JP6967179B2 - ワーク分離装置及びワーク分離方法 - Google Patents

ワーク分離装置及びワーク分離方法 Download PDF

Info

Publication number
JP6967179B2
JP6967179B2 JP2021549618A JP2021549618A JP6967179B2 JP 6967179 B2 JP6967179 B2 JP 6967179B2 JP 2021549618 A JP2021549618 A JP 2021549618A JP 2021549618 A JP2021549618 A JP 2021549618A JP 6967179 B2 JP6967179 B2 JP 6967179B2
Authority
JP
Japan
Prior art keywords
irradiation
laser
work
separation layer
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021549618A
Other languages
English (en)
Other versions
JPWO2021100421A1 (ja
Inventor
義和 大谷
恭平 富岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Engineering Co Ltd
Original Assignee
Shin Etsu Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Engineering Co Ltd filed Critical Shin Etsu Engineering Co Ltd
Application granted granted Critical
Publication of JP6967179B2 publication Critical patent/JP6967179B2/ja
Publication of JPWO2021100421A1 publication Critical patent/JPWO2021100421A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/50Working by transmitting the laser beam through or within the workpiece
    • B23K26/57Working by transmitting the laser beam through or within the workpiece the laser beam entering a face of the workpiece from which it is transmitted through the workpiece material to work on a different workpiece face, e.g. for effecting removal, fusion splicing, modifying or reforming
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67115Apparatus for thermal treatment mainly by radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/082Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/082Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
    • B23K26/0821Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head using multifaceted mirrors, e.g. polygonal mirror
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/268Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67132Apparatus for placing on an insulating substrate, e.g. tape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/40Semiconductor devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68381Details of chemical or physical process used for separating the auxiliary support from a device or wafer

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Electromagnetism (AREA)
  • Laser Beam Processing (AREA)
  • Dicing (AREA)

Description

本発明は、WLP(wafer level packaging)やPLP(panel level packaging)、又は厚さが極めて薄い(極薄)半導体ウエハの処理工程などのような、製品となるワークの製造過程において、支持体に仮止め保持されたワークを支持体から剥離するために用いられるワーク分離装置、及び、ワーク分離装置を用いたワーク分離方法に関する。
従来、この種のワーク分離装置及びワーク分離方法として、基板上に結晶層が形成されてなるワークに対し、基板を通してパルスレーザ光を照射して、ワークへのパルスレーザ光の照射領域を刻々と変えながら、照射領域の移動方向に互いに隣接する照射領域の端部が重畳するように、かつ、移動方向に直交する方向で互いに隣接する照射領域の端部が重畳するように照射し、基板と結晶層との界面で結晶層を基板から剥離するレーザリフトオフ方法がある(例えば、特許文献1参照)。
ワークは、パルスレーザ光の1ショット(1パルス)に相当するサイズの照射領域に分割され、各照射領域に対するレーザ光学系からワークへのパルスレーザ光の照射方法は、ワークの搬送により各照射領域に対して、照射領域の端部(エッジ部)を重畳させながら、それぞれ1回ずつパルスレーザ光を照射している。
レーザ源で発生したパルスレーザ光は、レーザ光学系を通過してワーク上に投影され、基板を通じて基板と結晶層(GaN系化合物の材料層)の界面に照射される。基板と材料層の界面では、パルスレーザ光が照射されることにより、材料層の基板との界面付近のGaNが分解されて材料層が基板から剥離される。
また、その他のワーク分離装置としては、保持手段に複合基板を吸引保持した状態でレーザー光線照射手段を作動して複合基板のエピタキシー基板側からバファー層にレーザー光線を照射してバファー層を破壊し、その後エピタキシー基板剥離手段を作動してエピタキシー基板を光デバイス層から剥離するリフトオフ装置がある(例えば、特許文献2参照)。
レーザー光線照射手段は、パルスレーザー光線発振手段と、パルスレーザー光線の光軸をX軸方向およびY軸方向に偏向するスキャナーと、スキャナーによって光軸が偏向されたパルスレーザー光線を集光して保持テーブルに保持された複合基板に照射する像側テレセントリック対物レンズで構成された集光器とを具備している。パルスレーザー光線発振手段が作動すると、スキャナーをX軸方向およびY軸方向に揺動して、集光器からパルスレーザー光線のスポットが渦巻状になるようにしてバファー層の全面に照射される。
特開2012−024783号公報 特開2013−179237号公報
しかし乍ら、特許文献1に記載のものでは、パルスレーザ光の1ショットに相当する各照射領域のサイズが大きいため、レーザ光学系から各照射領域に照射されるパルスレーザ光を十分に集中させることができない。これにより、各照射領域に照射したパルスレーザ光のエネルギー量(エネルギー密度)が、結晶層(GaN系化合物の材料層)の全面を均一に分解させるレベルまで達しないことがあった。
このため、積層体の分離層に対するレーザ光の照射ムラが部分的に発生し易くなって、分離層においてレーザ出力の不足した部位や未照射部位が部分的に剥離不良を起こすことや、逆にレーザ出力の強過ぎた部位は基板に搭載されたチップの回路基板に形成されているデバイスにダメージを起こすことや、レーザ光の過照射による煤の発生を起こすなどの問題があった。
特許文献2に記載のものでは、スキャナーの揺動によりパルスレーザー光線が渦巻状に照射されるため、エピタキシー基板及びバファー層の全体形状が矩形である場合には未照射部位が発生し易くて不向きであり、矩形の全面を効率的に剥離できないという問題があった。
このような課題を解決するために本発明に係るワーク分離装置は、回路基板を含むワークが支持体と分離層を介して積層される積層体に対し、レーザ光の照射に伴う前記分離層の変性により前記ワークから前記支持体を剥離するワーク分離装置であって、前記ワーク又は前記支持体のいずれか一方を着脱自在に保持する保持部材と、前記保持部材に保持された前記積層体の前記支持体又は前記ワークの他方を透して前記分離層に向け前記レーザ光を照射するレーザ照射部と、前記レーザ照射部を作動制御する制御部と、を備え、
前記レーザ照射部は、スポット状の前記レーザ光を前記積層体に沿って動かすレーザスキャナを有し、前記積層体に向けて前記レーザスキャナから照射される前記レーザ光の領域は、前記分離層の照射面全体が、前記レーザ照射部からの光照射方向と交差する二方向のいずれか一方へ長尺な帯状となる複数の照射領域に分割されるとともに、この分割した各照射領域に対する前記レーザスキャナからの照射が、前記光照射方向と交差する平面上で前記スポット状の前記レーザ光の一部が重なり合うように並んだ整列照射であり、前記制御部は、前記複数の照射領域のうち一つの照射領域に対して、前記レーザスキャナの作動により前記整列照射が行われ、前記複数の照射領域のうち一つの前記照射領域の全体が前記整列照射で隙間なく埋め尽くされた後に、次の照射領域に対する前記整列照射が行われ、それ以降は前記各照射領域毎にそれぞれ前記整列照射を同様に繰り返して、最終的に前記複数の照射領域のすべてが整列照射されるように制御することを特徴とする。
さらに、このような課題を解決するために本発明に係るワーク分離装置は、回路基板を含むワークが支持体と分離層を介して積層される積層体に対し、レーザ光の照射に伴う前記分離層の変性により前記ワークから前記支持体を剥離するワーク分離装置であって、前記ワーク又は前記支持体のいずれか一方を着脱自在に保持する保持部材と、前記保持部材に保持された前記積層体の前記支持体又は前記ワークの他方を透して前記分離層に向け、前記レーザ光としてパルス発振されるスポット状のガウシャンビームを間欠的に順次照射するレーザ照射部と、前記レーザ照射部を作動制御する制御部と、を備え、前記レーザ照射部は、前記スポット状のガウシャンビームを、エッジ部の傾斜角度が略垂直なスポット状のトップハットビームに変更する変換用光学部品を有し、前記積層体に向けて前記レーザ照射部から照射される前記レーザ光の領域は、前記分離層の照射面全体が、前記レーザ照射部からの光照射方向と交差する二方向へ複数の照射領域に分割されるとともに、この分割した各照射領域に対する前記レーザ照射部からの照射が、前記光照射方向と交差する平面上で前記スポット状のトップハットビームの一部が重なり合うように並んだ整列照射であり、前記制御部は、前記帯状に分割された複数の照射領域のうち一つの照射領域に対して、前記レーザ照射部の作動により前記整列照射が行われ、前記複数の照射領域のうち一つの前記照射領域の全体が前記整列照射で隙間なく埋め尽くされた後に、次の照射領域に対する前記整列照射が行われ、それ以降は前記各照射領域毎にそれぞれ前記整列照射を同様に繰り返して、最終的に前記複数の照射領域のすべてが整列照射されるように制御することを特徴とする。
また、このような課題を解決するために本発明に係るワーク分離方法は、回路基板を含むワークが支持体と分離層を介して積層される積層体に対し、レーザ光の照射に伴う前記分離層の変性により前記ワークから前記支持体を剥離するワーク分離方法であって、前記ワーク又は前記支持体のいずれか一方を保持部材に着脱自在に保持する保持工程と、前記保持部材に保持された前記積層体の前記支持体又は前記ワークの他方を透して前記分離層に向けレーザ照射部から前記レーザ光を照射するレーザ照射工程と、前記保持部材に保持された前記積層体の前記支持体及び前記分離層に対する前記レーザ照射部からのレーザ照射位置を、少なくとも前記レーザ照射部からのレーザ照射方向と交差する方向へ相対的に移動させる相対移動工程と、を含み、前記レーザ照射部は、スポット状の前記レーザ光を前記積層体に沿って動かすレーザスキャナを有し、前記レーザ照射工程では、前記積層体に向けて前記レーザスキャナから照射される前記レーザ光の領域は、前記分離層の照射面全体が、前記レーザ照射部からの光照射方向と交差する二方向のいずれか一方へ長尺な帯状となる複数の照射領域に分割されるとともに、この分割した各照射領域に対する前記レーザスキャナからの照射が、前記光照射方向と交差する平面上で前記スポット状の前記レーザ光の一部が重なり合うように並んだ整列照射であり、前記相対移動工程では、前記帯状に分割された複数の照射領域のうち一つの照射領域に対して、前記レーザスキャナの作動により前記整列照射が行われ、前記複数の照射領域のうち一つの前記照射領域の全体が前記整列照射で隙間なく埋め尽くされた後に、次の照射領域に対する前記整列照射が行われ、それ以降は前記各照射領域毎にそれぞれ前記整列照射を同様に繰り返して、最終的に前記複数の照射領域のすべてが整列照射されることを特徴とする。
本発明の実施形態に係るワーク分離装置の全体構成を示す説明図であり、(a)が正面図、(b)が同横断平面図である。 分離層の照射領域を示す説明図であり、(a)(b)が複数の照射領域のサイズ違いを示す斜視図であり、(c)(d)が複数の照射領域に対する照射順序の違いを示す斜視図である。 ワーク分離方法を示す説明図であり、(a)〜(d)がレーザ照射部からのレーザ照射過程を示す一部切欠斜視図である。 積層体の変形例を示す説明図であり、(a)〜(d)がレーザ照射部からのレーザ照射過程を示す一部切欠斜視図である。 本発明の実施形態に係るワーク分離装置の変形例を示す説明図であり、(a)が正面図、(b)が同横断平面図である。 レーザ照射部の変形例を示す説明図であり、スキャナからのレーザ照射過程を示す一部切欠拡大斜視図である。 レーザ照射部の変形例を示す説明図であり、スキャナからのレーザ照射過程を示す一部切欠拡大斜視図である。 複数の照射領域の境目を部分拡大した平面図である。 反りがある積層体を保持した場合の作動状態を示す説明図であり、(a)(b)が複数の照射領域に対するレーザ照射部からのレーザ照射過程を示す拡大正面図である。 本発明の実施形態に係るワーク分離装置の変形例を示す説明図であり、(a)が正面図、(b)が同横断平面図である。 反りがある積層体を保持した場合の作動状態を示す説明図であり、(a)(b)が複数の照射領域に対するレーザ照射部からのレーザ照射過程を示す拡大正面図である。 反りがある積層体の照射状態を示す説明図であり、(a)が要部を部分拡大した正面図、(b)が同模式図である。
以下、本発明の実施形態を図面に基づいて詳細に説明する。
本発明の実施形態に係るワーク分離装置A及びワーク分離方法は、図1〜図12に示すように、回路基板(図示しない)を含むワーク1が支持体2と分離層3を介して積層されてなる積層体Sに対し、ワーク1や支持体2を透した分離層3へのレーザ光Lの照射により、レーザ光Lの吸収で分離層3が剥離可能に変性(変質)して、ワーク1から支持体2を剥離させるレーザリフトオフ装置とレーザリフトオフ方法である。WLP(wafer level packaging)やPLP(panel level packaging)のような半導体パッケージなどを製造することや、厚さが極めて薄い半導体ウエハ(以下「極薄ウエハ」という)の処理工程のために用いられる。
詳しく説明すると、本発明の実施形態に係るワーク分離装置Aは、積層体Sを着脱自在に保持するように設けられる保持部材10と、積層体Sの分離層3に向けレーザ光源21からのレーザ光Lを照射するように設けられる光学系20のレーザ照射部22と、を主要な構成要素として備えている。
さらに、支持体2及び分離層3に対するレーザ照射部22からのレーザ照射位置Pを相対的に移動させるように設けられる駆動部30と、レーザ照射部22から支持体2及び分離層3の照射面までの間隔を測定するように設けられる測長部40と、レーザ照射部22及び駆動部30や測長部40などを作動制御するように設けられる制御部50と、を備えることが好ましい。
なお、図1〜図12に示されるように、保持部材10に対して積層体Sは通常、上下方向へ載置され、保持部材10上の積層体Sに向けてレーザ照射部22からレーザ光Lが下方向へ照射される。保持部材10に対する積層体Sの保持方向や、レーザ照射部22から積層体Sに向かうレーザ光Lの照射方向(光照射方向)を以下「Z方向」という。レーザ光Lの照射方向(Z方向)と交差する二方向を以下「XY方向」という。
ワーク1は、後述する支持体2に貼り合わされた積層状態で、回路形成処理や薄化処理などの半導体プロセスが供された回路基板を含む搬送可能な基板などからなり、シリコンなどの材料で薄板状に形成される。
ワーク1の全体形状は、矩形(長方形及び正方形を含む角が直角の四辺形)のパネル形状や、円形のウエハ形状などが含まれる。
ワーク1の厚みは、例えば15〜3,000μmとなどに薄化された矩形や円形の基板も含まれる。特にワーク1の厚みが数十μm程度などのように極めて薄い(以下「極薄」という)パネル形状やウエハ形状の場合には、ダイシングテープなどのようなテープ状の保持用粘着シートにワーク1の全面を貼り付けてサポートすることや、ダイシングフレームなどのような四角枠状や円形枠状(リング状)の保持フレームで外周部が補強されたテープ状の保持用粘着シートに対しワーク1を貼り付けることでサポートすることも可能である。
支持体2は、ワーク1の薄化工程や各種処理工程や搬送工程などでワーク1を支持することにより、ワーク1の破損や変形などが防止されるように必要な強度を有するサポート基板やキャリア基板と呼ばれるものである。このため、支持体2は、硬質な剛性材料で、ワーク1に対応したサイズの矩形や円形に形成される。
ワーク1又は支持体2のいずれか一方若しくは両方は、特定の波長のレーザ光Lが透過するガラスや合成樹脂などの透明又は半透明な剛性材料で形成される。支持体2の具体例として図示例の場合には、特定波長のレーザ光Lが透過する透明又は半透明のガラス板やセラミック板やアクリル系樹脂製の板などが用いられ、その厚みを例えば300〜3,000μmに設定している。
分離層3は、ワーク1又は支持体2を介して照射されたレーザ光Lを吸収することにより、接着力を低下させるように変質して、僅かな外力を受けると接着性を失い剥離するか、又は破壊し得るように変質する層である。
分離層3の材料としては、例えばポリイミド樹脂などのような接着性を有しており、ワーク1と支持体2とが接着剤からなる接着層を介装することなく貼り合わせ可能な材料を用いることが好ましい。さらにワーク1と支持体2の剥離後において、容易に洗浄除去できる別の層を積層することも可能である。また分離層3が接着性を有していない材料からなる場合には、分離層3とワーク1の間に接着剤からなる接着層(図示しない)を設けて、接着層により分離層3とワーク1を接着する必要がある。
積層体Sとしては、矩形の場合に一辺が500mm以上、円形の場合に直径が200mmや300mm以上など、XY方向の全体サイズが大型であるものの、Z方向の厚みを薄化したものが主に用いられる。
積層体Sの一例として図1〜図3や図5〜図11に示される場合には、ワーク1となる矩形(略正方形)の基板と、支持体2となる矩形(略正方形)のサポート基板(キャリア基板)を分離層3で貼り合わせたパネル形状(略正方形)の積層体Sを用いている。
積層体Sの他の例として図4に示される場合には、ワーク1となる円形のウエハと、支持体2となる円形のサポート基板(キャリア基板)を分離層3で貼り合わせたウエハ形状の積層体Sを用いている。
これらの図示例では、積層体Sを支持体2側が後述するレーザ照射部22と対向するように配置することで、剥離用のレーザ光Lが支持体2を透して分離層3に照射される設定にしている。
さらに積層体Sの他の例として図9(a)(b)や図11(a)(b)に示されるように、ファンアウト型PLP技術などで製造されるワーク1と、ワーク1の表面に複数の半導体素子Scが搭載されるとともに樹脂などの封止材Srで封止した封止体と、封止体の表面に積層される分離層3と、分離層3を挟んで積層される支持体2と、を有する四層構造などが含まれる。なお、その他に図示しないが、前述したように分離層3が接着性を有しない材料からなる場合には、分離層3とワーク1側となる複数の半導体素子Scや封止材Srとの間に接着剤からなる接着層(図示しない)を設けた積層構造も含まれる。この積層構造は、分離層3と、ワーク1側となる複数の半導体素子Scや封止材Srと、が接着層で着脱自在に接着される。
また、このような複数の半導体素子Scを備えた封止体は、最終的にダイシングなどでXY方向へ切断した後に、再配線層などを介して電極取り出し部を取り付けるなどの最終工程を経ることにより、最終製品である複数の電子部品が製造される。
保持部材10は、金属などの剛体で歪み(撓み)変形しない厚さの定盤などからなり、積層体Sの外形寸法よりも大きくて肉厚な略矩形又は円形などの平板状に形成され、積層体SとZ方向へ対向する保持面には、ワーク1の保持チャック11が設けられる。
保持チャック11は、ワーク1と接触によりワーク1を移動不能で且つ着脱自在に保持するものであり、積層体SとZ方向へ対向する保持面の全体又は一部に形成される。
保持チャック11の具体例としては、吸引による差圧でワーク1が吸着保持される吸着チャックを用いることが好ましい。特に吸着チャックの中でも、多孔質材からなる吸着面によってワーク1が差圧吸着されるポーラスチャックを用いることが好ましい。ポーラスチャックの場合には、ワーク1の全体が部分的に撓むことなく差圧吸着可能となるため、均一な保持状態を維持することができる。
また、保持チャック11の他の例としては、吸着チャックに代えて粘着チャックや静電チャックを用いることや、吸着チャック,粘着チャック,静電チャックの中から複数を組み合わせて用いることも可能である。
なお、保持部材10の他の例として図示しないが、平板状の保持面に代えて複数の支持ピンによりワーク1を介して積層体Sの全体が固定(移動不能で且つ着脱自在に保持)される構造や、ハニカムによる定盤構造も含まれる。ピンによりワーク1が固定される構造の場合には、複数の支持ピンの一部又は全部の先端でワーク1を吸着固定できるように構成することが好ましい。
レーザ照射部22は、レーザ発振器などのレーザ光源21からレーザ光Lを目標となるレーザ照射位置Pに向けて導く光学系20の一部として設けられ、保持部材10に保持された積層体SとZ方向へ対向するように配置している。レーザ照射部22は、光学系20で導かれたレーザ光Lを積層体Sに沿ってXY方向へ移動させる走査(掃引)機能を有する。これにより、光学系20で導かれたレーザ光Lが積層体Sのワーク1又は支持体2を透過して分離層3の全面に照射される。
レーザ照射部22から積層体Sに向け照射するレーザ光Lとしては、ワーク1又は支持体2を透過し且つ分離層3が吸収可能な波長のレーザを用いることが好ましい。
詳しく説明するとレーザ光Lの中でも、投影形状がライン(スリット)状のレーザ光Lよりは、高出力なレーザが容易に得られるスポット(点)状のレーザ光Lが好ましい。連続発振されるレーザ(連続波レーザ)よりは、分離層3内に吸収されたレーザエネルギーによる熱の影響を抑えられ、且つ高エネルギーを分離層3内に与えるため、パルス発振されるレーザ光(パルスレーザ光)Lが好ましい。
すなわち、レーザ照射部22には、レーザ光源21で発生されたスポット状などのレーザ光Lの光軸(主軸)L1を動かすためのレーザ掃引手段(レーザスキャナ)22aが設けられ、レーザスキャナ22aにより積層体Sに対してレーザ光LをXY方向へ走査(掃引)させるように構成することが好ましい。このため、レーザスキャナ22aのみでも、積層体Sの分離層3に対してレーザ光Lを相対的に移動させることが可能になる。
レーザ照射部22としては、図1や図3〜図12に示されるように、レーザ光源21で発生されたスポット状のレーザ光Lの光軸L1を積層体Sに沿って動かすレーザスキャナ22aと、レーザスキャナ22aからのレーザ光Lを分離層3に向けて導くレンズ22bと、を有することが好ましい。
レーザスキャナ22aとしては、回転自在に設けられるポリゴンスキャナ22a1やガルバノスキャナ22a2などが用いられ、レーザスキャナ22aから分離層3へ向かうレーザ照射方向(Z方向)と交差するXY方向のいずれか一方、又はXY方向の両方へ掃引させることが好ましい。
レンズ22bは、レーザスキャナ22aからのレーザ光Lを集光する機能を有しており、ポリゴンスキャナ22a1やガルバノスキャナ22a2などと組み合わせて使用されるfθレンズを用いることが好ましい。fθレンズは、レンズの中心部やその周辺部で走査速度を一定にし、且つ一つの平面上に焦点を置くことが可能になる。
さらにレンズ22bとしては、レンズ中心を通りレンズ面に垂直な光軸L1に対して主光線L2が平行に配置可能なテレセントリック系レンズ22b1や、光軸L1に対して主光線L2が様々な角度に配置可能な非テレセントリック系レンズ22b2を用いることが好ましい。
特に非テレセントリック系レンズ22b2の場合には、レーザ光Lの照射が安定するレンズ中心部(レンズ中央とその周辺部分)を主に使用し、レーザ光Lの照射が不安定なレンズ外周端部は使用しないことが好ましい。
光学系20及びレーザ照射部22の具体例として図1(a)や図5(a)や図10(a)などに示される場合には、先ずレーザ光源21となるレーザ発振器で発生されたレーザ光Lを、ビームエキスパンダ23に通すことでビーム径が調整される。これに続きステアリングミラーなどの反射鏡24,25でレーザ光Lの向きを変えて、レーザ照射部22となるレーザスキャナ22aに導かれる。最後にレーザスキャナ22aから超短パルスのレーザ光Lがレンズ22bを通して、保持部材10に保持した積層体Sの目標位置に対し、順次照射されて掃引する。
レーザスキャナ22a及びレンズ22bの一例として図1(a),図3(a)〜(d),図4(a)〜(d)及び図9(a)(b)に示される場合には、レーザスキャナ22aとしてポリゴンスキャナ22a1を用い、ポリゴンスキャナ22a1は回転駆動する筒体の周囲に正N角形に配置されたミラー部を有している。レンズ22bとしては、テレセントリック系レンズ(テレセントリック系fθレンズ)22b1を用いている。
ポリゴンスキャナ22a1に向けて入射したレーザ光Lは、ミラー部に当たって反射し、レンズ22bを通って積層体Sに向け略垂直又は所定角度の光路に変換される。ポリゴンスキャナ22a1のミラー部の回転駆動による掃引方向は、XY方向のいずれか一方のみである。図示例では、正N角形のミラー部に対するレーザ入射方向(X方向)と平行な直線方向へ所定幅だけレーザ光Lを一方のみに移動させている。なお、それ以外の例として図示しないが、レーザ光Lを双方に往復移動させることも可能である。
レーザスキャナ22aの他の例として図5に示される場合には、レーザスキャナ22aとしてガルバノスキャナ22a2を用い、ガルバノスキャナ22a2は回転駆動する反射鏡(ガルバノミラー)を有している。レンズ22bとしては、テレセントリック系レンズ(テレセントリック系fθレンズ)22b1を用いている。
ガルバノスキャナ22a2の反射鏡の回転駆動による掃引方向は、XY方向のいずれか一方のみである。図示例では、レーザ入射方向(X方向)と平行な直線方向へ所定幅だけレーザ光Lを双方に往復移動させている。なお、それ以外の例として図示しないが、レーザ光Lを一方のみに移動させることも可能である。
図6に示される場合には、ポリゴンスキャナ22a1とガルバノスキャナ22a2の組み合わせであり、テレセントリック系レンズ(テレセントリック系fθレンズ)22b1を用いている。ポリゴンスキャナ22a1のミラー部の回転駆動と、ガルバノスキャナ22a2の反射鏡の回転駆動による掃引方向は、XY方向の両方である。
さらにレーザスキャナ22aの他の例として図7に示される場合には、複数のガルバノスキャナ22a2であり、テレセントリック系レンズ(テレセントリック系fθレンズ)22b1を用いている。複数のガルバノスキャナ22a2の反射鏡の回転駆動による掃引方向は、XY方向の両方である。
またレーザスキャナ22a及びレンズ22bの他の例として図10(a)及び図11(a)(b)に示される場合には、レーザスキャナ22aとしてポリゴンスキャナ22a1を用い、レンズ22bとして非テレセントリック系レンズ(非テレセントリック系fθレンズ)22b2を用いている。
なお、それ以外の変形例として図示しないが、レーザスキャナ22aとしてポリゴンスキャナ22a1やガルバノスキャナ22a2とは別な構造のものを用いて、XY方向のいずれか一方又はXY方向の両方へ掃引するなどの変更も可能である。
これに加えて、レーザ光源21となるレーザ発振器からレーザ光としてパルス発振されるガウシャンビームのビームプロファイルを略四角形のトップハットビームに変更することも可能である。略四角形のトップハットビームは、特開2012−024783号の段落[0017]及び図4や図5に記載される「略台形状に形成されたレーザ光L1,L2の断面における周方向になだらかに広がるエッジ部LE」とは異なり、周方向に広がるエッジ部の傾斜角度が略垂直(限りなく垂直に近い)ものをいう。
すなわち、レーザ照射部22は、レーザ光源21(レーザ発振器)からレーザ光Lとしてパルス発振されるスポット状のガウシャンビームを、エッジ部の傾斜角度が略垂直なスポット状のトップハットビームに変更するための変換用光学部品(図示しない)を有することも可能である。これにより、特開2012−024783号の「略台形状のレーザ光L1,L2のエッジ部LE」に比べて、隣合うトップハットビームのエッジ部において分解閾値以下の重なり合う面積(レーザ重畳領域)が狭くなる。
変換用光学部品は、非球面レンズからなるビームシェーパや、回折光学素子(DOE:Diffraction Optical Element)からかるビームシェーパなどが用いられる。
非球面レンズからなるビームシェーパの具体例としては、強度変換レンズと位相補償レンズの組み合わせなどが挙げられる。
回折光学素子(DOE)からかるビームシェーパの具体例としては、DOEと集光レンズ(fθレンズ)の組み合わせなどが挙げられる。
特に回折光学素子(DOE)を用いた場合には、トップハットビームの断面形状(均一強度分布形状)を円形や略円形から矩形(正方形及び長方形を含む角が直角の四辺形)に変えることが可能になる。つまり、分離層3に対するレーザ照射形状が矩形に変更可能になる。
ところで、積層体Sに対してレーザ光Lが照射可能な範囲には限界があり、比較的に大きな面積の積層体Sでは、分離層3の全体に亘ってレーザ照射部22からのレーザ光Lを一度に照射することが困難である。
またワーク1から支持体2を確実に剥離するには、レーザ照射部22から分離層3に照射したレーザ光Lのエネルギー量(エネルギー密度)により、分離層3の全面を均一に分解して剥離可能な程度まで変質させる必要がある。分離層3の材質によっても分解変質に必要なエネルギー量が異なる。
このような状況下で例えば特開2012−024783号公報に記載されるように、分離層3の全体を複数の領域に分割して、これら分割領域に対しレーザ照射部22からレーザ光Lを1回(1ショット)ずつ照射することが考えられる。
しかし、分離層3の全体を複数の照射領域に分割した程度では、各照射領域のサイズが大き過ぎて、各照射領域に対してレーザ光Lを十分に集中させることができず、各照射領域に照射したレーザ光Lのエネルギー量(エネルギー密度)が、分離層3の全面を均一に分解させるレベルまで達しないことがあった。分離層3の材質によっては、各照射領域の全面を均一に分解して剥離可能な程度まで変質できず、剥離ムラが発生した。
そこで、このような課題を解決するために本発明の実施形態に係るワーク分離装置A及びワーク分離方法では、図1〜図12に示されるように、積層体S(分離層3)の全体を複数の照射領域に分割するとともに、複数の照射領域に対してレーザ照射部22のレーザスキャナ22aからスポット状のレーザ光Lを整列照射している。
すなわち、保持部材10に保持された積層体Sの分離層3に向けてレーザ照射部22のレーザスキャナ22aから照射されるレーザ光Lの領域は、図2(a)(b)などに示されるように、分離層3の照射面全体を複数の照射領域Rに分割し、複数の照射領域Rに対してレーザスキャナ22aからスポット状のレーザ光Lを各照射領域R毎(単位照射領域毎)にそれぞれ整列照射する。
詳しく説明すると、複数の照射領域Rは、積層体Sの分離層3の全体面積よりも小さい面積となるように分割され、分割された各照射領域Rの形状を矩形状としている。特に各照射領域Rの形状を図示されるように、XY方向のいずれか一方へ長尺な帯状(正方形を除く矩形:長方形を含む角が直角の四辺形)にすることが好ましい。複数の照射領域Rの分割方向(配列方向)は、レーザスキャナ22aによるレーザ光L(光軸L1)の移動方向や、後述する駆動部30による相対的な移動方向と同じX方向やY方向に配列される。図示例では分離層3の全体をX方向へ所定間隔(等間隔)で分割して、複数の照射領域Rの長辺がY方向に延びるように配置するとともに、複数の照射領域Rの短辺がX方向に延びるように配置している。複数の照射領域Rのサイズは、図2(a)(b)などに示されるように、後述する制御部50によって調整可能に設定することが好ましい。
複数の照射領域Rに対してレーザ照射部22からレーザ光Lをレーザ照射する順序についても、後述する制御部50によって調整可能に設定し、図2(c)(d)や図3(a)〜(d)又は図4(a)〜(d)などに示されるように、任意に設定された順序でレーザ照射部22からレーザ光Lを各照射領域Rの全面にそれぞれ照射することが好ましい。
レーザスキャナ22aによるレーザ照射の具体例として図1(a)(b)や図10(a)(b)などに示される場合には、ポリゴンスキャナ22a1の作動により、レンズ22bとなるテレセントリック系レンズ(テレセントリック系fθレンズ)22b1又は非テレセントリック系レンズ(非テレセントリック系fθレンズ)22b2を通ってスポット状のレーザ光Lが、複数の照射領域Rに向けX方向へ所定幅だけ順次それぞれ一方のみに移動又は双方に往復移動するように照射している。
図5に示される場合には、ガルバノスキャナ22a2の作動により、レンズ22bとなるテレセントリック系レンズ(テレセントリック系fθレンズ)22b1を通ってスポット状のレーザ光Lが、複数の照射領域Rに向けX方向へ所定幅だけ順次それぞれ双方に往復移動又は一方のみに移動するように照射している。
図6に示される場合には、ポリゴンスキャナ22a1とガルバノスキャナ22a2の作動により、レンズ22bとなるテレセントリック系レンズ(テレセントリック系fθレンズ)22b1を通ってスポット状のレーザ光Lが、複数の照射領域Rに向けX方向へ所定幅だけ順次それぞれ双方に往復移動又は一方のみに移動するとともに、Y方向へも同様に移動するように照射している。
図7に示される場合には、複数のガルバノスキャナ22a2の作動により、レンズ22bとなるテレセントリック系レンズ(テレセントリック系fθレンズ)22b1を通ってスポット状のレーザ光Lが、複数の照射領域Rに向けX方向へ所定幅だけ順次それぞれ双方に往復移動又は一方のみに移動するとともに、Y方向へも同様に移動するように照射している。
なお、図示例では、分割された複数の照射領域Rの形状として分離層3の全体をY方向全長に亘る帯状に分割している。また、その他の例として図示しないが、Y方向にも複数に分割して複数の照射領域Rの形状を略正方形に変更することも可能である。
レーザ照射部22のレーザスキャナ22aから積層体Sに向けて照射されるレーザ光Lの照射角度は、図1(a),図3(a)〜(d)又は図4(a)〜(d),図9(a)(b)に示されるように、保持部材10に保持された積層体Sの支持体2や分離層3に対して略垂直に設定することが好ましい。
ここでいう「略垂直」とは、支持体2や分離層3の表面に対して90度のみに限らず、これに加えて90度から数度増減するものも含まれる。
また、その他の例として図10(a),図11(a)(b)に示されるように、保持部材10に保持された積層体Sの支持体2や分離層3に対して、レーザ光Lの照射角度を所定角度に設定することも可能である。
積層体Sの分離層3における複数の照射領域Rに対してレーザ照射部22のレーザスキャナ22aから照射されるスポット状のレーザ光Lは、各レーザ光Lのビーム形状(断面形状)が円形や略円形又は矩形などである。
図8に示される場合には、ガウシャンビームの断面形状と同じ円形となっている。
またその他の例として図示しないが、矩形(正方形や長方形)に変更することも可能である。
さらに図8に示されるように、各照射領域R毎に対してレーザ光Lを、各レーザ光Lの一部が互いに重なり合うように後述する駆動部30でX方向及びY方向へ並べて順次それぞれ整列照射させることが好ましい。この場合には、複数の照射領域Rのうち一つの照射領域Rの全体が、多数のスポット状のレーザ光Lで隙間なく埋め尽くされる。一つの照射領域Rの全体が多数のスポット状のレーザ光Lで埋め尽くされた後は、次の照射領域Rに対するスポット状のレーザ光Lの整列照射が同様に繰り返し行われる。最終的には複数の照射領域Rのすべてが整列照射される。
これに加えて、複数の照射領域Rの境目Raを挟んで整列照射されるスポット状のレーザ光Lは、図8に示されるように、境目Raの反対側に配置されるスポット状のレーザ光Lをそれぞれの端部同士が互いに接するように整列照射させることが好ましい。複数の照射領域Rの境目Raを挟んで整列照射されるスポット状のレーザ光Lの間隔Rbは、レーザ光Lのビーム径dよりも小さく設定することが好ましい。
複数の照射領域Rの境目Raとは、X方向及びY方向へ配列された隣り合う照射領域R1,R2,R3,R4の間に形成される境界線である。境目Raの間隔Rbとは、境目Raを挟んで整列照射されるスポット状のレーザ光Lにおいてビーム中心Roの間に亘る距離をいう。これにより、照射領域R1,R2,R3,R4の全体がすべて多数のスポット状のレーザ光Lで埋め尽くされるとともに、照射領域R1,R2,R3,R4の境目Raにおいても、多数のスポット状のレーザ光Lで埋め尽くされる。
図示例の場合には、境目Raを挟んで整列照射されるスポット状のレーザ光Lの間隔Rbを、照射領域R1,R2,R3,R4に整列照射されるスポット状のレーザ光Lの間隔と、X方向やY方向にそれぞれ同寸法で、各レーザ光Lの一部が同様に重なり合うように設定している。
また、その他の例として図示しないが、境目Raを挟んで整列照射されるスポット状のレーザ光Lの間隔Rbを、照射領域R1,R2,R3,R4に整列照射されるスポット状のレーザ光Lの間隔と異なるように設定するなど、図示例以外の設定に変更することも可能である。
さらに、レーザ照射部22のレーザスキャナ22aから積層体Sに向けて照射されるスポット状のレーザ光Lは、積層体Sに対するレーザ光Lの照射角度に応じて各レーザ光Lのビーム形状(断面形状)が円形から楕円形に変形する。
つまり、レーザスキャナ22aからレンズ22bを通してレーザ光Lが積層体Sに照射される状態において、積層体Sに対するスポット状のレーザ光Lの照射角度が略垂直(約90度)の場合には、図8に示されるように、各レーザ光Lのビーム形状が円形となると同時に、各レーザ光Lのビーム径dがすべて等しくなる。
これに対し、レーザスキャナ22aからレンズ22bを通して積層体Sに照射したスポット状のレーザ光Lが傾斜すると、積層体Sに対する照射角度が略垂直(約90度)未満になり、レーザスキャナ22aから積層体Sまでレーザ照射拒離が変化する。この傾斜した場合には、各レーザ光Lのビーム形状が楕円形となると同時に、各レーザ光Lのビーム径dが変化する。スポット状のレーザ光Lのビーム形状は、ビーム形状が不安定な楕円形よりも円形が好ましい。
その理由は、レーザスキャナ22aからの積層体Sに対する照射角度が傾斜して略垂直(約90度)未満となった場合や、反りがある積層体Sの場合には、レーザスキャナ22aから積層体Sまでレーザ照射拒離が変化により、レーザ光Lのビーム径dが変化してしまう。レーザスキャナ22aから積層体Sへの照射エネルギー自体は変わらないため、ビーム径dが変化すると、ビーム径dの2乗に反比例して、レーザ光Lのエネルギー密度も変化する。
つまり、例えば特開2012−024783号公報に記載されるように、分割サイズが比較的に大きな照射領域の全体に向けて、レーザスキャナ22aからレーザ光Lを掃引させると、掃引に伴うレーザスキャナ22aの振り角度が広くなって、照射領域の中央と端部とでは照射エネルギー密度が変わり、剥離ムラを発生する可能性がある。
これに対して、分割サイズが比較的に小さな照射領域に向けてレーザスキャナ22aの掃引に伴う振る角度をコンパクトに制限することで、照射エネルギー密度が均一になって剥離ムラの発生防止が可能になる。
駆動部30は、保持部材10又はレーザ照射部22(レーザスキャナ22a)のいずれか一方か若しくは保持部材10及びレーザ照射部22(レーザスキャナ22a)の両方を移動することにより、レーザスキャナ22aから照射したレーザ光Lが、保持部材10に保持した積層体Sの支持体2及び分離層3に対して、少なくともレーザ照射部22からのレーザ光Lの照射方向(Z方向)と交差する二方向(XY方向)へ相対的に移動するように構成した光軸相対移動機構である。
駆動部30による相対的な移動方向は、XY方向のみに限られず、必要に応じてZ方向も含まれる。
駆動部30となる光軸相対移動機構には、主に保持部材10及び積層体Sを動かすワーク側移動タイプと、レーザスキャナ22aを動かす光軸側移動タイプがある。
ワーク側移動タイプの場合は、図1(a)(b)や図5(a)(b)や図10(a)(b)などに示されるように、保持部材10に駆動部30が設けられ、駆動部30で保持部材10をX方向及びY方向やZ方向へ動かすことにより、レーザスキャナ22aからのレーザ照射位置PをXY方向やZ方向へ移動させる。この場合の駆動部30としては、XYステージやXYテーブルなどが用いられ、モータ軸などからなるY軸移動機構31及びX軸移動機構32を有している。さらに必要に応じて保持部材10をZ方向へ動かすZ軸移動機構33を設けることが好ましい。
Y軸移動機構31及びX軸移動機構32,Z軸移動機構33は、後述する制御部50によって作動制御され、レーザスキャナ22aの作動によるレーザ光LのX方向への走査(掃引)に加えて、保持部材10及び積層体SをXY方向やZ方向へ動かしている。
Y軸移動機構31は、その作動により、積層体Sの分離層3においてY方向へ長い帯状などに分割した複数の照射領域Rを、Y方向へ所定長さ(照射領域Rの一列分)だけ順次それぞれ一方のみに移動又は双方に往復移動させる。
X軸移動機構32は、その作動により、積層体Sの分離層3においてX方向へ短い帯状などに分割した複数の照射領域Rを、X方向へ所定幅(照射領域Rの一列分)だけ順次それぞれ一方のみに移動又は双方に往復移動させる。
Z軸移動機構33は、その作動によって複数の照射領域Rを、Z方向へ所定高さだけ順次それぞれ一方のみに移動又は双方に往復移動させる。
ワーク側移動タイプの具体例として図1(a)(b)や図10(a)(b)に示される場合には、ポリゴンスキャナ22a1の作動によるレーザ光LのX方向への走査(掃引)と連動して、Y軸移動機構31の作動でY方向へ長い帯状の各照射領域Rを、各照射領域RのY方向寸法だけ順次移動させている。一つの照射領域Rに対する走査が完了した後は、X軸移動機構32の作動でX方向へ短い帯状の各照射領域Rを、各照射領域RのX方向寸法だけ順次移動させ、それ以降は上述した作動を繰り返している。
図示例では、Y軸移動機構31の一方向移動時のみにポリゴンスキャナ22a1の走査を行っている。すなわち、一つの照射領域Rに対するY軸移動機構31の作動が完了する度に、ポリゴンスキャナ22a1による走査を停止させて、次の照射領域Rに向かうX軸移動機構32によるX方向への移動と、Y軸移動機構31によるY方向への逆向き移動とが行われる。これらの作動が終了してから、ポリゴンスキャナ22a1による走査を再び開始している。
図5(a)(b)に示される場合には、ガルバノスキャナ22a2の作動によるレーザ光LのX方向への走査(掃引)と連動して、Y軸移動機構31の作動でY方向へ長い帯状の各照射領域Rを、各照射領域RのY方向寸法だけ順次移動させている。一つの照射領域Rに対する走査が完了した後は、X軸移動機構32の作動でX方向へ短い帯状の各照射領域Rを、各照射領域RのX方向寸法だけ順次移動させ、それ以降は上述した作動を繰り返している。
図示例では、Y軸移動機構31の双方向移動時にガルバノスキャナ22a2の走査を行っている。すなわち、図示例では、一つの照射領域Rに対するY軸移動機構31の作動が完了する度に、ガルバノスキャナ22a2による走査を停止させずに、次の照射領域Rに向かうX軸移動機構32によるX方向への移動と、Y軸移動機構31によるY方向への逆向き移動とが行われる。これにより、図5(a)(b)に示されたものは、図1(a)(b)や図10(a)(b)に示されたものに比べ、走査の高速化が図れる。
また、その他の例として図示しないが、Y軸移動機構31の一方向移動時のみにガルバノスキャナ22a2の走査を行うことや、Y軸移動機構31の双方向移動時にポリゴンスキャナ22a1の走査を行うなどの変更が可能である。
また光軸側移動タイプの場合は、図6や図7に示されるように、光学系20の一部に駆動部30を設けて、保持部材10が動かずにレーザ照射部22からのレーザ照射位置PをXY方向やZ方向へ移動させるように構成される。
この場合の駆動部30としては、ポリゴンスキャナ22a1やガルバノスキャナ22a2などからなるXY軸移動機構34を有している。
さらに必要に応じてZ方向へ相対移動させる場合には、図示しないが保持部材10にZ軸移動機構33を設けるか、或いはレーザ照射部22(レーザスキャナ22a)を駆動部30によってZ方向へ動かす。
測長部40は、レーザ照射部22から保持部材10に保持された積層体Sの支持体2や分離層3の照射面までの照射距離を測定する非接触式の変位計や変位センサなどからなり、保持部材10に保持された積層体SとZ方向へ対向するように配置される。
測長部40の具体例として図1(a)(b)及び図9(a)(b)や図5(a)(b)や図10(a)(b)及び図11(a)(b)などに示される場合には、レーザ照射部22(レーザスキャナ22a)に測長部40となるレーザ変位計を設け、レーザ照射部22(レーザスキャナ22a)から分離層3の照射面までZ方向への長さを測定し、この測定値を後述する制御部50へ出力している。
また、その他の例として図示しないが、測長部40としてレーザ変位計以外の変位計や変位センサを用いることも可能である。
制御部50は、保持部材10の保持チャック11の駆動源と、光学系20,レーザ光源21及びレーザ照射部22と、駆動部30となる光軸移動機構と、測長部40にそれぞれ電気的に接続するコントローラーである。
さらに制御部50は、それ以外にも分離前の積層体Sを保持部材10に向けて搬送するための搬入機構(図示しない),レーザ照射後の積層体Sから支持体2のみを保持して引き離す剥離機構(図示しない),剥離後の積層体S(ワーク1)を保持部材10から搬送するための搬出機構(図示しない)などにも電気的に接続するコントローラーでもある。
制御部50となるコントローラーは、その制御回路(図示しない)に予め設定されたプログラムに従って、予め設定されたタイミングで順次それぞれ作動制御している。すなわち制御部50は、レーザ光源21からレーザ照射位置Pに照射されるレーザ光LのON/OFF制御を始めとするワーク分離装置Aの全体的な作動制御を行うだけでなく、これに加えてレーザ光Lの各種パラメーターの設定などの各種設定も行っている。
制御部50によって光学系20のレーザ照射部22(レーザスキャナ22a)や駆動部30は、保持部材10に保持された積層体Sの支持体2及び分離層3を分割した複数の照射領域Rに対して、レーザスキャナ22aからのレーザ光Lの照射を各照射領域R毎に行い、且つレーザ光Lの照射角度が支持体2や分離層3の表面と略垂直又は所定角度になるように制御している。
これに加えて制御部50となるコントローラーは、タッチパネルなどの入力手段51や表示部(図示しない)などを有し、入力手段51の操作によりレーザスキャナ22aの走査距離や、複数の照射領域Rのサイズや、複数の照射領域Rに対するレーザスキャナ22aからのレーザ光Lの照射順序などが設定可能に構成されている。
制御部50に設定されるレーザ照射部22から複数の照射領域Rへのレーザ光Lの照射順序は、図2(a)(b)に示されるように、X方向及びY方向に配列した複数の照射領域Rに対し、駆動部30によるXY方向への相対的な移動と連係して、「連続的な照射」又は「不連続的な照射」を行い、最終的には複数の照射領域Rのすべてを照射する。なお、図面において照射の有無が濃淡で示され、照射前の照射領域Rを淡く表示し、照射後の照射領域Rを濃く表示している。
「連続的な照射」として図2(c)に示される場合には、積層体Sの一側に配置された帯状の照射領域RからX方向に並んだ複数列分、先(直前)に照射した照射領域Rと次に照射される照射領域Rとが連続する順番で照射し、一列分の照射が終了する度に他の列も同様に連続照射している。
「不連続的な照射」として図2(d)に示される場合には、X方向に並んだ一列分を先(直前)に照射した照射領域Rと次に照射される照射領域Rとが離隔する順番で照射し、一列分の照射が終了した後に他の列も同様に連続照射する以外は「連続的な照射」と同じように照射している。図示例では、X方向へ一つ飛び毎に照射して、照射済みの照射領域R同士がX方向へ隣り合わないように制御している。
また、その他の例として図示しないが、複数の照射領域RにおいてY方向へ並んだ一列分に「連続的な照射」又は「不連続的な照射」を行うことや、「不連続的な照射」において複数(二つ)飛び毎に照射するなどの図示例以外に照射順序を変更することが可能である。
そして、制御部50の制御回路に設定されたプログラムを、ワーク分離装置Aによるワーク分離方法として説明する。
本発明の実施形態に係るワーク分離装置Aを用いたワーク分離方法は、保持部材10に積層体Sのワーク1又は支持体2のいずれか一方を着脱自在に保持する保持工程と、保持部材10に保持された積層体Sの支持体2又はワーク1の他方を透して分離層3に向けレーザ照射部22からレーザ光Lを照射するレーザ照射工程と、を主要な工程として含んでいる。
さらに、レーザ照射工程の後工程として、保持部材10に保持された積層体Sの支持体2及び分離層3に対するレーザ照射部22からのレーザ照射位置Pを相対的に移動させる相対移動工程と、積層体Sのワーク1から支持体2を剥離する分離工程と、を含むことが好ましい。
また、分離工程の後工程として、分離層3から分離したワーク1に残留している分離層3の残渣を洗浄液で除去する洗浄工程と、洗浄工程後のワーク1をダイシングなどで切断する切り離し工程と、を含むことが好ましい。
保持工程では、搬送ロボットなどからなる搬入機構(図示しない)の作動により、分離前の積層体Sを保持部材10へ向けて搬入し、保持部材10の保持面において所定位置に分離前の積層体Sが保持チャック11で移動不能に保持される。
レーザ照射工程では、光学系20及びレーザ照射部22の作動により、保持部材10に保持された積層体Sに向けレーザ光Lが、支持体2又はワーク1を透して分離層3に照射される。
相対移動工程では、駆動部30やレーザ照射部22(レーザスキャナ22a)の作動により、保持部材10に保持した積層体Sとレーザスキャナ22aとがXY方向やZ方向へ相対的に移動される。
図1〜図5及び図9〜図11に示される場合には、駆動部30(Y軸移動機構31及びX軸移動機構32,Z軸移動機構33)の作動により、レーザスキャナ22aに対して、保持部材10に保持された積層体Sの支持体2及び分離層3をXY方向へ相対的に移動させている。また図6や図7に示される場合には、光学系20の一部に設けられた駆動部30(XY軸移動機構34)の作動により、保持部材10に保持された積層体Sの支持体2及び分離層3に対して、レーザスキャナ22aをXY方向へ相対的に移動させている。これにより、支持体2及び分離層3の照射面全体よりも小さく分割された複数の照射領域Rに対し、レーザスキャナ22aからスポット状のレーザ光Lを各照射領域R毎に整列照射している。これと同時に、レーザスキャナ22aから各照射領域R毎に整列照射されるスポット状のレーザ光Lの照射角度は、略垂直又は所定角度になるように保持されている。最終的には複数の照射領域Rのすべてにレーザ光Lが照射される。
これによって、レーザ光Lが単位照射領域R毎に満遍なく均一に照射される。このため、最終的には分離層3の全面に亘ってレーザ光Lが照射ムラを生じることなく照射され、分離層3の全面がワーク1と支持体2を剥離可能に変質する。
分離工程では、レーザ照射後の積層体Sに対し支持体2を保持して引き離す剥離機構(図示しない)の作動により、保持部材10に保持された積層体Sのワーク1から支持体2を剥離して分離される。
分離工程の後は、搬送ロボットなどからなる搬入機構(図示しない)の作動により、分離後のワーク1が保持部材10の保持面から取り外されて搬出される。
それ以降は上述した工程が繰り返される。
また図9(a)(b)や図11(a)(b)に示されるように、反りがある積層体Sの場合には、レーザスキャナ22aからスポット状のレーザ光Lを複数の照射領域R毎に整列照射する際に、レーザスキャナ22aから複数の照射領域Rまでの照射距離が略一定となるように、測長部40による測定値に基づいてZ軸移動機構33を作動制御する。
具体的に制御例としては、レーザスキャナ22aからレーザ照射前の時点で、レーザスキャナ22aとZ方向へ対向する各照射領域Rの代表点を測長部40により測定して測定値を検出し、この測定値に基づいて各照射領域Rのレーザ照射を行うタイミングと合うようにZ軸移動機構33が作動制御される。つまり、Z軸移動機構33の作動制御により、保持部材10をZ方向へ移動させて、レーザスキャナ22aから複数の照射領域Rまでの照射距離が調整される。
また、その他の例として、測長部40で測定した測定値をフィードバックしながら、Z軸移動機構33の作動制御することにより、保持部材10をZ方向へ移動させることも可能である。
これにより、保持部材10に保持した反りがある積層体Sの分離層3とレーザスキャナ22aとの照射距離が略一定となるように調整可能となる。
さらに反りがある積層体Sの場合には、図12(a)(b)に示されるように、レーザスキャナ22aから積層体Sまでのレーザ照射拒離Fが、積層体Sの反り形状によって変化するため、複数の照射領域Rの境目Raにおいてレーザ光Lが照射されない「未照射部位Lu」や、レーザ光Lが重なり合って照射される「重複照射部位Lo」を生じることがある。
詳しく説明すると、レーザ照射部22のレンズ22bが非テレセントリック系レンズ22b2である場合には、積層体Sの分離層3に対するレーザ光Lの主光線L2の入射角が斜めになる。図12(a)(b)に示される例では、反りが無い積層体S(二点鎖線)と、Z方向へ略S字状に反り変形した積層体S(実線)に向け、非テレセントリック系レンズ22b2からレーザ光Lを複数の照射領域R毎に整列照射している。
反りが無い積層体S(二点鎖線)は、各照射領域Rの境目Raにおける分離層3から非テレセントリック系レンズ22b2までのレーザ照射距離が変化しないため、未照射部位Luや重複照射部位Loが発生しない。
これに対して反り変形した積層体S(実線)は、各照射領域Rの境目Raにおいて分離層3が非テレセントリック系レンズ22b2に向け凹んだ箇所では、非テレセントリック系レンズ22b2までのレーザ照射距離が長くなるため、隣り合う照射領域Rからのレーザ光Lの重なり合いで重複照射部位Loが発生する。但し、分離層3の重複照射部位Loは、レーザ光Lして発振波長が紫外線領域(UV)などの短いものを用いることにより、分離層3の表面でしか吸収されず、その影響も少ないことが実験により分かった。
これと逆に各照射領域Rの境目Raにおいて分離層3が非テレセントリック系レンズ22b2に向け突出した箇所では、非テレセントリック系レンズ22b2までのレーザ照射距離が短くなるため、未照射部位Luが発生する。特に反りがある積層体Sは、複数の照射領域Rの境目Raを挟んで照射されるレーザ光Lの間隔Rbを、レーザ光Lのビーム径dよりも小さく設定した場合に、未照射部位Luが発生し易い。
分離層3の未照射部位Luでは、剥離に十分な変性(変質)反応が起こらないため、部分的な剥離不良を生じでしまう。
このような積層体Sの反りによる部分的な剥離不良を防ぐには、複数の照射領域Rの境目Raを挟んで整列照射されるスポット状のレーザ光Lの間隔Rbは、レーザ光Lのビーム径dよりも小さく設定する必要がある。
これに加えて、複数の照射領域Rの境目Raを挟んで隣合う照射領域R同士の重なり合う部位の幅寸法Wは、複数の照射領域Rの短辺側長さをRsとし、想定される積層体Sの反り量をDとし、レーザスキャナ22aから分離層3までのレーザ照射距離をFとした時、Rs*D/(2*F)以上に設定することが好ましい。
その理由は、図12(b)の模式図から、次の式を導き出すことができる。
F:D/2=Rs:W
この式から次の式を導き出すことができる。
F*W=Rs*D/2
この式から次の式を導き出すことができる。
W=Rs*D/(2*F)
つまり、反りがある積層体Sの場合には、複数の照射領域Rの境目Raを挟んで隣合う照射領域R同士の重なり合う部位の幅寸法Wを、Rs*D/(2*F)以上に設定することで、分離層3の反り変形により凹んだ箇所が生じても、境目Raを挟んで隣合う照射領域R同士が重なり合うため、未照射部位Luが発生しない。
このような本発明の実施形態に係るワーク分離装置A及びワーク分離方法によると、レーザ照射部22のレーザスキャナ22aからレーザ光Lが、保持部材10に保持した積層体Sの支持体2又はワーク1を透して分離層3に照射される。レーザスキャナ22aの作動により、分離層3の照射面全体を帯状に分割した複数の照射領域Rに対して、レーザスキャナ22aからスポット状のレーザ光Lが各照射領域R毎(単位照射領域毎)にそれぞれ整列照射される。
これにより、レーザ光Lが単位照射領域R毎に満遍なく照射される。最終的には複数の照射領域Rのすべてにレーザ光Lが照射ムラを生じることなく照射され、分離層3の全面がワーク1と支持体2を剥離可能に変質する。
したがって、積層体Sの全体にスポット状のレーザ光Lを均一に照射してワーク1から支持体2を効率的に剥離することができる。
その結果、積層体の分離層に対してレーザ光の照射ムラが部分的に発生し易い従来のものに比べ、ワーク1が薄く大型(大面積)になっても支持体2又はワーク1を透して分離層3の大面積な全体にレーザ光Lを均一に照射できて、部分的な剥離不良が発生しないとともに、レーザ光Lの出力が強くなり過ぎず、ワーク1の回路基板に形成されているデバイスにダメージを起こすことや、部分的な過照射により煤の発生を起こすこともない。
またスキャナーの揺動によりパルスレーザー光線が渦巻状に照射される従来のものに比べ、積積層体Sに未照射部位が発生せず効率的に剥離できる。
このため、ワーク1からの支持体2の高精度な分離が実現できて、高性能で且つクリーンな製品の製造が図れる。
特に、保持部材10に保持された積層体Sの支持体2及び分離層3に対するレーザ照射部22からのレーザ照射位置Pを、少なくとも二方向(XY方向)へ相対的に移動させる駆動部30を備え、制御部50は、複数の照射領域Rのうち一つの照射領域Rに対するレーザ照射部22からのレーザ光Lの照射を、レーザスキャナ22a及び駆動部30の作動により、二方向(XY方向)へ並べるように制御することが好ましい。
この場合には、レーザスキャナ22a及び駆動部30による二方向(XY方向)の移動により、分離層3の照射面全体を帯状に分割した複数の照射領域Rに対して、レーザスキャナ22aからスポット状のレーザ光Lが各照射領域R毎(単位照射領域毎)にそれぞれ整列照射される。
これにより、レーザ光Lが単位照射領域R毎に満遍なく照射される。最終的には複数の照射領域Rのすべてにレーザ光Lが照射ムラを生じることなく照射され、分離層3の全面がワーク1と支持体2を剥離可能に変質する。
したがって、分離層3の全体に対するスポット状のレーザ光Lの照射を高速化してワーク1から支持体2をより効率的に剥離することができる。
その結果、ワーク1からの支持体2の高精度な分離が短時間で実現できて、製造コストの低減化が図れる。
また、レーザ照射部22は、レーザスキャナ22aからのレーザ光Lを分離層3に向けて導くレンズ22bを有し、レンズ22bは、レンズ22bの光軸L1に対して主光線L2が平行に配置されるテレセントリック系レンズ22b1か、又は光軸L1に対して主光線L2が所定角度に配置される非テレセントリック系レンズ22b2であることが好ましい。
図1(a)や図9(a)(b)などに示されるテレセントリック系レンズ22b1の場合には、積層体Sに対する照射角度が略垂直になるため、レーザ光Lのビーム形状(断面形状)が楕円形にならず、分離層3の全面に亘ってレーザ光Lとして円形のビーム形状を並べることが可能になる。
したがって、レーザ光Lによる分離層3のより均一な剥離を行うことができる。
その結果、ワーク1が大型(大面積)であっても、より品質の高いレーザ剥離が行える。
さらに、分離層3が、レーザ光Lの入射角度によりレーザ光Lの吸収率が大きく異なる角度依存性のある構成材料である場合には有効である。
また図10(a)や図11(a)(b)に示される非テレセントリック系レンズ22b2の場合には、レーザスキャナ22aから分離層3までの照射距離が多少変化しても略円形のビーム形状が得られ、反りのために分離層3の位置がレーザ光Lの照射方向へ変化してもレーザ光Lのビーム形状(断面形状)が変化し難い。特に複数の照射領域Rのサイズが比較的に小さい時には、レーザ光Lのビーム形状が楕円にならず、安定した剥離が可能となる。
したがって、反りのある分離層3であってもレーザ光Lを均一に照射してワーク1から支持体2を確実に剥離することができる。
このため、反りのあるワーク1からの支持体2の高精度な分離が実現できて、高性能で且つクリーンな製品の製造が図れる。
さらに、図1(a)(b)や図10(a)(b)などに示されるように駆動部30が、レーザ照射部22に対して保持部材10をレーザ照射部22からのレーザ照射方向(Z方向)と交差する二方向(XY方向)へ相対的に動かすY軸移動機構31及びX軸移動機構32を有することが好ましい。
この場合には、Y軸移動機構31及びX軸移動機構32の作動により、保持部材10に保持した積層体Sが、レーザ照射方向(Z方向)と交差する二方向(XY方向)へ動いて、レーザ照射部22を含む光学系20が動かなくても、分離層3の全面に亘ってレーザ光Lが照射可能になる。
したがって、簡単な構造で積層体Sの分離層3に均一なレーザ光Lの照射を行ってワーク1から支持体2を容易に剥離することができる。
その結果、装置全体の構造を簡素化できて製造コストの低減化が図れる。
また、図8に示されるように、複数の照射領域Rの境目Raを挟んで照射されるレーザ光Lの間隔Rbは、レーザ光Lのビーム径dよりも小さく設定することが好ましい。
この場合には、境目Raの反対側のレーザ光Lがそれぞれの端部同士を互いに接するように照射される。このため、レーザ光Lの部分的な照射不足が発生しない。
したがって、複数の照射領域Rの境目Raでも部分的な剥離不良の発生を防止することができる。
その結果、複数の照射領域Rの全体に亘って均一に剥離できて、高性能な製品の製造が図れる。
また、図2(d)に示されるように制御部50が、レーザ照射部22から複数の照射領域Rへのレーザ光Lの照射順序として、先に照射した照射領域Rと次の照射領域Rとが離隔する順番で照射されるように制御することが好ましい。
この場合には、先に照射した照射領域Rと次の照射領域Rとを離隔する順番で照射することにより、隣り合う照射領域Rにおいて個々に応力が解放されるものの、それぞれの応力は微小であるために影響が小さい。
したがって、照射途中において反りによる内部の応力が局部的に解放されずに全面剥離することができる。
その結果、未だ照射されない照射領域Rとの界面でクラックが入ることや、ワーク1の回路基板に形成されているデバイスにダメージを与えることを防止でき、積層体Sの割れも完全に防止できて、歩留まりの向上が図れる。
特に分離層3の積層面全体が複数の照射領域Rとして分離層3の両端に亘り連続する長方形に分割された場合には、正方形に比べてタクトタイムを短縮化できるともに、レーザ光Lの照射部位と未照射部位の間に発生する応力を容易に開放できる。このため、レーザ光Lの照射条件や、ワーク1と分離層3の接着部位などに使用される材料の条件によって生じる剥がれ方向に働く応力によるワーク1の亀裂、及び、レーザ光Lにより反応するワーク1と分離層3の接着部位に、レーザ光Lの照射条件や接着材料の条件によってもし煤が発生した場合でも、煤が既に剥離した箇所に流れることで発生するワーク1の亀裂を確実に防止できる。さらに、長方形に分割された複数の照射領域Rを幅狭い帯状にすることで、より応力の発生を微小なものに抑えて、ワーク1の亀裂発生をより防止できる。
またさらに、図9(a)(b)や図11(a)(b)に示されるように制御部50が、レーザ照射部22からレーザ光Lを複数の照射領域R毎に照射する際に、レーザ照射部22から複数の照射領域Rまでの照射距離が略一定となるように、測長部40による測定値に基づいてZ軸移動機構33を作動制御することが好ましい。
この場合には、保持部材10に保持した反りがある積層体Sの分離層3とレーザ照射部22との照射距離が略一定となるように調整可能となる。
したがって、反りのある積層体Sであっても均一なレーザ光Lの照射を行ってワーク1から支持体2を容易に剥離することができる。
その結果、反りのある積層体Sであっても支持体2又はワーク1を透して分離層3の全面にレーザ光Lが均一に当たるため、部分的な剥離不良が発生しないとともに、レーザ光Lの出力が強くなり過ぎず、ワーク1の回路基板に形成されているデバイスにダメージを起こすことや、部分的な過照射により煤の発生を起こすこともない。
このため、反りのあるワーク1からの支持体2の高精度な分離が実現できて、高性能で且つクリーンな製品の製造が図れる。
一方、レーザ照射部22からレーザ光Lとしてスポット状のトップハットビームが、保持部材10に保持した積層体Sの支持体2又はワーク1を透して分離層3に照射される場合には、分離層3の照射面全体を分割した複数の照射領域Rに対して、レーザ照射部22からトップハットビームが各照射領域R毎(単位照射領域毎)にそれぞれ整列照射される。
これにより、トップハットビームが単位照射領域R毎に満遍なく照射される。最終的には複数の照射領域Rのすべてにトップハットビームが照射ムラを生じることなく照射され、分離層3の全面がワーク1と支持体2を剥離可能に変質する。
したがって、積層体Sの全体にスポット状のトップハットビームを均一に照射してワーク1から支持体2を効率的に剥離することができる。
その結果、特開2012−024783号の「略台形状のレーザ光L1,L2のエッジ部LE」に比べ、隣合うトップハットビームのエッジ部において分解閾値以下の重なり合う領域(重畳領域)が狭くなるため、トップハットビームの出力が強くなり過ぎず、ワーク1の回路基板のデバイスに対するダメージや、部分的な過照射による煤の発生をより減少できる。
このため、ワーク1からの支持体2の高精度な分離が実現できて、高性能で且つクリーンな製品の製造が図れる。
また、複数の照射領域Rの境目Raを挟んで隣合う照射領域R同士の重なり合う部位の幅寸法WをRs*D/(2*F)以上に設定することが好ましい。
この場合には、積層体Sの分離層3が反り変形しても、境目Raを挟んで隣合う照射領域R同士が重なり合うため、未照射部位Luがしない。
したがって、反りがある積層体Sの分離層3における部分的な剥離不良を防止することができる。
その結果、反りがある積層体Sを確実に剥離でき、その部分的な破壊を防止し防いで歩留まりの向上が図れる。
さらに、変換用光学部品が、分離層3に対するレーザ照射部22からのレーザ照射形状を矩形に変える回折光学素子であることが好ましい。
この場合には、分離層3に対するトップハットビームのレーザ照射形状が矩形になる。
したがって、隣合うトップハットビームが重なり合う領域(重畳領域)をより小さくすることができる。
その結果、分離層3に対するレーザ照射部22からのレーザ照射形状が円形のものに比べ、照射エネルギーが少なくなって過剰な照射エネルギーを当てないため、ワーク1の回路基板のデバイスに対するダメージや、部分的な過照射による煤の発生を更に減少でき、タクトの高速化も図れる。
なお、前示の実施形態では、ワーク1と支持体2とが接着性を有する材料からなる分離層3で貼り合わせているが、これに限定されず、接着性を有していない材料からなる分離層3を用いた場合には、分離層3とワーク1の間に接着剤からなる接着層(図示しない)を設けて、接着層により分離層3とワーク1を接着してもよい。
さらに図示例では、駆動部30となる光軸相対移動機構により主に積層体S側を移動させるワーク側移動タイプを示したが、これに限定されず、光学系20の一部のみに設けた駆動部30によりレーザ照射部22が動く光軸側移動タイプを採用してもよい。
その具体例としては、光学系20の一部としてレーザ照射部22のレーザスキャナ22a(ポリゴンスキャナ22a1やガルバノスキャナ22a2)などをZ方向へ動かすことにより、同一の照射領域R内での照射においては、保持部材10が動かずにレーザスキャナ22aからのレーザ照射位置PをZ方向へ移動させることも可能である。
A ワーク分離装置 S 積層体
1 ワーク 2 支持体
3 分離層 10 保持部材
20 光学系 22 レーザ照射部
22a レーザスキャナ 22b レンズ
30 駆動部 50 制御部
L レーザ光 L1 光軸
P レーザ照射位置 R 照射領域

Claims (6)

  1. 回路基板を含むワークが支持体と分離層を介して積層される積層体に対し、レーザ光の照射に伴う前記分離層の変性により前記ワークから前記支持体を剥離するワーク分離装置であって、
    前記ワーク又は前記支持体のいずれか一方を着脱自在に保持する保持部材と、
    前記保持部材に保持された前記積層体の前記支持体又は前記ワークの他方を透して前記分離層に向け前記レーザ光を照射するレーザ照射部と、
    前記レーザ照射部を作動制御する制御部と、を備え、
    前記レーザ照射部は、スポット状の前記レーザ光を前記積層体に沿って動かすレーザスキャナを有し、
    前記積層体に向けて前記レーザスキャナから照射される前記レーザ光の領域は、前記分離層の照射面全体が、前記レーザ照射部からの光照射方向と交差する二方向のいずれか一方へ長尺な帯状となる複数の照射領域に分割されるとともに、この分割した各照射領域に対する前記レーザスキャナからの照射が、前記光照射方向と交差する平面上で前記スポット状の前記レーザ光の一部が重なり合うように並んだ整列照射であり、
    前記制御部は、前記帯状に分割された複数の照射領域のうち一つの照射領域に対して、前記レーザスキャナの作動により前記整列照射が行われ、前記複数の照射領域のうち一つの前記照射領域の全体が前記整列照射で隙間なく埋め尽くされた後に、次の照射領域に対する前記整列照射が行われ、それ以降は前記各照射領域毎にそれぞれ前記整列照射を同様に繰り返して、最終的に前記複数の照射領域のすべてが整列照射されるように制御することを特徴とするワーク分離装置。
  2. 前記保持部材に保持された前記積層体の前記支持体及び前記分離層に対する前記レーザ照射部からのレーザ照射位置を、少なくとも前記二方向へ相対的に移動させる駆動部を備え、
    前記制御部は、前記複数の照射領域のうち一つの照射領域に対する前記レーザ照射部からの前記レーザ光の照射を、前記レーザスキャナ及び前記駆動部の作動により前記整列照射が行われるように制御することを特徴とする請求項1記載のワーク分離装置。
  3. 記レーザ照射部は、前記スポット状のレーザ光としてパルス発振されるガウシャンビームを、エッジ部の傾斜角度が略垂直なスポット状のトップハットビームに変更する変換用光学部品を有し、
    記複数の照射領域のうち一つの照射領域に対する前記レーザ照射部からの照射が、前記光照射方向と交差する平面上で前記スポット状のトップハットビームの一部が重なり合うように並んだ整列照射であることを特徴とする請求項1又は2記載のワーク分離装置。
  4. 前記複数の照射領域の境目を挟んで隣合う照射領域同士の重なり合う部位の幅寸法を
    Rs*D/(2*F)以上に設定することを特徴とする請求項1又は3記載のワーク分離装置。
    ここで、Rsは、前記複数の照射領域の短辺側長さ、Dは、想定される前記積層体の反り量、Fは、前記レーザ照射部から前記分離層までのレーザ照射距離である。
  5. 前記変換用光学部品が、前記分離層に対する前記レーザ照射部からのレーザ照射形状を矩形に変える回折光学素子であることを特徴とする請求項3記載のワーク分離装置。
  6. 回路基板を含むワークが支持体と分離層を介して積層される積層体に対し、レーザ光の照射に伴う前記分離層の変性により前記ワークから前記支持体を剥離するワーク分離方法であって、
    前記ワーク又は前記支持体のいずれか一方を保持部材に着脱自在に保持する保持工程と、
    前記保持部材に保持された前記積層体の前記支持体又は前記ワークの他方を透して前記分離層に向けレーザ照射部から前記レーザ光を照射するレーザ照射工程と、
    前記保持部材に保持された前記積層体の前記支持体及び前記分離層に対する前記レーザ照射部からのレーザ照射位置を、少なくとも前記レーザ照射部からのレーザ照射方向と交差する方向へ相対的に移動させる相対移動工程と、を含み、
    前記レーザ照射部は、スポット状の前記レーザ光を前記積層体に沿って動かすレーザスキャナを有し、
    前記レーザ照射工程では、前記積層体に向けて前記レーザスキャナから照射される前記レーザ光の領域は、前記分離層の照射面全体が、前記レーザ照射部からの光照射方向と交差する二方向のいずれか一方へ長尺な帯状となる複数の照射領域に分割されるとともに、この分割した各照射領域に対する前記レーザスキャナからの照射が、前記光照射方向と交差する平面上で前記スポット状の前記レーザ光の一部が重なり合うように並んだ整列照射であり、
    前記相対移動工程では、前記帯状に分割された複数の照射領域のうち一つの照射領域に対して、前記レーザスキャナの作動により前記整列照射が行われ、前記複数の照射領域のうち一つの前記照射領域の全体が前記整列照射で隙間なく埋め尽くされた後に、次の照射領域に対する前記整列照射が行われ、それ以降は前記各照射領域毎にそれぞれ前記整列照射を同様に繰り返して、最終的に前記複数の照射領域のすべてが整列照射されることを特徴とするワーク分離方法。
JP2021549618A 2019-11-20 2020-10-27 ワーク分離装置及びワーク分離方法 Active JP6967179B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2019209839 2019-11-20
JP2019209839 2019-11-20
PCT/JP2020/040282 WO2021100421A1 (ja) 2019-11-20 2020-10-27 ワーク分離装置及びワーク分離方法

Publications (2)

Publication Number Publication Date
JP6967179B2 true JP6967179B2 (ja) 2021-11-17
JPWO2021100421A1 JPWO2021100421A1 (ja) 2021-12-16

Family

ID=75981201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021549618A Active JP6967179B2 (ja) 2019-11-20 2020-10-27 ワーク分離装置及びワーク分離方法

Country Status (6)

Country Link
US (1) US11633810B2 (ja)
JP (1) JP6967179B2 (ja)
KR (1) KR102463165B1 (ja)
CN (1) CN114641846B (ja)
TW (1) TWI832019B (ja)
WO (1) WO2021100421A1 (ja)

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4549620B2 (ja) * 2001-11-30 2010-09-22 株式会社半導体エネルギー研究所 レーザ照射装置
JP4006247B2 (ja) 2002-03-08 2007-11-14 住友重機械工業株式会社 レーザ加工方法及びレーザ加工装置
JP4017899B2 (ja) * 2002-03-22 2007-12-05 住友重機械工業株式会社 レーザ加工方法及びレーザ加工装置
JP2008229682A (ja) * 2007-03-22 2008-10-02 Epson Toyocom Corp パッケージ部品の製造方法
GB0802289D0 (en) 2008-02-07 2008-03-12 Rumsby Philip T Method and appartus for making a partially transparent solar panel
JP5460068B2 (ja) * 2009-02-13 2014-04-02 株式会社日立ハイテクノロジーズ レーザ光状態検査方法及び装置並びにソーラパネル製造方法
JP2011224931A (ja) * 2010-04-22 2011-11-10 Disco Corp 光デバイスウエーハの加工方法およびレーザー加工装置
JP2012015150A (ja) * 2010-06-29 2012-01-19 Ushio Inc レーザリフトオフ方法及びレーザリフトオフ装置
JP4948629B2 (ja) 2010-07-20 2012-06-06 ウシオ電機株式会社 レーザリフトオフ方法
JP2012081478A (ja) * 2010-10-07 2012-04-26 Ushio Inc レーザリフトオフ装置
JP6004339B2 (ja) 2011-02-10 2016-10-05 信越ポリマー株式会社 内部応力層形成単結晶部材および単結晶基板製造方法
JP6032789B2 (ja) * 2012-02-01 2016-11-30 信越ポリマー株式会社 単結晶加工部材の製造方法、および、単結晶基板の製造方法
JP5992696B2 (ja) 2012-02-29 2016-09-14 株式会社ディスコ リフトオフ装置
JP6162976B2 (ja) * 2013-02-26 2017-07-12 東京応化工業株式会社 基板の処理方法
JP6494382B2 (ja) * 2015-04-06 2019-04-03 株式会社ディスコ ウエーハの生成方法
WO2019028184A1 (en) * 2017-08-01 2019-02-07 Sigma Labs, Inc. SYSTEMS AND METHODS FOR RADIANT THERMAL ENERGY MEASUREMENT DURING ADDITIVE MANUFACTURING OPERATION
JP7073172B2 (ja) * 2018-04-03 2022-05-23 株式会社ディスコ ウエーハの生成方法
WO2019220666A1 (ja) 2018-05-17 2019-11-21 信越エンジニアリング株式会社 ワーク分離装置及びワーク分離方法
TWM608519U (zh) * 2020-10-23 2021-03-01 新代科技股份有限公司 雷射加工系統

Also Published As

Publication number Publication date
KR20220070575A (ko) 2022-05-31
CN114641846A (zh) 2022-06-17
JPWO2021100421A1 (ja) 2021-12-16
WO2021100421A1 (ja) 2021-05-27
CN114641846B (zh) 2023-03-24
TWI832019B (zh) 2024-02-11
TW202133982A (zh) 2021-09-16
US20220410321A1 (en) 2022-12-29
US11633810B2 (en) 2023-04-25
KR102463165B1 (ko) 2022-11-03

Similar Documents

Publication Publication Date Title
JP6764552B2 (ja) ワーク分離装置及びワーク分離方法
US7754582B2 (en) Laser processing method
WO2014156828A1 (ja) レーザ加工方法
KR102240325B1 (ko) 워크 분리 장치 및 워크 분리 방법
JP6967179B2 (ja) ワーク分離装置及びワーク分離方法
JP7101923B1 (ja) ワーク分離装置及びワーク分離方法
JP6836003B1 (ja) ワーク分離装置及びワーク分離方法
JPWO2022201535A5 (ja)
JP2021169102A (ja) レーザリフトオフ装置及びレーザリフトオフ方法
JP2022162661A (ja) レーザー加工装置のレーザービームの出力状態を検査する検査方法
CN111805076A (zh) 激光加工装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210824

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210824

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20210824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211012

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211022

R150 Certificate of patent or registration of utility model

Ref document number: 6967179

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150