前記第2ワークとして前記第2プローブを前記被測定物に対して第3測定姿勢で前記第2保持部に保持された場合に、前記面形状データである第4面形状データを取得する、測定制御部と、前記第1面形状データ、前記第2面形状データ、および前記第3面形状データをそれぞれ記憶する記憶部と、前記第1面形状データ、前記第2面形状データ、および前記第3面形状データを、各測定位置における設計上の法線と前記測定基準軸線とのなす角である接触角の関数に変換する変数変換処理部と、前記変数変換処理部によって変数変換された前記第1面形状データ、前記第2面形状データ、および前記第3面形状データを演算処理することによって、前記被測定面、第1プローブ面、および前記第2プローブ面の少なくとも一つの真の面形状を推定する面形状推定処理部と、を備える。
本発明の形状測定方法および形状測定装置によれば、形状誤差が測定対象の形状誤差に比べて微小に形成された校正用基準部材を使用しなくても、設計形状が既知の種々の三次元面形状を有する被測定物の面形状が高精度に測定できる。
また、本発明は、干渉計を用いた非接触原理の三次元形状測定にも同様に適用でき、被測定物の面形状が高精度に測定できる。
本発明の第1の実施形態の形状測定装置の構成例を示す模式的な正面図である。 図1におけるA視の平面図である。 本発明の第1の実施形態の形状測定装置におけるX軸方向の測定時の様子を示す模式的な平面図である。 本発明の第1の実施形態の形状測定装置に用いるプローブの構成例を示す模式的な正面図である。 本発明の第1の実施形態の形状測定装置のプローブ測定時の構成例を示す模式的な正面図である。 本発明の第1の実施形態の形状測定装置のプローブ測定時の第1保持部を示す模式的な正面図である。 本発明の第1の実施形態の形状測定装置の制御ユニットの機能構成を示す機能ブロック図である。 同実施例における形状測定装置の測定手順を示すフローチャートである。 図8の各測定ステップの様子を示す図である。 (a)(b)はワークとプローブ、(c)はプローブとプローブが接触する場合の接触角の説明図である。
以下では、本発明の実施形態について添付図面を参照して説明する。すべての図面において、実施形態が異なる場合であっても、同一または相当する部材には同一の符号を付し、共通する説明は省略する。
本発明の第1の実施形態の形状測定装置について説明する。
図1は、本発明の第1の実施形態の形状測定装置1の構成例を示す模式的な正面図である。図2は、図1におけるA視の平面図である。図3は、本発明の第1の実施形態の形状測定装置におけるX軸方向の測定時の様子を示す模式的な平面図である。図4は、本発明の第1の実施形態の形状測定装置に用いるプローブの構成例を示す模式的な正面図である。図5は、本発明の第1の実施形態の形状測定装置のプローブ測定時の構成例を示す模式的な正面図である。図6は、本発明の第1の実施形態の形状測定装置のプローブ測定時の第1保持部を示す模式的な正面図である。図7は、本発明の第1の実施形態の形状測定装置の制御ユニットの機能構成を示す機能ブロック図である。
形状測定装置1は、第1表面を有する第1ワークを支持する支持部3と、第2表面を有する第2ワークを保持して第1ワークの面形状測定を行う測定部2と、を備えている。支持部3および測定部2は、基台4の上に対向して配置されている。さらに、形状測定装置1は、形状測定装置1の各装置部分を制御する制御ユニット(後述)を備えている。
図1に示すように、測定時には、第1ワークとしては被測定物Wが、第2ワークとしてはプローブP1(第1プローブ)またはプローブP2(第2プローブ)が用いられる。
以下では、形状測定装置1における方向を参照する場合に、図1に示すXYZ直交座標系(以下、XYZ座標系という)が用いられる場合がある。
図示のXYZ座標系では、Y軸が鉛直軸線に平行である。ZX平面は水平面に平行である。支持部3および測定部2は、Z軸方向(Z軸に沿う方向)において互いに対向している。
XYZ座標系における各軸方向の正負は右手系の規約に従う。図1においては、X軸正方向は図示の紙面手前から奥側に向かう紙面垂直方向である。Y軸正方向は鉛直上方向(紙面の下側から上側に向かう方向)である。Z軸正方向は図示左側から右側に向かう方向である。
XYZ直交座標系は、形状測定装置1に固定された固定座標系である。
被測定物Wは、第1表面として適宜の三次元形状からなる被測定面Wsを有する。被測定面Wsの設計形状は、形状測定装置1による測定開始前に知られている。被測定面Wsの設計形状は、1方向に沿って測定用のプローブが接触可能であれば、凸面でもよいし凹面でもよい。被測定面Wsは、凸面および凹面が混在した面形状でもよい。例えば、被測定面Wsは、球面等の2次曲面、軸対称非球面、およびこれら以外の自由曲面であってもよい。
被測定面Wsは、適宜の関数で記述された数式で知られていてもよいし、被測定面Ws上の多数の点座標の集合によって知られていてもよい。例えば、被測定面Wsの設計値が多数の点座標の集合によって知られている場合、各点を通る補間処理によって、設計系所を表す連続関数が得られる。
以下では、被測定面Wsの設計形状が、z=Hd(x,y)で表されるものとして説明する。ここで、変数x、yは、被測定物Wに固定されたx右手直交座標系(以下、単にx座標系という)におけるx座標、y座標である。zは、点(x,y)における被測定面Wsのz座標を表す。
座標系の向きおよび原点は、被測定面Wsの形状に応じて、関数Hd(x,y)が簡素になるように適宜設定される。例えば、被測定物Wが回転対称な形状であれば、回転対称軸がz軸に選ばれることがより好ましい。この場合、被測定物Wのz軸は、Z軸に平行に配置される。
測定部2は、測定機台7、測定機板6、および測定ユニット5を備える。
測定機台7は、測定機板6および測定ユニット5を下方から支持する。測定機台7は、第1移動ステージ25を介して基台4上に配置されている。
第1移動ステージ25は、測定機台7をX軸方向(X軸に沿う方向)に往復移動させる。図3に示すように、第1移動ステージ25は、支持部3において第1ワークが配されるX軸方向の幅よりも広い範囲で、測定機台7をX軸方向に平行移動させることができる。
図1に示すように、測定機台7のZ軸負方向側の基台4上には、測定機台7のX軸方向の位置を検出する第1軸測長器43が配置されている。
第1軸測長器43の具体的な構成としては、測定機台7のX軸方向の位置計測が行えれば,特に限定されない。例えば、第1軸測長器43として、基準スケールと、基準ケールの移動量を読み取る読み取りヘッドと、を備えた構成が用いられてもよい。この場合、基準スケール20bは、測定機台7に固定される。
第1軸測長器43の検出出力は、後述する制御ユニットに送出される。
測定機板6は、測定機台7とともにX軸方向に平行移動し、後述する測定ユニット5を下方から支持する板状部材である。
測定機板6は、駆動部24a、24bを介して測定機台7上に固定されている。
駆動部24a、24bは、測定機板6をY軸方向(Y軸に沿う方向)にそれぞれ独立に駆動する軸状部材である。駆動部24a、24bは、Z軸方向において支持部3から遠ざかる方向にこの順に配置されている。図1では、駆動部24a、24bは、それぞれ1つずつ描かれているが、駆動部24a、24bの個数は、測定機板6の姿勢を安定して保持することができれば、特に限定されない。例えば、駆動部24a、24bは、それぞれ2以上設けられていてもよい。
駆動部24a、24bの各駆動量は、後述する制御部によって制御される。
駆動部24a、24bは、測定機板6のY軸方向の位置調整、測定機板6の傾斜姿勢の調整などに用いられる。例えば、後述する制御部によって駆動部24a、24bの各駆動量が変更されると、測定機板6がX軸回りに回動する。このため、測定機板6がZX平面に対して、YZ平面内で傾斜できるようになっている。
測定ユニット5は、第1ワークの第1表面の面形状を測定する装置部分である。測定ユニット5は、測定機板6の上面に設けられている。以下では、特に断らない限り、測定ユニット5の構成および位置関係に関して、測定機板6の上面がZX平面に平行になっている場合の例で説明する。
測定ユニット5は、Z軸方向に延びる柱状に形成されたエアスライド軸8と、略直方体形状のエアスライド軸受9と、を備えている。
エアスライド軸受9は、Z軸方向に貫通する貫通孔(不図示)が形成されており、その貫通孔が支持部3に向けられた状態で、測定機板6の上に固定されている。この貫通孔には、エアスライド軸8が挿通されている。エアスライド軸受9の貫通孔内の内壁面には、複数の吹出孔(不図示)が形成されている。エアスライド軸8と上記内壁面との間には、圧縮したクリーンでドライな圧縮空気が吹出孔から噴出されることにより、数μmの微小な隙間を形成されるようになっている。吹出孔からの圧縮空気の噴出によって、エアスライド軸8は、エアスライド軸受9によって、エアスライド軸受9の内壁面と接触することなく浮動支持される。
エアスライド軸受9は、エアスライド軸8の中心軸線Cに沿う方向において、エアスライド軸8を往復移動可能に支持している。
さらに、貫通孔内には、貫通孔の長手方向に延びる図示略の突条部が形成されている。この突条部は、エアスライド軸8の外周部においてエアスライド軸8の長手方向に延びて形成された図示略の凹条部に摺動可能に嵌合するように構成されている。このような突条部と凹条部との嵌合により、エアスライド軸8が中心軸線Cに沿って移動する場合に、エアスライド軸8の中心軸線C回りの回転は抑制されている。
例えば、測定機板6の上面がZX平面に平行になっている場合には、中心軸線Cは、Z軸に平行に配置されている。ただし、駆動部24aの高さが、駆動部24bの高さよりも低くなるように、駆動部24a、24bが駆動されている場合、測定機板6がZ軸方向正方向から負方向に向かって下がるように傾斜するため、エアスライド軸8は、自重によって、支持部3に近づくとともに下方に傾斜する方向に移動する。
エアスライド軸8のZ軸負方向側の端部(先端部)には、第2ワークが着脱可能に装着できるようになっている。
本実施形態では、エアスライド軸8の先端部には、一例として、第2ワークを保持するため、中心軸線Cと平行な中心軸を有する雌ねじ部8a(第2保持部)が形成されている。
エアスライド軸8の先端部外周面の上部には、基準マーク8bが設けられている。
基準マーク8bは、第2ワークが雌ねじ部8aに装着される際に、中心軸線C回りの第2ワークの回転位置を位置合わせするための参照マークになっている。
以下では、一例として、基準マーク8bは、中心軸線CとY軸方向に対向する位置に形成されている場合の例で説明する。
基準マーク8bの構成は、測定者が第2ワークを位置決めして取り付けることができれば特に限定されない。例えば、基準マーク8bは、エアスライド軸8の外表面と色が異なる適宜形状の図形で形成されたマーク、エアスライド軸8の外表面に形成された刻印、溝、突起などで形成されたマークなどであってもよい。
ここで、雌ねじ部8aによって保持される第2ワークの例であるプローブP1、P2の構成について説明する。
プローブP1は、中心軸CP1に沿って延びる柱状に形成されたプローブ軸10cの長手方向の第1端部(図示の左端部)に雄ねじ部10bが設けられ、第2端部(図示の右端部)に球状部10aが設けられている。
雄ねじ部10bは、雌ねじ部8aと螺合するねじ形状を有する。雄ねじ部10bは、中心軸線CP1と同軸に形成されている。このため、雄ねじ部10bおよび雌ねじ部8aの螺合によって、プローブP1は、エアスライド軸8のZ軸負方向側の端部に着脱可能に固定される。プローブP1の装着時には、プローブP1はエアスライド軸8の中心軸線Cと同軸になっている。
球状部10aは、中心軸線CP1に沿う方向の先端部において、形状測定時に測定対象と接触可能な範囲に球面からなる表面SP1(第1表面)を有する。以下では簡単のため、プローブ軸10cとの接続部を除く球状部10aの表面全体が表面SP1からなる場合の例で説明する。
表面SP1の設計形状は、中心軸線CP1上の中心OP1から半径がRP1の球面である。プローブP1における中心OP1の位置およびRP1の大きさは予め知られている。ただし、表面SP1の表面の製作誤差は知られていなくてもよい。
表面SP1の半径は、被測定物Wの被測定面Ws上の各点で、被測定面Wsと点接触可能な球面を構成できる大きさであれば、特に限定されない。
球状部10aの材料は特に限定されない。例えば、球状部10aは、精密に加工されたルビー球などで形成されてもよい。
プローブ軸10cの表面には、例えば、エアスライド軸8への固定時などに、中心軸線CP1回りの位置合わせを行うための第1マーク40aと、第2マーク40bと、が形成されている。
第1マーク40aは、プローブ軸10cの表面において周方向の定位置に形成されている。
第2マーク40bは、プローブ軸10cの表面において中心軸線CP1を挟んで第1マーク40aと対向する位置に形成されている。
第1マーク40aおよび第2マーク40bの構成は、測定者がプローブP1を位置決めして取り付けることができれば特に限定されない。例えば、第1マーク40aおよび第2マーク40bは、基準マーク8bの構成例として例示されたのと同様なマークなどであってもよい。
プローブP1は、その雄ねじ部10bがエアスライド軸8の雌ねじ部8aに予め決められた長さだけ螺合され、かつY軸負方向に見て第1マーク40aが基準マーク8bと同一直線上に配列された状態で、エアスライド軸8に固定される。
プローブP2は、プローブP1の球状部10aに代えて、球状部10dを備える。以下、プローブP1と異なる点を中心に説明する。
球状部10dは、プローブP2の中心軸線CP2に沿う方向の先端部において、形状測定時に測定対象と接触可能な範囲に球面からなる表面SP2(第2表面)を有する。以下では簡単のため、プローブ軸10cとの接続部を除く球状部10dの表面全体が表面SP2からなる場合の例で説明する。
表面SP2の設計形状は、中心軸線CP2上の中心OP2から半径がRP2の球面である。プローブP2における中心OP2の位置および半径RP2の大きさは予め知られている。ただし、表面SP2の製作誤差は知られていなくてもよい。
表面SP1と同様、表面SP2の半径は、被測定物Wの被測定面Ws上の各点で、被測定面Wsと点接触可能な球面を構成できる大きさであれば、特に限定されない。
P2の大きさは、上述のRP1に等しくてもよいし、RP1とは異なっていてもよい。
P1=RP2の場合、表面SP1、SP2の設計形状は互いに同一であるが、一般には、表面SP1、SP2の製作誤差大きさおよび製作誤差の分布は異なる。
球状部10aと同様、球状部10dの材料は特に限定されない。例えば、球状部10dは、精密に加工されたルビー球などで形成されてもよい。
プローブP2は、その雄ねじ部10bがエアスライド軸8の雌ねじ部8aに予め決められた長さだけ螺合され、かつY軸負方向に見て第1マーク40aが基準マーク8bと同一直線上に配列された状態で、エアスライド軸8に固定される。
ここで、エアスライド軸8の構成の説明に戻る。
図1、2に示すように、エアスライド軸8の後端部(Z軸正方向側の端部)には、プローブ軸測長器20を位置決めして固定するための段差部21が形成されている。
プローブ軸測長器20は、中心軸線Cに沿う方向のエアスライド軸8の基準位置からの移動量を測定することよって、エアスライド軸8の先端部に装着された第2ワークの位置検出を行う装置部分である。
プローブ軸測長器20の具体的な構成としては、中心軸線Cに沿う方向の位置計測が行えれば,特に限定されない。例えば、プローブ軸測長器20として、板状部材からなるガラススケール(基準スケール)20bと、測定機板6に固定されたガラススケールヘッド20aと、を備えた構成が用いられてもよい。この場合、ガラススケール20bは、その一端が例えば、ねじ止めなどによって段差部21に固定されている。
ガラススケールヘッド20aには、ガラススケール20bが往復移動可能に挿通されている。ガラススケールヘッド20aは、ガラススケール20bの移動位置を逐次検出し、後述する制御ユニットに出力する。
このため、プローブ軸測長器20によって、Z軸方向における測定機板6に対するエアスライド軸8の移動位置が検出できるようになっている。
エアスライド軸8の段差部21の近傍には、中心軸線Cと直交する方向に延びる棒状のストッパハネ22が固定されている。ストッパハネ22は、図2に示すように、X軸方向の長さがエアスライド軸8のX軸方向の幅より長い。ストッパハネ22は、エアスライド軸8に固定された状態では、ストッパハネ22の長手方向の両端はエアスライド軸8よりもX軸正方向およびX軸負方向においてそれぞれ外側に突出している。
ストッパハネ22の近傍において、エアスライド軸8よりもX軸正方向側の測定機板6上には、ストッパ23が設けられている。
図1に示すように、ストッパ23は、X軸方向から見て、Y軸正方向に開口した略U字状(コの字状)に形成されている。ストッパ23の開口の内側には、ストッパハネ22のX軸正方向側の端部が延びている。
このため、ストッパ23は、中心軸線Cに沿う方向にエアスライド軸8が往復移動可能な移動範囲を規制している。これにより、中心軸線Cに沿う方向におけるエアスライド軸8の移動可能範囲は、ストッパ23の両内側壁23aの内側におけるストッパハネ22の移動可能範囲に一致している。
このため、測定機板6が傾斜されたときに、エアスライド軸8が傾斜方向に移動しても、エアスライド軸8がエアスライド軸受9から抜け出すことが防止されている。
図1に示すように、支持部3は、第2移動ステージ27と、保持壁部28と、を備える。
第2移動ステージ27は、基台4上に固定され、保持壁部28を下方から支持している。さらに第2移動ステージ27は、保持壁部28をY軸方向に往復移動させる。第2移動ステージ27は、被測定物Wのy軸方向の幅よりも広い範囲で、保持壁部28をY軸方向に平行移動させることができる。
第2移動ステージ27のZ軸負方向側の基台4上には、第2移動ステージ27のY軸方向の位置を検出する第2軸測長器41が配置されている。
第2軸測長器41の具体的な構成としては、第2移動ステージ27のY軸方向の位置計測が行えれば,特に限定されない。例えば、第2軸測長器41は、第1軸測長器43と同様な構成を有していてもよい。
第2軸測長器41の検出出力は、後述する制御ユニットに送出される。
保持壁部28は、直方体状に形成され、第2移動ステージ27の上部に固定されている。保持壁部28の外壁面のうち、X軸正方向側の側面である前面28aには、第1ワークを保持する第1保持部を取り付けるための取付部28bが設けられている。
取付部28bの具体的な構成は、第1保持部を精度よく着脱できれば、特に制限されない。例えば、取付部28bは、位置決め用の係合部と雌ねじとの組み合わせであってもよいし、位置決めの凹凸嵌合部を含む適宜のマウントで構成されてもよい。
形状測定装置1において、第1保持部は、第1ワークの種類に応じて複数用意されている。いずれの第1保持部も取付部28bと着脱可能に固定する装着部を有している。
例えば、図1に示す被測定物ホルダ29は、第1ワークとして被測定物Wを保持するための第1保持部である。以下、被測定物ホルダ29に関連する位置関係については、図1に示すように被測定物ホルダ29が保持壁部28に装着された姿勢に基づいて説明する。
被測定物ホルダ29を介して被測定物Wを保持壁部28に取り付けると、被測定物Wは、測定部2側に突出した状態で着脱可能に保持されるようになっている。被測定物Wは軸対称である必要はなく、自由曲面形状のように設計形状が既知のものであればよい。これにより、被測定物ホルダ29によって被測定物Wが保持されると、被測定物Wと測定部2側に設けられたプローブP1とが対向して配されるようになっている。被測定物Wは支持部3を介してy軸移動機構(第2移動ステージ)27によりY軸方向への移動が可能になっている。この被測定物Wの動きを、支持部3近傍に設けられたy測長器(第2軸測長器)41が検出し、この検出結果を後述する演算部(演算手段)26に向けて逐一出力するようになっている。取付部28bには、被測定物ホルダ29を取り外して、図5のようにプローブP1を保持するプローブホルダ30が取り付けられるようになっている。
被測定物ホルダ29は、被測定物Wのx軸、y軸、z軸が、それぞれ、形状測定装置1のX軸、Y軸、Z軸に平行になるように、被測定物Wを保持する。
被測定物ホルダ29における被測定物Wの保持手段は特に限定されない。例えば、被測定物ホルダ29は、被測定物Wの外形を把持するチャッキング機構を備えていてもよい。
図示は省略するが、被測定物ホルダ29は、取付部28bに着脱可能に固定するための装着部を有する。
例えば、図5に示すプローブホルダ30は、第1ワークとしてプローブP1を保持するための第1保持部である。以下、プローブホルダ30の位置関係については、図1に示すようにプローブホルダ30が保持壁部28に装着された姿勢に基づいて説明する。
プローブホルダ30は、プローブP1の球状部10aがZ軸正方向に向いた姿勢で、中心軸線CP1が形状測定装置1のZ軸に平行になるようにプローブP1を保持する。
図6に示すように、プローブホルダ30は、プローブP1の雄ねじ部10bを螺合する雌ねじ部30bを有することによって、プローブP1を保持する。雌ねじ部30bの中心軸線は、プローブホルダ30が保持壁部28に装着された状態では、Z軸に平行になっている。
図示は省略するが、プローブホルダ30は、雌ねじ部30bが形成された側面と反対側の側面に、取付部28bに着脱可能に固定するための装着部を有する。
プローブホルダ30のZ軸正方向側の側面において、雌ねじ部30bに対するY軸正方向側には、基準マーク30aが設けられている。
基準マーク30aは、プローブP1が雌ねじ部30bに装着される際に、中心軸線CP1回りのプローブP1の回転位置を位置合わせするための参照マークになっている。
以下では、一例として、基準マーク30aは、雌ねじ部30bの中心軸線CとY軸方向に対向する位置に形成されている場合の例で説明する。
例えば、図3に示すように、プローブP1の第1マーク40aがY軸正方向に向くように周方向に基準マーク8bと位置合わせされて、プローブP1がエアスライド軸8に固定された状態を第1取り付け状態と称する。図6に示すように、プローブP1の第2マーク40bがY軸正方向に向くように周方向に基準マーク30aと位置合わせされてプローブホルダ30に固定された状態を第2取り付け状態と称する。
この場合、第2取り付け状態の表面SP1の姿勢は、第1取り付け状態の表面SP1をY軸回りに180°回転した後、Z軸回りに180°回転して得られる姿勢に等しい。このため、第2取り付け状態の表面SP1を適宜平行移動すれば、第2取り付け状態の表面SP1と、第1取り付け状態の表面SP1とは互いに点対称の位置関係になっている。
図7に示すように、制御ユニット100は、測定制御部101、面形状データ取得部102、記憶部103、変数変換処理部104、および面形状推定処理部105を備える。
測定制御部101は、形状測定装置1における測定動作全体を制御する。
例えば、測定制御部101は、第1移動ステージ25、第2移動ステージ27、および駆動部24a、24bと通信可能に接続されており、測定制御部101は、第1移動ステージ25、第2移動ステージ27、および駆動部24a、24bに制御信号を送出することによって、それぞれの駆動制御を行う。
次に、上述のように構成された本実施例における形状測定装置1の作用について説明する。本実施例では、2本のスタイラスと1つの被検サンプルを用いた4通りの測定により、被検物形状(スタイラス真球誤差)を抽出する。
本実施例における形状測定装置1の測定手順を概説すると以下のようになる。図8は測定手順のフローチャートであり、図9は、各測定ステップの様子を示す図である。
まず、スタイラスA(プローブP1)により被検サンプル(ワークW)を測定する(第1の三次元測定工程S1)。
続いて、スタイラスB(プローブP2)により同じ被検サンプル(ワークW)を測定する(第2の三次元測定工程S2)。
そして、スタイラスA(プローブP1)をスタイラスB(プローブP2)によって測定する(第3の三次元測定工程S3)。
さらに、スタイラスB(プローブP2)の向きを変え、被検サンプル(ワークW)を所定角度で回転させ、回転後の被検サンプル(ワークW)を測定する(第4の三次元測定工程S4)。
このようにして、4通りの測定で4個の測定結果を得る。
次に、アフィン変換で28個(上述の4個の測定結果×7個のアフィン変換)のデータを作り出す。7個のアフィン変換の条件としては、例えば、−90°回転、90°回転、180°回転、水平方向ミラー反転、垂直方向ミラー反転、水平方向ミラー反転後の−90°回転、水平方向ミラー反転後の90°回転である。
そして、全32個(4個+28個)の測定結果と32個の重みづけ係数の組合せから、制御ユニット100が所定の演算を行うことにより、ワークWの形状を表す真の値に近い値が算出される(演算工程S5)。重み付け係数は、残渣が最小となるように連立方程式を解くことで決定する。
このように、アスコマや球面収差といった典型的な表面形状の誤差を与え係数を求めることで、レンズ加工工程で生じるより現実的なパターンを効果的に抽出することができる。
なお、アフィン変換の条件は上述のものに限定されない。例えば、180°きざみ、120°きざみ、60°きざみ、45°刻みで行ってもよい。また、アフィン変換の個数は7個に限定されない。
ここで、上記のようにプローブP1,P2を用いてワークWを測定し、その測定結果を求めるための作用について詳説する。
(第1の三次元測定工程)
最初に、雌ねじ部8aに雄ねじ部10bを螺合させることにより、エアスライド軸8にプローブP1を取り付ける。このとき、基準マーク8bとマーキング40とが一致する位置、すなわちマーキング40が上方を向く位置にプローブP1を配置する。また、測定しようとする第1のワークWを被測定物ホルダ29を介して保持壁部28に取り付ける。するとワークWとプローブP1とは、図2に示すように、両者が対向した状態になる。この状態で、駆動部を駆動すると、駆動部24bが駆動させられ、測定機板6が支持部3に向けて傾斜させられると同時に、測定ユニット5もプローブP1側の一端が斜め下方に、プローブ軸測長器20側の他端が斜め上方を向くように傾けられる。そのため、エアスライド軸8が軸方向に沿ってプローブP1側に移動させられると同時に、ストッパハネ22もストッパ23の両内側壁23aの間を移動させられる。
そして、ストッパハネ22がプローブP1側の内側壁23aに接触すると、エアスライド軸8の移動が止められる。この位置は、プローブP1が、ワークWの表面に最初に接触する初期接触ポイントから、水平方向側方に離された地点となる。つまり、初期状態では、エアスライド軸8が最大ストローク突出したとき、プローブP1が、ワークWの中心を通り且つ軸線Lを含む鉛直平面(以下、基準面という。)から水平方向(図4に示す矢印A方向)側方、すなわち基準面から所定の距離だけ離されたワークWの側方に配置される。そして、この状態、すなわちワークWの側方から、測定機台7が、矢印A方向に基準面側に向けて水平移動を開始する。測定機台7は、一定の距離を高速移動し、所定の地点から低速移動に切り替えられて、さらに、基準面側、すなわちプローブP1が上記初期接触ポイントに向かうよう水平移動しつづける。
その結果、プローブP1の球状部10aが、あるタイミングでワークWの初期接触ポイントに所定の接触角を持って接触する。ここで、接触角とは図10(a)に示すように、接触ポイントにおける法線Nと、軸線Lとのなす角θ1を意味している。そして、接触後は、ワークWのなめらかな突出面にならってプローブP1が移動させられる。このプローブP1の移動に合わせて両者の接触ポイントが移動させられるとともに、P1のワークWに対する接触角θ1も漸次変化することになる。そしてプローブP1が所定の地点に到達すると、プローブ軸測長器20によって測定が開始される。さらに、測定機台7の移動により、プローブP1はワークWの最突出部分を通過し、測定の終端方向に向かって水平移動させられる。これら移動により、接触ポイントはプローブP1の球状部10aの表面に一定の軌跡を描くことになる。また、プローブP1はワークWの突出面にならって移動させられるので、エアスライド軸8もそれに応じて軸線L方向に直線移動させられる。
本実施例では、例えば、直径20mmの凸形状のワークWに対して基準面から相対距離10mmになるまで、プローブP1が早送り速度でワークWの側方から水平移動させられる。その地点に到達すると、より低速な毎分2.5mmのアプローチ速度に切り替えられる。そして、基準面から9mm離れた地点でプローブP1がワークWに接触する。このときの接触力は、プローブP1を含む部材の自重の軸方向成分のみによって生じるものとなる。すなわち、プローブP1、エアスライド軸8、ストッパハネ22、ガラス測長器20の総重量が52gf、傾斜角を2分としているので、
52(gf)×sin(2/60)=0.03(gf)
すなわち、約30mgfの接触力となる。
さらにプローブP1は、ワークWに接触しながら相対移動を続け、ワークWの凸形状によりエアスライド軸8が2mm押し戻された地点でプローブ軸測長器20による測定が開始される。このときには、エアスライド軸8が押し戻されていることから、ストッパハネ22は両内側壁23aから離された状態となる。その後も、プローブP1は、基準面をはさんだ反対側方向に向けて自重の軸方向成分のみによりワークWに接触しながら相対移動を続け、その反対側の所定の地点でワークWから離される。その間、プローブ軸測長器20はエアスライド軸8の位置を検出し続け、制御ユニット100に逐一その情報が出力される。さらに、測定機台7の矢印A方向の移動は、第2軸測長器41によりその位置が検知され、上記と同様、その情報が逐一制御ユニット100に出力される。
そして制御ユニット100により、第2軸測長器41からの出力情報が接触角θ1の変化に対応させられることによって、プローブ軸測長器20からの出力情報と第2軸測長器41からの出力情報との関係は、プローブ軸測長器20からの出力情報と接触角θ1との関係に変換され、ワークWの測定結果が接触角θ1に関する関数M(θ1)として求められる。
測長座標xと接触角度θは、次式で換算できる。ここでRは被測定物の曲率半径を示している。
θ=sin−1(R/x)
尚、接触角θに代替できる変数としては微分係数を用いることができる。自由曲面など曲率半径を持たない被測定物に適用する場合に有効な手段となる。被測定物の三次元形状f(x、y)が既知であれば、微分係数f´(x、y)が接触角θに相当する変数になる。
(第2の三次元測定工程)
次いで、プローブP1を雌ねじ部8aから取り外し、プローブP2を取り付ける。そして、プローブP2を用いて、ワークWを再度、上記と同様の作用により測定する。これにより得られた測定結果を制御ユニット100が処理することにより、ワークWの測定結果がプローブP2とワークWとの接触点におけるプローブP2の接触角θ2(図10(b)参照)に関する関数M(θ2)として求められる。
(第3の三次元測定工程)
その後、ワークWを保持壁部28から取り外し、その代わりに上記の測定の際に用いたプローブP1をプローブホルダ30を介して改めて取り付ける。このときも、ホルダ用マーキング(基準マーク)30aとマーキング40とが一致する位置、すなわちマーキング40が上方を向く位置にプローブP1を配置する。これにより、プローブP1は、エアスライド軸8およびプローブホルダ30への取り付けに際して、常にマーキング40が上方を向くように取り付けられる。そのため、両プローブP1,P2を用いてワークWを測定するときの両プローブP1,P2のワークWへのそれぞれの接触ポイントと、プローブP2を用いてプローブP1を測定するときの互いの接触ポイントとがそれぞれ等しくなり、それら接触ポイントが、球状部10aの表面において、同一軌跡上を移動することになる。つまり、両プローブP1,P2は、測定の際、常に同じ軌跡上で接触させられる。プローブP1を保持壁部ホルダ28に取り付けると、このプローブP1とエアスライド軸8に取り付けられているプローブP2とは、図1に示すように、両者が対向するように配される。この状態から、プローブP1を上記と同様の作用により測定する。
測定原理上プローブ曲率半径の制約は設けないが、プローブ同士を測定する状態を鑑みて、いずれかひとつのプローブ曲率半径は0.5mm以上あることが望ましい。その場合、もう他方のプローブは曲率半径2umのダイヤスタイラスとすることが望ましい。また、プローブは球体に特定する必要はない。被測定物同様に既知の設計形状であれば本測定原理が適用できる。これにより得られた測定結果を制御ユニット100が処理することにより、プローブP1の測定結果がプローブP2とプローブP1との接触点におけるプローブP2の接触角θ3(図10(c)参照)に関する関数M(θ3)として求められる。
(第4の三次元測定工程)
次に、スタイラスB(プローブP2)の向きを変え(反転し)、被検サンプル(ワークW)を所定角度で回転させた後、スタイラスB(プローブP2)により回転後の被検サンプル(ワークW)を測定し、上記と同様の作用により測定する。これにより得られた測定結果を制御ユニット100が処理することにより、ワークWの測定結果がプローブP2とワークWとの接触点におけるプローブP2の接触角θ4に関する関数M(θ4)として求められる。
なお、被検サンプル(ワークW)を回転させる角度は、例えばZ軸中心で180°または90°である。なお、第4面形状データを得る測定方法は、これに限定されない。例えば、スタイラスBと被検サンプルWの少なくとも一方が90°回転または−90°回転していてもよい。
すなわち、第4の三次元測定工程では、スタイラスB(プローブP2)と被検サンプル(ワークW)の少なくとも一方の向きを変えた状態で、スタイラスB(プローブP2)により被検サンプル(ワークW)を測定する。
次に、上記の作用により求められた4個の測定結果(第1〜第4面形状データ)の各々に対応する4個の関数M〜Mから、ワークWの真の値を演算するための処理について説明する。
プローブP1,P2の球状部10aには、製造上、微細な真球度の誤差、すなわち球状部10aの設計形状に対する形状誤差が発生しているおそれがある。そのため、測定結果としての4個の関数は、これら形状誤差が含まれたものとなる。また、ワークWにも、設計形状に対して形状誤差が生じている。
以下の実施例では、MからMすべての測定において、スタイラス側(上部につく側)はY軸周りに180°回転させたように動かし、触針としての使用を前提とした。また、被検サンプル側(object side)はM〜Mまでは回転せず、Mで被検サンプルをZ軸中心に回転させた状態での測定とした。この姿勢に応じた測定結果M〜Mは以下のように表現することができる。
Figure 0006974274
ここでθx、θyはプローブ接触点における接触角で、f(x,y)は設計形状である。また、曲率半径の異なる大きさのものを測定するので、演算する場合にはx−y座標ではなく、以下の式を用いて傾斜角度θに換算(変換)した座標で行う。
Figure 0006974274
〜Mは、4個の測定結果(第1〜第4面形状データ)の各々に対応する関数である。AはスタイラスAに対応する関数であり、BはスタイラスBに対応する関数であり、Cは被検サンプルWに対応する関数である。本実施例では、関数M〜Mと関数A〜Cとの対応は、以下の表のようになる。
Figure 0006974274
(第1面形状データ)は、スタイラスAをY軸まわりに180°回転して、スタイラスAで被検サンプルWを測定することにより得ている。
(第2面形状データ)は、スタイラスBをY軸まわりに180°回転して、スタイラスBで被検サンプルWを測定することにより得ている。
(第3面形状データ)は、スタイラスAをY軸まわりに180°回転して、スタイラスAでスタイラスBを測定することにより得ている。
(第4面形状データ)は、被検サンプルWをZ軸まわりに−90°回転して、スタイラスで被検サンプルWを測定することにより得ている。なお、Mの測定方法は、これに限定されない。
(演算工程)
上記の作用により求められた4個の測定結果に対して、7通りのアフィン変換を行い、元のデータ(測定データ)4個+アフィン変換で得られた数値データ28個の合計32個のデータを得る。元のデータ(測定データ)を、移動しない(無変換の)アフィン変換を行ったものであると考えると、8通りのアフィン変換を行ったと考えることもできる。
4個の測定データ(M〜M)の各々に対して8通りのアフィン変換(測定データ+7通りのアフィン変換)を施した結果の加重平均から被測定物Wの形状Cを求める式を、以下のように定義する。
Figure 0006974274
i,jは重みづけ係数である。被測定物Wの形状Cを求めるには、重みづけ係数wi,jを決定する必要がある。ここで(X、Y)は90度と反転を組み合わせた放射状に位置する8つの座標の一つを表している。
以下の式(4)におけるX、Yは、無変換(元のデータ)、180°回転、X反転(水平方向ミラー反転)、Y反転(垂直方向ミラー反転)、+90°回転、−90°回転、X反転+90°(水平方向ミラー反転後の+90°回転)、X反転−90°(水平方向ミラー反転後の−90°回転)の8通りのアフィン変換に相当する座標である。jは8通りのアフィン変換に対応するインデックスである。
Figure 0006974274
以下の表2におけるf、mx、my、rp、rm、rot、mxp、mxmは、それぞれ、無変換(元のデータ)、X反転(水平方向ミラー反転)、Y反転(垂直方向ミラー反転)、+90°回転、−90°回転、180°回転、X反転と90°回転の組合せ、X反転と-90度回転の組合せ、の8通りのアフィン変換に相当するインデックス変換である。
Figure 0006974274
式(1)を用いて式(2)のCを展開すると、以下の式(5)のようになる。
Figure 0006974274
式(5)を、A、B、Cそれぞれについてまとめると、以下の式(6)のようになる。
Figure 0006974274
式(6)は恒等式なので、以下の式(7)を満たす。
Figure 0006974274
同様に、C(Xk、Yk)(k=2,3,…,8)について3式を導出することで、全192通りの連立方程式が得られる。最小二乗法により、これら条件過多連立方程式を解くことで重みづけ係数wi,jを決定し、被測定物Wの形状Cを求める式が完成する。そして、全32個の測定結果と32個の重みづけ係数の組合せから、制御ユニット100が所定の演算を行うことにより、被測定物(ワーク)Wの形状Cを表す真の値に近い値が算出される。
上述の説明では、7通りのアフィン変換を施す場合について説明したが、アフィン変換の個数は7個に限定されない。アフィン変換の種類についても、上述の例に限定されない。また、上述の演算方法および数式は一例であり、本発明は上述の演算方法および数式に限定されない。
本実施例においては、基準球を用いたプローブ形状の校正などを行なわずとも、直接ワークWの形状を求めることができるという利点がある。また、形状誤差を有するプローブを用いて行なった測定結果から、簡単な演算によりワークWの形状を求めることができるという利点も有する。
以上より、本実施例における形状測定装置1によれば、基準球を使わずに、ワークWの形状を表す真の値の近似値を容易に算出することができる。また、必ずしも同一測定座標を用いなくともよい。
なお、上記各実施形態の説明において、プローブP1、プローブP2は入れ替え可能である。
プローブP1およびプローブP2の先端は尖っていてもよいし、ボール状(球状部が設けられている)であってもよい。ただし、プローブP1およびプローブP2の両方の先端が尖っている場合は、第3の三次元測定工程を行うことが難しいので、不適当である。
以上、本発明の好ましい各実施形態、各実施例を説明したが、本発明はこれらの各実施形態、各実施例に限定されることはない。本発明の趣旨を逸脱しない範囲で、構成の付加、省略、置換、およびその他の変更が可能である。
また、本発明は前述した説明によって限定されることはなく、添付の特許請求の範囲によってのみ限定される。
1…形状測定装置、2…測定部、3…支持部、4…基台、5…測定ユニット、6…測定機板、7…測定機台、8…エアスライド軸、8a…雌ねじ部(第2保持部)、8b…基準マーク、9…エアスライド軸受、10a…球状部、10b…雄ねじ部、10c…プローブ軸、10d…球状部10、20…プローブ軸測長器(ガラス測長器)、20a…ガラススケールヘッド、20b…基準スケール(ガラススケール)、21…段差部、22…ストッパハネ、23…ストッパ、23a…両内側壁、24a、24b…駆動部、25…第1移動ステージ、26…演算部(演算手段)、27…第2移動ステージ(y軸移動機構)、28…保持壁部(保持壁部ホルダ)、28a…前面、28b…取付部、29…被測定物ホルダ(第1保持部)、30…プローブホルダ(第1保持部)、30a…基準マーク(ホルダ用マーキング)、30b…雌ねじ部、40…マーキング、40a…第1マーク、40b…第2マーク、41…第2軸測長器(y測長器)、43…第1軸測長器、100…制御ユニット、101…測定制御部、102…面形状データ取得部、103…記憶部、104…変数変換処理部、105…面形状推定処理部

Claims (4)

  1. 設計形状が既知である被測定物にプローブを接触させて、被測定物の表面を少なくとも異なる2方向に走査して三次元表面形状を評価する形状測定方法において、
    前記プローブを支持するプローブ支持手段に第1のプローブを装着し、前記被測定物を支持する被測定物支持手段に支持された被測定物の三次元表面形状を測定して第1面形状データを得る第1の三次元形状測定工程と、
    前記プローブ支持手段に第2のプローブを装着し、前記被測定物支持手段に支持された前記被測定物の三次元表面形状を測定して第2面形状データを得る第2の三次元測定工程と、
    前記プローブ支持手段に前記第2のプローブを装着した状態で、前記被測定物支持手段に支持された前記第1のプローブの三次元形状を測定して第3面形状データを得る第3の三次元測定工程と、
    前記第2のプローブと前記被測定物の少なくとも一方の向きを変えた状態で、前記プローブ支持手段に前記第2のプローブを装着し、前記被測定物支持手段に支持された前記被測定物の三次元表面形状を測定して第4面形状データを得る第4の三次元形状測定工程と、
    前記第1面形状データ、前記第2面形状データ、前記第3面形状データ、および前記第4面形状データに基づいて、前記被測定物の表面形状を算出する演算工程と、
    を備える形状測定方法。
  2. 前記演算工程において、前記第1面形状データ、前記第2面形状データ、前記第3面形状データ、および前記第4面形状データに対して複数のアフィン変換を施した結果の加重平均から前記被測定物の表面形状を算出する、請求項1に記載の形状測定方法。
  3. 前記第4の三次元形状測定工程において、前記第2のプローブと前記被測定物の少なくとも一方は、中心軸周りに90°回転または−90°回転している状態である、請求項1に記載の形状測定方法。
  4. 設計形状が既知の被測定面を有する被測定物に設計形状が既知のプローブ面を有するプローブを接触させて、前記被測定面の三次元的な表面形状を測定する形状測定装置であって、
    第1表面を有する第1ワークを保持する第1保持部と、
    凸形状の第2表面を有する第2ワークを保持する第2保持部と、
    前記第1保持部および前記第2保持部を、測定基準面の法線である測定基準軸線に沿う方向および前記測定基準軸線に直交し互いに交差する少なくとも2方向に相対平行移動可能に移動する移動機構と、
    前記第1表面に前記第2表面を当接させた状態で前記第1ワークおよび前記第2ワークを相対平行移動させ、前記第2ワークの代表点の3次元的な移動軌跡を前記第2表面の設計形状に基づいて換算することによって前記第1表面の面形状データを取得する面形状データ取得部と、
    前記第1ワークとして前記被測定面を前記第1表面とする前記被測定物が前記第1保持部に保持され、前記第2ワークとして設計形状が既知の凸面で構成された第1プローブ面を前記第2表面として有する第1プローブを前記被測定物に対して第1測定姿勢で前記第2保持部に保持された場合に、前記面形状データである第1面形状データを取得し、
    前記第1ワークとして前記被測定面を前記第1表面とする前記被測定物が前記第1保持部に保持され、前記第2ワークとして設計形状が既知の凸面で構成された第2プローブ面を前記第2表面として有する第2プローブを前記被測定物に対して第2測定姿勢で前記第2保持部に保持された場合に、前記面形状データである第2面形状データを取得し、
    前記第1面形状データの取得時の前記第1表面に対する相対平行移動の各正方向と、前記第2面形状データの取得時の前記第2表面に対する相対平行移動の各正方向とが、互いに一致するように、前記第1ワークとして前記第1プローブを、前記第2ワークとして第2プローブを、それぞれ保持された場合に、前記面形状データである第3面形状データを取得し、
    前記第2プローブと前記被測定物の少なくとも一方の向きを変えた状態で、前記第1ワークとして前記被測定物が前記第1保持部に保持され、前記第2ワークとして前記第2プローブを前記被測定物に対して第3測定姿勢で前記第2保持部に保持された場合に、前記面形状データである第4面形状データを取得する、
    測定制御部と、
    前記第1面形状データ、前記第2面形状データ、および前記第3面形状データをそれぞれ記憶する記憶部と、
    前記第1面形状データ、前記第2面形状データ、および前記第3面形状データを、各測定位置における設計上の法線と前記測定基準軸線とのなす角である接触角の関数に変換する変数変換処理部と、
    前記変数変換処理部によって変数変換された前記第1面形状データ、前記第2面形状データ、および前記第3面形状データを演算処理することによって、前記被測定面、第1プローブ面、および前記第2プローブ面の少なくとも一つの真の面形状を推定する面形状推定処理部と、
    を備える形状測定装置。
JP2018144146A 2018-07-31 2018-07-31 形状測定方法および形状測定装置 Active JP6974274B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018144146A JP6974274B2 (ja) 2018-07-31 2018-07-31 形状測定方法および形状測定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018144146A JP6974274B2 (ja) 2018-07-31 2018-07-31 形状測定方法および形状測定装置

Publications (2)

Publication Number Publication Date
JP2020020647A JP2020020647A (ja) 2020-02-06
JP6974274B2 true JP6974274B2 (ja) 2021-12-01

Family

ID=69587489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018144146A Active JP6974274B2 (ja) 2018-07-31 2018-07-31 形状測定方法および形状測定装置

Country Status (1)

Country Link
JP (1) JP6974274B2 (ja)

Also Published As

Publication number Publication date
JP2020020647A (ja) 2020-02-06

Similar Documents

Publication Publication Date Title
US6701633B2 (en) Apparatus and method for measuring a shape using multiple probes
JP4732362B2 (ja) 多軸計測システムの幾何学配置を較正するための方法
US7905031B1 (en) Process for measuring a part
JPH1183438A (ja) 光学式測定装置の位置校正方法
US10578414B2 (en) Inner-wall measuring instrument and offset-amount calculation method
US9733056B2 (en) Method for compensating lobing behavior of a CMM touch probe
US20230236010A1 (en) Method of calibrating a surface sensing device, corresponding calibrating program for a control computer and corresponding calibration kit
US20210223020A1 (en) Inspection master
US7142313B2 (en) Interaxis angle correction method
US8468672B2 (en) Surface sensing device
US20180100729A1 (en) Adapter element for assembling a rotational apparatus in the measurement space of a coordinate measuring machine
US9134105B2 (en) Contour shape measurement method
JP2003057026A (ja) プローブのアライメント調整装置、その装置を備えた測定機およびプローブのアライメント調整方法
JP4033468B2 (ja) ノズル先端位置計測装置とそれを用いたスポッティング装置
JP6974274B2 (ja) 形状測定方法および形状測定装置
JP2019152554A (ja) レンズ厚測定装置
US20220349705A1 (en) Workpiece holder for utilization in metrology system for measuring workpiece in different orientations
JP4766851B2 (ja) 形状測定機および形状測定方法
JP4093564B2 (ja) クランプ装置の傾き調整方法
RU2761923C1 (ru) Способ управления манипулятором
JP2001165630A (ja) 表面性状測定機のセンサー校正装置
KR20050052979A (ko) 3차원 레이저 스캐너용 소형물 측정지그 및 이를 이용한측정방법
JP4309727B2 (ja) 測定用治具およびこれを用いた三次元形状測定方法
JP2024152665A (ja) 自動測定システムおよび自動測定システムの制御方法
JP2013238509A (ja) てこ式プローブ用の基準器、てこ式プローブの位置情報および姿勢情報を取得する方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201030

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211026

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211104

R151 Written notification of patent or utility model registration

Ref document number: 6974274

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151