JP6966974B2 - Imaging device - Google Patents

Imaging device Download PDF

Info

Publication number
JP6966974B2
JP6966974B2 JP2018103494A JP2018103494A JP6966974B2 JP 6966974 B2 JP6966974 B2 JP 6966974B2 JP 2018103494 A JP2018103494 A JP 2018103494A JP 2018103494 A JP2018103494 A JP 2018103494A JP 6966974 B2 JP6966974 B2 JP 6966974B2
Authority
JP
Japan
Prior art keywords
image pickup
optical path
image
unit
reflected light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018103494A
Other languages
Japanese (ja)
Other versions
JP2019207188A (en
Inventor
祥雄 古谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Screen Holdings Co Ltd
Original Assignee
Screen Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Screen Holdings Co Ltd filed Critical Screen Holdings Co Ltd
Priority to JP2018103494A priority Critical patent/JP6966974B2/en
Priority to PCT/JP2019/016081 priority patent/WO2019230215A1/en
Priority to TW108114005A priority patent/TWI686660B/en
Publication of JP2019207188A publication Critical patent/JP2019207188A/en
Application granted granted Critical
Publication of JP6966974B2 publication Critical patent/JP6966974B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/954Inspecting the inner surface of hollow bodies, e.g. bores

Description

この発明は、撮像対象物の表面から孔形成方向に形成された孔の内周面を撮像する撮像装置に関するものである。 The present invention relates to an image pickup apparatus that images an inner peripheral surface of a hole formed in a hole formation direction from the surface of an image pickup object.

金属製部品、樹脂製部品やゴム製部品などの立体的なワークの一つとして、ワークの表面から孔(凹部や貫通孔などを含む)が設けられたものがある。例えば円盤状の金属プレートの表面に対して円筒形状の孔を切削加工により形成した場合、その孔の内周面が所望の周面状態で形成されているか否かを検査する必要がある。そこで、例えば特許文献1に記載の撮像装置を用いて孔の内周面を撮像するとともに、当該撮像装置により得られた画像に基づいてワークを検査する検査技術が提案されている。 As one of the three-dimensional workpieces such as metal parts, resin parts and rubber parts, there are those in which holes (including recesses and through holes) are provided from the surface of the workpiece. For example, when a cylindrical hole is formed on the surface of a disk-shaped metal plate by cutting, it is necessary to inspect whether or not the inner peripheral surface of the hole is formed in a desired peripheral surface state. Therefore, for example, an inspection technique has been proposed in which the inner peripheral surface of a hole is imaged by using the image pickup apparatus described in Patent Document 1, and the work is inspected based on the image obtained by the image pickup apparatus.

特開2012−49624号公報Japanese Unexamined Patent Publication No. 2012-49624

特許文献1に記載の撮像装置では、ワークの孔に挿脱自在な鏡筒が上下方向に延設されている。この鏡筒の下端側には、鏡筒の軸線に対して45゜傾けた状態で対物ミラーが配置されており、鏡筒の軸線に沿って上方から下方に向かう照明光を水平方向に折り返して孔の内周面に照射する。また、孔の内周面で反射された反射光は対物ミラーで上方に折り返され、調光部を介してカメラユニットに受光される。これによって、孔の内周面の部分画像がカメラユニットにより撮像される。 In the image pickup apparatus described in Patent Document 1, a lens barrel that can be inserted and removed is extended in the vertical direction in the hole of the work. An objective mirror is placed on the lower end side of the lens barrel at an angle of 45 ° with respect to the axis of the lens barrel, and the illumination light going from above to below along the axis of the lens barrel is folded back horizontally. Irradiate the inner peripheral surface of the hole. Further, the reflected light reflected on the inner peripheral surface of the hole is folded upward by the objective mirror and received by the camera unit via the dimming unit. As a result, a partial image of the inner peripheral surface of the hole is captured by the camera unit.

この撮像装置では、孔の内周面を全周にわたって撮像するために、鏡筒および対物ミラーは軸線まわりに回転される。また、鏡筒から出射される反射光は上記回転に伴って軸線まわりに回転することから上記調光部を軸線まわりに回転させている。このような構成を採用することで、カメラユニットに入射する光が軸線まわりに回転するのを防止し、カメラユニットにより撮像される像の向きが一定に維持される。こうして、鏡筒および対物ミラーの挿入高さ位置で孔の内周面の全周画像を良好に撮像することが可能となっている。 In this imaging device, the lens barrel and the objective mirror are rotated around the axis in order to image the inner peripheral surface of the hole over the entire circumference. Further, since the reflected light emitted from the lens barrel rotates around the axis along with the rotation, the dimming unit is rotated around the axis. By adopting such a configuration, the light incident on the camera unit is prevented from rotating around the axis, and the orientation of the image captured by the camera unit is maintained constant. In this way, it is possible to satisfactorily capture an all-around image of the inner peripheral surface of the hole at the insertion height position of the lens barrel and the objective mirror.

ただし、上下方向における対物ミラーのサイズに比べて十分に深い孔について内周面の全周画像を撮像するためには、鏡筒および対物ミラーの挿入高さ位置を多段階に切り替えながら、各挿入高さ位置で鏡筒および対物ミラーを回転させるとともに当該回転に同期して調光部を回転させつつカメラユニットによる全周画像の撮像を繰り返して行う必要がある。したがって、孔の内周面の撮像に多大な時間を要することがある。 However, in order to capture an all-around image of the inner peripheral surface of a hole that is sufficiently deeper than the size of the objective mirror in the vertical direction, each insertion is performed while switching the insertion height position of the lens barrel and the objective mirror in multiple stages. It is necessary to repeatedly capture the all-around image by the camera unit while rotating the lens barrel and the objective mirror at the height position and rotating the dimming unit in synchronization with the rotation. Therefore, it may take a long time to image the inner peripheral surface of the hole.

この発明は上記課題に鑑みなされたものであり、孔の内周面を短時間で良好に撮像することができる撮像装置を提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide an imaging device capable of satisfactorily imaging the inner peripheral surface of a hole in a short time.

この発明に係る撮像装置は、撮像対象物の表面から孔形成方向に形成された孔の内周面を撮像部により撮像する撮像装置であって、内周面を照明するための照明光を発光する光源と、複数の折返ミラーを有し、複数の折返ミラーがそれぞれ内周面のうち孔形成方向において互いに異なる領域に照明光を導光するとともに領域で反射される反射光を孔から取り出すように孔に挿入された状態で孔形成方向と平行な回転軸まわりに回転するヘッド部と、単位時間当たりの回転角がヘッド部の半分の回転角となるように回転軸まわりに回転しながらヘッド部から取り出された複数の反射光を撮像部に向けて導光して撮像部で撮像される像の向きを一定に維持する像回転補正部と、像回転補正部から出射される反射光毎に、像回転補正部から撮像部までの反射光の光路長をヘッド部における複数の反射光の光路長差に応じて調整しながら撮像部に導光する光路長差補正部とを備えることを特徴としている。 The image pickup apparatus according to the present invention is an image pickup device that captures an image of the inner peripheral surface of a hole formed in the hole formation direction from the surface of an image pickup object by an imaging unit, and emits illumination light for illuminating the inner peripheral surface. The light source and the plurality of folding mirrors are provided, and the plurality of folding mirrors guide the illumination light to different regions of the inner peripheral surface in the hole forming direction and extract the reflected light reflected in the regions from the holes. The head part that rotates around the rotation axis parallel to the hole formation direction while being inserted into the hole, and the head while rotating around the rotation axis so that the rotation angle per unit time is half the rotation angle of the head part. An image rotation correction unit that guides a plurality of reflected light extracted from the unit toward the image pickup unit to maintain a constant orientation of the image captured by the image pickup unit, and each reflected light emitted from the image rotation correction unit. In addition, it is provided with an optical path length difference correction unit that guides the light path to the image pickup unit while adjusting the optical path length of the reflected light from the image rotation correction unit to the image pickup unit according to the optical path length difference of a plurality of reflected lights in the head unit. It is a feature.

このように構成した発明では、孔に挿入されたヘッド部には複数の折返ミラーが設けられ、それぞれ内周面のうち孔形成方向において互いに異なる領域に照明光を導光するとともに領域で反射される反射光を孔から取り出す。そして、各反射光が撮像部に導光される。このため、一度に孔形成方向において互いに異なる複数の領域について孔の内周面を撮像することが可能となっている。 In the invention configured in this way, a plurality of folded mirrors are provided in the head portion inserted into the hole, and the illumination light is guided to different regions of the inner peripheral surface in the hole forming direction and reflected in the region. The reflected light is taken out from the hole. Then, each reflected light is guided to the image pickup unit. Therefore, it is possible to image the inner peripheral surface of the hole for a plurality of regions different from each other in the hole forming direction at one time.

また、上記のように複数の折返ミラーをヘッド部に設けることでヘッド部では複数の反射光の間で光路長差が生じるが、それらの反射光が撮像部に入射されるまでに光路長差補正部が、像回転補正部から出射される反射光毎に、像回転補正部から撮像部までの反射光の光路長を調整する。このため、いずれの反射光についても内周面から撮像部までの光路長は等しくなり、各領域について孔の内周面を良好に撮像することが可能となっている。 Further, by providing a plurality of folded mirrors in the head portion as described above, an optical path length difference occurs between a plurality of reflected lights in the head portion, but the optical path length difference before the reflected light is incident on the imaging unit. The correction unit adjusts the optical path length of the reflected light from the image rotation correction unit to the image pickup unit for each reflected light emitted from the image rotation correction unit. Therefore, the optical path lengths from the inner peripheral surface to the image pickup unit are the same for all the reflected lights, and it is possible to image the inner peripheral surface of the hole satisfactorily for each region.

以上のように、ヘッド部に複数の折返ミラーを設けるとともに、それに伴って発生するヘッド部での反射光の光路長差を光路長差補正部で調整しているため、孔の内周面を短時間で良好に撮像することができる。 As described above, since a plurality of folding mirrors are provided in the head portion and the optical path length difference of the reflected light generated in the head portion is adjusted by the optical path length difference correction portion, the inner peripheral surface of the hole is adjusted. Good imaging can be performed in a short time.

この発明に係る撮像装置の一実施形態を示す図である。It is a figure which shows one Embodiment of the image pickup apparatus which concerns on this invention. 図1に示す撮像装置の主要構成であるヘッド部、像回転補正部および光路長差補正部を模式的に示す図である。It is a figure which shows typically the head part, the image rotation correction part, and the optical path length difference correction part which are the main configurations of the image pickup apparatus shown in FIG. 1. 貫通孔の内周面で反射された光が撮像部に導光される光路を模式的に示す図である。It is a figure which shows typically the optical path that the light reflected by the inner peripheral surface of a through hole is guided to the image pickup part. 撮像部の主要構成を示す図である。It is a figure which shows the main structure of the image pickup part. 図3に示す光路長差補正部、像回転補正部およびヘッド部をZ方向から見た平面図である。FIG. 3 is a plan view of the optical path length difference correction unit, the image rotation correction unit, and the head unit shown in FIG. 3 as viewed from the Z direction. 図3に示す光路長差補正部、像回転補正部およびヘッド部をY方向から見た側面図である。FIG. 3 is a side view of the optical path length difference correction unit, the image rotation correction unit, and the head unit shown in FIG. 3 as viewed from the Y direction. 図3に示す光路長差補正部、像回転補正部およびヘッド部をX方向から見た側面図である。FIG. 3 is a side view of the optical path length difference correction unit, the image rotation correction unit, and the head unit shown in FIG. 3 as viewed from the X direction.

図1はこの発明に係る撮像装置の一実施形態を示す図である。図2は図1に示す撮像装置の主要構成であるヘッド部、像回転補正部および光路長差補正部を模式的に示す図である。図3は、貫通孔の内周面で反射された光、つまり反射光が撮像部に導光される光路を模式的に示す図である。この撮像装置100は、円盤状の金属プレートの中央部に表面11から裏面12に貫通孔13が穿設されたワーク1を撮像対象物とし、当該ワーク1の裏面12をワーク保持テーブル2で保持した状態でワーク1の貫通孔13の内周面14を撮像する装置である。なお、以下の各図において、貫通孔13が形成された孔形成方向を「Z方向」としている。 FIG. 1 is a diagram showing an embodiment of an image pickup apparatus according to the present invention. FIG. 2 is a diagram schematically showing a head unit, an image rotation correction unit, and an optical path length difference correction unit, which are the main configurations of the image pickup apparatus shown in FIG. 1. FIG. 3 is a diagram schematically showing an optical path in which light reflected on the inner peripheral surface of the through hole, that is, the reflected light is guided to the image pickup unit. The image pickup apparatus 100 uses a work 1 having a through hole 13 formed in a through hole 13 from a front surface 11 to a back surface 12 in the central portion of a disk-shaped metal plate as an image pickup target, and holds the back surface 12 of the work 1 on a work holding table 2. This is a device that captures an image of the inner peripheral surface 14 of the through hole 13 of the work 1 in this state. In each of the following figures, the hole forming direction in which the through hole 13 is formed is defined as the “Z direction”.

撮像装置100では、ワーク保持テーブル2に保持されたワーク1の貫通孔13に対してヘッド部3が(+Z)方向から挿脱自在に設けられている。そして、ワーク1の撮像を行う際には、図1および図3に示すように、ヘッド部3がワーク1の貫通孔13に挿入される。また、ヘッド部3の上方、つまり(+Z)方向には、像回転補正部4、光路長差補正部5および撮像部6がこの順序で設けられるとともに、撮像部6の側面には光源7が取り付けられている。 In the image pickup apparatus 100, the head portion 3 is provided so as to be freely insertable / detachable from the (+ Z) direction with respect to the through hole 13 of the work 1 held in the work holding table 2. Then, when the work 1 is imaged, the head portion 3 is inserted into the through hole 13 of the work 1 as shown in FIGS. 1 and 3. Further, an image rotation correction unit 4, an optical path length difference correction unit 5, and an image pickup unit 6 are provided in this order above the head unit 3, that is, in the (+ Z) direction, and a light source 7 is provided on the side surface of the image pickup unit 6. It is attached.

光源7は貫通孔13の内周面14を照明するための照明光を発光する。そして、図1に示すように、光源7から発光された照明光ILが撮像部6に設けられたハーフミラー61に向けて照射される。照明光ILはハーフミラー61により(−Z)方向に折り返され、さらに光路長差補正部5および像回転補正部4を介してヘッド部3に入射する。このヘッド部3では、照明光ILは(−X)方向に折り返され、貫通孔13の内周面14に照射される。 The light source 7 emits illumination light for illuminating the inner peripheral surface 14 of the through hole 13. Then, as shown in FIG. 1, the illumination light IL emitted from the light source 7 is irradiated toward the half mirror 61 provided in the image pickup unit 6. The illumination light IL is folded back in the (-Z) direction by the half mirror 61, and is further incident on the head unit 3 via the optical path length difference correction unit 5 and the image rotation correction unit 4. In the head portion 3, the illumination light IL is folded back in the (−X) direction and is applied to the inner peripheral surface 14 of the through hole 13.

一方、貫通孔13の内周面14で反射された反射光は(+X)方向に進み、ヘッド部3で(+Z)方向に折り返され、ワーク1の貫通孔13から取り出される。そして、当該反射光は像回転補正部4および光路長差補正部5を介して撮像部6に入射され、ハーフミラー61を通過して撮像素子62で受光される。これにより撮像部6は貫通孔13の内周面14のうち照明光ILの照射を受けた領域を撮像する。 On the other hand, the reflected light reflected by the inner peripheral surface 14 of the through hole 13 travels in the (+ X) direction, is folded back in the (+ Z) direction by the head portion 3, and is taken out from the through hole 13 of the work 1. Then, the reflected light is incident on the image pickup unit 6 via the image rotation correction unit 4 and the optical path length difference correction unit 5, passes through the half mirror 61, and is received by the image pickup element 62. As a result, the image pickup unit 6 takes an image of the region of the inner peripheral surface 14 of the through hole 13 that has been irradiated with the illumination light IL.

本実施形態では、図2に示すように、ヘッド部3は2つの折返ミラー31、32を有している。折返ミラー31、32はZ方向に相互にずれて配置されている。より詳しくは、折返ミラー32は折返ミラー31よりも(−Z)方向にずれて配置され、Z方向において先端側に位置している。つまり、折返ミラー32が本発明の「先端折返ミラー」の一例に相当している。また、X方向およびZ方向に対して直交するY方向においても折返ミラー32は折返ミラー31よりも(−Y)方向にずれている。このため、図3に示すように、内周面14のうちZ方向において互いに異なる2つの領域R1、R2に照明光IL(図1)がそれぞれ折返ミラー31、32を介して照射されるとともに、領域R1、R2で反射される反射光RL1、RL2がそれぞれ折返ミラー31、32を介して貫通孔13から取り出される。これらの反射光のうち反射光RL2が本発明の「先端反射光」の一例に相当している。 In the present embodiment, as shown in FIG. 2, the head portion 3 has two folded mirrors 31 and 32. The folded mirrors 31 and 32 are arranged so as to be offset from each other in the Z direction. More specifically, the folded mirror 32 is arranged so as to be displaced in the (−Z) direction from the folded mirror 31, and is located on the tip end side in the Z direction. That is, the folded mirror 32 corresponds to an example of the "tip folded mirror" of the present invention. Further, the folding mirror 32 is also displaced in the (−Y) direction from the folding mirror 31 in the Y direction orthogonal to the X direction and the Z direction. Therefore, as shown in FIG. 3, two regions R1 and R2 of the inner peripheral surface 14 that are different from each other in the Z direction are irradiated with illumination light IL (FIG. 1) via the folded mirrors 31 and 32, respectively. The reflected light RL1 and RL2 reflected in the regions R1 and R2 are taken out from the through hole 13 via the folded mirrors 31 and 32, respectively. Of these reflected lights, the reflected light RL2 corresponds to an example of the "advanced reflected light" of the present invention.

また、図3における符号A1は領域R1での照明光ILの反射位置を示し、符号A2は領域R2での照明光ILの反射位置を示している。また、図3における符号B1は折返ミラー31のミラー面311で反射光RL1を折り返している折返位置であり、符号B2は折返ミラー32のミラー面321で反射光RL2を折り返している折返位置である。なお、本実施形態では、ミラー面311の面法線がミラー面312の面法線に対して僅かながら傾斜するように折返ミラー31、32は設けられており、反射光RL2はZ方向に出射する一方、反射光RL1はY方向において反射光RL2から徐々に離れながら進む(図7参照)が、その理由については後で詳述する。 Further, the reference numeral A1 in FIG. 3 indicates the reflection position of the illumination light IL in the region R1, and the reference numeral A2 indicates the reflection position of the illumination light IL in the region R2. Further, reference numeral B1 in FIG. 3 is a folding position where the reflected light RL1 is folded back on the mirror surface 311 of the folding mirror 31, and reference numeral B2 is a folding position where the reflected light RL2 is folded back on the mirror surface 321 of the folding mirror 32. .. In the present embodiment, the folded mirrors 31 and 32 are provided so that the surface normal of the mirror surface 311 is slightly inclined with respect to the surface normal of the mirror surface 312, and the reflected light RL2 is emitted in the Z direction. On the other hand, the reflected light RL1 gradually moves away from the reflected light RL2 in the Y direction (see FIG. 7), and the reason will be described in detail later.

また、このように2つの折返ミラー31、32を有するヘッド部3はZ方向と平行に延びる貫通孔13の中心軸13aを回転軸として折返ミラー31、32が一体的に回転自在となっている。また、ヘッド部3は図1および図2に示すようにヘッド回転駆動部33と機械的に接続されている。このため、装置全体を制御する制御部9からの回転指令に応じてヘッド回転駆動部33が作動すると、ヘッド部3が中心軸13aまわりに回転する。その結果、上記領域R1、R2が内周面14の周方向に移動してヘッド部3を1回転させることで貫通孔13の内周面14の全周にわたって反射光RL1、RL2が取り出される。 Further, in the head portion 3 having the two folded mirrors 31 and 32 as described above, the folded mirrors 31 and 32 are integrally rotatable with the central axis 13a of the through hole 13 extending in parallel with the Z direction as a rotation axis. .. Further, the head portion 3 is mechanically connected to the head rotation drive portion 33 as shown in FIGS. 1 and 2. Therefore, when the head rotation drive unit 33 operates in response to a rotation command from the control unit 9 that controls the entire device, the head unit 3 rotates around the central axis 13a. As a result, the regions R1 and R2 move in the circumferential direction of the inner peripheral surface 14 and rotate the head portion 3 once, so that the reflected light RL1 and RL2 are taken out over the entire circumference of the inner peripheral surface 14 of the through hole 13.

このようにヘッド部3を回転させると、その回転に応じて反射光RL1、RL2も回転する。そこで、本実施形態に係る撮像装置100においても、特許文献1の調光部と同様の構成を有する像回転補正部4が設けられている。像回転補正部4は3枚の補正用ミラー41〜43で構成されるとともに、貫通孔13の中心軸13aを回転軸として補正用ミラー41〜43が一体的に回転自在となっている。また、像回転補正部4は図1および図2に示すように像回転駆動部44と機械的に接続されている。そして、制御部9からの回転指令に応じて像回転駆動部44が作動すると、像回転補正部4が中心軸13aまわりに回転する。ただし、その回転速度、つまり単位時間当たりの回転角θがヘッド部3の半分の回転角(θ/2)となるように回転制御される。その結果、反射光RL1、RL2は回転せず、そのまま光路長差補正部5を介して撮像部6に導光され、撮像部6により撮像される像の向きは一定に維持される。なお、像回転補正部4の構成および動作は、特許文献1に詳述されているため、本明細書での像回転補正部4の構成および動作の説明は省略する。 When the head portion 3 is rotated in this way, the reflected lights RL1 and RL2 also rotate according to the rotation. Therefore, the image pickup apparatus 100 according to the present embodiment is also provided with an image rotation correction unit 4 having the same configuration as the dimming unit of Patent Document 1. The image rotation correction unit 4 is composed of three correction mirrors 41 to 43, and the correction mirrors 41 to 43 are integrally rotatable with the central axis 13a of the through hole 13 as the rotation axis. Further, the image rotation correction unit 4 is mechanically connected to the image rotation drive unit 44 as shown in FIGS. 1 and 2. Then, when the image rotation drive unit 44 operates in response to the rotation command from the control unit 9, the image rotation correction unit 4 rotates around the central axis 13a. However, the rotation speed is controlled so that the rotation speed, that is, the rotation angle θ per unit time is half the rotation angle (θ / 2) of the head unit 3. As a result, the reflected lights RL1 and RL2 do not rotate, but are guided to the image pickup unit 6 as they are via the optical path length difference correction unit 5, and the orientation of the image imaged by the image pickup unit 6 is maintained constant. Since the configuration and operation of the image rotation correction unit 4 are described in detail in Patent Document 1, the description of the configuration and operation of the image rotation correction unit 4 in the present specification will be omitted.

ここで、像回転補正部4から出射した反射光RL1、RL2の光路長を比較すると、ヘッド部3において折返ミラー32が折返ミラー31よりも像回転補正部4から離れている、つまり先端側に配置されているため、反射光RL2の光路長が反射光RL1の光路長よりも長くなっている。このため、像回転補正部4から出射した反射光RL1、RL2をそのまま撮像部6に入射してしまうと、領域R1、R2の間で、フォーカスのずれが生じ、画像を一括して良好に撮像することが困難である。そこで、本実施形態では、2枚の光路変更ミラー51、52を組み合わせた光路長差補正部5が像回転補正部4と撮像部6との間に介挿されている。 Here, comparing the optical path lengths of the reflected lights RL1 and RL2 emitted from the image rotation correction unit 4, the folding mirror 32 is farther from the image rotation correction unit 4 than the folding mirror 31 in the head unit 3, that is, to the tip side. Because of the arrangement, the optical path length of the reflected light RL2 is longer than the optical path length of the reflected light RL1. Therefore, if the reflected light RL1 and RL2 emitted from the image rotation correction unit 4 are directly incident on the image pickup unit 6, the focus shift occurs between the regions R1 and R2, and the images are collectively and well imaged. It is difficult to do. Therefore, in the present embodiment, an optical path length difference correction unit 5 that combines two optical path change mirrors 51 and 52 is interposed between the image rotation correction unit 4 and the image pickup unit 6.

光路長差補正部5は、図2および図3に示すように、反射光RL2の光路からY方向に外れて配置されて反射光RL1のみを反射する光路変更ミラー51と、光路変更ミラー51で折り返された反射光RL1を撮像部6に向けて折り返す光路変更ミラー52とを備えている。このため、光路長差補正部5では、図3に示すように、光路変更ミラー51の反射位置C1および光路変更ミラー52の反射位置D1で反射光RL1の折り返しを行った分だけ反射光RL1の光路長が反射光RL2の光路長よりも長くなる。つまり、本実施形態では、像回転補正部4から出射される反射光RL1、RL2毎に、像回転補正部4から撮像部6までの反射光の光路長をヘッド部3における反射光RL1、RL2の光路長差に応じて調整している。これによって、反射位置A1から撮像部6への入射位置E1(図3)までの反射光RL1の光路長と、反射位置A2から撮像部6への入射位置E2(図3)までの反射光RL2の光路長とをほぼ一致させることが可能となっている。なお、その解析は後で図5ないし図7を参照しつつ説明する。 As shown in FIGS. 2 and 3, the optical path length difference correction unit 5 includes an optical path change mirror 51 which is arranged away from the optical path of the reflected light RL2 in the Y direction and reflects only the reflected light RL1 and an optical path change mirror 51. It is provided with an optical path changing mirror 52 that folds back the reflected reflected light RL1 toward the image pickup unit 6. Therefore, in the optical path length difference correction unit 5, as shown in FIG. 3, the reflected light RL1 is folded back at the reflection position C1 of the optical path change mirror 51 and the reflection position D1 of the optical path change mirror 52. The optical path length becomes longer than the optical path length of the reflected light RL2. That is, in the present embodiment, the optical path length of the reflected light from the image rotation correction unit 4 to the image pickup unit 6 is set to the reflected light RL1 and RL2 in the head unit 3 for each of the reflected light RL1 and RL2 emitted from the image rotation correction unit 4. It is adjusted according to the difference in the optical path length of. As a result, the optical path length of the reflected light RL1 from the reflected position A1 to the incident position E1 (FIG. 3) to the image pickup unit 6 and the reflected light RL2 from the reflection position A2 to the incident position E2 (FIG. 3) from the reflection position A2 to the image pickup unit 6. It is possible to almost match the optical path length of. The analysis will be described later with reference to FIGS. 5 to 7.

図4は撮像部の主要構成を示す図である。撮像部6は、上記したハーフミラー61および撮像素子62以外に、2枚のレンズ631、632と絞り633とで構成される光学系63を有しており、いわゆる物体側テレセントリックを構成するとともに反射光RL1、RL2をそれぞれ撮像素子62の撮像面621に集光させて各領域R1、R2の像を撮像面621上に結像する。また、図4への図示を省略しているが、撮像装置100では上記したように光源7からの照明光ILを撮像部6、光路長差補正部5、像回転補正部4およびヘッド部3を介して貫通孔13の内周面14に照射する、いわゆる同軸落射照明系となっている。このため、次のような作用効果が得られる。 FIG. 4 is a diagram showing a main configuration of an imaging unit. In addition to the half mirror 61 and the image sensor 62 described above, the image pickup unit 6 has an optical system 63 composed of two lenses 631 and 632 and an aperture 633, which constitutes a so-called object-side telecentric lens and reflects light. The optical RL1 and RL2 are focused on the image pickup surface 621 of the image pickup element 62, respectively, and an image of each region R1 and R2 is formed on the image pickup surface 621. Further, although not shown in FIG. 4, in the image pickup apparatus 100, as described above, the illumination light IL from the light source 7 is captured by the image pickup unit 6, the optical path length difference correction unit 5, the image rotation correction unit 4, and the head unit 3. It is a so-called coaxial epi-illumination system that irradiates the inner peripheral surface 14 of the through hole 13 through the above. Therefore, the following effects can be obtained.

上記したようにワーク1は金属製であり、貫通孔13は切削加工などにより形成され、その内周面14については比較的高い精度が要求されることが多い。このため、内周面14は鏡面に近い状態となっている。このような内周面14に傷や欠けなどの欠陥部が存在すると、当該欠陥部において散乱光が発生する。逆に、欠陥部以外の部位では鏡面状態が維持されており、当該鏡面部位からの散乱光成分は少ない。したがって、本実施形態のように物体側テレセントリックであるという特徴と同軸落射照明を採用しているという特徴とを兼ね備えることで、反射光RL1、RL2は正反射光となり、仮に欠陥部が存在する場合には撮像部6により撮像される像に欠陥部が明瞭に含まれる。その結果、欠陥部が存在するか否かを容易に検査することが可能となっている。 As described above, the work 1 is made of metal, the through hole 13 is formed by cutting or the like, and the inner peripheral surface 14 thereof is often required to have relatively high accuracy. Therefore, the inner peripheral surface 14 is in a state close to a mirror surface. If a defective portion such as a scratch or a chip is present on the inner peripheral surface 14, scattered light is generated in the defective portion. On the contrary, the mirror surface state is maintained in the portion other than the defective portion, and the scattered light component from the mirror surface portion is small. Therefore, by combining the feature of being telecentric on the object side and the feature of adopting coaxial epi-illumination as in the present embodiment, the reflected light RL1 and RL2 become specular reflected light, and if there is a defect portion. Clearly includes a defective portion in the image captured by the imaging unit 6. As a result, it is possible to easily inspect whether or not a defective portion is present.

以上のように、本実施形態によれば、Z方向において互いに異なる位置に折返ミラー31、32を配置したヘッド部3をワーク1の貫通孔13に挿入している。そして、その挿入状態のまま内周面14のうちZ方向において互いに異なる領域R1、R2に照明光ILを導光するとともに領域R1、R2で反射される反射光RL1、RL2を貫通孔13から取り出し、撮像部6の撮像素子62で受光している。このため、貫通孔13の内周面14に含まれる2つの領域R1、R2を同時に撮像することが可能となっており、貫通孔13の内周面14を短時間で撮像することができる。 As described above, according to the present embodiment, the head portion 3 in which the folded mirrors 31 and 32 are arranged at different positions in the Z direction is inserted into the through hole 13 of the work 1. Then, the illumination light IL is guided to the regions R1 and R2 of the inner peripheral surface 14 which are different from each other in the Z direction in the inserted state, and the reflected lights RL1 and RL2 reflected in the regions R1 and R2 are taken out from the through hole 13. The light is received by the image pickup element 62 of the image pickup unit 6. Therefore, it is possible to simultaneously image the two regions R1 and R2 included in the inner peripheral surface 14 of the through hole 13, and the inner peripheral surface 14 of the through hole 13 can be imaged in a short time.

また、2つの折返ミラー31,32をヘッド部3に設けることでヘッド部3では反射光RL1、RL2の間で光路長差が生じるが、光路長差補正部5を設けることで図4に示すように反射光RL1、RL2のいずれについても内周面14から撮像部6における物体側のレンズ631に入射するまでの光路長は、次に詳細説明するように装置仕様から数個の寸法や値を適切に決めることで、等しく設定することができ、各領域R1、R2についてフォーカスを一致させ貫通孔13の内周面14を良好に撮像することができる。 Further, by providing the two folding mirrors 31 and 32 in the head portion 3, an optical path length difference occurs between the reflected light RL1 and RL2 in the head portion 3, but by providing the optical path length difference correction unit 5, it is shown in FIG. As described above, for both the reflected light RL1 and RL2, the optical path length from the inner peripheral surface 14 to the incident on the lens 631 on the object side in the image pickup unit 6 has several dimensions and values from the device specifications as described in detail below. Can be set equally, and the inner peripheral surface 14 of the through hole 13 can be well imaged by focusing on each of the regions R1 and R2.

次に、内周面14から撮像部6における物体側のレンズ631に入射するまでの光路長について図3、図5ないし図7を参照しつつ詳述する。図5は図3に示す光路長差補正部5、像回転補正部4およびヘッド部3をZ方向から見た平面図、つまりXY平面図である。また、図6は図3に示す光路長差補正部5、像回転補正部4およびヘッド部3をY方向から見た側面図、つまりXZ平面図である。さらに、図7は図3に示す光路長差補正部5、像回転補正部4およびヘッド部3をX方向から見た側面図、つまりYZ平面図である。なお、図5および図7においては像回転補正部4の図示を省略している。また、図5〜図7における符号dx、dy1、dy2、dz、L1、L2、L3、rwはそれぞれ以下のとおりである。 Next, the optical path length from the inner peripheral surface 14 to the incident on the lens 631 on the object side in the imaging unit 6 will be described in detail with reference to FIGS. 3, 5 to 7. FIG. 5 is a plan view of the optical path length difference correction unit 5, the image rotation correction unit 4, and the head unit 3 shown in FIG. 3 as viewed from the Z direction, that is, an XY plan view. Further, FIG. 6 is a side view, that is, an XZ plan view of the optical path length difference correction unit 5, the image rotation correction unit 4, and the head unit 3 shown in FIG. 3 as viewed from the Y direction. Further, FIG. 7 is a side view, that is, a YZ plan view of the optical path length difference correction unit 5, the image rotation correction unit 4, and the head unit 3 shown in FIG. 3 as viewed from the X direction. Note that the image rotation correction unit 4 is not shown in FIGS. 5 and 7. Further, the reference numerals dx, dy1, dy2, dz, L1, L2, L3, and rw in FIGS. 5 to 7 are as follows.

dx:X方向における光路変更ミラー51、52のミラー間距離、
dy1:Y方向における折返ミラー31、32のミラー間距離、
dy2:Y方向における折返ミラー31と光路変更ミラー51とのミラー間距離、
dz:Z方向における折返ミラー31、32のミラー間距離、
L1:Z方向における折返ミラー31と光路変更ミラー51とのミラー間距離(ただし、補正用ミラー41〜43による反射光の折り返しを含む)、
L2:Z方向における光路変更ミラー51、52のミラー間距離、
L3:Z方向における光路変更ミラー52とレンズ631の入射面との距離、
rw:内周面14の半径、
α1:YZ平面内での折返ミラー31の反射角、
α2x:XZ平面内での光路変更ミラー51の反射角、
α2y:YZ平面内での光路変更ミラー51の反射角。
dx: Distance between mirrors of optical path changing mirrors 51 and 52 in the X direction,
dy1: Distance between the folded mirrors 31 and 32 in the Y direction,
dy2: Distance between the mirrors of the folding mirror 31 and the optical path changing mirror 51 in the Y direction,
dz: Distance between the folded mirrors 31 and 32 in the Z direction,
L1: Distance between the mirrors of the folding mirror 31 and the optical path changing mirror 51 in the Z direction (however, including the folding of the reflected light by the correction mirrors 41 to 43).
L2: Distance between mirrors of optical path changing mirrors 51 and 52 in the Z direction,
L3: Distance between the optical path changing mirror 52 and the incident surface of the lens 631 in the Z direction,
rw: radius of inner peripheral surface 14,
α1: Reflection angle of the folded mirror 31 in the YZ plane,
α2x: Reflection angle of the optical path change mirror 51 in the XZ plane,
α2y: Reflection angle of the optical path change mirror 51 in the YZ plane.

ここでは、まず反射光RL1の光路長について検討する。反射光RL1は図6に示すように位置A1−位置B1−(像回転補正部4)−位置C1−位置D1−位置E1という光路で撮像部6に入射される。このため、互いに隣接する位置間の距離は次式で示す通りである。

Figure 0006966974
Here, first, the optical path length of the reflected light RL1 will be examined. As shown in FIG. 6, the reflected light RL1 is incident on the image pickup unit 6 in an optical path of position A1-position B1- (image rotation correction unit 4) -position C1-position D1-position E1. Therefore, the distance between the positions adjacent to each other is as shown by the following equation.
Figure 0006966974

一方、反射光RL2は図6に示すように位置A2−位置B2−(像回転補正部4)−位置C2−位置D2−位置E2という光路で撮像部6に入射される。このため、互いに隣接する位置間の距離は次式で示す通りである。

Figure 0006966974
On the other hand, as shown in FIG. 6, the reflected light RL2 is incident on the image pickup unit 6 through an optical path of position A2-position B2- (image rotation correction unit 4) -position C2-position D2-position E2. Therefore, the distance between the positions adjacent to each other is as shown by the following equation.
Figure 0006966974

そして、反射光RL1、RL2の光路長を等しくするためには、次式を満足する必要がある。

Figure 0006966974
Then, in order to make the optical path lengths of the reflected lights RL1 and RL2 equal, it is necessary to satisfy the following equation.
Figure 0006966974

これに上述の数1および数2を代入してZ方向における光路変更ミラー51、52のミラー間距離L2について整理すると、次式が得られる。

Figure 0006966974
By substituting the above equations 1 and 2 into this and rearranging the distance L2 between the mirrors of the optical path changing mirrors 51 and 52 in the Z direction, the following equation is obtained.
Figure 0006966974

他方、YZ平面内での折返ミラー31の反射角α1、XZ平面内での光路変更ミラー51の反射角α2x、およびYZ平面内での光路変更ミラー51の反射角α2yは図6や図7から明らかなように次式で表される。

Figure 0006966974
On the other hand, the reflection angle α1 of the folding mirror 31 in the YZ plane, the reflection angle α2x of the optical path changing mirror 51 in the XZ plane, and the reflection angle α2y of the optical path changing mirror 51 in the YZ plane are shown in FIGS. 6 and 7. As is clear, it is expressed by the following equation.
Figure 0006966974

よって、撮像装置100の各部仕様から、距離dx、dy1、dy2、dz、L1、L3を決めると、反射光RL1、RL2の光路長を等しくするという条件からZ方向における光路変更ミラー51、52のミラー間距離L2が求まる。しかも、上記した反射角の式から反射角α1、α2x、α2yが一義的に決まる。こうして、光路長差補正部5、像回転補正部4およびヘッド部3の各部の具体的な構成を決定することができ、これにしたがって組み立てられた撮像装置100では、2本の反射光RL1、RL2を撮像部6で受光することで内周面14を短時間で撮像することができるだけでなく、貫通孔13の内周面14を良好に撮像することができる。 Therefore, when the distances dx, dy1, dy2, dz, L1, and L3 are determined from the specifications of each part of the image pickup apparatus 100, the optical path change mirrors 51 and 52 in the Z direction are provided with the condition that the optical path lengths of the reflected light RL1 and RL2 are equal. The distance L2 between the mirrors can be obtained. Moreover, the reflection angles α1, α2x, and α2y are uniquely determined from the above-mentioned expression of the reflection angle. In this way, the specific configuration of each of the optical path length difference correction unit 5, the image rotation correction unit 4, and the head unit 3 can be determined, and in the image pickup apparatus 100 assembled according to this, the two reflected light RL1s can be determined. By receiving light on the RL2 by the imaging unit 6, not only the inner peripheral surface 14 can be imaged in a short time, but also the inner peripheral surface 14 of the through hole 13 can be imaged satisfactorily.

また、上記したようにミラー面311の面法線がミラー面312の面法線に対して僅かながら傾斜するように折返ミラー31、32を配置して反射角α1を設けている。これによって、光路長差補正部5に入射してくる反射光RL1、RL2はY方向に分離され、反射光RL2が光路変更ミラー51の側方を通過して撮像部6に導光されるとともに反射光RL1が光路変更ミラー51、52で折り返された後で撮像部6に導光する。その結果、反射光RL1、RL2は物体側開口数に応じた広がりを有しているものの、上記したように反射光RL1、RL2を分離して所望の光路に沿って導光することができる。 Further, as described above, the folded mirrors 31 and 32 are arranged so that the surface normal of the mirror surface 311 is slightly inclined with respect to the surface normal of the mirror surface 312 to provide a reflection angle α1. As a result, the reflected light RL1 and RL2 incident on the optical path length difference correction unit 5 are separated in the Y direction, and the reflected light RL2 passes by the side of the optical path change mirror 51 and is guided to the image pickup unit 6. The reflected light RL1 is turned back by the optical path change mirrors 51 and 52, and then guided to the image pickup unit 6. As a result, although the reflected light RL1 and RL2 have a spread according to the numerical aperture on the object side, the reflected light RL1 and RL2 can be separated and guided along a desired optical path as described above.

なお、本発明は上記した実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて上述したもの以外に種々の変更を行うことが可能である。例えば、上記実施形態では、ヘッド部3に2つの折返ミラー31、32を設け、Z方向において互いに異なる2つの領域R1、R2を同時に撮像しているが、折返ミラーの個数は3以上であってもよい。要は、複数の折返ミラーがそれぞれ内周面14のうちZ方向において互いに異なる領域に照明光ILを導光するとともに領域で反射される反射光を貫通孔13から取り出すように構成してもよい。この場合、折返ミラーの個数の増大に伴って光路長差補正部5に設ける光路変更ミラーの個数も増大させればよい。 The present invention is not limited to the above-described embodiment, and various modifications can be made other than those described above as long as the present invention is not deviated from the gist thereof. For example, in the above embodiment, the head portion 3 is provided with two folding mirrors 31 and 32, and two regions R1 and R2 different from each other in the Z direction are simultaneously imaged, but the number of folding mirrors is 3 or more. May be good. In short, the plurality of folded mirrors may be configured to guide the illumination light IL to a region different from each other in the Z direction of the inner peripheral surface 14, and to take out the reflected light reflected in the region from the through hole 13. .. In this case, as the number of folded mirrors increases, the number of optical path changing mirrors provided in the optical path length difference correction unit 5 may also increase.

また、上記実施形態では、貫通孔13が形成されたワーク1を本発明の「撮像対象物」としているが、表面11から金属プレートの厚みよりも浅い凹部が形成されたワークを撮像することも可能である。つまり、本発明の「孔」は貫通孔および凹部の両方を含む。また、ワークの材質は金属材料に限定されるものではなく、セラミック材料、樹脂材料やゴム材料であってもよく、種々のワークを撮像対象物として撮像可能である。 Further, in the above embodiment, the work 1 in which the through hole 13 is formed is regarded as the “object to be imaged” of the present invention, but it is also possible to image a work in which a recess shallower than the thickness of the metal plate is formed from the surface 11. It is possible. That is, the "hole" of the present invention includes both through holes and recesses. Further, the material of the work is not limited to the metal material, but may be a ceramic material, a resin material or a rubber material, and various works can be imaged as an image pickup object.

この発明は、撮像対象物の表面から孔形成方向に形成された孔の内周面を撮像する撮像装置全般に適用することができる。 INDUSTRIAL APPLICABILITY The present invention can be applied to a general image pickup apparatus that images the inner peripheral surface of a hole formed in the hole formation direction from the surface of an image pickup object.

1…ワーク(撮像対象物)
3…ヘッド部
4…像回転補正部
5…光路長差補正部
6…撮像部
7…光源
11…(ワークの)表面
13…貫通孔
14…(貫通孔の)内周面
31…折返ミラー
32…(先端)折返ミラー
51,52…光路変更ミラー
63…光学系
100…撮像装置
IL…照明光
R1,R2…領域
RL1…反射光
RL2…(先端)反射光
Z…孔形成方向
θ…回転角
1 ... Work (object to be imaged)
3 ... Head unit 4 ... Image rotation correction unit 5 ... Optical path length difference correction unit 6 ... Imaging unit 7 ... Light source 11 ... Surface 13 ... Through hole 14 ... Inner peripheral surface (of through hole) 31 ... Folded mirror 32 ... (tip) folded mirror 51, 52 ... optical path change mirror 63 ... optical system 100 ... image pickup device IL ... illumination light R1, R2 ... region RL1 ... reflected light RL2 ... (tip) reflected light Z ... hole formation direction θ ... rotation angle

Claims (5)

撮像対象物の表面から孔形成方向に形成された孔の内周面を撮像部により撮像する撮像装置であって、
前記内周面を照明するための照明光を発光する光源と、
複数の折返ミラーを有し、前記複数の折返ミラーがそれぞれ前記内周面のうち前記孔形成方向において互いに異なる領域に前記照明光を導光するとともに前記領域で反射される反射光を前記孔から取り出すように前記孔に挿入された状態で前記孔形成方向と平行な回転軸まわりに回転するヘッド部と、
単位時間当たりの回転角が前記ヘッド部の半分の回転角となるように前記回転軸まわりに回転しながら前記ヘッド部から取り出された前記複数の反射光を前記撮像部に向けて導光して前記撮像部で撮像される像の向きを一定に維持する像回転補正部と、
前記像回転補正部から出射される前記反射光毎に、前記像回転補正部から前記撮像部までの前記反射光の光路長を前記ヘッド部における前記複数の反射光の光路長差に応じて調整しながら前記撮像部に導光する光路長差補正部と
を備えることを特徴とする撮像装置。
An image pickup device that uses an image pickup unit to image the inner peripheral surface of a hole formed in the hole formation direction from the surface of the object to be imaged.
A light source that emits illumination light for illuminating the inner peripheral surface,
The plurality of folding mirrors have a plurality of folding mirrors, and the plurality of folding mirrors guide the illumination light to a region different from each other in the hole forming direction of the inner peripheral surface, and the reflected light reflected in the region is transmitted from the hole. A head portion that rotates around a rotation axis parallel to the hole forming direction while being inserted into the hole so as to be taken out.
While rotating around the rotation axis so that the rotation angle per unit time is half the rotation angle of the head portion, the plurality of reflected lights taken out from the head portion are guided toward the image pickup unit. An image rotation correction unit that keeps the orientation of the image captured by the image pickup unit constant, and an image rotation correction unit.
For each reflected light emitted from the image rotation correction unit, the optical path length of the reflected light from the image rotation correction unit to the image pickup unit is adjusted according to the optical path length difference of the plurality of reflected light in the head unit. However, the image pickup apparatus is provided with an optical path length difference correction section that guides the image pickup section.
請求項1に記載の撮像装置であって、
前記撮像部は、撮像素子と、前記光路長差補正部から出射された前記複数の反射光を前記撮像素子に入射させて前記内周面を前記撮像素子上に結像する光学系とを有し、
前記光源から発光された前記照明光は、前記光学系、前記光路長差補正部、前記像回転補正部および前記ヘッド部を介して前記内周面に照射される撮像装置。
The imaging device according to claim 1.
The image pickup unit includes an image pickup element and an optical system in which the plurality of reflected lights emitted from the optical path length difference correction section are incident on the image pickup element to form an image of the inner peripheral surface on the image pickup element. death,
An image pickup device in which the illumination light emitted from the light source is applied to the inner peripheral surface via the optical system, the optical path length difference correction unit, the image rotation correction unit, and the head unit.
請求項1または2に記載の撮像装置であって、
前記複数の折返ミラーは前記孔形成方向と直交する平面内において互いに異なる位置に配置される撮像装置。
The image pickup apparatus according to claim 1 or 2.
The plurality of folded mirrors are image pickup devices arranged at different positions in a plane orthogonal to the hole forming direction.
請求項3に記載の撮像装置であって、
前記複数の折返ミラーのうち前記像回転補正部から最も離れた折返ミラーを先端折返ミラーとするとともに、前記先端折返ミラーにより取り出された前記反射光を先端反射光とするとき、
前記光路長差補正部は、前記先端反射光の光路から外れて配置される光路変更ミラーを有し、前記像回転補正部から出射してくる前記複数の反射光のうち前記先端反射光以外の前記反射光を前記光路変更ミラーで反射して光路を変更して前記撮像部に導光する一方、前記先端反射光をそのまま前記撮像部に導光して光路長を調整する撮像装置。
The image pickup apparatus according to claim 3.
When the folding mirror farthest from the image rotation correction unit among the plurality of folding mirrors is used as the tip folding mirror, and the reflected light taken out by the tip folding mirror is used as the tip reflected light.
The optical path length difference correction unit has an optical path change mirror arranged outside the optical path of the tip reflected light, and among the plurality of reflected lights emitted from the image rotation correction unit, other than the tip reflected light. An image pickup device that reflects the reflected light by the optical path change mirror to change the optical path and guides the light path to the image pickup unit, while guiding the tip reflected light to the image pickup unit as it is to adjust the optical path length.
請求項4に記載の撮像装置であって、
前記複数の折返ミラーのうち前記先端折返ミラー以外の折返ミラーは前記先端折返ミラーの面法線に対して傾斜した面法線を有し、前記反射光を前記光路変更ミラーに導光する撮像装置。
The imaging device according to claim 4.
Among the plurality of folding mirrors, the folding mirrors other than the tip folding mirror have a surface normal inclined with respect to the surface normal of the tip folding mirror, and an image pickup device that guides the reflected light to the optical path changing mirror. ..
JP2018103494A 2018-05-30 2018-05-30 Imaging device Active JP6966974B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018103494A JP6966974B2 (en) 2018-05-30 2018-05-30 Imaging device
PCT/JP2019/016081 WO2019230215A1 (en) 2018-05-30 2019-04-15 Image capture device
TW108114005A TWI686660B (en) 2018-05-30 2019-04-22 Imaging apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018103494A JP6966974B2 (en) 2018-05-30 2018-05-30 Imaging device

Publications (2)

Publication Number Publication Date
JP2019207188A JP2019207188A (en) 2019-12-05
JP6966974B2 true JP6966974B2 (en) 2021-11-17

Family

ID=68698027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018103494A Active JP6966974B2 (en) 2018-05-30 2018-05-30 Imaging device

Country Status (3)

Country Link
JP (1) JP6966974B2 (en)
TW (1) TWI686660B (en)
WO (1) WO2019230215A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114199885A (en) * 2021-12-09 2022-03-18 合肥御微半导体技术有限公司 Wafer detection device and method thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000097846A (en) * 1998-09-21 2000-04-07 Olympus Optical Co Ltd Optical scanning probe device
US6445944B1 (en) * 1999-02-01 2002-09-03 Scimed Life Systems Medical scanning system and related method of scanning
KR100728694B1 (en) * 2005-07-07 2007-06-14 유재민 Apparatus for inspection the inside wall of hole
WO2007132776A1 (en) * 2006-05-16 2007-11-22 Kirin Techno-System Company, Limited Surface inspection appaatus and surface inspection head device
JP4864662B2 (en) * 2006-11-24 2012-02-01 富士フイルム株式会社 Optical probe and optical therapy diagnostic system using the same
JP2009139807A (en) * 2007-12-10 2009-06-25 Sony Corp Imaging device
JP5595180B2 (en) * 2010-08-24 2014-09-24 ユキ技研株式会社 Imaging device
EP2998776A1 (en) * 2014-09-22 2016-03-23 Nanolive SA Tomographic phase microscope
JP6478560B2 (en) * 2014-10-29 2019-03-06 キヤノン株式会社 Optical scanning device and image forming apparatus using the same

Also Published As

Publication number Publication date
WO2019230215A1 (en) 2019-12-05
TWI686660B (en) 2020-03-01
JP2019207188A (en) 2019-12-05
TW202004320A (en) 2020-01-16

Similar Documents

Publication Publication Date Title
TWI398717B (en) Automatic focus control unit, electronic device and automatic focus control method
JP2009529370A (en) Method for illuminating and imaging the inner diameter of a stent
JP6895768B2 (en) Defect inspection equipment and defect inspection method
JP2008203093A (en) Illumination device and image measurement apparatus
JP2008145160A (en) Optical displacement sensor and its adjusting method
JP5559644B2 (en) Inspection device
JP5311195B2 (en) Microscope equipment
JP5728395B2 (en) Cylinder inner peripheral surface inspection optical system and cylinder inner peripheral surface inspection device
JP6387381B2 (en) Autofocus system, method and image inspection apparatus
US20160054552A1 (en) Confocal laser scanning microscope
JP6966974B2 (en) Imaging device
JP6643328B2 (en) Optical system for producing lithographic structures
TWI632971B (en) Laser processing apparatus and laser processing method
CN109506570B (en) Displacement sensor
CN107797270B (en) Optical device, processing device, and article manufacturing method
JP6839916B2 (en) Internal inspection system and its optical system
TWI597474B (en) Measuring device
US8690329B2 (en) Fundus capturing apparatus
JP2008073718A (en) Laser repair apparatus
JP2014121727A (en) Laser machining apparatus
JP5646922B2 (en) Inspection device
JPH05118999A (en) X-ray analyzing device
JP2021085744A (en) Inner face image inspection device
JP3328573B2 (en) Position detecting apparatus and method using oblique optical axis optical system
JPWO2020095843A1 (en) Coaxial lighting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211019

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211022

R150 Certificate of patent or registration of utility model

Ref document number: 6966974

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150