JP6769208B2 - Lead-free conductive paste - Google Patents

Lead-free conductive paste Download PDF

Info

Publication number
JP6769208B2
JP6769208B2 JP2016186495A JP2016186495A JP6769208B2 JP 6769208 B2 JP6769208 B2 JP 6769208B2 JP 2016186495 A JP2016186495 A JP 2016186495A JP 2016186495 A JP2016186495 A JP 2016186495A JP 6769208 B2 JP6769208 B2 JP 6769208B2
Authority
JP
Japan
Prior art keywords
mass
less
conductive
conductive paste
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2016186495A
Other languages
Japanese (ja)
Other versions
JP2018055767A (en
Inventor
剛 川島
剛 川島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2016186495A priority Critical patent/JP6769208B2/en
Publication of JP2018055767A publication Critical patent/JP2018055767A/en
Application granted granted Critical
Publication of JP6769208B2 publication Critical patent/JP6769208B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Parts Printed On Printed Circuit Boards (AREA)
  • Glass Compositions (AREA)
  • Conductive Materials (AREA)

Description

本発明は、鉛を含まない導電ペーストに関し、特にチップ抵抗器などの電子部品のセラミック基板上に形成される導体の材料として使用される鉛フリー導電ペーストに関する。 The present invention relates to a lead-free conductive paste, and more particularly to a lead-free conductive paste used as a material for a conductor formed on a ceramic substrate of an electronic component such as a chip resistor.

厚膜技術を用いて形成される厚膜導体の材料には、導電率の高い導電性粉末をガラスフリットなどの酸化物粉末と共に有機ビヒクル中に分散させた導電ペーストが一般に使用されている。この厚膜導体の形成の際は、導電ペーストをアルミナ等のセラミックからなる基板上にスクリーン印刷などの塗布法を用いて所望のパターン形状に塗布した後、700〜900℃で焼成することで厚膜導体をセラミック基板上に形成することができる。 As a material for a thick film conductor formed by using the thick film technique, a conductive paste in which a highly conductive conductive powder is dispersed in an organic vehicle together with an oxide powder such as glass frit is generally used. When forming this thick film conductor, the conductive paste is applied to a substrate made of ceramic such as alumina in a desired pattern shape by a coating method such as screen printing, and then fired at 700 to 900 ° C. to make the thickness thicker. The film conductor can be formed on the ceramic substrate.

上記の導電性粉末としては、空気雰囲気中で焼成可能な導電率の高いAu、Ag、Pd、Ptなどの粒径10μm以下の粉末が用いられており、これらのうち、比較的安価なAg粉末やPd粉末が主に使用されている。また、より低コスト化を実現するため、Cuを用いた導電ペーストも提案されている。かかる導電ペースト用の導電性粉末においては、薄膜化や細線化を目的とする場合は粒径0.5μm以下の微細な導電性粉末が使用されているが、粉末は微細化にともない凝集しやすくなるため、これを防いで緻密で低抵抗な導電膜を得るべく分散性を高めることが求められている。他方、ガラスフリットとしては、軟化点の制御が容易であることと化学的耐久性が高いことから、一般的にはホウケイ酸鉛系ガラス粉末やアルミノホウケイ酸鉛系ガラス粉末で粒径1μm以上のものが用いられている。 As the above-mentioned conductive powder, powders having a particle size of 10 μm or less, such as Au, Ag, Pd, and Pt having high conductivity that can be fired in an air atmosphere, are used, and among these, relatively inexpensive Ag powder is used. And Pd powder are mainly used. Further, in order to realize further cost reduction, a conductive paste using Cu has also been proposed. In the conductive powder for such a conductive paste, a fine conductive powder having a particle size of 0.5 μm or less is used for the purpose of thinning or thinning, but the powder tends to aggregate as it becomes finer. Therefore, it is required to improve the dispersibility in order to prevent this and obtain a dense and low resistance conductive film. On the other hand, glass frit generally has a particle size of 1 μm or more in lead borosilicate glass powder or lead aluminoborosilicate glass powder because it is easy to control the softening point and has high chemical durability. Things are used.

近年、環境汚染を防止する観点から、電子部品の鉛フリー化が急速に進んでおり、上記の導電ペーストにもPbを含まないガラスフリットの採用が求められている。このような課題に対し、例えば特許文献1では、銀粉末、ガラスフリット及び有機ビヒクルを主成分とする導電ペーストであって、該ガラスフリットが、アルカリ金属、Bi、SiO、BaO、ZnO、Al、Bで構成され、PbOを含有しないことを特徴とする導電ペーストが開示されている。また、特許文献2では、導電性粉末と、SiO−B−Al−CaO系ガラス粉末と、Al粉末と、βユークリプタイト粉末とを含む酸化物粉末を有し、実質的に鉛を含まないことを特徴とする厚膜導体形成用組成物が開示されている。 In recent years, from the viewpoint of preventing environmental pollution, lead-free electronic components are rapidly advancing, and the adoption of glass frit containing no Pb is required for the above conductive paste. In response to such problems, for example, in Patent Document 1, a conductive paste containing silver powder, glass frit and an organic vehicle as main components, wherein the glass frit is an alkali metal, Bi 2 O 3 , SiO 2 , BaO 3 , ZnO, Al 2 O 3 , and B 2 O 3 , and a conductive paste characterized by containing no PbO is disclosed. Further, in Patent Document 2, an oxide powder containing a conductive powder, a SiO 2- B 2 O 3- Al 2 O 3- CaO-based glass powder, an Al 2 O 3 powder, and a β eucryptite powder is used. A composition for forming a thick film conductor, which is characterized by having and substantially free of lead, is disclosed.

特許第3964342号明細書Japanese Patent No. 3964342 特開2013−122864号公報Japanese Unexamined Patent Publication No. 2013-122864

上述のように、Pbを含まない様々な導電ペーストが提案されているが、いまだ実用化の面やコスト面で十分とはいえず、薄膜化や細線化が可能な導電ペーストが量産化されているとは言い難い。すなわち、特許文献1に開示されている導電ペーストは、ガラスの軟化点が700〜900℃と高く、電子部品用で用いられている焼成温度に近いことから、同温度で焼成し形成した導電膜は、ガラスが十分に溶融することができず、基板との密着性が不十分になると考えられる。 As mentioned above, various conductive pastes that do not contain Pb have been proposed, but they are still not sufficient in terms of practical use and cost, and conductive pastes that can be thinned or thinned have been mass-produced. It is hard to say that there is. That is, the conductive paste disclosed in Patent Document 1 has a high softening point of glass of 700 to 900 ° C., which is close to the firing temperature used for electronic parts, and therefore, a conductive film formed by firing at the same temperature. It is considered that the glass cannot be sufficiently melted and the adhesion to the substrate becomes insufficient.

特許文献2に開示されている厚膜導体形成用組成物は、はんだ食われが少なく耐酸性に優れた厚膜導体を形成できると記載されている。しかしながら、低コスト化のため上記組成物中の導電性粉末の含有量を、導電ペースト総量の例えば60質量%以下に減らした場合、ペースト中の導電性粉末の密度が下がり、粒子同士の焼結が妨げられてボイドが増大し、低抵抗な導体を形成することが困難になる。更に密着性や耐酸性も低下してしまうおそれがある。 It is described that the composition for forming a thick film conductor disclosed in Patent Document 2 can form a thick film conductor with less solder biting and excellent acid resistance. However, when the content of the conductive powder in the composition is reduced to, for example, 60% by mass or less of the total amount of the conductive paste for cost reduction, the density of the conductive powder in the paste decreases and the particles are sintered together. Is hindered and voids increase, making it difficult to form low resistance conductors. Further, the adhesion and acid resistance may be lowered.

本発明は上記した従来の鉛フリー導電ペーストの事情に鑑みてなされたものであり、環境汚染の原因になり得る鉛成分を含むことなく、電子部品用の用途として従来の導電ペーストと同等の性能を確保することができる上、薄膜化、細線化に適し、貴金属の使用量を少なくしてコストを抑えることが可能な鉛フリーで且つアルカリ金属フリーの導電ペーストを提供することを目的+とする。 The present invention has been made in view of the above-mentioned circumstances of the conventional lead-free conductive paste, and has the same performance as the conventional conductive paste as an application for electronic parts without containing a lead component that may cause environmental pollution. The purpose is to provide a lead-free and alkali metal-free conductive paste that is suitable for thinning and thinning, and that can reduce the amount of precious metal used and reduce costs. ..

本発明者は、上記課題を解決するために鋭意研究を重ねた結果、導電性粉末と、ガラスフリットと、有機ビヒクルとを主成分とする導電ペーストにおいて、所定の条件を満たす導電性粉末を用いることにより、焼成後に薄くて緻密で低抵抗な導電膜が得られることにより、従来と同等の導電特性を従来よりも少ない導電性成分量で実現することができ、かつ薄膜化や細線化も可能であることを見出し、本発明を完成するに至った。 As a result of diligent research to solve the above problems, the present inventor uses a conductive powder satisfying a predetermined condition in a conductive paste containing a conductive powder, a glass frit, and an organic vehicle as main components. As a result, a thin, dense and low-resistance conductive film can be obtained after firing, so that the same conductive characteristics as the conventional one can be realized with a smaller amount of the conductive component than the conventional one, and thinning and thinning are also possible. It was found that the present invention was completed.

すなわち、本発明の第1の鉛フリー導電ペーストは、導電性粉末と、無鉛ガラスフリットと、有機ビヒクルとを主成分とする導電ペーストであって、前記導電性粉末は、SEM平均粒径が0.1μm以上1.0μm以下であり、レーザー回折散乱法を用いて測定した体積積算の中位径D50が0.1μm以上2.0μm以下であり、フタル酸ジブチルの吸収量が4ml/100g以上8ml/100g以下であり、導電ペースト100質量%に対して40質量%以上60質量%以下含有されており、SEM平均粒径0.01μm以上0.1μm未満のPd微粉末が導電性粉末100質量%に対して0.1質量%以上3.0質量%以下更に含有されていることを特徴としている。
また、本発明の第2の鉛フリー導電ペーストは、導電性粉末と、無鉛ガラスフリットと、有機ビヒクルとを主成分とする導電ペーストであって、前記導電性粉末は、SEM平均粒径が0.1μm以上1.0μm以下であり、レーザー回折散乱法を用いて測定した体積積算の中位径D50が0.1μm以上2.0μm以下であり、フタル酸ジブチルの吸収量が4ml/100g以上8ml/100g以下であり、導電ペースト100質量%に対して40質量%以上60質量%以下含有されており、前記ガラスフリットは、ガラスフリット全量を100質量%とした時、SiO が5質量%以上30質量%以下、B が9質量%以上20質量%以下、Al が5質量%以上20質量%以下、Bi が30質量%以上70質量%以下を主成分とする材料で構成されるSiO −B −Al −Bi 系ガラスであって、更にZrO を0.1質量%以上5質量%以下含み、PbOとアルカリ金属を含まず、軟化点が550℃以上700℃以下であることを特徴としている。
また、本発明の第3の鉛フリー導電ペーストは、導電性粉末と、無鉛ガラスフリットと、有機ビヒクルとを主成分とする導電ペーストであって、前記導電性粉末は、SEM平均粒径が0.1μm以上1.0μm以下であり、レーザー回折散乱法を用いて測定した体積積算の中位径D50が0.1μm以上2.0μm以下であり、フタル酸ジブチルの吸収量が4ml/100g以上8ml/100g以下であり、導電ペースト100質量%に対して40質量%以上60質量%以下含有されており、前記ガラスフリットは、レーザー回折散乱法を用いて測定した体積積算の中位径D50が0.1μm以上1.0μm以下であり、体積粒度分布幅指標SDが0.3μm以下であることを特徴としている。
That is, the first lead-free conductive paste of the present invention is a conductive paste containing conductive powder, lead-free glass frit, and an organic vehicle as main components, and the conductive powder has an SEM average particle size of 0. The median diameter D50 of the volume integration measured by the laser diffraction scattering method is 0.1 μm or more and 1.0 μm or less, and the absorption amount of dibutyl phthalate is 4 ml / 100 g or more and 8 ml. / 100 g or less, 40% by mass or more and 60% by mass or less with respect to 100% by mass of the conductive paste, and 100% by mass of the conductive powder is Pd fine powder having an SEM average particle size of 0.01 μm or more and less than 0.1 μm. It is characterized in that it is further contained in an amount of 0.1% by mass or more and 3.0% by mass or less .
The second lead-free conductive paste of the present invention is a conductive paste containing conductive powder, lead-free glass frit, and an organic vehicle as main components, and the conductive powder has an SEM average particle size of 0. It is .1 μm or more and 1.0 μm or less, the median diameter D50 of the volume integration measured by the laser diffraction scattering method is 0.1 μm or more and 2.0 μm or less, and the absorption amount of dibutyl phthalate is 4 ml / 100 g or more and 8 ml. / 100 g or less, 40% by mass or more and 60% by mass or less with respect to 100% by mass of the conductive paste, and the glass frit contains 5% by mass or more of SiO 2 when the total amount of the glass frit is 100% by mass. The main components are 30% by mass or less, B 2 O 3 is 9% by mass or more and 20% by mass or less, Al 2 O 3 is 5% by mass or more and 20% by mass or less, and Bi 2 O 3 is 30% by mass or more and 70% by mass or less. It is a SiO 2- B 2 O 3- Al 2 O 3- Bi 2 O 3 based glass composed of the same material, and further contains ZrO 2 in an amount of 0.1% by mass or more and 5% by mass or less, and contains PbO and an alkali metal. It is not included and is characterized in that the softening point is 550 ° C. or higher and 700 ° C. or lower.
The third lead-free conductive paste of the present invention is a conductive paste containing conductive powder, lead-free glass frit, and an organic vehicle as main components, and the conductive powder has an SEM average particle size of 0. The median diameter D50 of the volume integration measured by the laser diffraction / scattering method is 0.1 μm or more and 1.0 μm or less, and the absorption amount of dibutyl phthalate is 4 ml / 100 g or more and 8 ml. It is / 100 g or less, and is contained in an amount of 40% by mass or more and 60% by mass or less with respect to 100% by mass of the conductive paste. It is characterized in that it is 0.1 μm or more and 1.0 μm or less, and the volume particle size distribution width index SD is 0.3 μm or less.

上記した本発明の鉛フリー導電ペーストは、上記導電性粉末が、Au、Ag、Cu、Pd及びPtの少なくとも1種類であるのが好ましい In the lead-free conductive paste of the present invention described above, it is preferable that the conductive powder is at least one of Au, Ag, Cu, Pd and Pt .

本発明によれば、緻密で低抵抗な導電膜を形成することが可能であるため、導体を従来よりも薄く形成したり、細く形成したりしても従来とほぼ同等の特性を得ることが可能になる。よって、配線等に使用される高価な貴金属からなる導電性粉末の使用量を減らすことができ、結果的に電子部品のコストを抑えることができる。また、電子部品をより薄型化、小型化できるだけでなく、Pbのみならずアルカリ金属も要しないため、例えばチップ抵抗器の上面電極として用いた場合、抵抗体の温度特性への影響を減らすことができる。 According to the present invention, since it is possible to form a dense and low-resistance conductive film, it is possible to obtain almost the same characteristics as the conventional one even if the conductor is formed thinner or thinner than the conventional one. It will be possible. Therefore, it is possible to reduce the amount of the conductive powder made of an expensive precious metal used for wiring and the like, and as a result, the cost of electronic parts can be suppressed. In addition, not only can electronic components be made thinner and smaller, but also alkali metal is not required, so when used as a top electrode of a chip resistor, for example, the effect on the temperature characteristics of the resistor can be reduced. it can.

本発明の実施例の導電ペーストで作製した導電膜のSEM写真である。It is an SEM photograph of the conductive film made by the conductive paste of the Example of this invention. 本発明の比較例の導電ペーストで作製した導電膜のSEM写真である。It is an SEM photograph of a conductive film produced by the conductive paste of the comparative example of this invention. 本発明の実施例の導電ペーストで作製した導電膜を硫黄を含む切削油に浸漬した時間とその面積抵抗値との関係をプロットしたグラフである。It is a graph which plotted the relationship between the time of immersing the conductive film prepared by the conductive paste of the Example of this invention in a cutting oil containing sulfur, and the area resistance value thereof.

<導電性粉末>
以下、本発明の一具体例の鉛フリー導電ペーストについて詳細に説明する。この本発明の一具体例の鉛フリー導電ペーストは、導電性粉末と、無鉛ガラスフリットと、有機ビヒクルとを主成分としている。このうち、導電性粉末は、略球状の導電性粒子群から構成され、SEM平均粒径が0.1μm以上1.0μm以下であり、体積積算の中位径D50が0.1μm以上2.0μm以下である。本明細書においてSEM平均粒径とは、走査型電子顕微鏡の画像解析によって得た任意の複数の導電性粒子の粒子径の平均値である。また、中位径D50とはレーザー解説散乱法を用いて測定した導電性粉末の体積積算のメジアン径である。
<Conductive powder>
Hereinafter, a lead-free conductive paste of a specific example of the present invention will be described in detail. The lead-free conductive paste of one specific example of the present invention contains conductive powder, lead-free glass frit, and an organic vehicle as main components. Of these, the conductive powder is composed of a group of substantially spherical conductive particles, has an SEM average particle size of 0.1 μm or more and 1.0 μm or less, and has a volume integration medium diameter D50 of 0.1 μm or more and 2.0 μm. It is as follows. In the present specification, the SEM average particle diameter is an average value of the particle diameters of any plurality of conductive particles obtained by image analysis of a scanning electron microscope. The medium diameter D50 is the median diameter of the volume integration of the conductive powder measured by using the laser explanatory scattering method.

上記のSEM平均粒径や中位径D50が0.1μm未満の場合、導電性粉末の凝集が生じやすくなり、分散性に優れた導電性粉末を得ることが困難になる。また、導電ペーストの作製の際に該導電性粉末のハンドリング性が悪くなって扱いにくくなる。更に、焼結開始温度が低くなり過ぎ、これを用いた導電ペーストを焼成して得た導体は所望のパターン形状が維持できなくなる恐れがある。逆にSEM平均粒径が1.0μmより大きい場合や中位径D50が2.0μmより大きい場合、導電性粉末の焼結性が劣り、焼成後に緻密な導体を形成することが困難になり、十分な導通が得られない場合がある。 When the SEM average particle size or the medium diameter D50 is less than 0.1 μm, the conductive powder tends to aggregate, and it becomes difficult to obtain the conductive powder having excellent dispersibility. Further, when the conductive paste is produced, the handleability of the conductive powder is deteriorated and it becomes difficult to handle. Further, the sintering start temperature becomes too low, and the conductor obtained by firing the conductive paste using the sintering start temperature may not be able to maintain the desired pattern shape. On the contrary, when the SEM average particle size is larger than 1.0 μm or the medium diameter D50 is larger than 2.0 μm, the sinterability of the conductive powder is inferior, and it becomes difficult to form a dense conductor after firing. Sufficient continuity may not be obtained.

また、上記導電性粉末は、JIS K6217−4に準拠して計測したフタル酸ジブチルの吸収量が4ml/100g以上8ml/100g以下である。この導電性粉末の吸収量が4ml/100gより少ない場合、導電性粉末を非常に緻密に充填できる可能性はあるが、分散性が低下する傾向があり、焼結処理前に導電性粉末の凝集が進行しやすくなって巨大な凝集体を形成してしまう。その結果、焼成の際に導電性粉末の密度にばらつきが生じ、該焼成で形成した導体は導通が不十分になるおそれがある。 In addition, the conductive powder has an absorption amount of dibutyl phthalate measured in accordance with JIS K6217-4 of 4 ml / 100 g or more and 8 ml / 100 g or less. When the absorption amount of this conductive powder is less than 4 ml / 100 g, the conductive powder may be packed very densely, but the dispersibility tends to decrease, and the conductive powder agglomerates before the sintering process. Will easily progress and form huge aggregates. As a result, the density of the conductive powder varies during firing, and the conductor formed by the firing may have insufficient conductivity.

一方、この吸収量が8ml/100gより多い場合は、導電性粒子間の空隙が多いことを意味しており、これは既に導電性粉末が凝集しているか、あるいは歪な形状の導電性粒子が多く存在していることになり、この導電性粉末を導電ペーストに用いると流動性が損なわれる。更に、導電性粉末の凝集が多い場合は焼結性が劣るので緻密な導電膜が得られなくなって、十分な導通が得られにくくなる上、密着強度や耐酸性の低下を招くおそれがある。 On the other hand, when this absorption amount is more than 8 ml / 100 g, it means that there are many voids between the conductive particles, which means that the conductive powder is already agglomerated or the conductive particles having a distorted shape are present. When this conductive powder is used as a conductive paste, the fluidity is impaired. Further, when the conductive powder is agglomerated a lot, the sinterability is inferior, so that a dense conductive film cannot be obtained, it becomes difficult to obtain sufficient conductivity, and the adhesion strength and acid resistance may be lowered.

本発明の一具体例の導電ペーストは、上記導電性粉末を、導電ペースト100質量%に対して40質量%以上60質量%以下の範囲で含有している。この含有量が40質量%未満の場合は、導電性粉末の量が少な過ぎて、厚み5μm以下の緻密な導体を形成することが困難になる。逆に60質量%より多い場合は、厚み5μmあるいはそれより薄い膜を形成するためには導電ペーストの塗布厚みを非常に薄く印刷する必要がある上、このような少ない塗布量の中で膜厚のばらつきを抑える必要もあるため、高精度の印刷技術や塗布設備が必要になり、製造コストが高くなる。また、高価な導電性粉末の削減量が少なくなるため、コストメリットが得られにくくなる。 The conductive paste of one specific example of the present invention contains the above conductive powder in a range of 40% by mass or more and 60% by mass or less with respect to 100% by mass of the conductive paste. When this content is less than 40% by mass, the amount of the conductive powder is too small, and it becomes difficult to form a dense conductor having a thickness of 5 μm or less. On the contrary, when it is more than 60% by mass, it is necessary to print the coating thickness of the conductive paste very thinly in order to form a film having a thickness of 5 μm or thinner, and the film thickness is thin in such a small coating amount. Since it is also necessary to suppress the variation in the film thickness, high-precision printing technology and coating equipment are required, and the manufacturing cost is high. Further, since the amount of reduction of the expensive conductive powder is reduced, it becomes difficult to obtain the cost merit.

本発明の一具体例の導電ペーストに含まれる上記導電性粉末は、高導電性を示すAu、Ag、Cu、Pd及びPtからなる群のうちの1種類以上を主成分とすることが好ましい。これら5種類の金属の中ではCuが最も安価であるが、酸化されやすいため耐酸化処理工程等が必要となり、工数が増加してしまうため、残る金属の内で比較的安価なAg粉末もしくはPd粉末を用いることが好ましく、特にAg粉末を導電性粉末100質量%中で95質量%以上含有するのがより好ましい。 The conductive powder contained in the conductive paste of one specific example of the present invention preferably contains one or more of the group consisting of Au, Ag, Cu, Pd and Pt exhibiting high conductivity as a main component. Of these five types of metals, Cu is the cheapest, but since it is easily oxidized, an oxidation resistance treatment step or the like is required, which increases the man-hours. Therefore, among the remaining metals, Ag powder or Pd, which is relatively inexpensive, is used. It is preferable to use a powder, and it is more preferable to contain Ag powder in an amount of 95% by mass or more in 100% by mass of the conductive powder.

本発明の一具体例の導電ペーストは、上記導電性粉末とは別に該導電性粉末より微細なPd微粉末を添加してもよく、これにより導体の硫化を抑制する効果が得られる。この場合のPd微粉末の添加量は、導電性粉末100質量%に対して0.1質量%以上3.0質量%以下が好ましい。この量が0.1質量%未満では、耐硫化性の効果が不十分になるので好ましくない。逆に3.0質量%より多く添加しても、耐硫化効果はそれ以上向上することがなく、かえって前述した主成分の導電性粉末の焼結を阻害し、導体の抵抗値を高くする場合がある他、Pd微粉末を添加する分だけコストメリットが低下するので好ましくない。上記Pd微粉末は、SEM平均粒径が0.01μm以上0.1μm未満であるのが好ましい。この粒径が0.01μm未満ではPd微粉末の凝集が生じやすく、膜の組成が不均一になって特性にバラツキを生じる場合があり、逆に0.1μm以上になると焼結性が低下する場合がある。 In the conductive paste of one specific example of the present invention, Pd fine powder finer than the conductive powder may be added separately from the conductive powder, whereby the effect of suppressing sulfurization of the conductor can be obtained. In this case, the amount of the Pd fine powder added is preferably 0.1% by mass or more and 3.0% by mass or less with respect to 100% by mass of the conductive powder. If this amount is less than 0.1% by mass, the effect of sulfidation resistance becomes insufficient, which is not preferable. On the contrary, even if more than 3.0% by mass is added, the sulfide resistance effect is not further improved, but rather the sintering of the above-mentioned main component conductive powder is hindered and the resistance value of the conductor is increased. In addition, the cost merit is reduced by the amount of Pd fine powder added, which is not preferable. The Pd fine powder preferably has an SEM average particle size of 0.01 μm or more and less than 0.1 μm. If the particle size is less than 0.01 μm, agglomeration of Pd fine powder is likely to occur, the composition of the film may become non-uniform, and the characteristics may vary. On the contrary, if the particle size is 0.1 μm or more, the sinterability is lowered. In some cases.

<ガラスフリット>
本発明の一具体例の導電ペーストで使用するガラスフリットは、SiOが5質量%以上30質量%以下、Bが9質量%以上20質量%以下、Alが5質量%以上20質量%以下、Biが30質量%以上70質量%以下の主成分で構成されるSiO−B−Al−Bi系ガラスであって、更にZrOを0.1質量%以上5質量%以下含み、PbOとアルカリ金属を含まず、軟化点が550℃以上700℃以下であるのが好ましい。
<Glass frit>
The glass frit used in the conductive paste of one specific example of the present invention contains SiO 2 of 5% by mass or more and 30% by mass or less, B 2 O 3 of 9% by mass or more and 20% by mass or less, and Al 2 O 3 of 5% by mass. It is a SiO 2- B 2 O 3- Al 2 O 3- Bi 2 O 3 system glass composed of 20% by mass or less and Bi 2 O 3 is 30% by mass or more and 70% by mass or less. It is preferable that ZrO 2 is contained in an amount of 0.1% by mass or more and 5% by mass or less, PbO and an alkali metal are not contained, and the softening point is 550 ° C. or more and 700 ° C. or less.

上記ガラスフリットに含まれるSiOが5質量%より少ない場合は、これを含む導電ペーストの焼成で得た導体の耐酸性が低くなる場合があるので好ましくない。逆に30質量%より多い場合は、これを含む導電ペーストの軟化点が高くなり過ぎ、焼成の際にガラスフリットが十分に軟化せず、密着強度が低くなる場合があるので好ましくない。 If the amount of SiO 2 contained in the glass frit is less than 5% by mass, the acid resistance of the conductor obtained by firing the conductive paste containing the same may decrease, which is not preferable. On the contrary, when it is more than 30% by mass, the softening point of the conductive paste containing it becomes too high, the glass frit may not be sufficiently softened at the time of firing, and the adhesion strength may be lowered, which is not preferable.

上記ガラスフリットに含まれるBが9質量%より少ない場合は、ガラス成分の流動性が低下し、焼成の際にガラス成分が導体と基板との界面へ十分行きわたらず、導体の密着性や耐酸性が低下する場合があるため好ましくない。逆に20質量%より多い場合は、ガラスフリットが水に溶けやすくなるため、これを含む導電ペーストの焼成で得た導体の耐酸性が低下してしまう場合があるため好ましくない。 When B 2 O 3 contained in the glass frit is less than 9% by mass, the fluidity of the glass component is lowered, the glass component does not sufficiently reach the interface between the conductor and the substrate during firing, and the conductor adheres. It is not preferable because the property and acid resistance may decrease. On the other hand, if it is more than 20% by mass, the glass frit becomes easily dissolved in water, and the acid resistance of the conductor obtained by firing the conductive paste containing the glass frit may decrease, which is not preferable.

上記ガラスフリットに含まれるAlが5質量%より少ない場合は、ガラス成分が結晶化しやすくなり、結晶化したガラス成分は基板との密着強度が低いため、これを含む導電ペーストの焼成で得た導体の密着強度が低くなる場合があるため好ましくない。逆に20質量%より多い場合は、軟化点が高くなってしまう場合があるため好ましくない。 When the amount of Al 2 O 3 contained in the glass frit is less than 5% by mass, the glass component is likely to crystallize, and the crystallized glass component has low adhesion strength with the substrate. It is not preferable because the adhesion strength of the obtained conductor may be low. On the contrary, if it is more than 20% by mass, the softening point may be high, which is not preferable.

上記ガラスフリットに含まれるBiが30質量%より少ない場合は、これを含む導電ペーストの軟化点が高くなってしまう場合があるため好ましくない。逆に70質量%より多い場合は、導電ペーストの軟化点が逆に低くなり過ぎてしまい、これを含む導電ペーストの焼成で得た導体がリフロー時などに再溶融するおそれがあるため好ましくない。 When Bi 2 O 3 contained in the glass frit is less than 30% by mass, the softening point of the conductive paste containing the Bi 2 O 3 may be high, which is not preferable. On the contrary, when it is more than 70% by mass, the softening point of the conductive paste becomes too low, and the conductor obtained by firing the conductive paste containing this may be remelted at the time of reflow, which is not preferable.

上記ガラスフリットに含まれるZrOが0.1質量%より少ない場合は、これを含む導電ペーストの耐酸性を向上させる効果が得られない場合があるため好ましくない。逆に5質量%より多くしても、これを含む導電ペーストの耐酸性を向上させる効果がそれ以上ほとんど変わらないだけでなく、相対的に他の成分の含有率が低下することにより、導電ペーストの密着強度や耐酸性が低下してしまう場合があるため好ましくない。 When ZrO 2 contained in the glass frit is less than 0.1% by mass, the effect of improving the acid resistance of the conductive paste containing the ZrO 2 may not be obtained, which is not preferable. On the contrary, even if it is more than 5% by mass, not only the effect of improving the acid resistance of the conductive paste containing this is hardly changed, but also the content of other components is relatively lowered, so that the conductive paste This is not preferable because the adhesion strength and acid resistance of the paste may decrease.

上記ガラスフリットの軟化点が550℃より低い場合は、導電性粉末が焼結した後、ガラス成分がこの焼結した導体から基板上に流れ出てしまい、密着性の低下などの不具合を生じる場合があるため好ましくない。逆に軟化点が700℃より高い場合は、温度が高過ぎて導体と基板との界面接合が十分進まず、密着強度が低下したり、焼結時に流動性の低いガラス成分が導電性粉末の焼結を妨げたり、焼成で得た導体の緻密性が低下して抵抗値が高くなったりする場合があるため好ましくない。 If the softening point of the glass frit is lower than 550 ° C., after the conductive powder is sintered, the glass component may flow out from the sintered conductor onto the substrate, causing problems such as deterioration of adhesion. It is not preferable because it exists. On the contrary, when the softening point is higher than 700 ° C., the temperature is too high and the interface bonding between the conductor and the substrate does not proceed sufficiently, the adhesion strength is lowered, or the glass component having low fluidity at the time of sintering is the conductive powder. It is not preferable because it may hinder sintering or reduce the denseness of the conductor obtained by firing and increase the resistance value.

上記ガラスフリットは、レーザー回折散乱法を用いて測定した体積積算の中位径D50が0.1μm以上1.0μm以下であり、下記式1で求められる体積粒度分布幅指標SDが0.3μm以下であるのが好ましい。
[式1]
SD=(D84−D16)/2
In the glass frit, the volume integration medium diameter D50 measured by the laser diffraction scattering method is 0.1 μm or more and 1.0 μm or less, and the volume particle size distribution width index SD obtained by the following formula 1 is 0.3 μm or less. Is preferable.
[Equation 1]
SD = (D84-D16) / 2

ここで、D84とD16は、測定対象としてサンプリングした粒子群の全体積を100%として体積粒度分布累積カーブを求めた時、その体積粒度分布累積カーブがそれぞれ84%と16%となる点の粒子径(μm)を示す。SDが0.3μmより大きい場合は、粒子径1.3μmを超える粗大粒子を含む割合が増えることを意味しており、当該粗大粒子が増えることによって導電ペーストの焼結が妨げられる上、焼成で得た導体内に生じるボイドが多くなり、密着性や耐酸性が低下する場合があるため好ましくない。 Here, D84 and D16 are particles at points where the volume particle size distribution cumulative curves are 84% and 16%, respectively, when the volume particle size distribution cumulative curve is obtained with the total volume of the particle groups sampled as the measurement target as 100%. Indicates the diameter (μm). When the SD is larger than 0.3 μm, it means that the proportion of coarse particles having a particle size of more than 1.3 μm increases, and the increase of the coarse particles hinders the sintering of the conductive paste and is used in firing. It is not preferable because the number of voids generated in the obtained conductor may increase and the adhesion and acid resistance may decrease.

上記ガラスフリットは導電ペースト中に0.1質量%以上5質量%以下含まれるのが好ましい。この含有量が0.1質量%未満では導体と基板との接合面にガラスが行き渡りにくくなり、十分な密着性を得ることができない場合がある。逆に5質量%を超えると導電性粉末の比率が少なくなり過ぎ、焼成した導体の面積抵抗値が高くなる上、焼成した導体上に電解めっき膜を形成しにくくなるため好ましくない。上記ガラスフリット中には、ガラスと基板の濡れ性の向上や基板と導電膜の密着性の向上、更に導電膜の耐酸化性の向上を目的としてCaO、BaO、ZnO、TiO、Vなどの成分を合計で3質量%を上限として添加してもよい。 The glass frit is preferably contained in the conductive paste in an amount of 0.1% by mass or more and 5% by mass or less. If this content is less than 0.1% by mass, it may be difficult for the glass to spread on the joint surface between the conductor and the substrate, and sufficient adhesion may not be obtained. On the contrary, if it exceeds 5% by mass, the ratio of the conductive powder becomes too small, the area resistance value of the fired conductor becomes high, and it becomes difficult to form an electroplating film on the fired conductor, which is not preferable. During the glass frit, CaO, BaO, ZnO, TiO 2 , V 2 O for the purpose of improving the wettability between the glass and the substrate, improving the adhesion between the substrate and the conductive film, and further improving the oxidation resistance of the conductive film. Ingredients such as 5 may be added up to a total of 3% by mass.

<有機ビヒクル>
本発明の一具体例の導電ペーストで使用する有機ビヒクルは、従来のエチルセルロースなどのセルロース誘導体やメタクリレートなどのアクリル系樹脂をターピネオール、ブチルカルビトールなどの有機溶媒に溶解したものを用いることができる。有機ビヒクルの配合量は特に限定されず、従来と同様な配合量で印刷に適した量を添加すれば良い。
<Organic vehicle>
As the organic vehicle used in the conductive paste of one specific example of the present invention, a conventional cellulose derivative such as ethyl cellulose or an acrylic resin such as methacrylate dissolved in an organic solvent such as tarpineol or butyl carbitol can be used. The amount of the organic vehicle to be blended is not particularly limited, and an amount suitable for printing may be added in the same blending amount as before.

以下、本発明について、実施例により更に説明を行うが、本発明の範囲は、この実施例により制限されることはない。 Hereinafter, the present invention will be further described with reference to Examples, but the scope of the present invention is not limited by these Examples.

1.主原料
(1)導電性粉末
導電性粉末として、サイズの異なる4種類のAg粉末A、B、C及びDを用意した。これら4種類のAg粉末の各SEM平均粒径は、走査型電子顕微鏡(日本電子製、JSM−6360L)を用いて撮像したAg粉末の内、任意の500個に対してそれらの横方向の最大長さを直径として計測し、それらを算術平均することで求めた。中位径D50は、レーザー回折散乱式の粒度分布測定装置(日機装製、MICROTRAC HRA 9320X−100)を用いて測定した体積積算の中位径D50である。吸収量は、吸収量測定器(あさひ総研製、S−500)を用いて、JIS K6217−4(2008)に準じて測定した。それらの値を下記表1に示す。
1. 1. Main Raw Materials (1) Conductive Powder As conductive powder, four types of Ag powders A, B, C and D having different sizes were prepared. The average particle size of each SEM of these four types of Ag powder is the maximum in the lateral direction with respect to any 500 of the Ag powder imaged using a scanning electron microscope (JSM-6360L manufactured by JEOL Ltd.). It was calculated by measuring the length as a diameter and arithmetically averaging them. The medium diameter D50 is a volume integrated medium diameter D50 measured using a laser diffraction / scattering type particle size distribution measuring device (MICROTRAC HRA 9320X-100 manufactured by Nikkiso Co., Ltd.). The absorption amount was measured according to JIS K6217-4 (2008) using an absorption amount measuring device (manufactured by Asahi Research Institute, S-500). These values are shown in Table 1 below.

(2)ガラスフリット
ガラスフリットとして、組成の異なる7種類のSiO−B−Al−Bi系無鉛ガラスフリットa、b、c、d、e、f及びgを用意した。これら7種類のガラスフリットは、主成分として4種類の酸化物SiO、B、Al及びBiを必須添加成分として含んでおり、その他にZrO、CaO及びBaOの内の1種以上を副成分として含んでいる。これら7種類のガラスフリットの中位径D50を上記の導電性粉末と同様に測定し、また前述した式1に基づいて体積粒度分布幅指標SDを測定した。更に、JIS R3103−1に準じて軟化点を測定した。それらの測定結果を組成と共に下記表2に示す。
(2) Glass frit As the glass frit, seven types of SiO 2- B 2 O 3- Al 2 O 3- Bi 2 O 3 system lead-free glass frit a, b, c, d, e, f and g having different compositions are used. I prepared it. These 7 types of glass frit contain 4 types of oxides SiO 2 , B 2 O 3 , Al 2 O 3 and Bi 2 O 3 as essential additives as main components, and ZrO 2 , CaO and BaO in addition. Contains one or more of these as sub-ingredients. The medium diameter D50 of these seven types of glass frit was measured in the same manner as the above-mentioned conductive powder, and the volume particle size distribution width index SD was measured based on the above-mentioned formula 1. Further, the softening point was measured according to JIS R3103-1. The measurement results are shown in Table 2 below together with the composition.

2.導電ペーストの作製
上記4種類のAg粉末とPd微粉末、及び7種類のガラスフリットの組み合わせをそれぞれ変えて試料1〜19の導電ペーストを作製した。具体的には、先ず、ターピネオール80質量%とエチルセルロース20質量%とを混合し、有機ビヒクルを作製した。次に、導電ペーストの総量を100質量%とした時、上記4種類の中から選んだ1種のAg粉末、及びSEM平均粒径0.02μmのPd微粉末の添加量が表3及び表4に示す値になり、7種類の中から1つ選んだガラスフリットの添加量が1.0質量%になり、残部が上記有機ビヒクルになるようにそれぞれ量り取り、それらを3本ロールミル(ビューラー株式会社製、SDY−300)を用いて混合して各試料の導電ペーストを作製した。
2. Preparation of Conductive Paste The conductive pastes of Samples 1 to 19 were prepared by changing the combination of the above four types of Ag powder, Pd fine powder, and seven types of glass frit. Specifically, first, 80% by mass of tarpineol and 20% by mass of ethyl cellulose were mixed to prepare an organic vehicle. Next, when the total amount of the conductive paste is 100% by mass, the addition amounts of one Ag powder selected from the above four types and the Pd fine powder having an SEM average particle size of 0.02 μm are shown in Tables 3 and 4. The amount of glass frit selected from 7 types is 1.0% by mass, and the balance is weighed so that it becomes the above organic vehicle, and 3 roll mills (Buehler stock) are used. A conductive paste of each sample was prepared by mixing using SDY-300) manufactured by the company.

3.各種特性評価
(3−1)導電性評価(面積抵抗値)
上記にて作製した試料1〜13の導体ペーストを、幅0.5mm、長さ50mmの導体パターンとなるように96%アルミナ基板上にスクリーン印刷機を用いて印刷し、ベルト式乾燥炉を用いて150℃で5分間乾燥させた後、ベルト炉を用いてピーク温度850℃で9分間、合計30分の焼成を行い、アルミナ基板上に評価用の導体膜を形成した。得られた導体膜の厚みを、触針式表面粗さ計(株式会社東京精密製、SURFCOM 480A)を用いて測定した。
3. 3. Evaluation of various characteristics (3-1) Evaluation of conductivity (area resistance value)
The conductor pastes of Samples 1 to 13 prepared above are printed on a 96% alumina substrate using a screen printing machine so as to form a conductor pattern having a width of 0.5 mm and a length of 50 mm, and a belt-type drying furnace is used. After drying at 150 ° C. for 5 minutes, the film was fired at a peak temperature of 850 ° C. for 9 minutes for a total of 30 minutes using a belt furnace to form a conductor film for evaluation on an alumina substrate. The thickness of the obtained conductor film was measured using a stylus type surface roughness meter (SURFCOM 480A, manufactured by Tokyo Seimitsu Co., Ltd.).

次に、デジタルマルチメーター(株式会社ADVANTEST製、R6871E)を用いて、導体膜の抵抗値(Rt)を測定し、上記で測定した導体膜の厚み(t)と幅(W)、及び長さ(L)から、膜厚5μmに換算した時の面積抵抗値(Rs)を下記式2から算出し、導電性の評価を行った。
[式2]
Rs=Rt×W/L×t/5
Next, the resistance value (Rt) of the conductor film was measured using a digital multimeter (manufactured by ADVANTEST Co., Ltd., R6781E), and the thickness (t), width (W), and length of the conductor film measured above were measured. From (L), the area resistance value (Rs) when converted to a film thickness of 5 μm was calculated from the following formula 2 and the conductivity was evaluated.
[Equation 2]
Rs = Rt × W / L × t / 5

(3−2)密着性評価(密着強度)
試料1〜13の導電ペーストを、縦2mm×横2mmの方形状であって焼成後の厚みが5μmとなるように96%アルミナ基板上に印刷し、上記した導電性評価の場合と同じ条件で熱処理し、密着性評価用の導体膜を作製した。次に、硫酸ニッケル280g、塩化ニッケル60g、ホウ酸40gに水を加えて総量を1Lとしためっき液を用いて、電流密度5×10−3A/mmで2分間の電気めっきを施すことにより、前記縦2mm×横2mmの導体膜の上に、ニッケルめっき膜を形成した。
(3-2) Adhesion evaluation (adhesion strength)
The conductive pastes of Samples 1 to 13 were printed on a 96% alumina substrate so as to have a square shape of 2 mm in length × 2 mm in width and a thickness of 5 μm after firing, and under the same conditions as in the case of the above-mentioned conductivity evaluation. Heat treatment was performed to prepare a conductor film for evaluation of adhesion. Next, electroplating is performed for 2 minutes at a current density of 5 × 10 -3 A / mm 2 using a plating solution prepared by adding water to 280 g of nickel sulfate, 60 g of nickel chloride, and 40 g of boric acid to make a total amount of 1 L. A nickel plating film was formed on the conductor film having a length of 2 mm and a width of 2 mm.

得られたニッケルめっき膜上に、直径0.65mmのSnめっき銅線を、96.5質量%Sn−3質量%Ag−0.5質量%Cu組成の鉛フリーはんだを用いてはんだ付けし、荷重測定器(アイコーエンジニアリング株式会社製、MODEL 2152HTP)を用いてアルミナ基板に対し垂直方向に80mm/minの速度で引っ張り、導体膜が基板から剥離するまでの最大荷重を測定し、その最大荷重を初期の密着強度として密着性の評価を行った。 A Sn-plated copper wire having a diameter of 0.65 mm was soldered onto the obtained nickel-plated film using a lead-free solder having a composition of 96.5 mass% Sn-3 mass% Ag-0.5 mass% Cu. Using a load measuring device (MODEL 2152HTP manufactured by Aiko Engineering Co., Ltd.), pull the alumina substrate at a speed of 80 mm / min in the vertical direction, measure the maximum load until the conductor film peels off from the substrate, and measure the maximum load. Adhesion was evaluated as the initial adhesion strength.

(3−3)耐酸性評価(密着強度)
上記の密着性評価の場合と同様にして試料1〜13の導電ペーストを用いて96%アルミナ基板上に導体膜を作製した。これを液温25℃の5%硫酸に5分間浸漬した後、取り出して洗浄し、十分乾燥させて耐酸性評価の導体膜とした。この耐酸性評価用の導体膜上に、上記の密着性評価の場合と同様にニッケルめっきとSnめっき銅線のはんだ付けとを行い、同様に密着強度を測定して耐酸性の評価を行った。上記の導電性評価、密着性評価、及び耐酸性評価の評価結果を使用したAg粉末の種類と添加量、Pd微粉末の添加量、及びガラスフリットの種類と共に下記表3に示す。また、試料1と試料11の導電ペーストから作製した導体膜の表面SEM写真をそれぞれ図1及び図2に示す。
(3-3) Acid resistance evaluation (adhesion strength)
A conductor film was prepared on a 96% alumina substrate using the conductive pastes of Samples 1 to 13 in the same manner as in the case of the above adhesion evaluation. This was immersed in 5% sulfuric acid at a liquid temperature of 25 ° C. for 5 minutes, then taken out, washed, and sufficiently dried to prepare a conductor film for acid resistance evaluation. Nickel plating and Sn-plated copper wire were soldered onto the conductor film for acid resistance evaluation in the same manner as in the case of adhesion evaluation described above, and the adhesion strength was measured in the same manner to evaluate acid resistance. .. Table 3 below shows the types and amounts of Ag powder added, the amount of Pd fine powder added, and the types of glass frit using the evaluation results of the above conductivity evaluation, adhesion evaluation, and acid resistance evaluation. Further, SEM photographs of the surfaces of the conductor film prepared from the conductive pastes of Sample 1 and Sample 11 are shown in FIGS. 1 and 2, respectively.

(3−4)耐硫化性評価(密着強度)
試料14〜19の導電ペーストに対して、上記の導電性評価の場合と同様にして耐硫化性評価用の導電膜を作製した。耐硫化性評価は、硫黄(S)を0.3質量%の含み80℃に保持された切削油に各導電膜を浸漬することによる加速評価とし、浸漬前の面積抵抗値RS0と、浸漬開始から1時間経過後、2時間経過後、及び3時間経過後における面積抵抗値RS1、RS2、及びRS3とを導電性評価の場合と同様にして算出した。その評価結果をAg粉末の種類と添加量、Pd微粉末の添加量、及びガラスフリットの種類と共に下記表4に示す。また、上記浸漬時間と面積抵抗値との関係をプロットしたグラフを図3に示す。
(3-4) Sulfurization resistance evaluation (adhesion strength)
For the conductive pastes of Samples 14 to 19, a conductive film for evaluation of sulfurization resistance was prepared in the same manner as in the case of the above-mentioned evaluation of conductivity. Sulfidation resistance evaluation, the acceleration evaluation by soaking the Kakushirube film in cutting oil retained sulfur (S) in 80 ° C. containing 0.3 mass%, and before immersion area resistance value R S0, dipping after 1 hour from the start, after 2 hours passed, and the sheet resistance after 3 hours have passed R S1, R S2, and was calculated in the same manner as the R S3 conductivity evaluation. The evaluation results are shown in Table 4 below together with the type and amount of Ag powder added, the amount of Pd fine powder added, and the type of glass frit. Further, FIG. 3 shows a graph plotting the relationship between the immersion time and the area resistance value.

4.評価結果
本発明の要件を満たす試料1〜10の導電ペーストから作製した導体膜は、初期密着強度が20.9N以上と十分な密着性を有しており、3.7〜5.1μmという薄い膜厚であるにもかかわらず、面積抵抗値が8.7mΩ/□以下と十分な導電性を有することが分かる。特に、好ましい組成のガラスフリットを用い、導電性粉末のAg添加量が適切な試料1、3、5、6の導電ペーストは、初期密着強度が42.3N以上と非常に高い密着性を有し、且つ3.9〜4.1μmの厚みにおいて面積抵抗値が6.7〜6.9mΩ/□であり、良好な導電性を示した。また、これら試料は耐酸性評価でも23.7〜28.4Nと非常に高い密着強度が得られた。
4. Evaluation Results The conductor film prepared from the conductive pastes of Samples 1 to 10 satisfying the requirements of the present invention has sufficient adhesion with an initial adhesion strength of 20.9 N or more, and is as thin as 3.7 to 5.1 μm. It can be seen that despite the film thickness, the area resistance value is 8.7 mΩ / □ or less, which is sufficient conductivity. In particular, the conductive pastes of Samples 1, 3, 5, and 6 using a glass frit having a preferable composition and having an appropriate amount of Ag added to the conductive powder have an extremely high adhesion with an initial adhesion strength of 42.3 N or more. In addition, the area resistance value was 6.7 to 6.9 mΩ / □ at a thickness of 3.9 to 4.1 μm, showing good conductivity. In addition, these samples obtained extremely high adhesion strength of 23.7 to 28.4N in the acid resistance evaluation.

更に、試料1と試料3の結果から、本発明の範囲内でPd微粉末を添加した場合は、導電性、密着性及び耐酸性には大きな差が生じないことが確認された。また、試料2と試料3の結果から、導電性粉末であるAg粉末の添加量が少なくなると導体膜形成能力が劣って面積抵抗値が上がり、初期強度及び密着強度も低くなることが確認された。一方、試料3と試料4の結果から、導電性粉末であるAg粉末の添加量が多くなると導体膜を十分薄くすることが若干困難となり、かつAg粉末の添加量をこれ以上増やしても面積抵抗値、初期強度、及び密着強度を向上させる効果はほぼ飽和していることが確認された。 Furthermore, from the results of Sample 1 and Sample 3, it was confirmed that when Pd fine powder was added within the range of the present invention, there was no significant difference in conductivity, adhesion and acid resistance. Further, from the results of Sample 2 and Sample 3, it was confirmed that when the addition amount of Ag powder, which is a conductive powder, is small, the conductor film forming ability is inferior, the area resistance value is increased, and the initial strength and the adhesion strength are also lowered. .. On the other hand, from the results of Sample 3 and Sample 4, when the amount of Ag powder, which is a conductive powder, is increased, it becomes slightly difficult to make the conductor film sufficiently thin, and even if the amount of Ag powder added is further increased, the area resistance It was confirmed that the effects of improving the value, initial strength, and adhesion strength were almost saturated.

また、試料3と試料7の結果から、ガラスフリットの径が好ましい範囲から外れて大きくなることにより、密着性及び耐酸性が低くなることが確認された。また、試料3と試料8〜10の結果から、ガラスフリットの組成の一部が好ましい範囲から外れることにより、密着性が低くなることが確認された。特に耐酸性に効果のあるBやZrOが好ましい範囲よりも少ない試料9及び試料10は、耐酸性に劣るため、めっき処理などの酸性液体での処理等がない製品に用いるのが好ましいことが確認された。また、試料14〜19の結果から、Pd微粉末を添加することにより耐硫化効果が得られることが確認された。Pd微粉末の添加量がAg添加量100質量%に対して、3.0質量%の添加でその効果がほぼ飽和していることが確認された。 Further, from the results of Sample 3 and Sample 7, it was confirmed that the adhesion and acid resistance were lowered by increasing the diameter of the glass frit out of the preferable range. Further, from the results of Sample 3 and Samples 8 to 10, it was confirmed that the adhesiveness was lowered because a part of the composition of the glass frit was out of the preferable range. In particular, Samples 9 and 10 in which B 2 O 3 and ZrO 2 which are effective in acid resistance are less than the preferable range are inferior in acid resistance, so they should be used for products that are not treated with an acidic liquid such as plating. It was confirmed that it was preferable. Further, from the results of Samples 14 to 19, it was confirmed that the sulfurization resistance effect can be obtained by adding the Pd fine powder. It was confirmed that the effect was almost saturated when the amount of Pd fine powder added was 3.0% by mass with respect to the amount of Ag added of 100% by mass.

本発明の要件を満たしてない試料11〜13の導電ペーストは、導電性粉末の形状が大きすぎたり吸収量が多すぎたりしているため、面積抵抗値が15.0mΩ/□以上と十分な導電性が得られていないことが分かる。特に、SEM平均粒径の大きすぎるAg粉末を用いた試料11の導電ペーストは、Ag粉末が十分に焼結できないため面積抵抗値が高く、密着性にも著しく劣ることが確認された。 The conductive pastes of the samples 11 to 13 that do not meet the requirements of the present invention have an area resistance value of 15.0 mΩ / □ or more, which is sufficient because the shape of the conductive powder is too large or the amount of absorption is too large. It can be seen that conductivity is not obtained. In particular, it was confirmed that the conductive paste of Sample 11 using Ag powder having an SEM average particle size too large has a high area resistance value and is significantly inferior in adhesion because the Ag powder cannot be sufficiently sintered.

なお、試料11の導電ペーストに関しては、密着性評価において計測できないほど密着強度が低かったため、耐酸性の評価は行わなかった。試料12の導電ペーストのAg粉末は、SEM平均粒径は適切であるもののD50の粒径が大きいことから、凝集が多く生じていると考えられる。そのため、隙間が多く生じたりボイドを巻き込んだりして密着性や耐酸性に劣る結果になったと考えられる。 Regarding the conductive paste of Sample 11, the adhesion strength was so low that it could not be measured in the adhesion evaluation, so the acid resistance was not evaluated. The Ag powder of the conductive paste of Sample 12 has an appropriate SEM average particle size, but the particle size of D50 is large, so that it is considered that a lot of aggregation occurs. Therefore, it is considered that many gaps are generated and voids are involved, resulting in poor adhesion and acid resistance.

SEM粒径やD50の粒径が適切でありながら吸収量が高過ぎる試料13の導電ペーストに用いたAg粉末は、従来好ましい導電粉末と判断されていたが、吸収量評価のような液体との混合状態にて架橋するなどして隙間を多く形成してしまうと考えられる。そのため、導電性、密着性、及び耐酸性のいずれにおいても十分な値が得られなかったと考えられる。なお、図1の導電膜は図2の導電膜に比べて緻密に成膜されていることが見て取れる。 The Ag powder used for the conductive paste of sample 13 in which the SEM particle size and the particle size of D50 are appropriate but the absorption amount is too high has been conventionally judged to be a preferable conductive powder, but it is different from a liquid such as the absorption amount evaluation. It is considered that many gaps are formed by cross-linking in a mixed state. Therefore, it is considered that sufficient values could not be obtained in any of the conductivity, adhesion, and acid resistance. It can be seen that the conductive film of FIG. 1 is formed more densely than the conductive film of FIG.

なお、導電性粉末にAg粉末を用いる代わりに、Au粉末、Cu粉末、Pd粉末、及びPt粉末の各々を用いた場合においても上記と同様に評価したところ、本発明の要件を満たす限り、上記の各評価項目のいずれにおいても、上記のAg粉末の場合と同様の結果が得られた。 When each of Au powder, Cu powder, Pd powder, and Pt powder was used instead of Ag powder as the conductive powder, the same evaluation as above was performed. As long as the requirements of the present invention are satisfied, the above In all of the above evaluation items, the same results as in the case of the above Ag powder were obtained.

Claims (4)

導電性粉末と、無鉛ガラスフリットと、有機ビヒクルとを主成分とする導電ペーストであって、前記導電性粉末は、SEM平均粒径が0.1μm以上1.0μm以下であり、レーザー回折散乱法を用いて測定した体積積算の中位径D50が0.1μm以上2.0μm以下であり、フタル酸ジブチルの吸収量が4ml/100g以上8ml/100g以下であり、導電ペースト100質量%に対して40質量%以上60質量%以下含有されており、SEM平均粒径0.01μm以上0.1μm未満のPd微粉末が導電性粉末100質量%に対して0.1質量%以上3.0質量%以下更に含有されていることを特徴とする鉛フリー導電ペースト。 A conductive paste containing a conductive powder, a lead-free glass frit, and an organic vehicle as main components. The conductive powder has an SEM average particle size of 0.1 μm or more and 1.0 μm or less, and is subjected to a laser diffraction scattering method. The median diameter D50 of the volume integration measured using the above is 0.1 μm or more and 2.0 μm or less, and the absorption amount of dibutyl phthalate is 4 ml / 100 g or more and 8 ml / 100 g or less, based on 100% by mass of the conductive paste. Pd fine powder containing 40% by mass or more and 60% by mass or less and having an SEM average particle size of 0.01 μm or more and less than 0.1 μm is 0.1% by mass or more and 3.0% by mass with respect to 100% by mass of the conductive powder. A lead-free conductive paste, which is further contained below . 導電性粉末と、無鉛ガラスフリットと、有機ビヒクルとを主成分とする導電ペーストであって、前記導電性粉末は、SEM平均粒径が0.1μm以上1.0μm以下であり、レーザー回折散乱法を用いて測定した体積積算の中位径D50が0.1μm以上2.0μm以下であり、フタル酸ジブチルの吸収量が4ml/100g以上8ml/100g以下であり、導電ペースト100質量%に対して40質量%以上60質量%以下含有されており、前記ガラスフリットは、ガラスフリット全量を100質量%とした時、SiO が5質量%以上30質量%以下、B が9質量%以上20質量%以下、Al が5質量%以上20質量%以下、Bi が30質量%以上70質量%以下を主成分とする材料で構成されるSiO −B −Al −Bi 系ガラスであって、更にZrO を0.1質量%以上5質量%以下含み、PbOとアルカリ金属を含まず、軟化点が550℃以上700℃以下であることを特徴とする鉛フリー導電ペースト。 A conductive paste containing a conductive powder, a lead-free glass frit, and an organic vehicle as main components. The conductive powder has an SEM average particle size of 0.1 μm or more and 1.0 μm or less, and is subjected to a laser diffraction scattering method. The median diameter D50 of the volume integration measured using the above is 0.1 μm or more and 2.0 μm or less, the absorption amount of dibutyl phthalate is 4 ml / 100 g or more and 8 ml / 100 g or less, and the conductive paste is 100% by mass. are contained 40 wt% to 60 wt% or less, the glass frit, when the glass frit total volume of 100 wt%, SiO 2 is 30 mass% or more and 5 mass% or less, B 2 O 3 is 9% by weight or more 20 wt% or less, Al 2 O 3 is 20 mass% or more and 5 mass% or less, Bi 2 O 3 is formed of a material mainly containing less than 70 mass% 30 mass% SiO 2 -B 2 O 3 - Al 2 O 3- Bi 2 O 3 glass, further containing ZrO 2 in an amount of 0.1% by mass or more and 5% by mass or less, not containing PbO and alkali metals, and having a softening point of 550 ° C or more and 700 ° C or less. A lead-free conductive paste characterized by that. 導電性粉末と、無鉛ガラスフリットと、有機ビヒクルとを主成分とする導電ペーストであって、前記導電性粉末は、SEM平均粒径が0.1μm以上1.0μm以下であり、レーザー回折散乱法を用いて測定した体積積算の中位径D50が0.1μm以上2.0μm以下であり、フタル酸ジブチルの吸収量が4ml/100g以上8ml/100g以下であり、導電ペースト100質量%に対して40質量%以上60質量%以下含有されており、前記ガラスフリットは、レーザー回折散乱法を用いて測定した体積積算の中位径D50が0.1μm以上1.0μm以下であり、体積粒度分布幅指標SDが0.3μm以下であることを特徴とする鉛フリー導電ペースト。 A conductive paste containing a conductive powder, a lead-free glass frit, and an organic vehicle as main components. The conductive powder has an SEM average particle size of 0.1 μm or more and 1.0 μm or less, and is subjected to a laser diffraction / scattering method. The median diameter D50 of the volume integration measured using the above is 0.1 μm or more and 2.0 μm or less, and the absorption amount of dibutyl phthalate is 4 ml / 100 g or more and 8 ml / 100 g or less, based on 100% by mass of the conductive paste. The glass frit is contained in an amount of 40% by mass or more and 60% by mass or less , and the volume integrated medium diameter D50 measured by the laser diffraction / scattering method is 0.1 μm or more and 1.0 μm or less, and the volume particle size distribution width. A lead-free conductive paste having an index SD of 0.3 μm or less . 前記導電性粉末が、Au、Ag、Cu、Pd及びPtのうちの少なくとも1種類であることを特徴とする、請求項1〜3のいずれか1項に記載の鉛フリー導電ペースト。 The lead-free conductive paste according to any one of claims 1 to 3, wherein the conductive powder is at least one of Au, Ag, Cu, Pd and Pt.
JP2016186495A 2016-09-26 2016-09-26 Lead-free conductive paste Expired - Fee Related JP6769208B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016186495A JP6769208B2 (en) 2016-09-26 2016-09-26 Lead-free conductive paste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016186495A JP6769208B2 (en) 2016-09-26 2016-09-26 Lead-free conductive paste

Publications (2)

Publication Number Publication Date
JP2018055767A JP2018055767A (en) 2018-04-05
JP6769208B2 true JP6769208B2 (en) 2020-10-14

Family

ID=61835913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016186495A Expired - Fee Related JP6769208B2 (en) 2016-09-26 2016-09-26 Lead-free conductive paste

Country Status (1)

Country Link
JP (1) JP6769208B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7235692B2 (en) * 2019-03-27 2023-03-08 三ツ星ベルト株式会社 Conductive composition, metallized substrate and manufacturing method thereof
DE102020106946A1 (en) * 2020-03-13 2021-09-16 Schott Ag Glass for passivating semiconductor components
JP7574577B2 (en) 2020-08-27 2024-10-29 住友金属鉱山株式会社 Composition for thick film resistor, paste for thick film resistor, thick film resistor, and method for producing composition for thick film resistor

Also Published As

Publication number Publication date
JP2018055767A (en) 2018-04-05

Similar Documents

Publication Publication Date Title
KR102488165B1 (en) Conductive composition, method for producing a conductor, and method for forming wiring of electronic parts
KR101172723B1 (en) Copper conductor paste, conductor circuit board and electronic part
KR102488162B1 (en) Manufacturing method of conductive composition and terminal electrode
JP6954285B2 (en) Conductive paste
JP5488282B2 (en) Conductive paste
JP6623919B2 (en) Conductive composition, method for producing conductor, and method for forming wiring of electronic component
JP6769208B2 (en) Lead-free conductive paste
JP4466402B2 (en) Thick film conductor composition
KR102441705B1 (en) Conductive paste for forming external electrodes of multilayer ceramic electronic components
WO2016186185A1 (en) Cu paste composition for forming thick film conductor, and thick film conductor
JP5556518B2 (en) Conductive paste
JP6623920B2 (en) Method for producing conductive composition and terminal electrode
JP2015210902A (en) Composition for formation of thick film conductor formed with the same
JP2003132735A (en) Thick film conductor paste and electronic parts comprised to use the same
CN109994246B (en) Powder composition for forming thick-film conductor and slurry for forming thick-film conductor
JP7322534B2 (en) Powder composition for forming thick film conductor and paste for forming thick film conductor
JP7581791B2 (en) Powder composition for forming thick film conductor, paste for forming thick film conductor, and thick film conductor
JP7187832B2 (en) Powder composition for forming thick film conductor and paste for forming thick film conductor
JP2008053138A (en) Thick-film conductor forming composite and forming method of thick-film conductor using same, and thick-film conductor obtained by method
JP2004362862A (en) Conductive paste composition for thick-film conductor
JP2022089460A (en) Thick film conductor, composition for formation thereof and thick film conductor paste containing the composition for formation thereof
JP2006054061A (en) Conductive paste
JP2019110105A5 (en)
JP2019032993A (en) Thick conductor forming composition and method for producing thick conductor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200623

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200825

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200907

R150 Certificate of patent or registration of utility model

Ref document number: 6769208

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees