JP6950833B2 - Conductive paste for forming external electrodes of laminated ceramic electronic components - Google Patents

Conductive paste for forming external electrodes of laminated ceramic electronic components Download PDF

Info

Publication number
JP6950833B2
JP6950833B2 JP2020538406A JP2020538406A JP6950833B2 JP 6950833 B2 JP6950833 B2 JP 6950833B2 JP 2020538406 A JP2020538406 A JP 2020538406A JP 2020538406 A JP2020538406 A JP 2020538406A JP 6950833 B2 JP6950833 B2 JP 6950833B2
Authority
JP
Japan
Prior art keywords
conductive paste
metal powder
sulfur
less
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020538406A
Other languages
Japanese (ja)
Other versions
JPWO2020040138A1 (en
Inventor
聡一郎 江崎
聡一郎 江崎
隼人 立野
隼人 立野
信夫 西岡
信夫 西岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shoei Chemical Inc
Original Assignee
Shoei Chemical Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shoei Chemical Inc filed Critical Shoei Chemical Inc
Publication of JPWO2020040138A1 publication Critical patent/JPWO2020040138A1/en
Application granted granted Critical
Publication of JP6950833B2 publication Critical patent/JP6950833B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Conductive Materials (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Ceramic Capacitors (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Coils Or Transformers For Communication (AREA)

Description

本発明は、導電性成分として銅を主成分とする金属粉末を用いる積層セラミック電子部品の外部電極形成用の導電性ペーストに関する。 The present invention relates to a conductive paste for forming an external electrode of a laminated ceramic electronic component using a metal powder containing copper as a main component as a conductive component.

一例として、積層セラミックコンデンサや積層セラミックインダクタといった積層セラミック電子部品の外部電極を形成する際に、導電性粉末とガラス組成物と有機ビヒクルとを含む導電性ペーストが用いられている。 As an example, when forming an external electrode of a multilayer ceramic electronic component such as a multilayer ceramic capacitor or a multilayer ceramic inductor, a conductive paste containing a conductive powder, a glass composition, and an organic vehicle is used.

導電性粉末としては従前より銀(Ag)やパラジウム(Pd)等の金属粉末が用いられてきたが、近年では優れた導電性、生産コスト等の観点から、銅(Cu)を含む金属粉末を含む導電性ペースト(以下、銅ペースト)が特に広く用いられている。 Metal powders such as silver (Ag) and palladium (Pd) have been used as the conductive powders, but in recent years, metal powders containing copper (Cu) have been used from the viewpoint of excellent conductivity and production cost. A conductive paste containing (hereinafter, copper paste) is particularly widely used.

銅ペーストを用いて積層セラミック電子部品の外部電極を形成するには、一般的には、先ず、誘電体層と内部電極層とが交互に積層されたチップ状の積層体を準備し、その端面に対し、適宜の手法(例えばディップ印刷法やスクリーン印刷法)によって銅ペーストを塗布する。その後、銅を含む金属粉末が酸化しにくい雰囲気中で加熱焼成し、ペースト中の有機成分を飛散分解させた後、ガラスを流動化させると共に、銅を含む金属粒子同士を焼結させることによって、外部電極が形成される。この時に、焼成に適した加熱温度の範囲は、ペースト中に含まれる金属粉末やガラス組成物、有機ビヒクル、その他の添加剤等の種類や配合によって定まる。
そして更に、形成された外部電極の表面には、電極としての信頼性の向上や半田実装をしやすくするといった目的のため、錫やニッケル等のめっき層が形成される。
In order to form an external electrode of a laminated ceramic electronic component using a copper paste, generally, first, a chip-shaped laminate in which dielectric layers and internal electrode layers are alternately laminated is prepared, and an end face thereof is prepared. On the other hand, the copper paste is applied by an appropriate method (for example, a dip printing method or a screen printing method). Then, the metal powder containing copper is heated and fired in an atmosphere where it is difficult to oxidize, the organic components in the paste are scattered and decomposed, and then the glass is fluidized and the metal particles containing copper are sintered with each other. An external electrode is formed. At this time, the range of the heating temperature suitable for firing is determined by the type and composition of the metal powder, the glass composition, the organic vehicle, and other additives contained in the paste.
Further, a plating layer of tin, nickel, or the like is formed on the surface of the formed external electrode for the purpose of improving reliability as an electrode and facilitating solder mounting.

ところで、従来の銅ペーストでは、チップ状積層体の端面への塗布後に焼成される際、その焼成に適した温度範囲(以下「焼成ウィンドウ」)が狭いと、焼成炉内における温度のムラや、僅かな温度変化によって過焼結になりやすいという問題があった。過焼結になると、銅を含む金属粉末が急激に収縮することによってガラス成分が浮き出てしまい、焼成後のパターンの表面部分にガラス成分が偏在する、いわゆる「ガラス浮き」が生じることがある。このようなガラス浮きが生じることによって、焼成されたパターンと、錫、ニッケル等の各種金属との密着性が低下し、めっき層の形成等が困難になる。 By the way, in the conventional copper paste, when firing after coating the chip-shaped laminate on the end face, if the temperature range suitable for firing (hereinafter referred to as "firing window") is narrow, temperature unevenness in the firing furnace may occur. There is a problem that oversintering is likely to occur due to a slight temperature change. In the case of oversintering, the metal powder containing copper rapidly shrinks to cause the glass component to emerge, which may cause so-called "glass floating" in which the glass component is unevenly distributed on the surface portion of the pattern after firing. When such glass floating occurs, the adhesion between the fired pattern and various metals such as tin and nickel is lowered, and it becomes difficult to form a plating layer and the like.

このようなガラス浮きの発生を抑制するため、過焼結が生じないよう焼成温度を低くすることが考えられる。しかしながら、焼成ウィンドウが狭いため、この場合には、焼成膜(電極)の緻密性が低くなり、膜中にボイド(空隙)が発生する。その結果、電極の導電性やセラミック素体との接着強度が悪くなる他、後の工程で焼成膜に対してめっき処理を行う際にめっき液が膜中に浸入し、絶縁抵抗の低下や素体クラックの発生を招くほか、浸入しためっき液が半田リフロー時に熱せられてガス化し、溶融した半田が飛び散る「半田爆ぜ」の原因にもなる。 In order to suppress the occurrence of such glass floating, it is conceivable to lower the firing temperature so that oversintering does not occur. However, since the firing window is narrow, in this case, the density of the firing film (electrode) becomes low, and voids (voids) are generated in the film. As a result, the conductivity of the electrode and the adhesive strength with the ceramic element deteriorate, and the plating solution penetrates into the film when the fired film is plated in a later process, resulting in a decrease in insulation resistance and the element. In addition to causing body cracks, the infiltrated plating solution is heated during solder reflow and gasified, causing "solder explosion" in which the molten solder scatters.

ところで、金属粉末の焼成挙動を制御するために、金属粉末表面に特定の表面処理を行うといったことが、従前より試みられている。例えば特許文献1では、焼結開始温度を制御するために、銅粉末の表面に、Al、Si、Ti、Zr、Ce、Snのいずれかの元素を付着させることが試みられている。また特許文献2では、ニッケル、銀、銅、パラジウムのいずれかの金属粉末の表面を、硫黄を含む金属化合物で被覆することにより、金属粉末の触媒作用を効果的に抑制できると記載されている。 By the way, in order to control the firing behavior of the metal powder, it has been conventionally attempted to perform a specific surface treatment on the surface of the metal powder. For example, in Patent Document 1, in order to control the sintering start temperature, it is attempted to attach any one of the elements Al, Si, Ti, Zr, Ce, and Sn to the surface of the copper powder. Further, Patent Document 2 describes that the catalytic action of the metal powder can be effectively suppressed by coating the surface of the metal powder of nickel, silver, copper, or palladium with a metal compound containing sulfur. ..

しかしながら、本発明者等の検討によれば、銅を含む金属粉末に対して、これらの表面処理を施すと、銅を含む金属粉末単体の焼成挙動への影響が大き過ぎ、焼結開始温度を制御できたとしても焼成ウィンドウが狭くなる場合や、表面処理を行わなかった時の銅ペーストの焼成温度や焼成雰囲気から、これらの条件を大きく変えなければならなくなる場合がある。そうなるとペーストの設計を一から見直す必要が生じるだけなく、ペーストに使用可能な原料や材料等の特性や制約等の理由からペースト全体のコスト高につながったり、場合によっては焼成炉等の製造ラインの見直しが必要になるといったケースも希ではない。 However, according to the study by the present inventors, when these surface treatments are applied to the metal powder containing copper, the influence on the firing behavior of the metal powder containing copper alone is too great, and the sintering start temperature is set. Even if it can be controlled, the firing window may be narrowed, or these conditions may have to be changed significantly depending on the firing temperature and firing atmosphere of the copper paste when the surface treatment is not performed. In that case, not only will it be necessary to redesign the paste from scratch, but the cost of the entire paste will increase due to the characteristics and restrictions of the raw materials and materials that can be used for the paste, and in some cases, the production line of the firing furnace, etc. It is not uncommon for cases to need to be reviewed.

特開2016−033850号公報Japanese Unexamined Patent Publication No. 2016-033850 特開2014−005491号公報Japanese Unexamined Patent Publication No. 2014-005491

本発明の目的は、銅を含む金属粉末単体の焼成挙動を適度に制御し、その結果として焼成ウィンドウが広く、焼成後のボイドやガラス浮きといった問題が発生しにくい積層セラミック電子部品の外部電極形成用の導電性ペーストを提供することにある。 An object of the present invention is to appropriately control the firing behavior of a single metal powder containing copper, and as a result, the firing window is wide, and the formation of an external electrode of a laminated ceramic electronic component that is less likely to cause problems such as voids and glass floating after firing. To provide a conductive paste for use.

このような目的は、下記(1)〜()に記載の本発明により達成される。
(1) 銅を含む金属粉末と、ガラス組成物と、有機ビヒクルとを含む積層セラミック電子部品の外部電極形成用の導電性ペーストであって、
前記ガラス組成物が硫黄(S)を含み、当該硫黄(S)の含有量が前記金属粉末に対して10ppm以上370ppm以下であり、
前記金属粉末に含まれる硫黄(S)の含有量が10ppm未満であることを特徴とする積層セラミック電子部品の外部電極形成用の導電性ペースト。
Such an object is achieved by the present invention described in the following (1) to ( 6).
(1) A conductive paste for forming an external electrode of a laminated ceramic electronic component containing a metal powder containing copper, a glass composition, and an organic vehicle.
The glass composition contains sulfur (S), and the content of the sulfur (S) is 10 ppm or more and 370 ppm or less with respect to the metal powder.
A conductive paste for forming an external electrode of a laminated ceramic electronic component, characterized in that the content of sulfur (S) contained in the metal powder is less than 10 ppm.

(2) 前記金属粉末が銅粉末である上記(1)に記載の積層セラミック電子部品の外部電極形成用の導電性ペースト。 (2) The conductive paste for forming an external electrode of the laminated ceramic electronic component according to (1) above, wherein the metal powder is copper powder.

(3) 前記ガラス組成物中における硫黄の含有量が前記金属粉末に対して12ppm以上200ppm以下である上記(1)または(2)に記載の積層セラミック電子部品の外部電極形成用の導電性ペースト。
(4) 前記ガラス組成物中における硫黄の含有量が前記金属粉末に対して15ppm以上100ppm以下である上記(1)ないし(3)のいずれかに記載の積層セラミック電子部品の外部電極形成用の導電性ペースト。
(5) 前記ガラス組成物が、SiOを2.0質量%以上12.0質量%以下の範囲内で含み、Bを15.0質量%以上30.0質量%以下の範囲内で含み、Alを2.0質量%以上12.0質量%以下の範囲内で含む上記(1)ないし(4)のいずれかに記載の積層セラミック電子部品の外部電極形成用の導電性ペースト。
(6) 前記ガラス組成物が、Pb、CdおよびBiを実質的に含まない上記(1)ないし(5)のいずれかに記載の積層セラミック電子部品の外部電極形成用の導電性ペースト。
(3) The conductive paste for forming an external electrode of the laminated ceramic electronic component according to (1) or (2) above, wherein the sulfur content in the glass composition is 12 ppm or more and 200 ppm or less with respect to the metal powder. ..
(4) For forming an external electrode of the laminated ceramic electronic component according to any one of (1) to (3) above, wherein the sulfur content in the glass composition is 15 ppm or more and 100 ppm or less with respect to the metal powder. Conductive paste.
(5) The glass composition contains SiO 2 in the range of 2.0% by mass or more and 12.0% by mass or less, and B 2 O 3 in the range of 15.0% by mass or more and 30.0% by mass or less. The conductivity for forming an external electrode of the laminated ceramic electronic component according to any one of (1) to (4) above, which contains Al 2 O 3 in the range of 2.0% by mass or more and 12.0% by mass or less. Sex paste.
(6) The conductive paste for forming an external electrode of the laminated ceramic electronic component according to any one of (1) to (5) above, wherein the glass composition does not substantially contain Pb, Cd and Bi.

本発明によれば、焼成した際に、焼成膜中においてボイドが発生しにくく、かつ、過焼結による悪影響を生じにくい積層セラミック電子部品の外部電極形成用の導電性ペーストを提供することができる。 According to the present invention, it is possible to provide a conductive paste for forming an external electrode of a laminated ceramic electronic component, which is less likely to generate voids in the fired film when fired and is less likely to cause an adverse effect due to oversintering. ..

以下、本発明の好適な実施形態について詳細に説明する。
[導電性ペースト]
1.第1実施形態
本発明の好適な実施形態に係る導電性ペーストは、銅を含む金属粉末と、ガラス組成物と、有機ビヒクルとを含む導電性ペーストであって、前記ガラス組成物が硫黄(S)を含み、当該硫黄の含有量が前記金属粉末に対して10ppm以上370ppm以下である。
Hereinafter, preferred embodiments of the present invention will be described in detail.
[Conductive paste]
1. 1. 1st Embodiment The conductive paste according to a preferred embodiment of the present invention is a conductive paste containing a metal powder containing copper, a glass composition, and an organic vehicle, and the glass composition is sulfur (S). ), And the content of the sulfur is 10 ppm or more and 370 ppm or less with respect to the metal powder.

このような構成により、銅を含む導電性ペーストであって、銅を含む金属粉末そのものに表面処理を行った場合に比べて焼成挙動の変動が小さく、銅ペースト全体として焼成挙動を適度に制御することができ、焼成ウィンドウが広く、焼成後のボイドやガラス浮きといった問題が発生しにくい導電性ペーストを提供することができる。 With such a configuration, in the conductive paste containing copper, the fluctuation of the firing behavior is small as compared with the case where the metal powder containing copper itself is surface-treated, and the firing behavior of the copper paste as a whole is appropriately controlled. It is possible to provide a conductive paste which has a wide firing window and is less likely to cause problems such as voids and glass floating after firing.

このような優れた効果が得られるのは、以下のような理由によると考えられる。すなわち、従来例において金属粉末に硫黄(S)を配合したり、金属粉末の表面に硫黄化合物を被覆していた場合に比べ、焼成時に導電性ペースト中のガラス組成物が流動し始めてから、当該ガラス組成物中に含まれていた硫黄が、金属粉末を構成する銅に対して働きかけるため、その結果、金属粉末の焼結挙動が緩やかにコントロールされているのではないかと本発明者等は推測している。 It is considered that such an excellent effect can be obtained for the following reasons. That is, as compared with the case where the metal powder is mixed with sulfur (S) or the surface of the metal powder is coated with the sulfur compound in the conventional example, the glass composition in the conductive paste starts to flow during firing. The present inventors speculate that the sulfur contained in the glass composition acts on the copper constituting the metal powder, and as a result, the sintering behavior of the metal powder is loosely controlled. doing.

2.第2実施形態
また、本発明の他の好適な実施形態に係る導電性ペーストは、銅を含む金属粉末と、ガラス組成物と、有機ビヒクルと、無機添加剤とを含む導電性ペーストであって、前記無機添加剤が硫黄を含み、当該硫黄の含有量が前記金属粉末に対して10ppm以上370ppm以下である。
2. Second Embodiment The conductive paste according to another preferred embodiment of the present invention is a conductive paste containing a metal powder containing copper, a glass composition, an organic vehicle, and an inorganic additive. , The inorganic additive contains copper, and the content of the sulfur is 10 ppm or more and 370 ppm or less with respect to the metal powder.

このような構成により、銅を含む導電性ペーストであって、銅を含む金属粉末そのものに表面処理を行った場合に比べて焼成挙動の変動が小さく、銅ペースト全体として焼成挙動を適度に制御することができ、焼成ウィンドウが広く、焼成後のボイドやガラス浮きといった問題が発生しにくい導電性ペーストを提供することができる。 With such a configuration, in the conductive paste containing copper, the fluctuation of the firing behavior is small as compared with the case where the metal powder containing copper itself is surface-treated, and the firing behavior of the copper paste as a whole is appropriately controlled. It is possible to provide a conductive paste which has a wide firing window and is less likely to cause problems such as voids and glass floating after firing.

このような優れた効果が得られるのは、以下のような理由によると考えられる。すなわち、従来例において金属粉末に硫黄(S)を配合したり、金属粉末の表面に硫黄化合物を被覆していた場合に比べ、焼成時に導電性ペースト中のガラス組成物が流動し始めてから、無機添加剤を構成する硫黄が一旦当該ガラス組成物内へ溶解し、その後、当該ガラス組成物中に溶解した硫黄が、金属粉末を構成する銅に対して働きかけるため、その結果、金属粉末の焼結挙動が緩やかにコントロールされているのではないかと本発明者等は推測している。 It is considered that such an excellent effect can be obtained for the following reasons. That is, as compared with the case where sulfur (S) is mixed with the metal powder or the surface of the metal powder is coated with a sulfur compound in the conventional example, the glass composition in the conductive paste starts to flow during firing and then becomes inorganic. The sulfur constituting the additive is once dissolved in the glass composition, and then the sulfur dissolved in the glass composition acts on the copper constituting the metal powder, resulting in sintering of the metal powder. The present inventors speculate that the behavior may be loosely controlled.

3.第3実施形態
また、本発明の他の好適な実施形態に係る導電性ペーストは、銅を含む金属粉末と、ガラス組成物と、有機ビヒクルと、有機添加剤とを含む導電性ペーストであって、前記有機添加剤がチオール基を有し、前記有機添加剤中の硫黄の含有量が前記金属粉末に対して10ppm以上370ppm以下である。
3. 3. Third Embodiment The conductive paste according to another preferred embodiment of the present invention is a conductive paste containing a metal powder containing copper, a glass composition, an organic vehicle, and an organic additive. The organic additive has a thiol group, and the content of sulfur in the organic additive is 10 ppm or more and 370 ppm or less with respect to the metal powder.

このような構成により、銅を含む導電性ペーストであって、銅を含む金属粉末そのものに表面処理を行った場合に比べて焼成挙動の変動が小さく、銅ペースト全体として焼成挙動を適度に制御することができ、焼成ウィンドウが広く、焼成後のボイドやガラス浮きといった問題が発生しにくい導電性ペーストを提供することができる。 With such a configuration, in the conductive paste containing copper, the fluctuation of the firing behavior is small as compared with the case where the metal powder containing copper itself is surface-treated, and the firing behavior of the copper paste as a whole is appropriately controlled. It is possible to provide a conductive paste which has a wide firing window and is less likely to cause problems such as voids and glass floating after firing.

このような優れた効果が得られるのは、以下のような理由によると考えられる。すなわち、従来例において金属粉末に硫黄(S)を配合したり、金属粉末の表面に硫黄化合物を被覆していた場合に比べ、焼成時に導電性ペースト中のガラス組成物が流動し始めてから、有機添加剤を構成する硫黄が一旦当該ガラス組成物内へ溶解し、その後、当該ガラス組成物中に溶解した硫黄が、金属粉末を構成する銅に対して働きかけるため、その結果、金属粉末の焼結挙動が緩やかにコントロールされているのではないかと本発明者等は推測している。 It is considered that such an excellent effect can be obtained for the following reasons. That is, as compared with the case where sulfur (S) is mixed with the metal powder or the surface of the metal powder is coated with a sulfur compound in the conventional example, the glass composition in the conductive paste starts to flow during firing and then becomes organic. The sulfur constituting the additive is once dissolved in the glass composition, and then the sulfur dissolved in the glass composition acts on the copper constituting the metal powder, resulting in sintering of the metal powder. The present inventors speculate that the behavior may be loosely controlled.

前記各実施形態の中でも、第1実施形態のガラス組成物が所定量の硫黄を含んでいる形態や、第2実施形態の無機添加剤が所定量の硫黄を含んでいる形態(特に、ガラス組成物が所定量の硫黄を含んでいる形態)では、比較的低い温度(例えば、750℃)で焼成した場合であっても、焼成膜の緻密性を特に優れたものとすることができる点、および、好適な焼成膜を形成することが可能な焼成温度の範囲(焼成ウィンドウ)が特に広い点で有利である。本発明においては、特に第1実施形態が好ましい。なお、第3実施形態の場合、経時により有機添加剤が強く金属粉末に結びつく場合があるため、保管温度を含めた環境管理が必要である。 Among the above-described embodiments, the glass composition of the first embodiment contains a predetermined amount of sulfur, and the inorganic additive of the second embodiment contains a predetermined amount of sulfur (particularly, a glass composition). In the form in which the product contains a predetermined amount of sulfur), the compactness of the fired film can be made particularly excellent even when the material is fired at a relatively low temperature (for example, 750 ° C.). Further, it is advantageous in that the range of the firing temperature (firing window) at which a suitable firing film can be formed is particularly wide. In the present invention, the first embodiment is particularly preferable. In the case of the third embodiment, since the organic additive may be strongly bound to the metal powder with time, it is necessary to manage the environment including the storage temperature.

上記のような構成を満たさない場合には、満足のいく結果が得られない。
例えば、第1〜第3実施形態において、導電性ペーストの前記の所定の成分中における硫黄の含有量が前記下限値未満であると、焼成した際の過焼結による悪影響を十分に防止することができなくなる。特に、比較的高温(例えば、780℃以上)で焼成した場合に過焼結による悪影響が顕著に生じやすくなる。
If the above configuration is not satisfied, satisfactory results cannot be obtained.
For example, in the first to third embodiments, when the sulfur content in the predetermined component of the conductive paste is less than the lower limit, the adverse effect of oversintering during firing is sufficiently prevented. Can't be done. In particular, when fired at a relatively high temperature (for example, 780 ° C. or higher), adverse effects due to oversintering are likely to occur remarkably.

また、第1〜第3実施形態において、導電性ペーストの前記の所定の成分中における硫黄の含有量が前記上限値を超えると、焼成した際の焼成膜中でのボイドの発生を十分に防止することができない。特に、比較的低温(例えば、750℃以下)で焼成した場合に焼成膜中にボイドが顕著に生じやすくなる。 Further, in the first to third embodiments, when the sulfur content in the predetermined component of the conductive paste exceeds the upper limit value, the generation of voids in the fired film at the time of firing is sufficiently prevented. Can not do it. In particular, when fired at a relatively low temperature (for example, 750 ° C. or lower), voids are likely to be remarkably generated in the fired film.

また、導電性ペースト全体としての硫黄の含有量が前記範囲内の値であっても、前記の所定の成分中における硫黄の含有量が所定の含有量の条件を満たさない場合、より具体的には、金属粉末中に多くの硫黄が含まれている場合には、金属粉末の焼結開始温度等の焼成挙動に対して与える影響が大きすぎるため、焼成膜の緻密性が低下し、焼成膜中にボイドが生じやすくなる。 Further, even if the sulfur content of the conductive paste as a whole is within the above range, if the sulfur content in the predetermined component does not satisfy the condition of the predetermined content, more specifically. When a large amount of sulfur is contained in the metal powder, the influence on the firing behavior such as the sintering start temperature of the metal powder is too large, so that the density of the fired film is lowered and the fired film is reduced. Voids are likely to occur inside.

前述したように、導電性ペーストの前記の所定の成分(ガラス組成物、無機添加剤、有機添加剤)中における硫黄の含有量は、金属粉末に対して、10ppm以上370ppm以下であればよいが、12ppm以上200ppm以下であることが好ましく、15ppm以上100ppm以下であることが特に好ましい。
これにより、前述した効果がより顕著に発揮される。
As described above, the content of sulfur in the predetermined components (glass composition, inorganic additive, organic additive) of the conductive paste may be 10 ppm or more and 370 ppm or less with respect to the metal powder. , 12 ppm or more and 200 ppm or less, and particularly preferably 15 ppm or more and 100 ppm or less.
As a result, the above-mentioned effect is more prominently exhibited.

<金属粉末>
本発明における導電性ペーストは金属粉末を含み、当該金属粉末は銅を含んでいる。
このような金属粉末としては、例えば、銅のみからなる純銅粉末や銅合金粉末等が挙げられる。更には銅粒子をコアとし、その表面に、酸化銅からなる薄膜や、銅以外の元素を含む酸化物薄膜が被覆された、コア−シェル構造の金属粉末であっても良い。薄膜としては、ガラス質であることが特に好ましい。金属粉末へのガラス質薄膜の被覆は、例えば日本国特許第3206496号等に記載されている方法により達成できる。
<Metal powder>
The conductive paste in the present invention contains a metal powder, and the metal powder contains copper.
Examples of such a metal powder include pure copper powder and copper alloy powder made of only copper. Further, it may be a metal powder having a core-shell structure in which copper particles are used as a core and the surface thereof is coated with a thin film made of copper oxide or an oxide thin film containing an element other than copper. The thin film is particularly preferably glassy. Coating of a vitreous thin film on a metal powder can be achieved by, for example, the method described in Japanese Patent No. 3206496 or the like.

金属粉末が上記薄膜を備えたコアーシェル構造であることにより、金属粉末の酸化を抑制したり、金属粉末の焼結開始温度を制御することができる。 Since the metal powder has a core-shell structure provided with the thin film, it is possible to suppress the oxidation of the metal powder and control the sintering start temperature of the metal powder.

上述した、酸化銅からなる薄膜や、銅以外の元素を含む酸化物薄膜には硫黄は含まれないが、薄膜がガラス質である場合には、当該薄膜中に硫黄が含まれていても良い。ガラス質薄膜は金属粉末の酸化を抑制するだけでなく、焼成時には軟化流動し、金属粉末の焼結助剤としても機能する。ガラス質薄膜が硫黄を含む場合には、他のガラス組成物や無機添加剤、或いは有機添加剤に含まれる硫黄との合計量が、金属粉末に対して10ppm以上370ppm以下にあれば良い。 The above-mentioned thin film made of copper oxide and the oxide thin film containing elements other than copper do not contain sulfur, but when the thin film is vitreous, sulfur may be contained in the thin film. .. The vitreous thin film not only suppresses the oxidation of the metal powder, but also softens and flows during firing, and also functions as a sintering aid for the metal powder. When the vitreous thin film contains sulfur, the total amount of sulfur contained in other glass compositions, inorganic additives, or organic additives may be 10 ppm or more and 370 ppm or less with respect to the metal powder.

金属粉末中に含まれる全ての金属元素量に対する銅元素(Cu)の含有量は、50質量%以上100質量%以下であることが好ましく、80質量%以上100質量%以下であることがより好ましい。 The content of copper element (Cu) with respect to the total amount of metal elements contained in the metal powder is preferably 50% by mass or more and 100% by mass or less, and more preferably 80% by mass or more and 100% by mass or less. ..

本発明における金属粉末は、実質的に硫黄を含まないものであるが、不可避不純物としての硫黄を含む態様を除外するものではない。すなわち、本発明において「金属粉末が実質的に硫黄を含まない」とは、金属粉末に含まれる硫黄の含有量が10ppm未満であり、7ppm未満であることがより好ましく、5ppm未満であることがさらに好ましい。 The metal powder in the present invention is substantially sulfur-free, but does not exclude aspects containing sulfur as an unavoidable impurity. That is, in the present invention, "the metal powder contains substantially no sulfur" means that the content of sulfur contained in the metal powder is less than 10 ppm, more preferably less than 7 ppm, and less than 5 ppm. More preferred.

これにより、銅を含む金属粉末そのものに表面処理を行った場合に比べて焼成挙動の変動が小さく、銅ペースト全体として適度に焼成挙動を制御することができる。 As a result, the variation in the firing behavior is small as compared with the case where the metal powder itself containing copper is surface-treated, and the firing behavior of the copper paste as a whole can be appropriately controlled.

金属粉末の平均粒径(D50)は、特に限定されないが、0.2μm以上5.0μm以下であるのが好ましく、0.5μm以上4.5μm以下であるのがより好ましく、1.0μm以上4.0μm以下であるのがさらに好ましい。The average particle size (D 50 ) of the metal powder is not particularly limited, but is preferably 0.2 μm or more and 5.0 μm or less, more preferably 0.5 μm or more and 4.5 μm or less, and 1.0 μm or more. It is more preferably 4.0 μm or less.

なお、本明細書において、平均粒径(D50)とは、特に断りのない限り、レーザ式粒度分布測定装置を用いて測定した粒度分布の重量基準の積算分率50%値を指し、例えばレーザ回折/散乱式粒子径分布測定装置LA−960(HORIBA社製)を用いた測定により求めることができる。In the present specification, the average particle size (D 50 ) refers to a weight-based integrated fraction 50% value of the particle size distribution measured using a laser particle size distribution measuring device, unless otherwise specified, for example. It can be obtained by measurement using a laser diffraction / scattering type particle size distribution measuring device LA-960 (manufactured by HORIBA).

金属粉末のBET比表面積は、特に限定されないが、0.30m/g以上1.00m/g以下であるのが好ましく、0.40m/g以上0.90m/g以下であるのがより好ましく、0.50m/g以上0.80m/g以下であるのがさらに好ましい。なお、BET比表面積は、例えばトライスター3000(島津製作所社製)を用いて求めることができる。BET specific surface area of the metal powder is not particularly limited, it is preferably not more than 0.30 m 2 / g or more 1.00m 2 / g, 0.40m 2 / g or more 0.90 m 2 / g or less of It is more preferable, and even more preferably less 0.50 m 2 / g or more 0.80 m 2 / g. The BET specific surface area can be determined by using, for example, Tristar 3000 (manufactured by Shimadzu Corporation).

導電性ペースト中における金属粉末の含有量は、特に限定されないが、50.0質量%以上80.0質量%以下であるのが好ましく、55.0質量%以上75.0質量%以下であるのがより好ましく、60.0質量%以上70.0質量%以下であるのがさらに好ましい。 The content of the metal powder in the conductive paste is not particularly limited, but is preferably 50.0% by mass or more and 80.0% by mass or less, and 55.0% by mass or more and 75.0% by mass or less. Is more preferable, and 60.0% by mass or more and 70.0% by mass or less is further preferable.

これにより、銅を含む金属粉末の機能を十分に発揮させつつ、焼成膜の導電性をより確実に十分に優れたものとすることができる。 As a result, the conductivity of the fired film can be made more reliably and sufficiently excellent while fully exerting the functions of the metal powder containing copper.

なお、本発明の導電性ペーストを構成する金属粉末を構成する複数個の粒子は、互いに同一又は均一な金属組成を有する金属粒子であることが好ましいが、本発明の作用効果を阻害しない限り、金属組成の異なる金属粒子を含んでいてもよい。例えば、金属粉末は、互いに銅の含有率の異なる複数種の粒子を含んでいてもよい。このような場合でも、金属粉末全体としての銅の含有量は、前述した条件を満足するのが好ましい。 The plurality of particles constituting the metal powder constituting the conductive paste of the present invention are preferably metal particles having the same or uniform metal composition with each other, but as long as the effects of the present invention are not impaired, it is preferable. It may contain metal particles having different metal compositions. For example, the metal powder may contain a plurality of types of particles having different copper contents from each other. Even in such a case, the copper content of the metal powder as a whole preferably satisfies the above-mentioned conditions.

<ガラス組成物>
本発明の導電性ペーストに含まれるガラス組成物は、その軟化点が焼成温度以下であれば、いかなる組成を有するものであってもよいが、Pb、CdおよびBiを実質的に含まないガラス組成であることが好ましい。例えば、本発明においては、酸化物換算にした時のガラス組成全体の合計量に対し、必須成分としてSiOを2.0質量%以上12.0質量%以下の範囲内で、Bを15.0質量%以上30.0質量%以下の範囲内で、Alを2.0質量%以上12.0質量%以下の範囲内で含み、その他の任意成分として、BaOを40.0質量%以上65.0質量%以下の範囲内で、ZnOを5.0質量%以上50.0質量%以下の範囲内で、TiOを0.5質量%以上7.0質量%以下の範囲内で、CaOを3.0質量%以上7.5質量%以下の範囲内で、KOを1.5質量%以上4.0質量%以下の範囲内で、MnOを2.5質量%以上12.0質量%以下の範囲内で含むガラス組成物を好適に用いることができる。
<Glass composition>
The glass composition contained in the conductive paste of the present invention may have any composition as long as its softening point is equal to or lower than the firing temperature, but the glass composition does not substantially contain Pb, Cd and Bi. Is preferable. For example, in the present invention, SiO 2 is added as an essential component in the range of 2.0% by mass or more and 12.0% by mass or less with respect to the total amount of the entire glass composition in terms of oxide , and B 2 O 3 Is contained in the range of 15.0% by mass or more and 30.0% by mass or less, Al 2 O 3 is contained in the range of 2.0% by mass or more and 12.0% by mass or less, and BaO is 40 as other optional components. Within the range of 0.0% by mass or more and 65.0% by mass or less, ZnO is within the range of 5.0% by mass or more and 50.0% by mass or less, and TiO 2 is 0.5% by mass or more and 7.0% by mass or less. within the range of, within the following 7.5 wt% 3.0 wt% or more CaO, the K 2 O in the range of 1.5 wt% to 4.0 wt% or less, the MnO 2 2. A glass composition containing in the range of 5% by mass or more and 12.0% by mass or less can be preferably used.

上記組成のガラス組成物を用いた場合、非酸化性雰囲気中で焼成が行われる場合であっても、耐酸性に優れ、強度不良やめっき液の浸入のない緻密な電極膜を形成することが容易である。 When the glass composition having the above composition is used, even when firing is performed in a non-oxidizing atmosphere, it is possible to form a dense electrode film having excellent acid resistance and no poor strength or penetration of plating solution. It's easy.

本発明の第1実施形態においては、ガラス組成物中に硫黄が含まれる。ガラス組成物中への硫黄の配合はいかなる手法を用いても良いが、一例としてはガラス組成物を製造する際、ガラスを構成する材料と共に、硫黄源として例えばBaSOを混合し、溶融、急冷、粉砕といった通常の手法で製造することができる。この際、硫黄源は、硫黄源中に含まれる硫黄量が金属粉末に対して10ppm以上370ppm以下になるよう秤量される。In the first embodiment of the present invention, sulfur is contained in the glass composition. Any method may be used for blending sulfur into the glass composition, but as an example, when producing a glass composition, for example, BaSO 4 as a sulfur source is mixed with the material constituting the glass, and melted and rapidly cooled. , Can be manufactured by ordinary methods such as crushing. At this time, the sulfur source is weighed so that the amount of sulfur contained in the sulfur source is 10 ppm or more and 370 ppm or less with respect to the metal powder.

ガラス組成物は、例えば、前述のガラス質薄膜として金属粉末を被覆した形態で、導電性ペースト中に含まれていてもよいが、金属粉末から独立したガラス粉末の形態で含まれているのが好ましい。
これにより、コスト面から特に有利となる。
The glass composition may be contained in the conductive paste in the form of being coated with the metal powder as the above-mentioned glassy thin film, for example, but is contained in the form of the glass powder independent of the metal powder. preferable.
This is particularly advantageous in terms of cost.

ガラス粉末としては、例えば、粒状、フレーク状、繊維、針状、不定形状等の粒子がそれぞれ集まった粉末としての形態であってもよい。 The glass powder may be in the form of, for example, a powder in which particles such as granules, flakes, fibers, needles, and irregular shapes are gathered.

以下の記載では、導電性ペーストを構成するガラス組成物が、ガラス粉末である場合について、中心的に説明する。 In the following description, the case where the glass composition constituting the conductive paste is a glass powder will be mainly described.

ガラス組成物の平均粒径は、特に限定されないが、0.1μm以上4.5μm以下であるのが好ましく、0.3μm以上4.0μm以下であるのがより好ましく、0.8μm以上3.5μm以下であるのがさらに好ましい。 The average particle size of the glass composition is not particularly limited, but is preferably 0.1 μm or more and 4.5 μm or less, more preferably 0.3 μm or more and 4.0 μm or less, and 0.8 μm or more and 3.5 μm or more. The following is more preferable.

ガラス組成物のBET比表面積は、特に限定されないが、0.90m/g以上5.00m/g以下であるのが好ましく、1.20m/g以上4.50m/g以下であるのがより好ましく、1.50m/g以上4.00m/g以下であるのがさらに好ましい。BET specific surface area of the glass composition is not particularly limited, equal to or less than 0.90 m 2 / g or more 5.00 m 2 / g is preferably, 1.20 m 2 / g or more 4.50 m 2 / g or less Is more preferable, and more preferably 1.50 m 2 / g or more and 4.00 m 2 / g or less.

導電性ペースト中におけるガラス組成物の含有量は、特に限定されないが、4.0質量%以上20.0質量%以下であるのが好ましく、5.0質量%以上15.0質量%以下であるのがより好ましく、6.0質量%以上10.0質量%以下であるのがさらに好ましい。 The content of the glass composition in the conductive paste is not particularly limited, but is preferably 4.0% by mass or more and 20.0% by mass or less, and is 5.0% by mass or more and 15.0% by mass or less. Is more preferable, and 6.0% by mass or more and 10.0% by mass or less is further preferable.

なお、本発明の導電性ペーストを構成するガラス組成物を構成する複数個の粒子は、互いに同一又は均一なガラス組成を有するガラス粒子であっても良いが、焼成挙動の制御や基材への接着性・密着性を向上させる等といった目的で、一般的に広く知られている手法に倣って組成や粒径等の異なる複数種のガラス粒子を含んでいてもよい。 The plurality of particles constituting the glass composition constituting the conductive paste of the present invention may be glass particles having the same or uniform glass composition with each other, but the firing behavior can be controlled and the substrate can be coated. For the purpose of improving adhesiveness and adhesion, a plurality of types of glass particles having different compositions, particle sizes, etc. may be contained according to a generally widely known method.

<有機ビヒクル>
本発明において導電性ペーストに含まれる有機ビヒクルとしては特に限定されず、例えば、アルコール類(例えば、ターピネオール、α−ターピネオール、β−ターピネオール等)、エステル類(例えば、ヒドロキシ基含有エステル類、2,2,4―トリメチル−1,3−ペンタンジオールモノイソブチラート、ブチルカルビトールアセテート等)、エーテル類(例えば、ジプロピレングリコール−n−プロピルエーテル等のグリコールエーテル類等)等の有機溶剤から選択される1種または2種以上に対し、セルロース系樹脂(例えば、エチルセルロース、ニトロセルロース等)、(メタ)アクリル系樹脂(例えば、ポリメチルアクリレート、ポリメチルメタクリレート等)、エステル系樹脂(例えば、ロジンエステル等)、ポリビニルアセタール(例えば、ポリビニルブチラール等)等の有機バインダーから選択される1種または2種以上を溶解又は分散させて用いることができるが、用途や塗布方法によっては、有機ビヒクルは有機溶剤のみからなり、有機バインダーを要しない場合もある。
<Organic vehicle>
In the present invention, the organic vehicle contained in the conductive paste is not particularly limited, and for example, alcohols (for example, tarpineol, α-terpineol, β-terpineol, etc.), esters (for example, hydroxy group-containing esters, 2, Select from organic solvents such as 2,4-trimethyl-1,3-pentanediol monoisobutyrate, butyl carbitol acetate, etc.), ethers (for example, glycol ethers such as dipropylene glycol-n-propyl ether, etc.) Cellular resins (eg, ethyl cellulose, nitrocellulose, etc.), (meth) acrylic resins (eg, polymethylacrylate, polymethylmethacrylate, etc.), ester-based resins (eg, rosin), etc. One or more selected from organic solvents such as ester) and polyvinyl acetal (for example, polyvinyl butyral) can be dissolved or dispersed, but depending on the application and coating method, the organic vehicle is organic. It consists only of solvent and may not require an organic binder.

有機溶剤としては、アルコール類(特に、ターピネオール)およびエーテル類(特に、ジプロピレングリコール−n−プロピルエーテル)のうちの少なくとも一方を含んでいるのが好ましく、これらの両方を含んでいるものがより好ましい。
また有機バインダーとしては、(メタ)アクリル系樹脂を含んでいることが好ましい。
The organic solvent preferably contains at least one of alcohols (particularly terpineol) and ethers (particularly dipropylene glycol-n-propyl ether), and those containing both of them are more preferable. preferable.
The organic binder preferably contains a (meth) acrylic resin.

導電性ペースト中における有機ビヒクルの含有量は、特に限定されないが、10.0質量%以上40.0質量%以下であるのが好ましく、15.0質量%以上35.0質量%以下であるのがより好ましく、20.0質量%以上30.0質量%以下であるのがさらに好ましい。 The content of the organic vehicle in the conductive paste is not particularly limited, but is preferably 10.0% by mass or more and 40.0% by mass or less, and 15.0% by mass or more and 35.0% by mass or less. Is more preferable, and 20.0% by mass or more and 30.0% by mass or less is further preferable.

導電性ペースト中における当該有機溶媒の含有量は、特に限定されないが、7.0質量%以上30.0質量%以下であるのが好ましく、10.0質量%以上28.0質量%以下であるのがより好ましく、14.0質量%以上25.0質量%以下であるのがさらに好ましい。 The content of the organic solvent in the conductive paste is not particularly limited, but is preferably 7.0% by mass or more and 30.0% by mass or less, and 10.0% by mass or more and 28.0% by mass or less. Is more preferable, and 14.0% by mass or more and 25.0% by mass or less is further preferable.

また、導電性ペースト中における当該有機バインダーの含有量は、特に限定されないが、1.0質量%以上15.0質量%以下であるのが好ましく、2.0質量%以上10.0質量%以下であるのがより好ましく、3.0質量%以上8.0質量%以下であるのがさらに好ましい。 The content of the organic binder in the conductive paste is not particularly limited, but is preferably 1.0% by mass or more and 15.0% by mass or less, and 2.0% by mass or more and 10.0% by mass or less. It is more preferable that it is 3.0% by mass or more and 8.0% by mass or less.

<無機添加剤>
導電性ペーストは、前述した各成分とは異なる成分として、硫黄を含む無機添加剤を含んでいてもよい。この際、無機添加剤の添加量は、無機添加剤中に含まれる硫黄量が金属粉末に対して10ppm以上370ppm以下の範囲となるよう秤量される。
<Inorganic additive>
The conductive paste may contain an inorganic additive containing sulfur as a component different from each of the above-mentioned components. At this time, the amount of the inorganic additive added is weighed so that the amount of sulfur contained in the inorganic additive is in the range of 10 ppm or more and 370 ppm or less with respect to the metal powder.

このような無機添加剤を用いることにより、例えば、当該無機添加剤の添加量を調整することにより、ガラス組成物中の硫黄の含有量を調整することなく、導電性ペースト中における金属粉末に対する硫黄の含有量を好適に調整することができる。その結果、例えば、入手が容易なガラス組成物を導電性ペーストの製造に好適に用いることができる。 By using such an inorganic additive, for example, by adjusting the addition amount of the inorganic additive, sulfur with respect to the metal powder in the conductive paste without adjusting the sulfur content in the glass composition. The content of the above can be preferably adjusted. As a result, for example, an easily available glass composition can be suitably used for producing a conductive paste.

硫黄を含む無機添加剤は、導電性ペースト中において、溶解した状態で存在するものであってもよいが、不溶性成分として含まれるものであるのが好ましい。 The sulfur-containing inorganic additive may be present in a dissolved state in the conductive paste, but is preferably contained as an insoluble component.

これにより、例えば、導電性ペーストの保存時において、不本意に金属粉末と反応することをより効果的に防止することができる。 Thereby, for example, when the conductive paste is stored, it can be more effectively prevented from reacting unintentionally with the metal powder.

硫黄を含む無機添加剤としては、例えば、硫酸塩、亜硫酸塩、過硫酸塩、チオ硫酸、金属硫化物等が挙げられるが、硫酸塩であるのが好ましい。 Examples of the sulfur-containing inorganic additive include sulfate, sulfite, persulfate, thiosulfate, metal sulfide and the like, but sulfate is preferable.

硫酸塩は、各種無機添加剤の中でも、導電性ペーストの焼成時にガラスが流動する際に、ガラスに対して比較的溶解しやすい成分である。したがって、無機添加剤として硫酸塩を用いた場合、前述した効果がより顕著に発揮される。 Among various inorganic additives, sulfate is a component that is relatively easily dissolved in glass when the glass flows during firing of the conductive paste. Therefore, when a sulfate is used as the inorganic additive, the above-mentioned effects are more prominently exhibited.

硫酸塩としては、例えば、硫酸バリウム、硫酸マグネシウム、硫酸カルシウム、硫酸アルミニウム、硫酸ナトリウム、硫酸カリウム、硫酸ナトリウムカリウム、硫酸アンモニウム等が挙げられる。中でも、硫酸バリウムが好ましい。 Examples of the sulfate include barium sulfate, magnesium sulfate, calcium sulfate, aluminum sulfate, sodium sulfate, potassium sulfate, potassium sodium sulfate, ammonium sulfate and the like. Of these, barium sulfate is preferable.

これにより、前述したような効果がより顕著に発揮される。また、硫酸バリウムは、通常の条件(例えば、導電性ペーストが保存される0℃以上40℃以下等の条件)においては、化学的安定性が高く、難溶性の成分であり、不本意に金属粉末と反応しにくい成分である。また、硫酸バリウムは、比較的安価で、容易かつ安定的に入手することができる物質であり、導電性ペーストの安定供給、生産コストの低減等の観点からも好ましい。 As a result, the above-mentioned effect is more prominently exhibited. In addition, barium sulfate is a component having high chemical stability and poor solubility under normal conditions (for example, conditions such as 0 ° C. or higher and 40 ° C. or lower at which the conductive paste is stored), and is unwillingly a metal. It is a component that does not easily react with powder. Further, barium sulfate is a substance that is relatively inexpensive and can be easily and stably obtained, and is preferable from the viewpoints of stable supply of conductive paste and reduction of production cost.

導電性ペースト中における無機添加剤は小径粉末である方が、ガラス組成物に対して硫黄がより入り込み易く、特に限定されないが、平均粒径(D50)が0.5μm以下であることが好ましく、更には0.1μm以下であることがより好ましい。入手のし易さをも考慮した場合、最も好ましくは、平均粒径は0.01μm以上0.05μm以下である。When the inorganic additive in the conductive paste is a small-diameter powder, sulfur is more likely to enter the glass composition, and the average particle size (D 50 ) is preferably 0.5 μm or less, although it is not particularly limited. Further, it is more preferably 0.1 μm or less. Considering the availability, the average particle size is most preferably 0.01 μm or more and 0.05 μm or less.

<有機添加剤>
導電性ペーストは、前述した各成分とは異なる成分として、硫黄を含む有機添加剤を含んでいてもよい。この際、有機添加剤の添加量は、有機添加剤中に含まれる硫黄量が金属粉末に対して10ppm以上370ppm以下の範囲となるよう秤量される。
<Organic additive>
The conductive paste may contain an organic additive containing sulfur as a component different from each of the above-mentioned components. At this time, the amount of the organic additive added is weighed so that the amount of sulfur contained in the organic additive is in the range of 10 ppm or more and 370 ppm or less with respect to the metal powder.

このような有機添加剤を用いることにより、例えば、当該有機添加剤の添加量を調整することにより、ガラス組成物中の硫黄の含有量を調整することなく、導電性ペースト中における金属粉末に対する硫黄の含有量を好適に調整することができる。その結果、例えば、入手が容易なガラス組成物を導電性ペーストの製造に好適に用いることができる。 By using such an organic additive, for example, by adjusting the addition amount of the organic additive, sulfur with respect to the metal powder in the conductive paste without adjusting the sulfur content in the glass composition. The content of the above can be preferably adjusted. As a result, for example, an easily available glass composition can be suitably used for producing a conductive paste.

硫黄を含む有機添加剤は、導電性ペースト中において、溶解した状態で存在するものであってもよいし、不溶性成分として含まれるものであってもよい。 The organic additive containing sulfur may be present in a dissolved state in the conductive paste, or may be contained as an insoluble component.

硫黄を含む有機添加剤としては、例えば、チオール基を有する化合物等が挙げられる。
チオール基を有する化合物(有機添加剤)としては、例えば、ドデカンチオール等のチオール類(メルカプトアルカン化合物)、メルカプトエタノール等のメルカプトアルコール化合物(OH基およびSH基の両方の官能基を有する化合物)等が挙げられる。
Examples of the sulfur-containing organic additive include compounds having a thiol group and the like.
Examples of the compound having a thiol group (organic additive) include thiols such as dodecanethiol (mercaptoalkane compound), a mercaptoalcohol compound such as mercaptoethanol (compound having both OH group and SH group functional groups), and the like. Can be mentioned.

<その他の成分>
導電性ペーストは、前述した成分以外にも、その他の成分を含んでいてもよい。例えば、一般的な導電性ペーストに対して添加されるような可塑剤や消泡剤、高級脂肪酸や脂肪酸エステル系などの分散剤、レベリング剤、安定剤、密着促進剤、界面活性剤等が挙げられるが、いずれも成分中に硫黄が含まれないものが好ましい。
<Other ingredients>
The conductive paste may contain other components in addition to the above-mentioned components. For example, plasticizers and defoamers added to general conductive pastes, dispersants such as higher fatty acids and fatty acid esters, leveling agents, stabilizers, adhesion promoters, surfactants and the like can be mentioned. However, it is preferable that the components do not contain sulfur.

[導電性ペーストの用途]
本発明の導電性ペーストは、一般的に広く知られている方法で塗布、焼成することにより、導電性を有する部位の形成に用いられる。その用途は特に限定されないが、特に、積層セラミックコンデンサや積層セラミックインダクタ、積層セラミックアクチュエータといった積層セラミック電子部品の内部導体(内部電極)や端子電極の形成に好適である。
[Use of conductive paste]
The conductive paste of the present invention is used for forming a conductive portion by applying and firing by a generally widely known method. Its application is not particularly limited, but it is particularly suitable for forming internal conductors (internal electrodes) and terminal electrodes of multilayer ceramic electronic components such as multilayer ceramic capacitors, multilayer ceramic inductors, and multilayer ceramic actuators.

導電性ペーストの塗布は、所望の基体に対し、例えば、スクリーン印刷、転写印刷、ディッピング、刷毛塗り、ディスペンサーを用いた方法等により行い、その後、乾燥、焼成する。 The conductive paste is applied to a desired substrate by, for example, screen printing, transfer printing, dipping, brush coating, a method using a dispenser, or the like, and then drying and firing.

導電性ペーストの乾燥温度は、特に限定されないが、例えば、100℃以上200℃以下とすることができる。また、焼成温度(ピーク温度)も、特に限定されないが、一例としては、600℃以上900℃以下であり、好ましくは700℃以上880℃以下であり、より好ましくは730℃以上850℃以下である。 The drying temperature of the conductive paste is not particularly limited, but can be, for example, 100 ° C. or higher and 200 ° C. or lower. The firing temperature (peak temperature) is also not particularly limited, but as an example, it is 600 ° C. or higher and 900 ° C. or lower, preferably 700 ° C. or higher and 880 ° C. or lower, and more preferably 730 ° C. or higher and 850 ° C. or lower. ..

以上、本発明の好適な実施形態について説明したが、本発明は、これらに限定されない。 Although preferred embodiments of the present invention have been described above, the present invention is not limited thereto.

以下に具体的な実施例をあげて本発明をさらに詳しく説明するが、本発明は、以下の実施例のみに限定されるものではない。なお、以下の説明において、特に温度条件、湿度条件を示していない処理は、室温(25℃)、相対湿度50%において行ったものである。また、各種測定条件についても、特に温度条件、湿度条件を示していないものは、室温(25℃)、相対湿度50%における数値である。 The present invention will be described in more detail with reference to specific examples below, but the present invention is not limited to the following examples. In the following description, the treatments that do not particularly indicate the temperature condition and the humidity condition are performed at room temperature (25 ° C.) and a relative humidity of 50%. Further, as for various measurement conditions, those that do not particularly indicate temperature conditions and humidity conditions are numerical values at room temperature (25 ° C.) and relative humidity of 50%.

[1]導電性ペーストの製造
(事前準備)
まず金属粉末としては、平均粒径D50:2.7μm、BET比表面積:0.65m/gのフレーク状の銅粉末を準備した。なお、この銅粉末は銅以外の金属元素を実質的に含んでいない単金属(純銅)粉末であり、硫黄も実質的に含まれていない。
[1] Manufacture of conductive paste (preparation)
First, as the metal powder, a flake-shaped copper powder having an average particle size of D 50 : 2.7 μm and a BET specific surface area of 0.65 m 2 / g was prepared. This copper powder is a single metal (pure copper) powder that does not substantially contain a metal element other than copper, and does not substantially contain sulfur.

またガラス組成物としては基本組成として3種類を用意した。ガラス組成物A、BおよびCは、それぞれ酸化物換算で表1に示す酸化物組成を基本組成として各ガラス原料を調合し、白金ルツボを用いて1200℃で溶融し、空冷または急冷した後、平均粒径D50が2.1μmになるまで粉砕し得たものである。As the glass composition, three types were prepared as the basic composition. For each of the glass compositions A, B and C, each glass raw material is prepared based on the oxide composition shown in Table 1 in terms of oxide, melted at 1200 ° C. using a platinum crucible, air-cooled or rapidly cooled, and then air-cooled or rapidly cooled. It could be pulverized until the average particle size D 50 became 2.1 μm.

Figure 0006950833
Figure 0006950833

なお、ガラス組成物に更に硫黄を添加する場合は、ガラス組成物A及びガラス組成物Bに対しては、硫黄源として硫酸バリウム(BaSO)を表1に記載の前記ガラス原料に対し外入れ成分(言い換えると、表1に記載のガラス原料の合計を100質量%として更に追加した成分)として添加したが、その際、Ba成分がガラス組成として増加するため、その分、基本組成に対するBa原料の使用量を調整することで、ガラス組成物A及びガラス組成物Bとしての基本組成は変えることなく、硫黄含有量のみが変わるようにした。また、ガラス組成物Cに対して硫黄を添加する場合は、硫黄源として硫酸カリウム(KSO)を用い、K原料の使用量を調整した以外は同様にして、硫黄含有量のみが変わるようにした。When further sulfur is added to the glass composition, barium sulfate (BaSO 4 ) is added as a sulfur source to the glass raw materials shown in Table 1 for the glass composition A and the glass composition B. It was added as a component (in other words, a component further added with the total of the glass raw materials shown in Table 1 as 100% by mass), but at that time, the Ba component increases as the glass composition, so that the Ba raw material with respect to the basic composition is increased accordingly. By adjusting the amount of glass used, only the sulfur content was changed without changing the basic compositions of the glass composition A and the glass composition B. When sulfur is added to the glass composition C, potassium sulfate (K 2 SO 4 ) is used as the sulfur source, and only the sulfur content changes in the same manner except that the amount of the K raw material used is adjusted. I did.

有機バインダーとしては、VL−7501(三菱ケミカル社製)と、ダイヤナール MB−2677(三菱ケミカル社製)と、ダイヤナール BR−105(三菱ケミカル社製)とを1:5:1の質量比で混合した混合樹脂(アクリル樹脂)を準備した。 As an organic binder, VL-7501 (manufactured by Mitsubishi Chemical Corporation), Dianal MB-2677 (manufactured by Mitsubishi Chemical Corporation), and Dianal BR-105 (manufactured by Mitsubishi Chemical Corporation) have a mass ratio of 1: 5: 1. A mixed resin (acrylic resin) mixed in 1 was prepared.

有機溶剤としては、ターピネオール(小川香料社製、EK ターピネオール)と、グリコールエーテル(ダウ・ケミカル日本社製:ダワノール DPnP グリコールエーテル)とを8:2の質量比で混合した混合溶剤を準備した。 As the organic solvent, a mixed solvent in which tarpineol (manufactured by Ogawa Fragrance Co., Ltd., EK tarpineol) and glycol ether (manufactured by Dow Chemical Japan, manufactured by Dow Chemical Japan: Dawanol DPnP glycol ether) was mixed at a mass ratio of 8: 2 was prepared.

また硫黄を含む無機添加剤として平均粒径(D50)が0.5μmのBaSO粉末を用意し、有機添加剤としてメルカプトエタノール、ドデカンチオール、ジメチルスルホキシドを準備した。 In addition, BaSO 4 powder having an average particle size (D 50 ) of 0.5 μm was prepared as an inorganic additive containing sulfur, and mercaptoethanol, dodecanethiol, and dimethyl sulfoxide were prepared as organic additives.

(実施例1)
金属粉末と、硫黄成分を添加したガラス組成物Aと、有機バインダーと、有機溶剤とを、65:9:5:21の質量比で混合した後、ロールミルで混練して、導電性ペーストを製造した。なお、当該導電ペースト中において、ガラス組成物は、ガラス粉末として含まれていた。
(Example 1)
A metal powder, a glass composition A to which a sulfur component is added, an organic binder, and an organic solvent are mixed at a mass ratio of 65: 9: 5: 21 and then kneaded with a roll mill to produce a conductive paste. bottom. In the conductive paste, the glass composition was contained as a glass powder.

なお、硫黄の含有量を、炭素・硫黄分析装置EMIA−320V(HORIBA社製)により確認したところ、実施例1における硫黄の含有量は金属粉末に対して198ppmであった。 When the sulfur content was confirmed by a carbon / sulfur analyzer EMIA-320V (manufactured by HORIBA), the sulfur content in Example 1 was 198 ppm with respect to the metal powder.

(実施例2〜7)
金属粉末に対する硫黄の含有量が表2に示した値となるように、前記ガラス組成物Aへの硫黄成分の添加量を変更した以外は、前記実施例1と同様にして導電性ペーストを製造した。
(Examples 2 to 7)
A conductive paste was produced in the same manner as in Example 1 except that the amount of the sulfur component added to the glass composition A was changed so that the sulfur content with respect to the metal powder was the value shown in Table 2. bottom.

参考例1
ガラス組成物Aに硫黄成分を添加せず、無機添加剤としてBaSO粉末を添加した以外は、実施例1と同様にして導電性ペーストを製造した。
BaSO粉末の添加による硫黄の含有量は金属粉末に対して115ppmであった。
( Reference example 1 )
A conductive paste was produced in the same manner as in Example 1 except that the sulfur component was not added to the glass composition A and BaSO 4 powder was added as an inorganic additive.
The sulfur content due to the addition of BaSO 4 powder was 115 ppm with respect to the metal powder.

参考例2〜4
金属粉末に対する硫黄の含有量が表2に示した値となるように、前記BaSO粉末の添加量を変更した以外は、前記参考例1と同様にして導電性ペーストを製造した。
( Reference Examples 2-4 )
A conductive paste was produced in the same manner as in Reference Example 1 except that the addition amount of the BaSO 4 powder was changed so that the sulfur content with respect to the metal powder was the value shown in Table 2.

参考例5
BaSO粉末に代えてメルカプトエタノールを添加した以外は、参考例1と同様にして導電性ペーストを製造した。
( Reference example 5 )
A conductive paste was produced in the same manner as in Reference Example 1 except that mercaptoethanol was added instead of BaSO 4 powder.

メルカプトエタノールの添加による硫黄の含有量は、金属粉末に対して115ppmであった。 The sulfur content due to the addition of mercaptoethanol was 115 ppm with respect to the metal powder.

参考例6〜8
金属粉末に対する硫黄の含有量が表2に示した値となるように、前記メルカプトエタノールの添加量を変更した以外は、前記参考例5と同様にして導電性ペーストを製造した。
( Reference examples 6 to 8 )
A conductive paste was produced in the same manner as in Reference Example 5 except that the amount of mercaptoethanol added was changed so that the sulfur content with respect to the metal powder was the value shown in Table 2.

参考例9
メルカプトエタノールに代えてドデカンチオールを用いた以外は、前記参考例5と同様にして導電性ペーストを製造した。
( Reference example 9 )
A conductive paste was produced in the same manner as in Reference Example 5 except that dodecanethiol was used instead of mercaptoethanol.

参考例10〜12
金属粉末に対する硫黄の含有量が表2に示した値となるように、前記ドデカンチオールの添加量を変更した以外は、前記参考例9と同様にして導電性ペーストを製造した。
( Reference Examples 10 to 12 )
A conductive paste was produced in the same manner as in Reference Example 9 except that the amount of dodecanethiol added was changed so that the sulfur content with respect to the metal powder was the value shown in Table 2.

(比較例1)
ガラス組成物Aに硫黄成分を添加しなかった以外は、前記実施例1と同様にして導電性ペーストを製造した。なお、比較例1には硫黄を含む無機添加剤も有機添加剤も添加されていない。
(Comparative Example 1)
A conductive paste was produced in the same manner as in Example 1 except that the sulfur component was not added to the glass composition A. In addition, neither an inorganic additive containing sulfur nor an organic additive was added to Comparative Example 1.

(比較例2)
金属粉末に対する硫黄の含有量が381ppmとなるように、前記ガラス組成物Aに対する硫黄成分の添加量を変更した以外は、前記実施例1と同様にして導電性ペーストを製造した。
(Comparative Example 2)
A conductive paste was produced in the same manner as in Example 1 except that the amount of the sulfur component added to the glass composition A was changed so that the sulfur content with respect to the metal powder was 381 ppm.

(比較例3)
金属粉末に対する硫黄の含有量が9ppmとなるように、前記メルカプトエタノールの添加量を変更した以外は、前記参考例5と同様にして導電性ペーストを製造した。
(Comparative Example 3)
A conductive paste was produced in the same manner as in Reference Example 5 except that the amount of mercaptoethanol added was changed so that the sulfur content with respect to the metal powder was 9 ppm.

(比較例4〜5)
メルカプトエタノールの代わりにジメチルスルホキシドを用い、金属粉末に対する硫黄の含有量が表2に示した値となるように、前記ジメチルスルホキシドの添加量を調整した以外は、前記参考例5と同様にして導電性ペーストを製造した。
(Comparative Examples 4 to 5)
Dimethyl sulfoxide was used instead of mercaptoethanol, and the conductivity was the same as in Reference Example 5 except that the amount of dimethyl sulfoxide added was adjusted so that the sulfur content in the metal powder was the value shown in Table 2. A sex paste was produced.

(比較例6)
金属粉末に対する硫黄の含有量が653ppmとなるように、前記ガラス組成物Aに対する硫黄成分の添加量を変更した以外は、前記実施例1と同様にして導電性ペーストを製造した。
(Comparative Example 6)
A conductive paste was produced in the same manner as in Example 1 except that the amount of the sulfur component added to the glass composition A was changed so that the sulfur content in the metal powder was 653 ppm.

[2]評価
[2−1]750℃焼成
まず、前記各実施例、各参考例および各比較例の導電性ペーストを用いて、3.2×2.5mmサイズのセラミックチップ部品の端面に対し、乾燥後の膜厚が165μmとなるように塗布印刷し、150℃で10分乾燥した後、ピーク温度が750℃となるように温度制御した炉で70分間焼成することにより、焼成体を得た。
[2] Evaluation [2-1] Baking at 750 ° C. First, using the conductive pastes of the above Examples, Reference Examples, and Comparative Examples, the end faces of the 3.2 × 2.5 mm size ceramic chip parts were used. A fired body was obtained by coating and printing so that the film thickness after drying was 165 μm, drying at 150 ° C. for 10 minutes, and then firing in a temperature-controlled furnace so that the peak temperature was 750 ° C. for 70 minutes. rice field.

その後、当該焼成体について、加速電圧5kV、測定時間100秒、倍率200倍の条件で、Quantax75(Bruker社製)を用いたEDX分析を行い、焼成膜の中央部のガラス浮き量(Si量)を測定し、以下の基準にしたがい、過焼結性を評価した。 Then, the fired body was subjected to EDX analysis using Quantax75 (manufactured by Bruker) under the conditions of an acceleration voltage of 5 kV, a measurement time of 100 seconds, and a magnification of 200 times, and the amount of glass floating (Si amount) in the central portion of the fired film was performed. Was measured, and the persinterability was evaluated according to the following criteria.

A:ガラス浮き量が15%未満である。
B:ガラス浮き量が15%以上20%未満である。
C:ガラス浮き量が20%以上である。
A: The amount of glass floating is less than 15%.
B: The amount of glass float is 15% or more and less than 20%.
C: The amount of glass floating is 20% or more.

続いて前記焼成体を研磨し、TM−4000(日立ハイテク社製)を用いて、焼成膜のおおよそ中央付近の断面SEM像を撮影し、焼成膜中のボイド(空隙)の面積を算出して、以下の基準にしたがい、焼成膜の緻密性を評価した。 Subsequently, the fired body is polished, and a cross-sectional SEM image of the fired film near the center is photographed using TM-4000 (manufactured by Hitachi High-Tech) to calculate the area of voids (voids) in the fired film. , The denseness of the fired film was evaluated according to the following criteria.

A:緻密度が99%以上(空隙率が1%以下)。
B:緻密度が98%以上99%未満(空隙率が1%超2%以下)。
C:緻密度が98%未満(空隙率が2%超)。
A: Dense density is 99% or more (porosity is 1% or less).
B: Dense density is 98% or more and less than 99% (porosity is more than 1% and less than 2%).
C: Dense density is less than 98% (porosity is more than 2%).

[2−2]780℃焼成
焼成時のピーク温度を780℃にした以外は同様にして、実施例1〜7、参考例1〜12および比較例1〜6から焼成体を作製し、過焼結性と緻密性を評価した。
これらの結果を、表2にまとめて示す。
[2-2] Baking at 780 ° C. A fired body was prepared from Examples 1 to 7, Reference Examples 1 to 12 and Comparative Examples 1 to 6 in the same manner except that the peak temperature at the time of firing was set to 780 ° C., and overburned. The sinterability and compactness were evaluated.
These results are summarized in Table 2.

Figure 0006950833
Figure 0006950833

[3]導電性ペーストの製造
(実施例8〜12、比較例7〜8)
ガラス組成物として、金属粉末に対する硫黄の含有量が表3に示した値となるようにBaSOを添加したガラス組成物Bを用い、金属粉末とガラス組成物Bと有機バインダーと有機溶剤の質量比を66:10:6:18として混合した以外は、前記実施例1と同様にして、導電性ペーストを製造した。
[3] Production of Conductive Paste (Examples 8 to 12 , Comparative Examples 7 to 8)
As the glass composition, a glass composition B to which BaSO 4 was added so that the sulfur content with respect to the metal powder became the value shown in Table 3 was used, and the mass of the metal powder, the glass composition B, the organic binder, and the organic solvent was used. A conductive paste was produced in the same manner as in Example 1 except that the mixture was mixed at a ratio of 66:10: 6: 18.

(実施例13〜17、比較例9〜10)
ガラス組成物として、金属粉末に対する硫黄の含有量が表3に示した値となるようにKSOを添加したガラス組成物Cを用い、金属粉末とガラス組成物Cと有機バインダーと有機溶剤との質量比を69:7:5:19として混合した以外は、前記実施例1と同様にして、導電性ペーストを製造した。
(Examples 13 to 17 , Comparative Examples 9 to 10)
As the glass composition, a glass composition C to which K 2 SO 4 was added so that the sulfur content with respect to the metal powder became the value shown in Table 3 was used, and the metal powder, the glass composition C, the organic binder, and the organic solvent were used. A conductive paste was produced in the same manner as in Example 1 except that the mixture was mixed with a mass ratio of 69: 7: 5: 19.

[4]評価
[4−1]焼成
実施例8〜17、比較例7〜10の導電性ペーストを用いた以外は前記と同様にして、750℃及び780℃のピーク温度で焼成して焼成体を作製し、過焼結性と緻密性を評価した。
更に、焼成時のピーク温度を830℃にした以外は前記と同様にして、実施例1〜7、実施例8〜17、比較例2、比較例6〜10から焼成体を作製し、過焼結性と緻密性を評価した。
これらの結果を、表3にまとめて示す。
なお、ガラス組成物への硫黄の添加効果を対比するため、表3中の実施例1〜7、比較例2、比較例6に関する一部の評価結果は表2と重複している。
[4] Evaluation [4-1] Firing The calcined product was fired at peak temperatures of 750 ° C. and 780 ° C. in the same manner as described above except that the conductive pastes of Examples 8 to 17 and Comparative Examples 7 to 10 were used. Was prepared, and the persinterability and denseness were evaluated.
Further, a fired body was prepared from Examples 1 to 7, Examples 8 to 17 , Comparative Example 2, and Comparative Example 6 to 10 in the same manner as described above except that the peak temperature at the time of firing was set to 830 ° C., and overburned. The bondability and tightness were evaluated.
These results are summarized in Table 3.
In order to compare the effect of adding sulfur to the glass composition, some evaluation results of Examples 1 to 7, Comparative Example 2 and Comparative Example 6 in Table 3 overlap with Table 2.

Figure 0006950833
Figure 0006950833

表2および表3から明らかなように、本発明の導電性ペーストでは、過焼結による悪影響が生じにくく、焼成膜中でのガラス浮きが効果的に防止されているとともに、焼成膜中でのボイドの発生も効果的に抑制されていることから、十分に広い焼成ウィンドウが達成されていることが分かる。これに対し、比較例では、満足のいく結果が得られなかった。 As is clear from Tables 2 and 3, the conductive paste of the present invention is less likely to cause an adverse effect due to oversintering, effectively prevents glass from floating in the fired film, and is used in the fired film. Since the generation of voids is also effectively suppressed, it can be seen that a sufficiently wide firing window is achieved. On the other hand, in the comparative example, satisfactory results were not obtained.

また、金属粉末として銀を2質量%含む銅合金製の粉末を用いた以外は、前記実施例、前記参考例および前記比較例と同様にして導電性ペーストを製造し、また、金属粉末の平均粒径を0.2μm以上5.0μm以下の範囲内、金属粉末のBET比表面積を0.30m/g以上1.00m/g以下の範囲内、ガラス組成物としてのガラス粉末の平均粒径を0.1μm以上4.5μm以下の範囲内、ガラス組成物のBET比表面積を0.90m/g以上5.00m/g以下の範囲内、導電性ペースト中における金属粉末の含有量を50.0質量%以上80.0質量%以下の範囲内、導電性ペースト中におけるガラス組成物の含有量を4.0質量%以上20.0質量%以下の範囲内、導電性ペースト中における有機ビヒクルの含有量を10.0質量%以上40.0質量%以下の範囲内、導電性ペースト中における有機溶媒の含有量を7.0質量%以上30.0質量%以下の範囲内、導電性ペースト中における有機バインダーの含有量を1.0質量%以上15.0質量%以下の範囲内で、種々変更した以外は、前記実施例、前記参考例および前記比較例と同様にして導電性ペーストを製造し、前記と同様の評価を行ったところ、前記と同様の結果が得られた。 Further, a conductive paste was produced in the same manner as in the Examples, Reference Examples and Comparative Examples except that a powder made of a copper alloy containing 2% by mass of silver was used as the metal powder, and the average of the metal powders was also produced. in the range of 0.2μm or more 5.0μm or less particle size, the BET specific surface area of the metal powder 0.30 m 2 / g or more 1.00 m 2 / g within the range, the average particle of the glass powder as the glass composition within a diameter less 0.1μm or 4.5 [mu] m, within a BET specific surface area of 0.90 m 2 / g or more 5.00 m 2 / g or less of the glass composition, the content of the metal powder in the conductive paste The content of the glass composition in the conductive paste is in the range of 50.0% by mass or more and 80.0% by mass or less, and the content of the glass composition in the conductive paste is in the range of 4.0% by mass or more and 20.0% by mass or less, in the conductive paste. The content of the organic vehicle is in the range of 10.0% by mass or more and 40.0% by mass or less, and the content of the organic solvent in the conductive paste is in the range of 7.0% by mass or more and 30.0% by mass or less. Conductivity in the same manner as in the Examples, Reference Examples and Comparative Examples, except that the content of the organic binder in the sex paste was variously changed within the range of 1.0% by mass or more and 15.0% by mass or less. When the paste was produced and evaluated in the same manner as described above, the same results as described above were obtained.

本発明の導電性ペーストは、銅を含む金属粉末と、ガラス組成物と、有機ビヒクルとを含む導電性ペーストであって、前記ガラス組成物が硫黄(S)を含み、当該硫黄(S)の含有量が前記金属粉末に対して10ppm以上370ppm以下であることを特徴とする。また、本発明の導電性ペーストは、銅を含む金属粉末と、ガラス組成物と、有機ビヒクルと、無機添加剤とを含む導電性ペーストであって、前記無機添加剤が硫黄(S)を含み、当該硫黄(S)の含有量が前記金属粉末に対して10ppm以上370ppm以下であることを特徴とする。また、本発明の導電性ペーストは、銅を含む金属粉末と、ガラス組成物と、有機ビヒクルと、有機添加剤とを含む導電性ペーストであって、前記有機添加剤がチオール基を有し、前記有機添加剤中の硫黄(S)の含有量が前記金属粉末に対して10ppm以上370ppm以下であることを特徴とする。そのため、銅を含む金属粉末単体の焼成挙動を適度に制御し、その結果として焼成ウィンドウが広く、焼成後のボイドやガラス浮きといった問題が発生しにくい導電性ペーストを提供することができる。したがって、本発明の導電性ペーストは、産業上の利用可能性を有する。 The conductive paste of the present invention is a conductive paste containing a metal powder containing copper, a glass composition, and an organic vehicle, wherein the glass composition contains sulfur (S), and the sulfur (S) The content is 10 ppm or more and 370 ppm or less with respect to the metal powder. The conductive paste of the present invention is a conductive paste containing a metal powder containing copper, a glass composition, an organic vehicle, and an inorganic additive, and the inorganic additive contains sulfur (S). The content of the sulfur (S) is 10 ppm or more and 370 ppm or less with respect to the metal powder. The conductive paste of the present invention is a conductive paste containing a metal powder containing copper, a glass composition, an organic vehicle, and an organic additive, and the organic additive has a thiol group. The content of sulfur (S) in the organic additive is 10 ppm or more and 370 ppm or less with respect to the metal powder. Therefore, it is possible to provide a conductive paste in which the firing behavior of a single metal powder containing copper is appropriately controlled, and as a result, the firing window is wide and problems such as voids and glass floating after firing are less likely to occur. Therefore, the conductive paste of the present invention has industrial applicability.

Claims (6)

銅を含む金属粉末と、ガラス組成物と、有機ビヒクルとを含む積層セラミック電子部品の外部電極形成用の導電性ペーストであって、
前記ガラス組成物が硫黄(S)を含み、当該硫黄(S)の含有量が前記金属粉末に対して10ppm以上370ppm以下であり、
前記金属粉末に含まれる硫黄(S)の含有量が10ppm未満であることを特徴とする積層セラミック電子部品の外部電極形成用の導電性ペースト。
A conductive paste for forming an external electrode of a laminated ceramic electronic component containing a metal powder containing copper, a glass composition, and an organic vehicle.
The glass composition contains sulfur (S), and the content of the sulfur (S) is 10 ppm or more and 370 ppm or less with respect to the metal powder.
A conductive paste for forming an external electrode of a laminated ceramic electronic component, characterized in that the content of sulfur (S) contained in the metal powder is less than 10 ppm.
前記金属粉末が銅粉末である請求項1に記載の積層セラミック電子部品の外部電極形成用の導電性ペースト。 The conductive paste for forming an external electrode of a laminated ceramic electronic component according to claim 1, wherein the metal powder is a copper powder. 前記ガラス組成物中における硫黄の含有量が前記金属粉末に対して12ppm以上200ppm以下である請求項1または2に記載の積層セラミック電子部品の外部電極形成用の導電性ペースト。 The conductive paste for forming an external electrode of a laminated ceramic electronic component according to claim 1 or 2, wherein the sulfur content in the glass composition is 12 ppm or more and 200 ppm or less with respect to the metal powder. 前記ガラス組成物中における硫黄の含有量が前記金属粉末に対して15ppm以上100ppm以下である請求項1ないし3のいずれか1項に記載の積層セラミック電子部品の外部電極形成用の導電性ペースト。 The conductive paste for forming an external electrode of a laminated ceramic electronic component according to any one of claims 1 to 3, wherein the sulfur content in the glass composition is 15 ppm or more and 100 ppm or less with respect to the metal powder. 前記ガラス組成物が、SiOを2.0質量%以上12.0質量%以下の範囲内で含み、Bを15.0質量%以上30.0質量%以下の範囲内で含み、Alを2.0質量%以上12.0質量%以下の範囲内で含む請求項1ないし4のいずれか1項に記載の積層セラミック電子部品の外部電極形成用の導電性ペースト。 The glass composition contains SiO 2 in the range of 2.0% by mass or more and 12.0% by mass or less, and B 2 O 3 in the range of 15.0% by mass or more and 30.0% by mass or less. The conductive paste for forming an external electrode of a laminated ceramic electronic component according to any one of claims 1 to 4, which contains Al 2 O 3 in a range of 2.0% by mass or more and 12.0% by mass or less. 前記ガラス組成物が、Pb、CdおよびBiを実質的に含まない請求項1ないし5のいずれか1項に記載の積層セラミック電子部品の外部電極形成用の導電性ペースト。 The conductive paste for forming an external electrode of a laminated ceramic electronic component according to any one of claims 1 to 5, wherein the glass composition does not substantially contain Pb, Cd and Bi.
JP2020538406A 2018-08-23 2019-08-20 Conductive paste for forming external electrodes of laminated ceramic electronic components Active JP6950833B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018156627 2018-08-23
JP2018156627 2018-08-23
PCT/JP2019/032446 WO2020040138A1 (en) 2018-08-23 2019-08-20 Electroconductive paste

Publications (2)

Publication Number Publication Date
JPWO2020040138A1 JPWO2020040138A1 (en) 2021-06-03
JP6950833B2 true JP6950833B2 (en) 2021-10-13

Family

ID=69593293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020538406A Active JP6950833B2 (en) 2018-08-23 2019-08-20 Conductive paste for forming external electrodes of laminated ceramic electronic components

Country Status (6)

Country Link
JP (1) JP6950833B2 (en)
KR (1) KR102441705B1 (en)
CN (1) CN112602158B (en)
MY (1) MY193375A (en)
TW (1) TWI772671B (en)
WO (1) WO2020040138A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102545056B1 (en) * 2021-07-13 2023-06-21 (주)창성 Cupper paste having branch shape and the ceramic product using thereof
JP7434407B2 (en) 2022-04-25 2024-02-20 株式会社ノリタケカンパニーリミテド Paste for external electrodes

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63308803A (en) * 1987-01-09 1988-12-16 Hitachi Ltd Conductive paste and electronic circuit parts using it and its manufacture
JPH05242725A (en) * 1992-02-27 1993-09-21 Taiyo Yuden Co Ltd Conductive paste
JP3206496B2 (en) * 1997-06-02 2001-09-10 昭栄化学工業株式会社 Metal powder and method for producing the same
JP4789392B2 (en) * 2002-11-22 2011-10-12 京セラ株式会社 Manufacturing method of ceramic laminate
JP4291857B2 (en) * 2007-01-24 2009-07-08 三ツ星ベルト株式会社 Copper conductor paste, conductor circuit board and electronic components
JP4807581B2 (en) * 2007-03-12 2011-11-02 昭栄化学工業株式会社 Nickel powder, method for producing the same, conductor paste, and multilayer ceramic electronic component using the same
TWI421882B (en) * 2009-06-08 2014-01-01 Daiken Chemical Co Ltd Barium titanate powder, nickel paste, preparation method and laminated ceramic capacitors
WO2013018408A1 (en) * 2011-07-29 2013-02-07 株式会社ノリタケカンパニーリミテド Conductive paste composition for solar cells
JP2013072091A (en) * 2011-09-26 2013-04-22 Hitachi Cable Ltd Metal microparticle and method for producing the same, metal paste containing the metal microparticle, and metal coat made of the metal paste
JP5958749B2 (en) 2012-06-22 2016-08-02 株式会社村田製作所 Method for producing metal powder
JP5937904B2 (en) * 2012-06-26 2016-06-22 株式会社ノリタケカンパニーリミテド Paste composition for solar cell electrode
JP6324253B2 (en) 2014-07-30 2018-05-16 Jx金属株式会社 Conductive paste and manufacturing method thereof
JP2016115448A (en) * 2014-12-11 2016-06-23 株式会社村田製作所 Conductive paste and ceramic electronic component
KR102561035B1 (en) * 2015-10-01 2023-07-28 쇼에이 가가쿠 가부시키가이샤 Method for forming terminal electrodes of conductive paste and laminated ceramic parts
CN106024095B (en) * 2016-05-25 2018-05-15 苏州晶银新材料股份有限公司 A kind of solar cell anaerobic glass electrocondution slurry

Also Published As

Publication number Publication date
KR102441705B1 (en) 2022-09-07
KR20210048503A (en) 2021-05-03
TW202020895A (en) 2020-06-01
CN112602158A (en) 2021-04-02
WO2020040138A1 (en) 2020-02-27
CN112602158B (en) 2023-11-28
JPWO2020040138A1 (en) 2021-06-03
MY193375A (en) 2022-10-07
TWI772671B (en) 2022-08-01

Similar Documents

Publication Publication Date Title
JP4647224B2 (en) Conductive paste for multilayer ceramic electronic component terminal electrode
KR101172723B1 (en) Copper conductor paste, conductor circuit board and electronic part
JP5488282B2 (en) Conductive paste
WO2014061765A1 (en) Electroconductive paste
CN109564793B (en) Conductive paste
JP2006196421A (en) Coated conductor powder and conductive paste
JP4456612B2 (en) Copper conductor paste, conductor circuit board and electronic components
JP6950833B2 (en) Conductive paste for forming external electrodes of laminated ceramic electronic components
JP5641216B2 (en) Method for manufacturing ceramic electronic component and ceramic electronic component
JP3297531B2 (en) Conductive paste
JP6737506B2 (en) Conductive paste, chip electronic component and manufacturing method thereof
JP6968524B2 (en) Manufacturing method of thick film conductive paste and ceramic multilayer laminated electronic components
JP6769208B2 (en) Lead-free conductive paste
JP4495740B2 (en) Copper conductor paste, conductor circuit board and electronic components
JP2004228093A (en) Terminal electrode composition for multi-layer ceramic capacitor
JP5556518B2 (en) Conductive paste
JP2015210902A (en) Composition for formation of thick film conductor formed with the same
JP2009187695A (en) Conductor paste composition for display
JP2006066475A (en) Composition for forming thick film resistor, process for forming thick film resistor, and thick film resistor
JP4341428B2 (en) Conductive paste and ceramic electronic component using the same
JP2023161393A (en) Paste for external electrode
JP2019110105A5 (en)
JP2008053138A (en) Thick-film conductor forming composite and forming method of thick-film conductor using same, and thick-film conductor obtained by method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210201

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210201

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20210201

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20210329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210406

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210824

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210906

R150 Certificate of patent or registration of utility model

Ref document number: 6950833

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150