JP6963219B2 - Support glass substrate and laminate using this - Google Patents

Support glass substrate and laminate using this Download PDF

Info

Publication number
JP6963219B2
JP6963219B2 JP2020084508A JP2020084508A JP6963219B2 JP 6963219 B2 JP6963219 B2 JP 6963219B2 JP 2020084508 A JP2020084508 A JP 2020084508A JP 2020084508 A JP2020084508 A JP 2020084508A JP 6963219 B2 JP6963219 B2 JP 6963219B2
Authority
JP
Japan
Prior art keywords
glass substrate
less
substrate
processed substrate
supporting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020084508A
Other languages
Japanese (ja)
Other versions
JP2020128337A (en
Inventor
良太 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Publication of JP2020128337A publication Critical patent/JP2020128337A/en
Application granted granted Critical
Publication of JP6963219B2 publication Critical patent/JP6963219B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B17/00Forming molten glass by flowing-out, pushing-out, extruding or drawing downwardly or laterally from forming slits or by overflowing over lips
    • C03B17/06Forming glass sheets
    • C03B17/064Forming glass sheets by the overflow downdraw fusion process; Isopipes therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • C03C3/093Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium containing zinc or zirconium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/11Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/12105Bump connectors formed on an encapsulation of the semiconductor or solid-state body, e.g. bumps on chip-scale packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L24/19Manufacturing methods of high density interconnect preforms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/96Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being encapsulated in a common layer, e.g. neo-wafer or pseudo-wafer, said common layer being separable into individual assemblies after connecting

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Glass Compositions (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Description

本発明は、支持ガラス基板及びこれを用いた積層体に関し、具体的には、半導体パッケージの製造工程で加工基板の支持に用いる支持ガラス基板及びこれを用いた積層体に関する。 The present invention relates to a support glass substrate and a laminate using the same, and more specifically, to a support glass substrate used to support a processed substrate in a semiconductor package manufacturing process and a laminate using the same.

携帯電話、ノート型パーソナルコンピュータ、PDA(Personal Data Assistance)等の携帯型電子機器には、小型化及び軽量化が要求されている。これに伴い、これらの電子機器に用いられる半導体チップの実装スペースも厳しく制限されており、半導体チップの高密度な実装が課題になっている。そこで、近年では、三次元実装技術、すなわち半導体チップ同士を積層し、各半導体チップ間を配線接続することにより、半導体パッケージの高密度実装を図っている。 Portable electronic devices such as mobile phones, notebook personal computers, and PDAs (Personal Data Assistance) are required to be smaller and lighter. Along with this, the mounting space for semiconductor chips used in these electronic devices is also severely limited, and high-density mounting of semiconductor chips has become an issue. Therefore, in recent years, a three-dimensional mounting technology, that is, a high-density mounting of a semiconductor package has been achieved by laminating semiconductor chips and connecting each semiconductor chip with wiring.

また、従来のウェハレベルパッケージ(WLP)は、バンプをウェハの状態で形成した後、ダイシングで個片化することにより作製されている。しかし、従来のWLPは、ピン数を増加させ難いことに加えて、半導体チップの裏面が露出した状態で実装されるため、半導体チップの欠け等が発生し易いという問題があった。 Further, the conventional wafer level package (WLP) is manufactured by forming bumps in a wafer state and then individualizing them by dicing. However, the conventional WLP has a problem that it is difficult to increase the number of pins and the semiconductor chip is easily chipped because the back surface of the semiconductor chip is exposed.

そこで、新たなWLPとして、fan out型のWLPが提案されている。fan out型のWLPは、ピン数を増加させることが可能であり、また半導体チップの端部を保護することにより、半導体チップの欠け等を防止することができる。 Therefore, as a new WLP, a fan-out type WLP has been proposed. The fan-out type WLP can increase the number of pins, and by protecting the end portion of the semiconductor chip, it is possible to prevent the semiconductor chip from being chipped or the like.

fan out型のWLPでは、複数の半導体チップを樹脂の封止材でモールドして、加工基板を形成した後に、加工基板の一方の表面に配線する工程、半田バンプを形成する工程等を有する。 The fan-out type WLP includes a step of molding a plurality of semiconductor chips with a resin encapsulant to form a processed substrate, and then wiring to one surface of the processed substrate, a step of forming solder bumps, and the like.

これらの工程は、約200℃の熱処理を伴うため、封止材が変形して、加工基板が寸法変化する虞がある。加工基板が寸法変化すると、加工基板の一方の表面に対して、高密度に配線することが困難になり、また半田バンプを正確に形成することも困難になる。 Since these steps involve a heat treatment at about 200 ° C., the sealing material may be deformed and the size of the processed substrate may change. When the dimensions of the processed substrate change, it becomes difficult to wire the processed substrate at a high density to one surface of the processed substrate, and it becomes difficult to accurately form solder bumps.

加工基板の寸法変化を抑制するために、加工基板を支持するための支持基板を用いることが有効である。しかし、支持基板を用いた場合であっても、加工基板の寸法変化が生じる場合があった。 In order to suppress the dimensional change of the processed substrate, it is effective to use a support substrate for supporting the processed substrate. However, even when a support substrate is used, the dimensional change of the processed substrate may occur.

本発明は、上記事情に鑑みなされたものであり、その技術的課題は、加工基板の寸法変化を生じさせ難い支持基板及びこれを用いた積層体を創案することにより、半導体パッケージの高密度実装に寄与することである。 The present invention has been made in view of the above circumstances, and a technical problem thereof is high-density mounting of a semiconductor package by creating a support substrate which is unlikely to cause a dimensional change of a processed substrate and a laminate using the support substrate. Is to contribute to.

本発明者は、種々の実験を繰り返した結果、支持基板としてガラス基板を採択すると共に、このガラス基板の熱膨張係数を厳密に規制することにより、上記技術的課題を解決し得ることを見出し、本発明として、提案するものである。すなわち、本発明の支持ガラス基板は、20〜200℃の温度範囲における平均線熱膨張係数が81×10−7/℃超であり、且つ110×10−7/℃以下であることを特徴とする。ここで、「20〜200℃の温度範囲における平均線熱膨張係数」は、ディラトメーターで測定可能である。 As a result of repeating various experiments, the present inventor has found that the above technical problems can be solved by adopting a glass substrate as a support substrate and strictly regulating the coefficient of thermal expansion of this glass substrate. It is proposed as the present invention. That is, the supporting glass substrate of the present invention is characterized in that the average linear thermal expansion coefficient in the temperature range of 20 to 200 ° C. is more than 81 × 10-7 / ° C. and 110 × 10-7 / ° C. or less. do. Here, the "average coefficient of linear thermal expansion in the temperature range of 20 to 200 ° C." can be measured with a dilatometer.

ガラス基板は、表面を平滑化し易く、且つ剛性を有する。よって、支持基板としてガラス基板を用いると、加工基板を強固、且つ正確に支持することが可能になる。またガラス基板は、紫外光、赤外光等の光を透過し易い。よって、支持基板としてガラス基板を用いると、紫外線硬化型接着剤等で、接着層等を設けることにより加工基板と支持ガラス基板を容易に固定することができる。また、赤外線を吸収する剥離層等を設けることにより加工基板と支持ガラス基板を容易に分離することもできる。別の方式として、紫外線硬化型テープ等で、接着層等を設けることにより加工基板と支持ガラス基板を容易に分離することができる。 The glass substrate has a surface that is easy to smooth and has rigidity. Therefore, when a glass substrate is used as the support substrate, the processed substrate can be firmly and accurately supported. Further, the glass substrate easily transmits light such as ultraviolet light and infrared light. Therefore, when a glass substrate is used as the support substrate, the processed substrate and the support glass substrate can be easily fixed by providing an adhesive layer or the like with an ultraviolet curable adhesive or the like. Further, the processed substrate and the supporting glass substrate can be easily separated by providing a release layer or the like that absorbs infrared rays. As another method, the processed substrate and the supporting glass substrate can be easily separated by providing an adhesive layer or the like with an ultraviolet curable tape or the like.

また、本発明の支持ガラス基板では、20〜200℃の温度範囲における平均線熱膨張係数が81×10−7/℃超であり、且つ110×10−7/℃以下に規制されている。このようにすれば、加工基板内で半導体チップの割合が少なく、封止材の割合が多い場合に、加工基板と支持ガラス基板の熱膨張係数が整合し易くなる。そして、両者の熱膨張係数が整合すると、加工処理時に加工基板の寸法変化(特に、反り変形)を抑制し易くなる。結果として、加工基板の一方の表面に対して、高密度に配線することが可能になり、また半田バンプを正確に形成することも可能になる。 Further, in the supporting glass substrate of the present invention, the average coefficient of linear thermal expansion in the temperature range of 20 to 200 ° C. is more than 81 × 10-7 / ° C. and is regulated to 110 × 10-7 / ° C. or less. By doing so, when the proportion of the semiconductor chip in the processed substrate is small and the proportion of the encapsulant is large, the coefficient of thermal expansion of the processed substrate and the supporting glass substrate can be easily matched. When the thermal expansion coefficients of both are matched, it becomes easy to suppress the dimensional change (particularly, warp deformation) of the processed substrate during the processing. As a result, wiring can be performed at a high density on one surface of the processed substrate, and solder bumps can be accurately formed.

第二に、本発明の支持ガラス基板は、30〜380℃の温度範囲における平均線熱膨張係数が85×10−7/℃超であり、且つ115×10−7/℃以下であることを特徴とする。ここで、「30〜380℃の温度範囲における平均線熱膨張係数」は、ディラトメーターで測定可能である。 Secondly, the supporting glass substrate of the present invention has an average coefficient of linear thermal expansion of more than 85 × 10-7 / ° C. and 115 × 10-7 / ° C. or less in the temperature range of 30 to 380 ° C. It is a feature. Here, the "average coefficient of linear thermal expansion in the temperature range of 30 to 380 ° C." can be measured with a dilatometer.

第三に、本発明の支持ガラス基板は、半導体パッケージの製造工程で加工基板の支持に用いることが好ましい。 Thirdly, the supporting glass substrate of the present invention is preferably used for supporting a processed substrate in the manufacturing process of a semiconductor package.

第四に、本発明の支持ガラス基板は、オーバーフローダウンドロー法で成形されてなることが好ましい。 Fourth, the supporting glass substrate of the present invention is preferably formed by an overflow down draw method.

第五に、本発明の支持ガラス基板は、ヤング率が65GPa以上であることが好ましい。ここで、「ヤング率」は、曲げ共振法により測定した値を指す。なお、1GPaは、約101.9Kgf/mmに相当する。 Fifth, the supporting glass substrate of the present invention preferably has a Young's modulus of 65 GPa or more. Here, "Young's modulus" refers to a value measured by the bending resonance method. In addition, 1 GPa corresponds to about 101.9 Kgf / mm 2.

第六に、本発明の支持ガラス基板は、ガラス組成として、質量%で、SiO 50〜80%、Al 1〜20%、B 0〜20%、MgO 0〜10%、CaO 0〜10%、SrO 0〜7%、BaO 0〜7%、ZnO 0〜7%、NaO 0〜25%、KO 0〜25%を含有することが好ましい。 Sixth, the supporting glass substrate of the present invention has a glass composition of SiO 2 50 to 80%, Al 2 O 3 1 to 20%, B 2 O 30 to 20%, MgO 0 to 10% in terms of glass composition. , CaO 0~10%, SrO 0~7% , BaO 0~7%, ZnO 0~7%, Na 2 O 0~25%, preferably contains K 2 O 0~25%.

第七に、本発明の支持ガラス基板は、ガラス組成として、質量%で、SiO 55〜70%、Al 3〜18%、B 0〜8%、MgO 0〜5%、CaO 0〜10%、SrO 0〜5%、BaO 0〜5%、ZnO 0〜5%、NaO 2〜23%、KO 0〜20%を含有することが好ましい。 Seventh, the supporting glass substrate of the present invention has a glass composition of SiO 2 55 to 70%, Al 2 O 3 3 to 18%, B 2 O 30 to 8%, MgO 0 to 5% in terms of glass composition. , CaO 0~10%, SrO 0~5% , BaO 0~5%, 0~5% ZnO, Na 2 O 2~23%, preferably contains K 2 O 0~20%.

第八に、本発明の支持ガラス基板は、板厚が2.0mm未満であり、板厚偏差が30μm以下であり、且つ反り量が60μm以下であることが好ましい。ここで、「反り量」は、支持ガラス基板全体における最高位点と最小二乗焦点面との間の最大距離の絶対値と、最低位点と最小二乗焦点面との絶対値との合計を指し、例えばコベルコ科研社製のBow/Warp測定装置 SBW−331ML/dにより測定可能である。 Eighth, the supporting glass substrate of the present invention preferably has a plate thickness of less than 2.0 mm, a plate thickness deviation of 30 μm or less, and a warp amount of 60 μm or less. Here, the "warp amount" refers to the sum of the absolute value of the maximum distance between the highest point and the least squares focal plane in the entire supporting glass substrate and the absolute value of the lowest point and the least squares focal plane. For example, it can be measured by the Bow / Warp measuring device SBW-331ML / d manufactured by Kobelco Research Institute.

第九に、本発明の積層体は、少なくとも加工基板と、加工基板を支持するための支持ガラス基板と、を備える積層体であって、支持ガラス基板が上記の支持ガラス基板であることを特徴とする。 Ninth, the laminate of the present invention is a laminate including at least a processed substrate and a supporting glass substrate for supporting the processed substrate, and the supporting glass substrate is the above-mentioned supporting glass substrate. And.

第十に、本発明の積層体は、加工基板が、少なくとも封止材でモールドされた半導体チップを備えることが好ましい。 Tenth, the laminate of the present invention preferably includes a semiconductor chip in which the processed substrate is molded with at least a sealing material.

第十一に、本発明の半導体パッケージの製造方法は、少なくとも加工基板と加工基板を支持するための支持ガラス基板とを備える積層体を用意する工程と、積層体を搬送する工程と、加工基板に対して、加工処理を行う工程と、を有すると共に、支持ガラス基板が上記の支持ガラス基板であることを特徴とする。なお、「積層体を搬送する工程」と「加工基板に対して、加工処理を行う工程」とは、別途に行う必要はなく、同時であってもよい。 Eleventh, the method for manufacturing a semiconductor package of the present invention includes a step of preparing a laminate including at least a processed substrate and a supporting glass substrate for supporting the processed substrate, a step of transporting the laminate, and a processed substrate. On the other hand, it has a step of performing a processing process, and the support glass substrate is the above-mentioned support glass substrate. It should be noted that the "step of transporting the laminated body" and the "step of performing the processing process on the processed substrate" do not have to be performed separately and may be performed at the same time.

第十二に、本発明の半導体パッケージの製造方法は、加工処理が、加工基板の一方の表面に配線する工程を含むことが好ましい。 Twelve, it is preferable that the method for manufacturing a semiconductor package of the present invention includes a step of wiring the processing process on one surface of the processed substrate.

第十三に、本発明の半導体パッケージの製造方法は、加工処理が、加工基板の一方の表面に半田バンプを形成する工程を含むことが好ましい。 Thirteenth, it is preferable that the method for manufacturing a semiconductor package of the present invention includes a step in which the processing process forms solder bumps on one surface of the processed substrate.

第十四に、本発明の半導体パッケージの製造方法は、上記の半導体パッケージの製造方法により作製されたことを特徴とする。 Fourteenth, the method for manufacturing a semiconductor package of the present invention is characterized in that it is manufactured by the above-mentioned method for manufacturing a semiconductor package.

第十五に、本発明の電子機器は、半導体パッケージを備える電子機器であって、半導体パッケージが、上記の半導体パッケージであることを特徴とする。 Fifteenth, the electronic device of the present invention is an electronic device including a semiconductor package, and the semiconductor package is the above-mentioned semiconductor package.

本発明の積層体の一例を示す概念斜視図である。It is a conceptual perspective view which shows an example of the laminated body of this invention. fan out型のWLPの製造工程を示す概念断面図である。It is a conceptual cross-sectional view which shows the manufacturing process of a fan-out type WLP.

本発明の支持ガラス基板において、20〜200℃の温度範囲における平均線熱膨張係数は81×10−7/℃超であり、且つ110×10−7/℃以下であり、好ましくは82×10−7/℃以上であり、且つ95×10−7/℃以下、特に83×10−7/℃以上であり、且つ91×10−7/℃以下である。20〜200℃の温度範囲における平均線熱膨張係数が上記範囲外になると、加工基板と支持ガラス基板の熱膨張係数が整合し難くなる。そして、両者の熱膨張係数が不整合になると、加工処理時に加工基板の寸法変化(特に、反り変形)が生じ易くなる。 In the supporting glass substrate of the present invention, the average coefficient of linear thermal expansion in the temperature range of 20 to 200 ° C. is more than 81 × 10-7 / ° C. and 110 × 10-7 / ° C. or less, preferably 82 × 10 -7 / ° C. or higher and 95 × 10 -7 / ° C. or lower, particularly 83 × 10 -7 / ° C. or higher and 91 × 10 -7 / ° C. or lower. If the average coefficient of linear thermal expansion in the temperature range of 20 to 200 ° C. is out of the above range, it becomes difficult for the coefficient of thermal expansion of the processed substrate and the supporting glass substrate to match. If the coefficients of thermal expansion of both are inconsistent, dimensional changes (particularly, warpage deformation) of the processed substrate are likely to occur during the processing.

30〜380℃の温度範囲における平均線熱膨張係数は85×10−7/℃超であり、且つ115×10−7/℃以下であり、好ましくは86×10−7/℃以上であり、且つ100×10−7/℃以下、特に87×10−7/℃以上であり、且つ95×10−7/℃以下である。30〜380℃の温度範囲における平均線熱膨張係数が上記範囲外になると、加工基板と支持ガラス基板の熱膨張係数が整合し難くなる。そして、両者の熱膨張係数が不整合になると、加工処理時に加工基板の寸法変化(特に、反り変形)が生じ易くなる。 The average coefficient of linear thermal expansion in the temperature range of 30 to 380 ° C. is more than 85 × 10-7 / ° C. and 115 × 10-7 / ° C. or less, preferably 86 × 10-7 / ° C. or more. And 100 × 10 -7 / ° C or lower, particularly 87 × 10 -7 / ° C or higher, and 95 × 10 -7 / ° C or lower. If the average coefficient of linear thermal expansion in the temperature range of 30 to 380 ° C. is out of the above range, it becomes difficult for the coefficient of thermal expansion of the processed substrate and the supporting glass substrate to match. If the coefficients of thermal expansion of both are inconsistent, dimensional changes (particularly, warpage deformation) of the processed substrate are likely to occur during the processing.

本発明の支持ガラス基板は、ガラス組成として、質量%で、SiO 50〜80%、Al 1〜20%、B 0〜20%、MgO 0〜10%、CaO 0〜10%、SrO 0〜7%、BaO 0〜7%、ZnO 0〜7%、NaO 0〜25%、KO 0〜25%を含有することが好ましい。上記のように各成分の含有量を限定した理由を以下に示す。なお、各成分の含有量の説明において、%表示は、特に断りがある場合を除き、質量%を表す。 The supporting glass substrate of the present invention has a glass composition of SiO 2 50 to 80%, Al 2 O 3 to 20%, B 2 O 30 to 20%, MgO 0 to 10%, CaO 0 to 0% in terms of glass composition. It preferably contains 10%, SrO 0 to 7%, BaO 0 to 7%, ZnO 0 to 7%, Na 2 O 0 to 25%, and K 2 O 0 to 25%. The reasons for limiting the content of each component as described above are shown below. In addition, in the description of the content of each component,% notation represents mass% unless otherwise specified.

SiOは、ガラスの骨格を形成する主成分である。SiOの含有量は、好ましくは50〜80%、55〜75%、58〜70%、特に60〜68%である。SiOの含有量が少な過ぎると、ヤング率、耐酸性が低下し易くなる。一方、SiOの含有量が多過ぎると、高温粘度が高くなり、溶融性が低下し易くなることに加えて、クリストバライト等の失透結晶が析出し易くなって、液相温度が上昇し易くなる。 SiO 2 is a main component forming the skeleton of glass. The content of SiO 2 is preferably 50 to 80%, 55 to 75%, 58 to 70%, and particularly 60 to 68%. If the content of SiO 2 is too small, Young's modulus and acid resistance tend to decrease. On the other hand, if the content of SiO 2 is too large, the high-temperature viscosity tends to increase and the meltability tends to decrease, and devitrified crystals such as cristobalite tend to precipitate, so that the liquidus temperature tends to rise. Become.

Alは、ヤング率を高める成分であると共に、分相、失透を抑制する成分である。Alの含有量は、好ましくは1〜20%、3〜18%、4〜16%、5〜13%、6〜12%、特に7〜10%である。Alの含有量が少な過ぎると、ヤング率が低下し易くなり、またガラスが分相、失透し易くなる。一方、Alの含有量が多過ぎると、高温粘度が高くなり、溶融性、成形性が低下し易くなる。 Al 2 O 3 is a component that enhances Young's modulus and suppresses phase separation and devitrification. The content of Al 2 O 3 is preferably 1 to 20%, 3 to 18%, 4 to 16%, 5 to 13%, 6 to 12%, and particularly 7 to 10%. If the content of Al 2 O 3 is too small, the Young's modulus tends to decrease, and the glass tends to undergo phase separation and devitrification. On the other hand, if the content of Al 2 O 3 is too large, the high-temperature viscosity becomes high, and the meltability and moldability tend to decrease.

は、溶融性、耐失透性を高める成分であり、また傷の付き易さを改善して、強度を高める成分である。Bの含有量は、好ましくは0〜20%、1〜12%、2〜10%、特に3〜8%である。Bの含有量が少な過ぎると、溶融性、耐失透性が低下し易くなり、またフッ酸系の薬液に対する耐性が低下し易くなる。一方、Bの含有量が多過ぎると、ヤング率、耐酸性が低下し易くなる。 B 2 O 3 is a component that enhances meltability and devitrification resistance, and is a component that improves the susceptibility to scratches and enhances strength. The content of B 2 O 3 is preferably 0 to 20%, 1 to 12%, 2 to 10%, and particularly 3 to 8%. If the content of B 2 O 3 is too small, the meltability and devitrification resistance tend to decrease, and the resistance to hydrofluoric acid-based chemicals tends to decrease. On the other hand, if the content of B 2 O 3 is too large, Young's modulus and acid resistance tend to decrease.

Al−Bは、ヤング率を高める観点から、好ましくは0%超、1%以上、3%以上、5%以上、7%以上、特に9%以上が好ましい。なお、「Al−B」は、Alの含有量からBの含有量を減じた値を指す。 From the viewpoint of increasing Young's modulus, Al 2 O 3- B 2 O 3 is preferably more than 0%, 1% or more, 3% or more, 5% or more, 7% or more, and particularly preferably 9% or more. In addition, "Al 2 O 3- B 2 O 3 " refers to a value obtained by subtracting the content of B 2 O 3 from the content of Al 2 O 3.

MgOは、高温粘性を下げて、溶融性を高める成分であり、アルカリ土類金属酸化物の中では、ヤング率を顕著に高める成分である。MgOの含有量は、好ましくは0〜10%、0〜8%、0〜5%、0〜3%、0〜2%、特に0〜1%である。MgOの含有量が多過ぎると、耐失透性が低下し易くなる。 MgO is a component that lowers high-temperature viscosity and enhances meltability, and is a component that remarkably increases Young's modulus among alkaline earth metal oxides. The content of MgO is preferably 0 to 10%, 0 to 8%, 0 to 5%, 0 to 3%, 0 to 2%, and particularly 0 to 1%. If the content of MgO is too large, the devitrification resistance tends to decrease.

CaOは、高温粘性を下げて、溶融性を顕著に高める成分である。またアルカリ土類金属酸化物の中では、導入原料が比較的安価であるため、原料コストを低廉化する成分である。CaOの含有量は、好ましくは0〜10%、0.5〜8%、1〜6%、特に2〜5%である。CaOの含有量が多過ぎると、ガラスが失透し易くなる。なお、CaOの含有量が少な過ぎると、上記効果を享受し難くなる。 CaO is a component that lowers high-temperature viscosity and remarkably enhances meltability. Further, among alkaline earth metal oxides, since the introduced raw material is relatively inexpensive, it is a component that reduces the raw material cost. The CaO content is preferably 0-10%, 0.5-8%, 1-6%, particularly 2-5%. If the CaO content is too high, the glass tends to be devitrified. If the CaO content is too small, it becomes difficult to enjoy the above effects.

SrOは、分相を抑制する成分であり、また耐失透性を高める成分である。SrOの含有量は、好ましくは0〜7%、0〜5%、0〜3%、特に0〜1%未満である。SrOの含有量が多過ぎると、ガラスが失透し易くなる。 SrO is a component that suppresses phase separation and is a component that enhances devitrification resistance. The content of SrO is preferably 0 to 7%, 0 to 5%, 0 to 3%, particularly less than 0 to 1%. If the content of SrO is too high, the glass tends to be devitrified.

BaOは、耐失透性を高める成分である。BaOの含有量は、好ましくは0〜7%、0〜5%、0〜3%、0〜1%未満である。BaOの含有量が多過ぎると、ガラスが失透し易くなる。 BaO is a component that enhances devitrification resistance. The content of BaO is preferably 0 to 7%, 0 to 5%, 0 to 3%, and less than 0 to 1%. If the BaO content is too high, the glass tends to be devitrified.

質量比CaO/(MgO+CaO+SrO+BaO)は、好ましくは0.5以上、0.6以上、0.7以上、0.8以上、特に0.9以上が好ましい。質量比CaO/(MgO+CaO+SrO+BaO)が小さ過ぎると、原料コストが高騰し易くなる。なお、「CaO/(MgO+CaO+SrO+BaO)」は、CaOの含有量をMgO、CaO、SrO及びBaOの合量で除した値を指す。 The mass ratio CaO / (MgO + CaO + SrO + BaO) is preferably 0.5 or more, 0.6 or more, 0.7 or more, 0.8 or more, and particularly preferably 0.9 or more. If the mass ratio CaO / (MgO + CaO + SrO + BaO) is too small, the raw material cost tends to rise. In addition, "CaO / (MgO + CaO + SrO + BaO)" refers to a value obtained by dividing the content of CaO by the total amount of MgO, CaO, SrO and BaO.

ZnOは、高温粘性を下げて、溶融性を顕著に高める成分である。ZnOの含有量は、好ましくは0〜7%、0.1〜5%、特に0.5〜3%である。ZnOの含有量が少な過ぎると、上記効果を享受し難くなる。なお、ZnOの含有量が多過ぎると、ガラスが失透し易くなる。 ZnO is a component that lowers high-temperature viscosity and remarkably enhances meltability. The ZnO content is preferably 0 to 7%, 0.1 to 5%, and particularly 0.5 to 3%. If the ZnO content is too small, it becomes difficult to enjoy the above effects. If the ZnO content is too high, the glass tends to be devitrified.

NaOは、熱膨張係数を適正化するために重要な成分であり、また高温粘性を下げて、溶融性を顕著に高めると共に、ガラス原料の初期の溶融に寄与する成分である。NaOの含有量は、好ましくは0〜25%、5〜25%、8〜24%、11〜23%、13〜21%、特に15超〜19%である。NaOの含有量が少な過ぎると、溶融性が低下し易くなることに加えて、熱膨張係数が不当に低くなる虞がある。一方、NaOの含有量が多過ぎると、熱膨張係数が不当に高くなる虞がある。 Na 2 O is an important component for optimizing the coefficient of thermal expansion, and is a component that lowers the high-temperature viscosity, significantly enhances the meltability, and contributes to the initial melting of the glass raw material. The content of Na 2 O is preferably 0 to 25%, 5 to 25%, 8 to 24%, 11 to 23%, 13 to 21%, and particularly more than 15 to 19%. If the content of Na 2 O is too small, the meltability tends to decrease and the coefficient of thermal expansion may become unreasonably low. On the other hand, if the content of Na 2 O is too large, the coefficient of thermal expansion may become unreasonably high.

質量比Al/NaOは、熱膨張係数を適正化する観点から、好ましくは0.20〜1.3、0.25〜1.0、0.30〜0.85、0.35〜0.65、特に0.40〜0.55である。 The mass ratio Al 2 O 3 / Na 2 O is preferably 0.25 to 1.3, 0.25 to 1.0, 0.30 to 0.85, 0. from the viewpoint of optimizing the coefficient of thermal expansion. It is 35 to 0.65, especially 0.40 to 0.55.

Oは、熱膨張係数を調整するための成分であり、また高温粘性を下げて、溶融性を高めると共に、ガラス原料の初期の溶融に寄与する成分である。KOの含有量は、好ましくは0〜25%、0〜20%、0〜15%、0〜10%、0〜6%、特に0〜1%である。KOの含有量が多過ぎると、熱膨張係数が不当に高くなる虞がある。 K 2 O is a component for adjusting the coefficient of thermal expansion, and is a component that lowers the high-temperature viscosity, enhances the meltability, and contributes to the initial melting of the glass raw material. The K 2 O content is preferably 0% to 25%, the 0-20%, 0-15%, 0-10%, 6%, especially 0 to 1%. If the content of K 2 O is too large, the coefficient of thermal expansion may become unreasonably high.

NaO+KOの含有量は、好ましくは12〜35%、15〜25%、16〜23%、17〜22%、特に18〜21%である。このようにすれば、20〜200℃の温度範囲における平均線熱膨張係数を81超×10−7〜110×10−7/℃に規制し易くなる。なお、「NaO+KO」は、NaOとKOの合量である。 The content of Na 2 O + K 2 O is preferably 12 to 35%, 15 to 25%, 16 to 23%, 17 to 22%, and particularly 18 to 21%. In this way, the average coefficient of linear thermal expansion in the temperature range of 20 to 200 ° C. can be easily regulated to more than 81 × 10-7 to 110 × 10-7 / ° C. “Na 2 O + K 2 O” is the total amount of Na 2 O and K 2 O.

質量比NaO/(NaO+KO)は、溶融性の向上を重視する場合、好ましくは0.5超、0.6以上、0.7以上、0.8以上、0.9以上、特に0.95以上であり、化学的耐久性を重視する場合、好ましくは0.65以下、0.6以下、0.55以下、0.5未満、0.45以下、特に0.4以下である。なお、「NaO/(NaO+KO)」は、NaOの含有量をNaOとKOの合量で除した値である。 The mass ratio of Na 2 O / (Na 2 O + K 2 O) is preferably more than 0.5, 0.6 or more, 0.7 or more, 0.8 or more, 0.9 or more when the improvement of meltability is emphasized. , Especially 0.95 or more, and when chemical durability is emphasized, preferably 0.65 or less, 0.6 or less, 0.55 or less, less than 0.5, 0.45 or less, especially 0.4 or less. Is. In addition, "Na 2 O / (Na 2 O + K 2 O)" is a value obtained by dividing the content of Na 2 O by the total amount of Na 2 O and K 2 O.

上記成分以外にも、任意成分として、他の成分を導入してもよい。なお、上記成分以外の他の成分の含有量は、本発明の効果を的確に享受する観点から、合量で10%以下、特に5%以下が好ましい。 In addition to the above components, other components may be introduced as optional components. The content of the components other than the above components is preferably 10% or less, particularly 5% or less in total, from the viewpoint of accurately enjoying the effects of the present invention.

Feは、不純物成分、或いは清澄剤成分として導入し得る成分である。しかし、Feの含有量が多過ぎると、紫外線透過率が低下する虞がある。すなわち、Feの含有量が多過ぎると、接着層、剥離層を介して、加工基板と支持ガラス基板の接着と脱着を適正に行うことが困難になる。よって、Feの含有量は、好ましくは0.05%以下、0.03%以下、特に0.02%以下である。なお、本発明でいう「Fe」は、2価の酸化鉄と3価の酸化鉄を含み、2価の酸化鉄は、Feに換算して、取り扱うものとする。他の酸化物についても、同様にして、表記の酸化物を基準にして取り扱うものとする。 Fe 2 O 3 is a component that can be introduced as an impurity component or a clarifying agent component. However, if the content of Fe 2 O 3 is too large, the ultraviolet transmittance may decrease. That is, if the content of Fe 2 O 3 is too large, it becomes difficult to properly bond and detach the processed substrate and the supporting glass substrate via the adhesive layer and the release layer. Therefore, the content of Fe 2 O 3 is preferably 0.05% or less, 0.03% or less, and particularly 0.02% or less. The "Fe 2 O 3 " referred to in the present invention includes divalent iron oxide and trivalent iron oxide, and the divalent iron oxide is treated in terms of Fe 2 O 3. Other oxides shall be handled in the same manner based on the indicated oxides.

清澄剤として、As、Sbが有効に作用するが、環境的観点で言えば、これら成分を極力低減することが好ましい。Asの含有量は、好ましくは1%以下、0.5%以下、特に0.1%以下であり、実質的に含有させないことが望ましい。ここで、「実質的にAsを含有しない」とは、ガラス組成中のAsの含有量が0.05%未満の場合を指す。また、Sbの含有量は、好ましくは1%以下、0.5%以下、特に0.1%以下であり、実質的に含有させないことが望ましい。ここで、「実質的にSbを含有しない」とは、ガラス組成中のSbの含有量が0.05%未満の場合を指す。 As a clarifying agent, As 2 O 3 and Sb 2 O 3 act effectively, but from an environmental point of view, it is preferable to reduce these components as much as possible. The content of As 2 O 3 is preferably 1% or less, 0.5% or less, particularly 0.1% or less, and it is desirable that the content is substantially not contained. Here, "substantially free of As 2 O 3 " refers to a case where the content of As 2 O 3 in the glass composition is less than 0.05%. The content of Sb 2 O 3 is preferably 1% or less, 0.5% or less, particularly 0.1% or less, and it is desirable that the content is not substantially contained. Here, "substantially free of Sb 2 O 3 " refers to a case where the content of Sb 2 O 3 in the glass composition is less than 0.05%.

SnOは、高温域で良好な清澄作用を有する成分であり、また高温粘性を低下させる成分である。SnOの含有量は、好ましくは0〜1%、0.001〜1%、0.01〜0.9%、特に0.05〜0.7%である。SnOの含有量が多過ぎると、SnOの失透結晶が析出し易くなる。なお、SnOの含有量が少な過ぎると、上記効果を享受し難くなる。 SnO 2 is a component having a good clarification effect in a high temperature range and a component that lowers high temperature viscosity. The SnO 2 content is preferably 0 to 1%, 0.001 to 1%, 0.01 to 0.9%, and particularly 0.05 to 0.7%. If the content of SnO 2 is too large, devitrified crystals of SnO 2 are likely to precipitate. If the content of SnO 2 is too small, it becomes difficult to enjoy the above effect.

更に、ガラス特性が損なわれない限り、清澄剤として、F、Cl、SO、C、或いはAl、Si等の金属粉末を各々3%程度まで導入してもよい。また、CeO等も3%程度まで導入し得るが、紫外線透過率の低下に留意する必要がある。 Further, as long as the glass properties are not impaired , a metal powder such as F, Cl, SO 3 , C, or Al, Si may be introduced as a clarifying agent up to about 3% each. Further, CeO 2 and the like can be introduced up to about 3%, but it is necessary to pay attention to the decrease in the ultraviolet transmittance.

Clは、ガラスの溶融を促進する成分である。ガラス組成中にClを導入すれば、溶融温度の低温化、清澄作用の促進を図ることができ、結果として、溶融コストの低廉化、ガラス製造窯の長寿命化を達成し易くなる。しかし、Clの含有量が多過ぎると、ガラス製造窯周囲の金属部品を腐食させる虞がある。よって、Clの含有量は、好ましくは3%以下、1%以下、0.5%以下、特に0.1%以下である。 Cl is a component that promotes melting of glass. If Cl is introduced into the glass composition, the melting temperature can be lowered and the clarification action can be promoted, and as a result, the melting cost can be reduced and the life of the glass manufacturing kiln can be easily extended. However, if the Cl content is too high, there is a risk of corroding the metal parts around the glass manufacturing kiln. Therefore, the Cl content is preferably 3% or less, 1% or less, 0.5% or less, and particularly 0.1% or less.

は、失透結晶の析出を抑制し得る成分である。但し、Pを多量に導入すると、ガラスが分相し易くなる。よって、Pの含有量は、好ましくは0〜2.5%、0〜1.5%、0〜0.5%、特に0〜0.3%である。 P 2 O 5 is a component that can suppress the precipitation of devitrified crystals. However, if a large amount of P 2 O 5 is introduced, the glass becomes easy to separate. Therefore, the content of P 2 O 5 is preferably 0 to 2.5%, 0 to 1.5%, 0 to 0.5%, and particularly 0 to 0.3%.

TiOは、高温粘性を下げて、溶融性を高める成分であると共に、ソラリゼーションを抑制する成分である。しかし、TiOを多量に導入すると、ガラスが着色し、透過率が低下し易くなる。よって、TiOの含有量は、好ましくは0〜5%、0〜3%、0〜1%、特に0〜0.02%である。 TiO 2 is a component that lowers high-temperature viscosity and enhances meltability, and is also a component that suppresses solarization. However, when a large amount of TiO 2 is introduced, the glass is colored and the transmittance tends to decrease. Therefore, the content of TiO 2 is preferably 0 to 5%, 0 to 3%, 0 to 1%, and particularly 0 to 0.02%.

ZrOは、耐薬品性、ヤング率を改善する成分である。しかし、ZrOを多量に導入すると、ガラスが失透し易くなり、また導入原料が難熔解性であるため、未熔解の結晶性異物が製品基板に混入する虞がある。よって、ZrOの含有量は、好ましくは0〜5%、0〜3%、0〜1%、特に0〜0.5%である。 ZrO 2 is a component that improves chemical resistance and Young's modulus. However, when a large amount of ZrO 2 is introduced, the glass is easily devitrified, and since the introduced raw material is poorly meltable, unmelted crystalline foreign matter may be mixed into the product substrate. Therefore, the content of ZrO 2 is preferably 0 to 5%, 0 to 3%, 0 to 1%, and particularly 0 to 0.5%.

、Nb、Laには、歪点、ヤング率等を高める働きがある。しかし、これらの成分の含有量が各々5%、特に1%より多いと、原料コスト、製品コストが高騰する虞がある。 Y 2 O 3 , Nb 2 O 5 , and La 2 O 3 have a function of increasing the strain point, Young's modulus, and the like. However, if the content of each of these components is more than 5%, particularly 1%, there is a risk that the raw material cost and the product cost will rise.

本発明の支持ガラス基板は、以下の特性を有することが好ましい。 The supporting glass substrate of the present invention preferably has the following characteristics.

本発明の支持ガラス基板において、ヤング率は、好ましくは65GPa以上、67GPa以上、68GPa以上、69GPa以上、70GPa以上、71GPa以上、72GPa以上、特に73GPa以上である。ヤング率が低過ぎると、積層体の剛性を維持し難くなり、加工基板の変形、反り、破損が発生し易くなる。 In the supporting glass substrate of the present invention, Young's modulus is preferably 65 GPa or more, 67 GPa or more, 68 GPa or more, 69 GPa or more, 70 GPa or more, 71 GPa or more, 72 GPa or more, particularly 73 GPa or more. If the Young's modulus is too low, it becomes difficult to maintain the rigidity of the laminated body, and the processed substrate is likely to be deformed, warped, or damaged.

液相温度は、好ましくは1150℃未満、1120℃以下、1100℃以下、1080℃以下、1050℃以下、1010℃以下、980℃以下、960℃以下、950℃以下、特に940℃以下である。このようにすれば、ダウンドロー法、特にオーバーフローダウンドロー法でガラス基板を成形し易くなるため、板厚が小さいガラス基板を作製し易くなると共に、表面を研磨しなくても、板厚偏差を低減することができる。或いは、少量の研磨によって、全体板厚偏差を2.0μm未満、特に1.0μm未満まで低減することができる。結果として、ガラス基板の製造コストを低廉化することもできる。更に、ガラス基板の製造工程時に、失透結晶が発生して、ガラス基板の生産性が低下する事態を防止し易くなる。ここで、「液相温度」は、標準篩30メッシュ(500μm)を通過し、50メッシュ(300μm)に残るガラス粉末を白金ボートに入れた後、温度勾配炉中に24時間保持して、結晶が析出する温度を測定することにより算出可能である。 The liquidus temperature is preferably less than 1150 ° C., 1120 ° C. or lower, 1100 ° C. or lower, 1080 ° C. or lower, 1050 ° C. or lower, 1010 ° C. or lower, 980 ° C. or lower, 960 ° C. or lower, 950 ° C. or lower, particularly 940 ° C. or lower. By doing so, it becomes easy to form the glass substrate by the down draw method, particularly the overflow down draw method, so that it becomes easy to produce a glass substrate having a small plate thickness, and the plate thickness deviation can be reduced without polishing the surface. It can be reduced. Alternatively, a small amount of polishing can reduce the overall plate thickness deviation to less than 2.0 μm, especially less than 1.0 μm. As a result, the manufacturing cost of the glass substrate can be reduced. Further, it becomes easy to prevent a situation in which devitrified crystals are generated during the manufacturing process of the glass substrate and the productivity of the glass substrate is lowered. Here, the "liquid phase temperature" is determined by passing the standard sieve 30 mesh (500 μm), putting the glass powder remaining in 50 mesh (300 μm) into a platinum boat, and then holding the glass powder in a temperature gradient furnace for 24 hours to crystallize. It can be calculated by measuring the temperature at which is deposited.

液相温度における粘度は、好ましくは104.6dPa・s以上、105.0dPa・s以上、105.2dPa・s以上、105.4dPa・s以上、105.6dPa・s以上、特に105.8dPa・s以上である。このようにすれば、ダウンドロー法、特にオーバーフローダウンドロー法でガラス基板を成形し易くなるため、板厚が小さいガラス基板を作製し易くなると共に、表面を研磨しなくても、板厚偏差を高めることができる。或いは、少量の研磨によって、全体板厚偏差を2.0μm未満、特に1.0μm未満まで低減することができる。結果として、ガラス基板の製造コストを低廉化することができる。更に、ガラス基板の製造工程時に、失透結晶が発生して、ガラス基板の生産性が低下する事態を防止し易くなる。ここで、「液相温度における粘度」は、白金球引き上げ法で測定可能である。なお、液相温度における粘度は、成形性の指標であり、液相温度における粘度が高い程、成形性が向上する。 The viscosity at the liquidus temperature is preferably 10 4.6 dPa · s or higher, 10 5.0 dPa · s or higher, 10 5.2 dPa · s or higher, 10 5.4 dPa · s or higher, and 10 5.6 dPa. -S or more, especially 10 5.8 dPa · s or more. By doing so, it becomes easy to form the glass substrate by the down draw method, particularly the overflow down draw method, so that it becomes easy to produce a glass substrate having a small plate thickness, and the plate thickness deviation can be reduced without polishing the surface. Can be enhanced. Alternatively, a small amount of polishing can reduce the overall plate thickness deviation to less than 2.0 μm, especially less than 1.0 μm. As a result, the manufacturing cost of the glass substrate can be reduced. Further, it becomes easy to prevent a situation in which devitrified crystals are generated during the manufacturing process of the glass substrate and the productivity of the glass substrate is lowered. Here, the "viscosity at the liquid phase temperature" can be measured by the platinum ball pulling method. The viscosity at the liquidus temperature is an index of moldability, and the higher the viscosity at the liquidus temperature, the better the moldability.

102.5dPa・sにおける温度は、好ましくは1580℃以下、1500℃以下、1450℃以下、1400℃以下、1350℃以下、特に1200〜1300℃である。102.5dPa・sにおける温度が高くなると、溶融性が低下して、ガラス基板の製造コストが高騰する。ここで、「102.5dPa・sにおける温度」は、白金球引き上げ法で測定可能である。なお、102.5dPa・sにおける温度は、溶融温度に相当し、この温度が低い程、溶融性が向上する。 The temperature at 10 2.5 dPa · s is preferably 1580 ° C. or lower, 1500 ° C. or lower, 1450 ° C. or lower, 1400 ° C. or lower, 1350 ° C. or lower, particularly 1200 to 1300 ° C. When the temperature at 10 2.5 dPa · s becomes high, the meltability decreases and the manufacturing cost of the glass substrate rises. Here, the " temperature at 10 2.5 dPa · s" can be measured by the platinum ball pulling method. The temperature at 10 2.5 dPa · s corresponds to the melting temperature, and the lower the temperature, the better the melting property.

本発明の支持ガラス基板は、ダウンドロー法、特にオーバーフローダウンドロー法で成形されてなることが好ましい。オーバーフローダウンドロー法は、耐熱性の樋状構造物の両側から溶融ガラスを溢れさせて、溢れた溶融ガラスを樋状構造物の下頂端で合流させながら、下方に延伸成形してガラス基板を製造する方法である。オーバーフローダウンドロー法では、ガラス基板の表面となるべき面は樋状耐火物に接触せず、自由表面の状態で成形される。このため、板厚が小さいガラス基板を作製し易くなると共に、表面を研磨しなくても、板厚偏差を低減することができる。或いは、少量の研磨によって、全体板厚偏差を2.0μm未満、特に1.0μm未満まで低減することができる。結果として、ガラス基板の製造コストを低廉化することができる。 The supporting glass substrate of the present invention is preferably formed by a down draw method, particularly an overflow down draw method. In the overflow down draw method, molten glass is overflowed from both sides of a heat-resistant gutter-shaped structure, and the overflowed molten glass is merged at the lower apex of the gutter-shaped structure and stretched downward to manufacture a glass substrate. How to do it. In the overflow down draw method, the surface of the glass substrate, which should be the surface, does not come into contact with the gutter-shaped refractory and is formed in a free surface state. Therefore, it becomes easy to manufacture a glass substrate having a small plate thickness, and the plate thickness deviation can be reduced without polishing the surface. Alternatively, a small amount of polishing can reduce the overall plate thickness deviation to less than 2.0 μm, especially less than 1.0 μm. As a result, the manufacturing cost of the glass substrate can be reduced.

ガラス基板の成形方法として、オーバーフローダウンドロー法以外にも、例えば、スロットダウン法、リドロー法、フロート法等を採択することもできる。 As a method for forming a glass substrate, for example, a slot down method, a redraw method, a float method, or the like can be adopted in addition to the overflow down draw method.

本発明のガラス基板は、略円板状又はウェハ状が好ましく、その直径は100mm以上500mm以下、特に150mm以上450mm以下が好ましい。このようにすれば、半導体パッケージの製造工程に適用し易くなる。必要に応じて、それ以外の形状、例えば矩形等の形状に加工してもよい。 The glass substrate of the present invention preferably has a substantially disk shape or a wafer shape, and its diameter is preferably 100 mm or more and 500 mm or less, and particularly preferably 150 mm or more and 450 mm or less. In this way, it becomes easy to apply to the manufacturing process of the semiconductor package. If necessary, it may be processed into another shape, for example, a shape such as a rectangle.

本発明のガラス基板において、真円度は、1mm以下、0.1mm以下、0.05mm以下、特に0.03mm以下が好ましい。真円度が小さいほど、半導体パッケージの製造工程に適用し易くなる。なお、真円度の定義は、ウェハの外形の最大値から最小値を減じた値である。 In the glass substrate of the present invention, the roundness is preferably 1 mm or less, 0.1 mm or less, 0.05 mm or less, and particularly preferably 0.03 mm or less. The smaller the roundness, the easier it is to apply to the manufacturing process of semiconductor packages. The definition of roundness is a value obtained by subtracting the minimum value from the maximum value of the outer shape of the wafer.

本発明の支持ガラス基板において、板厚は、好ましくは2.0mm未満、1.5mm以下、1.2mm以下、1.1mm以下、1.0mm以下、特に0.9mm以下である。板厚が薄くなる程、積層体の質量が軽くなるため、ハンドリング性が向上する。一方、板厚が薄過ぎると、支持ガラス基板自体の強度が低下して、支持基板としての機能を果たし難くなる。よって、板厚は、好ましくは0.1mm以上、0.2mm以上、0.3mm以上、0.4mm以上、0.5mm以上、0.6mm以上、特に0.7mm超である。 In the supporting glass substrate of the present invention, the plate thickness is preferably less than 2.0 mm, 1.5 mm or less, 1.2 mm or less, 1.1 mm or less, 1.0 mm or less, and particularly 0.9 mm or less. As the plate thickness becomes thinner, the mass of the laminated body becomes lighter, so that the handleability is improved. On the other hand, if the plate thickness is too thin, the strength of the support glass substrate itself decreases, and it becomes difficult to fulfill the function as the support substrate. Therefore, the plate thickness is preferably 0.1 mm or more, 0.2 mm or more, 0.3 mm or more, 0.4 mm or more, 0.5 mm or more, 0.6 mm or more, and particularly 0.7 mm or more.

本発明の支持ガラス基板において、板厚偏差は、好ましくは30μm以下、20μm以下、10μm以下、5μm以下、4μm以下、3μm以下、2μm以下、1μm以下、特に0.1〜1μm未満である。また算術平均粗さRaは、好ましくは100nm以下、50nm以下、20nm以下、10nm以下、5nm以下、2nm以下、1nm以下、特に0.5nm以下である。表面精度が高い程、加工処理の精度を高め易くなる。特に配線精度を高めることができるため、高密度の配線が可能になる。また支持ガラス基板の強度が向上して、支持ガラス基板及び積層体が破損し難くなる。更に支持ガラス基板の再利用回数を増やすことができる。なお、「算術平均粗さRa」は、触針式表面粗さ計又は原子間力顕微鏡(AFM)により測定可能である。 In the supporting glass substrate of the present invention, the plate thickness deviation is preferably 30 μm or less, 20 μm or less, 10 μm or less, 5 μm or less, 4 μm or less, 3 μm or less, 2 μm or less, 1 μm or less, and particularly less than 0.1 to 1 μm. The arithmetic average roughness Ra is preferably 100 nm or less, 50 nm or less, 20 nm or less, 10 nm or less, 5 nm or less, 2 nm or less, 1 nm or less, and particularly 0.5 nm or less. The higher the surface accuracy, the easier it is to improve the processing accuracy. In particular, since the wiring accuracy can be improved, high-density wiring becomes possible. Further, the strength of the support glass substrate is improved, and the support glass substrate and the laminate are less likely to be damaged. Furthermore, the number of times the support glass substrate can be reused can be increased. The "arithmetic mean roughness Ra" can be measured by a stylus type surface roughness meter or an atomic force microscope (AFM).

本発明の支持ガラス基板は、オーバーフローダウンドロー法で成形した後に、表面を研磨されてなることが好ましい。このようにすれば、板厚偏差を2μm以下、1μm以下、特に1μm未満に規制し易くなる。 The support glass substrate of the present invention is preferably formed by the overflow down draw method and then the surface is polished. By doing so, it becomes easy to regulate the plate thickness deviation to 2 μm or less, 1 μm or less, particularly less than 1 μm.

本発明の支持ガラス基板において、反り量は、好ましくは60μm以下、55μm以下、50μm以下、1〜45μm、特に5〜40μmである。反り量が小さい程、加工処理の精度を高め易くなる。特に配線精度を高めることができるため、高密度の配線が可能になる。 In the supporting glass substrate of the present invention, the amount of warpage is preferably 60 μm or less, 55 μm or less, 50 μm or less, 1 to 45 μm, and particularly 5 to 40 μm. The smaller the amount of warpage, the easier it is to improve the accuracy of the processing. In particular, since the wiring accuracy can be improved, high-density wiring becomes possible.

本発明の支持ガラス基板において、板厚方向、波長300nmにおける紫外線透過率は、好ましくは40%以上、50%以上、60%以上、70%以上、特に80%以上である。紫外線透過率が低過ぎると、紫外光の照射により、接着層により加工基板と支持基板を接着し難くなる。また、紫外線硬化型テープ等で接着層等を設けた場合は、加工基板と支持ガラス基板を容易に分離し難くなる。なお、「板厚方向、波長300nmにおける紫外線透過率」は、例えば、ダブルビーム型分光光度計を用いて、波長300nmの分光透過率を測定することで評価可能である。 In the supporting glass substrate of the present invention, the ultraviolet transmittance in the plate thickness direction at a wavelength of 300 nm is preferably 40% or more, 50% or more, 60% or more, 70% or more, and particularly 80% or more. If the ultraviolet transmittance is too low, it becomes difficult to bond the processed substrate and the support substrate by the adhesive layer due to the irradiation with ultraviolet light. Further, when an adhesive layer or the like is provided with an ultraviolet curable tape or the like, it becomes difficult to easily separate the processed substrate and the supporting glass substrate. The "ultraviolet transmittance in the plate thickness direction at a wavelength of 300 nm" can be evaluated by measuring the spectral transmittance at a wavelength of 300 nm using, for example, a double beam spectrophotometer.

本発明の支持ガラス基板は、イオン交換処理が行われていないことが好ましく、表面に圧縮応力層を有しないことが好ましい。イオン交換処理を行うと、支持ガラス基板の製造コストが高騰する。更に、イオン交換処理を行うと、支持ガラス基板の全体板厚偏差を低減し難くなる。なお、本発明の支持ガラス基板は、イオン交換処理を行い、表面に圧縮応力層を形成する態様を排除するものではない。機械的強度を高める観点から言えば、イオン交換処理を行い、表面に圧縮応力層を形成することが好ましい。 The supporting glass substrate of the present invention is preferably not subjected to ion exchange treatment, and preferably does not have a compressive stress layer on its surface. When the ion exchange treatment is performed, the manufacturing cost of the supporting glass substrate rises. Further, when the ion exchange treatment is performed, it becomes difficult to reduce the deviation in the overall thickness of the supporting glass substrate. The supporting glass substrate of the present invention does not exclude the aspect of forming a compressive stress layer on the surface by performing an ion exchange treatment. From the viewpoint of increasing the mechanical strength, it is preferable to perform an ion exchange treatment to form a compressive stress layer on the surface.

本発明の積層体は、少なくとも加工基板と加工基板を支持するための支持ガラス基板とを備える積層体であって、支持ガラス基板が上記の支持ガラス基板であることを特徴とする。ここで、本発明の積層体の技術的特徴(好適な構成、効果)は、本発明の支持ガラス基板の技術的特徴と重複する。よって、本明細書では、その重複部分について、詳細な記載を省略する。なお、加工基板と支持ガラス基板を容易に固定するため、紫外線硬化型テープを接着層として使用することもできる。 The laminate of the present invention is a laminate including at least a processed substrate and a supporting glass substrate for supporting the processed substrate, and the supporting glass substrate is the above-mentioned supporting glass substrate. Here, the technical features (preferable configuration, effect) of the laminate of the present invention overlap with the technical features of the supporting glass substrate of the present invention. Therefore, in the present specification, detailed description of the overlapping portion will be omitted. Since the processed substrate and the supporting glass substrate are easily fixed, an ultraviolet curable tape can also be used as an adhesive layer.

本発明の積層体は、加工基板と支持ガラス基板の間に、接着層を有することが好ましい。接着層は、樹脂であることが好ましく、例えば、熱硬化性樹脂、光硬化性樹脂(特に紫外線硬化樹脂)等が好ましい。また半導体パッケージの製造工程における熱処理に耐える耐熱性を有するものが好ましい。これにより、半導体パッケージの製造工程で接着層が融解し難くなり、加工処理の精度を高めることができる。 The laminate of the present invention preferably has an adhesive layer between the processed substrate and the supporting glass substrate. The adhesive layer is preferably a resin, and for example, a thermosetting resin, a photocurable resin (particularly an ultraviolet curable resin), or the like is preferable. Further, those having heat resistance to withstand heat treatment in the manufacturing process of the semiconductor package are preferable. As a result, the adhesive layer is less likely to melt in the manufacturing process of the semiconductor package, and the accuracy of the processing process can be improved.

本発明の積層体は、更に加工基板と支持ガラス基板の間に、より具体的には加工基板と接着層の間に、剥離層を有することが好ましい。このようにすれば、加工基板に対して、所定の加工処理を行った後に、加工基板を支持ガラス基板から剥離し易くなる。加工基板の剥離は、生産性の観点から、レーザー光等の照射光により行うことが好ましい。レーザー光源として、YAGレーザー(波長1064nm)、半導体レーザー(波長780〜1300nm)等の赤外光レーザー光源を用いることができる。また、剥離層には、赤外線レーザーを照射することで分解する樹脂を使用することができる。また、赤外線を効率良く吸収し、熱に変換する物質を樹脂に添加することもできる。例えば、カーボンブラック、グラファイト粉、微粒子金属粉末、染料、顔料等を樹脂に添加することもできる。 The laminate of the present invention preferably further has a release layer between the processed substrate and the supporting glass substrate, more specifically between the processed substrate and the adhesive layer. By doing so, it becomes easy to peel off the processed substrate from the supporting glass substrate after performing a predetermined processing treatment on the processed substrate. From the viewpoint of productivity, the processed substrate is preferably peeled off by irradiation light such as laser light. As the laser light source, an infrared light laser light source such as a YAG laser (wavelength 1064 nm) or a semiconductor laser (wavelength 780 to 1300 nm) can be used. Further, as the release layer, a resin that decomposes by irradiating an infrared laser can be used. In addition, a substance that efficiently absorbs infrared rays and converts them into heat can be added to the resin. For example, carbon black, graphite powder, fine particle metal powder, dye, pigment and the like can be added to the resin.

剥離層は、レーザー光等の照射光により「層内剥離」又は「界面剥離」が生じる材料で構成される。つまり一定の強度の光を照射すると、原子又は分子における原子間又は分子間の結合力が消失又は減少して、アブレーション(ablation)等を生じ、剥離を生じさせる材料で構成される。なお、照射光の照射により、剥離層に含まれる成分が気体となって放出されて分離に至る場合と、剥離層が光を吸収して気体になり、その蒸気が放出されて分離に至る場合とがある。 The peeling layer is composed of a material in which "intra-layer peeling" or "interfacial peeling" occurs due to irradiation light such as laser light. That is, when irradiated with light of a certain intensity, the intermolecular or intermolecular bonding force in the atom or molecule disappears or decreases, ablation or the like occurs, and the material is composed of a material that causes peeling. In addition, there are cases where the components contained in the peeling layer are released as a gas and lead to separation by irradiation with irradiation light, and cases where the peeling layer absorbs light and becomes a gas and the vapor is released and leads to separation. There is.

本発明の積層体において、支持ガラス基板は、加工基板よりも大きいことが好ましい。これにより、加工基板と支持ガラス基板を支持する際に、両者の中心位置が僅かに離間した場合でも、支持ガラス基板から加工基板の縁部が食み出し難くなる。 In the laminate of the present invention, the supporting glass substrate is preferably larger than the processed substrate. As a result, when the processed substrate and the supporting glass substrate are supported, even if the center positions of the two are slightly separated from each other, the edge portion of the processed substrate is less likely to protrude from the supporting glass substrate.

本発明の半導体パッケージの製造方法は、少なくとも加工基板と加工基板を支持するための支持ガラス基板とを備える積層体を用意する工程と、積層体を搬送する工程と、加工基板に対して、加工処理を行う工程と、を有すると共に、支持ガラス基板が上記の支持ガラス基板であることを特徴とする。ここで、本発明の半導体パッケージの製造方法の技術的特徴(好適な構成、効果)は、本発明の支持ガラス基板及び積層体の技術的特徴と重複する。よって、本明細書では、その重複部分について、詳細な記載を省略する。 The method for manufacturing a semiconductor package of the present invention includes a step of preparing a laminate including at least a processed substrate and a supporting glass substrate for supporting the processed substrate, a step of transporting the laminate, and processing of the processed substrate. It is characterized by having a step of performing a process and the support glass substrate being the above-mentioned support glass substrate. Here, the technical features (suitable configuration, effect) of the method for manufacturing a semiconductor package of the present invention overlap with the technical features of the supporting glass substrate and the laminate of the present invention. Therefore, in the present specification, detailed description of the overlapping portion will be omitted.

本発明の半導体パッケージの製造方法において、加工処理は、加工基板の一方の表面に配線する処理、或いは加工基板の一方の表面に半田バンプを形成する処理が好ましい。本発明の半導体パッケージの製造方法では、これらの処理時に加工基板が寸法変化し難いため、これらの工程を適正に行うことができる。 In the method for manufacturing a semiconductor package of the present invention, the processing is preferably a process of wiring on one surface of the processed substrate or a process of forming solder bumps on one surface of the processed substrate. In the method for manufacturing a semiconductor package of the present invention, the dimensions of the processed substrate are unlikely to change during these processes, so that these steps can be performed appropriately.

加工処理として、上記以外にも、加工基板の一方の表面(通常、支持ガラス基板とは反対側の表面)を機械的に研磨する処理、加工基板の一方の表面(通常、支持ガラス基板とは反対側の表面)をドライエッチングする処理、加工基板の一方の表面(通常、支持ガラス基板とは反対側の表面)をウェットエッチングする処理の何れかであってもよい。なお、本発明の半導体パッケージの製造方法では、加工基板に反りが発生し難いと共に、積層体の剛性を維持することができる。結果として、上記加工処理を適正に行うことができる。 In addition to the above, as the processing, one surface of the processed substrate (usually the surface opposite to the supporting glass substrate) is mechanically polished, and one surface of the processed substrate (usually, what is the supporting glass substrate)? It may be either a process of dry etching the surface on the opposite side or a process of wet etching one surface of the processed substrate (usually the surface on the opposite side of the supporting glass substrate). In the method for manufacturing a semiconductor package of the present invention, the processed substrate is less likely to warp and the rigidity of the laminated body can be maintained. As a result, the above processing can be performed properly.

本発明の半導体パッケージは、上記の半導体パッケージの製造方法により作製されたことを特徴とする。ここで、本発明の半導体パッケージの技術的特徴(好適な構成、効果)は、本発明の支持ガラス基板、積層体及び半導体パッケージの製造方法の技術的特徴と重複する。よって、本明細書では、その重複部分について、詳細な記載を省略する。 The semiconductor package of the present invention is characterized in that it is manufactured by the above-mentioned method for manufacturing a semiconductor package. Here, the technical features (suitable configuration, effect) of the semiconductor package of the present invention overlap with the technical features of the method for manufacturing the supporting glass substrate, the laminate, and the semiconductor package of the present invention. Therefore, in the present specification, detailed description of the overlapping portion will be omitted.

本発明の電子機器は、半導体パッケージを備える電子機器であって、半導体パッケージが、上記の半導体パッケージであることを特徴とする。ここで、本発明の電子機器の技術的特徴(好適な構成、効果)は、本発明の支持ガラス基板、積層体、半導体パッケージの製造方法、半導体パッケージの技術的特徴と重複する。よって、本明細書では、その重複部分について、詳細な記載を省略する。 The electronic device of the present invention is an electronic device including a semiconductor package, and the semiconductor package is the above-mentioned semiconductor package. Here, the technical features (suitable configuration, effect) of the electronic device of the present invention overlap with the supporting glass substrate, laminate, manufacturing method of the semiconductor package, and technical features of the semiconductor package of the present invention. Therefore, in the present specification, detailed description of the overlapping portion will be omitted.

図面を参酌しながら、本発明を更に説明する。 The present invention will be further described with reference to the drawings.

図1は、本発明の積層体1の一例を示す概念斜視図である。図1では、積層体1は、支持ガラス基板10と加工基板11とを備えている。支持ガラス基板10は、加工基板11の寸法変化を防止するために、加工基板11に貼着されている。支持ガラス基板10と加工基板11との間には、剥離層12と接着層13が配置されている。剥離層12は、支持ガラス基板10と接触しており、接着層13は、加工基板11と接触している。 FIG. 1 is a conceptual perspective view showing an example of the laminated body 1 of the present invention. In FIG. 1, the laminate 1 includes a support glass substrate 10 and a processed substrate 11. The support glass substrate 10 is attached to the processed substrate 11 in order to prevent the dimensional change of the processed substrate 11. A release layer 12 and an adhesive layer 13 are arranged between the support glass substrate 10 and the processed substrate 11. The release layer 12 is in contact with the support glass substrate 10, and the adhesive layer 13 is in contact with the processed substrate 11.

図1から分かるように、積層体1は、支持ガラス基板10、剥離層12、接着層13、加工基板11の順に積層配置されている。支持ガラス基板10の形状は、加工基板11に応じて決定されるが、図1では、支持ガラス基板10及び加工基板11の形状は、何れも略円板形状である。剥離層12は、例えば、レーザーを照射することで分解する樹脂を使用することができる。また、レーザー光を効率良く吸収し、熱に変換する物質を樹脂に添加することもできる。例えば、カーボンブラック、グラファイト粉、微粒子金属粉末、染料、顔料等を樹脂に添加することもできる。剥離層12は、プラズマCVD、ゾル−ゲル法によるスピンコート等により形成される。接着層13は、樹脂で構成されており、例えば、各種印刷法、インクジェット法、スピンコート法、ロールコート法等により塗布形成される。また、紫外線硬化型テープも使用可能である。接着層13は、剥離層12により加工基板11から支持ガラス基板10が剥離された後、溶剤等により溶解除去される。紫外線硬化型テープは、紫外線を照射した後、剥離用テープにより除去可能である。 As can be seen from FIG. 1, the laminate 1 is arranged in the order of the support glass substrate 10, the release layer 12, the adhesive layer 13, and the processed substrate 11. The shape of the support glass substrate 10 is determined according to the processed substrate 11, but in FIG. 1, the shapes of the support glass substrate 10 and the processed substrate 11 are both substantially disk shapes. For the release layer 12, for example, a resin that decomposes by irradiating a laser can be used. In addition, a substance that efficiently absorbs laser light and converts it into heat can be added to the resin. For example, carbon black, graphite powder, fine particle metal powder, dye, pigment and the like can be added to the resin. The release layer 12 is formed by plasma CVD, spin coating by a sol-gel method, or the like. The adhesive layer 13 is made of a resin, and is formed by coating, for example, by various printing methods, an inkjet method, a spin coating method, a roll coating method, or the like. UV curable tape can also be used. The adhesive layer 13 is dissolved and removed by a solvent or the like after the support glass substrate 10 is peeled from the processed substrate 11 by the peeling layer 12. The ultraviolet curable tape can be removed by a peeling tape after being irradiated with ultraviolet rays.

図2は、fan out型のWLPの製造工程を示す概念断面図である。図2(a)は、支持部材20の一方の表面上に接着層21を形成した状態を示している。必要に応じて、支持部材20と接着層21の間に剥離層を形成してもよい。次に、図2(b)に示すように、接着層21の上に複数の半導体チップ22を貼付する。その際、半導体チップ22のアクティブ側の面を接着層21に接触させる。次に、図2(c)に示すように、半導体チップ22を樹脂の封止材23でモールドする。封止材23は、圧縮成形後の寸法変化、配線を成形する際の寸法変化が少ない材料が使用される。続いて、図2(d)、(e)に示すように、支持部材20から半導体チップ22がモールドされた加工基板24を分離した後、接着層25を介して、支持ガラス基板26と接着固定させる。その際、加工基板24の表面の内、半導体チップ22が埋め込まれた側の表面とは反対側の表面が支持ガラス基板26側に配置される。このようにして、積層体27を得ることができる。なお、必要に応じて、接着層25と支持ガラス基板26の間に剥離層を形成してもよい。更に、得られた積層体27を搬送した後に、図2(f)に示すように、加工基板24の半導体チップ22が埋め込まれた側の表面に配線28を形成した後、複数の半田バンプ29を形成する。最後に、支持ガラス基板26から加工基板24を分離した後に、加工基板24を半導体チップ22毎に切断し、後のパッケージング工程に供される(図2(g))。 FIG. 2 is a conceptual cross-sectional view showing a manufacturing process of a fan-out type WLP. FIG. 2A shows a state in which the adhesive layer 21 is formed on one surface of the support member 20. If necessary, a release layer may be formed between the support member 20 and the adhesive layer 21. Next, as shown in FIG. 2B, a plurality of semiconductor chips 22 are attached onto the adhesive layer 21. At that time, the active side surface of the semiconductor chip 22 is brought into contact with the adhesive layer 21. Next, as shown in FIG. 2C, the semiconductor chip 22 is molded with the resin encapsulant 23. As the sealing material 23, a material having little dimensional change after compression molding and dimensional change when molding wiring is used. Subsequently, as shown in FIGS. 2 (d) and 2 (e), the processed substrate 24 on which the semiconductor chip 22 is molded is separated from the support member 20, and then bonded and fixed to the support glass substrate 26 via the adhesive layer 25. Let me. At that time, of the surfaces of the processed substrate 24, the surface opposite to the surface on the side where the semiconductor chip 22 is embedded is arranged on the support glass substrate 26 side. In this way, the laminated body 27 can be obtained. If necessary, a release layer may be formed between the adhesive layer 25 and the support glass substrate 26. Further, after the obtained laminate 27 is conveyed, as shown in FIG. 2 (f), after forming the wiring 28 on the surface of the processed substrate 24 on the side where the semiconductor chip 22 is embedded, a plurality of solder bumps 29 are formed. To form. Finally, after separating the processed substrate 24 from the supporting glass substrate 26, the processed substrate 24 is cut for each semiconductor chip 22 and subjected to a subsequent packaging step (FIG. 2 (g)).

以下、本発明を実施例に基づいて説明する。なお、以下の実施例は単なる例示である。本発明は、以下の実施例に何ら限定されない。 Hereinafter, the present invention will be described based on examples. The following examples are merely examples. The present invention is not limited to the following examples.

表1、2は、本発明の実施例(試料No.1〜34)を示している。 Tables 1 and 2 show examples (Sample Nos. 1 to 34) of the present invention.

Figure 0006963219
Figure 0006963219

Figure 0006963219
Figure 0006963219

Figure 0006963219
Figure 0006963219

まず表中のガラス組成になるように、ガラス原料を調合したガラスバッチを白金坩堝に入れ、1550℃で4時間溶融した。ガラスバッチの溶解に際しては、白金スターラーを用いて攪拌し、均質化を行った。次いで、溶融ガラスをカーボン板上に流し出し、板状に成形した後、徐冷点より20℃程度高い温度から、3℃/分で常温まで徐冷した。得られた各試料について、20〜200℃の温度範囲における平均線熱膨張係数α20〜200、30〜380℃の温度範囲における平均線熱膨張係数α30〜380、密度ρ、歪点Ps、徐冷点Ta、軟化点Ts、高温粘度104.0dPa・sにおける温度、高温粘度103.0dPa・sにおける温度、高温粘度102.5dPa・sにおける温度、高温粘度102.0dPa・sにおける温度、液相温度TL、液相温度TLにおける粘度η、ヤング率E及び波長300nmにおける紫外線透過率Tを評価した。 First, a glass batch prepared with a glass raw material was placed in a platinum crucible so as to have the glass composition shown in the table, and melted at 1550 ° C. for 4 hours. When melting the glass batch, stirring was performed using a platinum stirrer to homogenize the glass batch. Next, the molten glass was poured onto a carbon plate, formed into a plate shape, and then slowly cooled from a temperature about 20 ° C. higher than the slow cooling point to room temperature at 3 ° C./min. For each sample obtained, the average linear thermal expansion coefficient alpha 20 to 200 in the temperature range of 20 to 200 ° C., an average linear thermal expansion coefficient alpha 30 to 380 in the temperature range of 30 to 380 ° C., the density [rho, strain point Ps, Slow cooling point Ta, softening point Ts, high temperature viscosity 10 4.0 dPa · s temperature, high temperature viscosity 10 3.0 dPa · s temperature, high temperature viscosity 10 2.5 dPa · s temperature, high temperature viscosity 10 2. The temperature at 0 dPa · s, the liquidus temperature TL, the viscosity η at the liquidus temperature TL, the Young ratio E, and the ultraviolet transmittance T at a wavelength of 300 nm were evaluated.

20〜200℃の温度範囲における平均線熱膨張係数α20〜200、30〜380℃の温度範囲における平均線熱膨張係数α30〜380は、ディラトメーターで測定した値である。 Average linear thermal expansion coefficient alpha 20 to 200 in the temperature range of 20 to 200 ° C., the average linear thermal expansion coefficient alpha 30 to 380 in the temperature range of 30 to 380 ° C., a value measured by the dilatometer.

密度ρは、周知のアルキメデス法によって測定した値である。 The density ρ is a value measured by the well-known Archimedes method.

歪点Ps、徐冷点Ta、軟化点Tsは、ASTM C336の方法に基づいて測定した値である。 The strain point Ps, the slow cooling point Ta, and the softening point Ts are values measured based on the method of ASTM C336.

高温粘度104.0dPa・s、103.0dPa・s、102.5dPa・sにおける温度は、白金球引き上げ法で測定した値である。 The temperature at a high temperature viscosity of 10 4.0 dPa · s, 10 3.0 dPa · s, and 10 2.5 dPa · s is a value measured by the platinum ball pulling method.

液相温度TLは、標準篩30メッシュ(500μm)を通過し、50メッシュ(300μm)に残るガラス粉末を白金ボートに入れて、温度勾配炉中に24時間保持した後、結晶が析出する温度を顕微鏡観察にて測定した値である。液相温度における粘度ηは、液相温度TLにおけるガラスの粘度を白金球引き上げ法で測定した値である。 The liquidus temperature TL is the temperature at which crystals precipitate after passing through a standard sieve of 30 mesh (500 μm) and placing the glass powder remaining in 50 mesh (300 μm) in a platinum boat and holding it in a temperature gradient furnace for 24 hours. It is a value measured by microscopic observation. The viscosity η at the liquidus temperature is a value obtained by measuring the viscosity of glass at the liquidus temperature TL by the platinum ball pulling method.

ヤング率Eは、共振法により測定した値を指す。 Young's modulus E refers to a value measured by the resonance method.

表1、2から明らかなように、試料No.1〜34は、20〜200℃の温度範囲における平均線熱膨張係数α30〜200が81.5×10−7/℃〜107.8×10−7/℃、30〜380℃の温度範囲における平均線熱膨張係数α30〜380が85.4×10−7/℃〜114.0×10−7/℃であった。よって、試料No.1〜34は、半導体製造装置の製造工程で加工基板の支持に用いる支持ガラス基板として好適であると考えられる。 As is clear from Tables 1 and 2, the sample No. 1-34, the average linear thermal expansion coefficient alpha 30 to 200 is 81.5 × 10 -7 /℃~107.8×10 -7 / ℃ in the temperature range of 20 to 200 ° C., a temperature range of 30 to 380 ° C. average linear thermal expansion coefficient alpha 30 to 380 in was 85.4 × 10 -7 /℃~114.0×10 -7 / ℃ . Therefore, the sample No. 1 to 34 are considered to be suitable as a supporting glass substrate used for supporting a processed substrate in the manufacturing process of a semiconductor manufacturing apparatus.

次のようにして、[実施例2]の各試料を作製した。まず、表1、2に記載の試料No.1〜34のガラス組成になるように、ガラス原料を調合した後、ガラス溶融炉に供給して1500〜1600℃で溶融し、次いで溶融ガラスをオーバーフローダウンドロー成形装置に供給し、板厚が0.7mmになるようにそれぞれ成形した。得られたガラス基板(全体板厚偏差約4.0μm)をφ300mm×0.7mm厚に加工した後、その両表面を研磨装置により研磨処理した。具体的には、ガラス基板の両表面を外径が相違する一対の研磨パットで挟み込み、ガラス基板と一対の研磨パッドを共に回転させながらガラス基板の両表面を研磨処理した。研磨処理の際、時折、ガラス基板の一部が研磨パッドから食み出すように制御した。なお、研磨パッドはウレタン製、研磨処理の際に使用した研磨スラリーの平均粒径は2.5μm、研磨速度は15m/分であった。得られた各研磨処理済みガラス基板について、コベルコ科研社製のBow/Warp測定装置 SBW−331ML/dにより全体板厚偏差と反り量を測定した。その結果、全体板厚偏差がそれぞれ1.0μm未満であり、反り量がそれぞれ35μm以下であった。 Each sample of [Example 2] was prepared as follows. First, the sample Nos. After blending the glass raw materials so as to have a glass composition of 1 to 34, the glass raw material is supplied to a glass melting furnace and melted at 1500 to 1600 ° C., and then the molten glass is supplied to an overflow down draw forming apparatus, and the plate thickness is 0. Each was molded to be 0.7 mm. The obtained glass substrate (overall plate thickness deviation of about 4.0 μm) was processed to a thickness of φ300 mm × 0.7 mm, and then both surfaces thereof were polished by a polishing device. Specifically, both surfaces of the glass substrate were sandwiched between a pair of polishing pads having different outer diameters, and both surfaces of the glass substrate were polished while rotating the glass substrate and the pair of polishing pads together. During the polishing process, it was occasionally controlled so that a part of the glass substrate protruded from the polishing pad. The polishing pad was made of urethane, the average particle size of the polishing slurry used in the polishing treatment was 2.5 μm, and the polishing rate was 15 m / min. For each of the obtained polished glass substrates, the total plate thickness deviation and the amount of warpage were measured by the Bow / Warp measuring device SBW-331ML / d manufactured by Kobelco Kaken Co., Ltd. As a result, the total plate thickness deviation was less than 1.0 μm, and the warpage amount was 35 μm or less.

1、27 積層体
10、26 支持ガラス基板
11、24 加工基板
12 剥離層
13、21、25 接着層
20 支持部材
22 半導体チップ
23 封止材
28 配線
29 半田バンプ
1, 27 Laminates 10, 26 Support glass substrates 11, 24 Processed substrates 12 Release layers 13, 21, 25 Adhesive layers 20 Support members 22 Semiconductor chips 23 Encapsulants 28 Wiring 29 Solder bumps

Claims (9)

20〜200℃の温度範囲における平均線熱膨張係数が81×10−7/℃超であり、且つ110×10−7/℃以下であり、ガラス組成として、質量%で、SiO 50〜80%、Al 1〜20%、B 0〜20%、MgO 0〜10%、CaO 0〜10%、SrO 0〜7%、BaO 0〜7%、ZnO 0〜7%、Na O 0〜25%、K O 0〜25%、NaO+KO 12〜35%を含有し、質量比Al/NaOが0.30〜0.85であり、半導体チップが樹脂でモールドされた加工基板の支持に用いることを特徴とする支持ガラス基板。 The average coefficient of linear thermal expansion in the temperature range of 20 to 200 ° C. is more than 81 × 10-7 / ° C. and 110 × 10-7 / ° C. or less, and the glass composition is SiO 2 50 to 80 in mass%. %, Al 2 O 3 1 to 20%, B 2 O 30 to 20%, MgO 0 to 10%, CaO 0 to 10%, SrO 0 to 7%, BaO 0 to 7%, ZnO 0 to 7%, It contains Na 2 O 0 to 25%, K 2 O 0 to 25%, and Na 2 O + K 2 O 12 to 35%, and has a mass ratio of Al 2 O 3 / Na 2 O of 0.30 to 0.85. A support glass substrate characterized in that a semiconductor chip is used to support a processed substrate molded with resin. 30〜380℃の温度範囲における平均線熱膨張係数が85×10−7/℃超であり、且つ115×10−7/℃以下であり、ガラス組成として、質量%で、SiO 50〜80%、Al 1〜20%、B 0〜20%、MgO 0〜10%、CaO 0〜10%、SrO 0〜7%、BaO 0〜7%、ZnO 0〜7%、Na O 0〜25%、K O 0〜25%、NaO+KO 12〜35%を含有し、質量比Al/NaOが0.30〜0.85であり、半導体チップが樹脂でモールドされた加工基板の支持に用いることを特徴とする支持ガラス基板。 The average coefficient of linear thermal expansion in the temperature range of 30 to 380 ° C. is more than 85 × 10-7 / ° C. and 115 × 10-7 / ° C. or less, and the glass composition is SiO 2 50 to 80 in mass%. %, Al 2 O 3 1 to 20%, B 2 O 30 to 20%, MgO 0 to 10%, CaO 0 to 10%, SrO 0 to 7%, BaO 0 to 7%, ZnO 0 to 7%, It contains Na 2 O 0 to 25%, K 2 O 0 to 25%, and Na 2 O + K 2 O 12 to 35%, and has a mass ratio of Al 2 O 3 / Na 2 O of 0.30 to 0.85. A support glass substrate characterized in that a semiconductor chip is used to support a processed substrate molded with resin. ヤング率が65GPa以上であることを特徴とする請求項1又は2に記載の支持ガラス基板。 The support glass substrate according to claim 1 or 2, wherein the Young's modulus is 65 GPa or more. ガラス組成として、質量%で、SiO 55〜70%、Al 3〜18%、B 0〜8%、MgO 0〜5%、CaO 0〜10%、SrO 0〜5%、BaO 0〜5%、ZnO 0〜5%、NaO 2〜23%、KO 0〜20%を含有することを特徴とする請求項1〜3の何れかに記載の支持ガラス基板。 As the glass composition, in terms of mass%, SiO 2 55 to 70%, Al 2 O 3 3 to 18%, B 2 O 30 to 8%, MgO 0 to 5%, CaO 0 to 10%, SrO 0 to 5%. , BaO 0~5%, 0~5% ZnO , Na 2 O 2~23%, supporting glass substrate according to any one of claims 1 to 3, characterized in that it contains K 2 O 0 to 20% .. 板厚が2.0mm未満であり、板厚偏差が30μm以下であり、且つ反り量が60μm以下であることを特徴とする請求項1〜の何れかに記載の支持ガラス基板。 The support glass substrate according to any one of claims 1 to 4 , wherein the plate thickness is less than 2.0 mm, the plate thickness deviation is 30 μm or less, and the warp amount is 60 μm or less. 少なくとも加工基板と加工基板を支持するための支持ガラス基板とを備える積層体であって、支持ガラス基板が請求項1〜の何れかに記載の支持ガラス基板であり、加工基板が、少なくとも封止材でモールドされた半導体チップを備えることを特徴とする積層体。 A laminate including at least a processed substrate and a supporting glass substrate for supporting the processed substrate, wherein the supporting glass substrate is the supporting glass substrate according to any one of claims 1 to 5 , and the processed substrate is at least sealed. A laminate characterized by including a semiconductor chip molded with a stop material. 少なくとも加工基板と加工基板を支持するための支持ガラス基板とを備える積層体を用意する工程と、
積層体を搬送する工程と、
加工基板に対して、加工処理を行う工程と、を有すると共に、
支持ガラス基板が請求項1〜の何れかに記載の支持ガラス基板であり、加工基板が、少なくとも封止材でモールドされた半導体チップを備えることを特徴とする半導体パッケージの製造方法。
A process of preparing a laminate including at least a processed substrate and a supporting glass substrate for supporting the processed substrate, and
The process of transporting the laminate and
It has a process of performing processing on a processed substrate, and also has a process.
A method for manufacturing a semiconductor package, wherein the support glass substrate is the support glass substrate according to any one of claims 1 to 5 , and the processed substrate includes at least a semiconductor chip molded with a sealing material.
加工処理が、加工基板の一方の表面に配線する工程を含むことを特徴とする請求項に記載の半導体パッケージの製造方法。 The method for manufacturing a semiconductor package according to claim 7 , wherein the processing process includes a step of wiring on one surface of the processed substrate. 加工処理が、加工基板の一方の表面に半田バンプを形成する工程を含むことを特徴とする請求項又はに記載の半導体パッケージの製造方法。 Processing method for forming a semiconductor package according to claim 7 or 8, characterized in that it comprises a step of forming a solder bump on one surface of the processed substrate.
JP2020084508A 2014-09-03 2020-05-13 Support glass substrate and laminate using this Active JP6963219B2 (en)

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
JP2014178807 2014-09-03
JP2014178807 2014-09-03
JP2014210437 2014-10-15
JP2014210437 2014-10-15
JP2015031495 2015-02-20
JP2015031495 2015-02-20
JP2015083852 2015-04-16
JP2015083852 2015-04-16
JP2016546598A JP6741214B2 (en) 2014-09-03 2015-08-27 Support glass substrate and laminate using the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2016546598A Division JP6741214B2 (en) 2014-09-03 2015-08-27 Support glass substrate and laminate using the same

Publications (2)

Publication Number Publication Date
JP2020128337A JP2020128337A (en) 2020-08-27
JP6963219B2 true JP6963219B2 (en) 2021-11-05

Family

ID=55439739

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2016546598A Active JP6741214B2 (en) 2014-09-03 2015-08-27 Support glass substrate and laminate using the same
JP2020084509A Active JP6892000B2 (en) 2014-09-03 2020-05-13 Support glass substrate and laminate using this
JP2020084508A Active JP6963219B2 (en) 2014-09-03 2020-05-13 Support glass substrate and laminate using this

Family Applications Before (2)

Application Number Title Priority Date Filing Date
JP2016546598A Active JP6741214B2 (en) 2014-09-03 2015-08-27 Support glass substrate and laminate using the same
JP2020084509A Active JP6892000B2 (en) 2014-09-03 2020-05-13 Support glass substrate and laminate using this

Country Status (5)

Country Link
JP (3) JP6741214B2 (en)
KR (1) KR102402822B1 (en)
CN (2) CN106660855A (en)
TW (1) TWI671271B (en)
WO (1) WO2016035674A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7011215B2 (en) * 2016-12-14 2022-02-10 日本電気硝子株式会社 Support glass substrate and laminate using it
WO2018110163A1 (en) * 2016-12-14 2018-06-21 日本電気硝子株式会社 Glass support substrate and laminate using same
WO2019021911A1 (en) * 2017-07-26 2019-01-31 Agc株式会社 Support glass for semiconductor packages
CN116462406A (en) * 2017-07-26 2023-07-21 日本电气硝子株式会社 Support glass substrate and laminated substrate using same
JP7280546B2 (en) * 2017-11-09 2023-05-24 日本電気硝子株式会社 Glass plate and wavelength conversion package using the same
WO2019163491A1 (en) * 2018-02-20 2019-08-29 日本電気硝子株式会社 Glass
JP7445186B2 (en) * 2018-12-07 2024-03-07 日本電気硝子株式会社 glass
CN111056752B (en) * 2019-12-18 2023-12-22 东旭集团有限公司 Glass substrate assembly for display panel and method for manufacturing glass substrate assembly
US20240132393A1 (en) * 2021-02-05 2024-04-25 Nippon Sheet Glass Company, Limited Glass composition, glass filler, and method for manufacturing the same
WO2023032163A1 (en) 2021-09-03 2023-03-09 株式会社レゾナック Method for producing semiconductor device, provisional fixation material, and application of provisional fixation material for production of semiconductor device

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4151161B2 (en) * 1998-08-11 2008-09-17 旭硝子株式会社 Substrate glass
JP2002025040A (en) * 2000-06-30 2002-01-25 Hitachi Ltd Glass substrate for magnetic disk and magnetic disk using the same
JP4692915B2 (en) * 2002-05-29 2011-06-01 日本電気硝子株式会社 Front glass substrate for plasma display devices.
JP2004067460A (en) * 2002-08-07 2004-03-04 Central Glass Co Ltd Glass composition
JP5140014B2 (en) * 2009-02-03 2013-02-06 富士通株式会社 Manufacturing method of semiconductor device
JP5402184B2 (en) * 2009-04-13 2014-01-29 日本電気硝子株式会社 Glass film and method for producing the same
JP5483262B2 (en) * 2009-12-04 2014-05-07 日本電気硝子株式会社 Laminated glass
JP5507240B2 (en) * 2009-12-28 2014-05-28 株式会社小糸製作所 Vehicle lighting
JP5573422B2 (en) * 2010-06-29 2014-08-20 富士通株式会社 Manufacturing method of semiconductor device
JPWO2013118897A1 (en) * 2012-02-09 2015-05-11 旭硝子株式会社 Glass substrate for forming transparent conductive film, and substrate with transparent conductive film
JP5796905B2 (en) * 2012-12-25 2015-10-21 日本電気硝子株式会社 Tempered glass substrate, glass and method for producing tempered glass substrate
JP6593669B2 (en) * 2013-09-12 2019-10-23 日本電気硝子株式会社 Support glass substrate and carrier using the same
WO2015156075A1 (en) * 2014-04-07 2015-10-15 日本電気硝子株式会社 Supporting glass substrate and laminate using same

Also Published As

Publication number Publication date
JPWO2016035674A1 (en) 2017-06-15
KR102402822B1 (en) 2022-05-27
CN106660855A (en) 2017-05-10
JP2020128338A (en) 2020-08-27
TW201620849A (en) 2016-06-16
JP6741214B2 (en) 2020-08-19
WO2016035674A1 (en) 2016-03-10
CN115108719A (en) 2022-09-27
JP2020128337A (en) 2020-08-27
TWI671271B (en) 2019-09-11
KR20170048315A (en) 2017-05-08
JP6892000B2 (en) 2021-06-18

Similar Documents

Publication Publication Date Title
JP6963219B2 (en) Support glass substrate and laminate using this
TWI641573B (en) Supporting glass substrate and laminated body use the same, semiconductor package and fabricating method thereof and electronic apparatus
JP6593669B2 (en) Support glass substrate and carrier using the same
JP6611079B2 (en) Glass plate
JP6802966B2 (en) Support glass substrate and laminate using this
JP7268718B2 (en) Manufacturing method of supporting glass substrate
JP6627388B2 (en) Supporting glass substrate and laminate using the same
JP6763124B2 (en) Laminates and methods for manufacturing semiconductor packages using them
JP6593676B2 (en) Laminated body and semiconductor package manufacturing method
JPWO2016047210A1 (en) Support glass substrate and laminate using the same
JP6955320B2 (en) Manufacturing method of laminate and semiconductor package
JP6631935B2 (en) Manufacturing method of glass plate
JP6922276B2 (en) Support crystallized glass substrate and laminate using this
JP7011215B2 (en) Support glass substrate and laminate using it
JP2018095514A (en) Glass support substrate and laminate using same
TWI755449B (en) Support glass substrate and laminate using the same, semiconductor package, method for producing the same, and electronic device
TW201910285A (en) Supporting glass substrate and laminated substrate using the same
JP6813813B2 (en) Glass plate
WO2016098499A1 (en) Support glass substrate and laminate using same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200513

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210427

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210915

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210928

R150 Certificate of patent or registration of utility model

Ref document number: 6963219

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150