JP5488282B2 - Conductive paste - Google Patents

Conductive paste Download PDF

Info

Publication number
JP5488282B2
JP5488282B2 JP2010158793A JP2010158793A JP5488282B2 JP 5488282 B2 JP5488282 B2 JP 5488282B2 JP 2010158793 A JP2010158793 A JP 2010158793A JP 2010158793 A JP2010158793 A JP 2010158793A JP 5488282 B2 JP5488282 B2 JP 5488282B2
Authority
JP
Japan
Prior art keywords
weight
solder
glass frit
conductive paste
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010158793A
Other languages
Japanese (ja)
Other versions
JP2012022841A (en
Inventor
隆 加藤
直人 新藤
義徳 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shoei Chemical Inc
Original Assignee
Shoei Chemical Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shoei Chemical Inc filed Critical Shoei Chemical Inc
Priority to JP2010158793A priority Critical patent/JP5488282B2/en
Priority to KR1020110063540A priority patent/KR101786722B1/en
Priority to MYPI2011003255A priority patent/MY161100A/en
Priority to TW100124530A priority patent/TWI483269B/en
Priority to CN201110195191.8A priority patent/CN102332320B/en
Publication of JP2012022841A publication Critical patent/JP2012022841A/en
Application granted granted Critical
Publication of JP5488282B2 publication Critical patent/JP5488282B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/14Conductive material dispersed in non-conductive inorganic material
    • H01B1/16Conductive material dispersed in non-conductive inorganic material the conductive material comprising metals or alloys
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/122Silica-free oxide glass compositions containing oxides of As, Sb, Bi, Mo, W, V, Te as glass formers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/14Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions
    • C03C8/18Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions containing free metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0026Apparatus for manufacturing conducting or semi-conducting layers, e.g. deposition of metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Description

本発明は、セラミック基板や金属基板等の各種基板又は電子部品などに対し、高温で焼付けすることにより、電極や導体を形成するのに適した、鉛フリーの導電性ペーストに関する。   The present invention relates to a lead-free conductive paste suitable for forming electrodes and conductors by baking at a high temperature on various substrates such as ceramic substrates and metal substrates, or electronic components.

導電性ペーストは、通常、銀や銀−パラジウム、銅、ニッケルなどの金属を主成分とする導電性粉末と、無機結合剤としてのガラスフリットとを、樹脂及び溶剤を含む有機ビヒクルに均一に分散させてペースト状にしたものであり、必要に応じて酸化ビスマス、酸化銅などの金属酸化物などが添加される。   Conductive paste is usually uniformly dispersed in an organic vehicle containing a resin and a solvent, with a conductive powder mainly composed of metals such as silver, silver-palladium, copper, and nickel, and glass frit as an inorganic binder. In this case, a metal oxide such as bismuth oxide or copper oxide is added as necessary.

当該導電性ペーストは、スクリーン印刷、ディッピング、刷毛塗り等の種々の方法で、所定のパターン形状になるよう各種基板上あるいは電子部品の端子部に塗布され、その後700〜950℃程度の高温で焼成され、導体膜(厚膜導体)が形成される。   The conductive paste is applied on various substrates or terminal parts of electronic components so as to have a predetermined pattern shape by various methods such as screen printing, dipping and brush coating, and then fired at a high temperature of about 700 to 950 ° C. As a result, a conductor film (thick film conductor) is formed.

近年の環境に対する関心の高まりにより、導電性ペーストに使用されるガラスフリットは鉛を含まない鉛フリーのガラスフリットであることが要求されることが多くなっている。鉛フリーのガラスフリットは、鉛(PbO)を全く含有しない、若しくは不可避不純物として鉛を極僅か(例えば50ppm以下)のみ含有するガラスである。かかる鉛フリーのガラスフリットとして、例えばアルミノホウケイ酸系ガラスを用いる導電性ペーストが提案されている(特許文献1参照)。   With the recent increase in interest in the environment, the glass frit used for the conductive paste is often required to be a lead-free glass frit containing no lead. A lead-free glass frit is a glass that does not contain lead (PbO) at all or contains very little lead (for example, 50 ppm or less) as an inevitable impurity. As such a lead-free glass frit, for example, a conductive paste using aluminoborosilicate glass has been proposed (see Patent Document 1).

導体膜上にリード線や各種電子部品を取付けたり、電子部品をプリント基板等に半田で実装する場合、あるいは防湿、防塵処理が必要な場合、当該導体膜上には、必要によりめっき処理を施した後、半田層が形成される。半田層は、通常、前記基板を溶融半田浴に浸漬するか、又は半田ペーストを導体膜上の所定位置に印刷することにより形成される。この後、実際の半田接合を行うにあたっては、加熱して半田層をリフローさせる。   If a lead wire or various electronic components are mounted on the conductor film, or if the electronic component is mounted on a printed circuit board with solder, or if moisture or dust proofing is required, the conductor film may be plated if necessary. After that, a solder layer is formed. The solder layer is usually formed by immersing the substrate in a molten solder bath or printing a solder paste at a predetermined position on the conductor film. Thereafter, when actual solder bonding is performed, the solder layer is reflowed by heating.

このような厚膜導体回路や電極の形成に用いられる導電性ペーストには、導電性、基板との接着強度及び耐半田溶解性(半田耐熱性)等、様々の特性を満たすことが要求される。   The conductive paste used for forming such thick film conductor circuits and electrodes is required to satisfy various characteristics such as conductivity, adhesion strength to the substrate, and solder solubility resistance (solder heat resistance). .

特に、近年のマイクロエレクトロニクス分野においては、半田材料においても鉛フリー化が強く要請されており、従来最も一般的に使用されている鉛−錫系半田に代わって、種々の鉛フリー半田が用いられ始めている。鉛フリー半田は、様々な融点を有するものが存在するが、例えば、260℃程度の高温で溶融される錫−銀−銅系半田(Sn/3Ag/0.5Cu)が広く知られている。   In particular, in the recent microelectronics field, there has been a strong demand for lead-free solder materials, and various lead-free solders are used in place of the most commonly used lead-tin solder. I'm starting. There are lead-free solders having various melting points. For example, tin-silver-copper solder (Sn / 3Ag / 0.5Cu) that is melted at a high temperature of about 260 ° C. is widely known.

しかしながら、上記錫−銀−銅系半田のような高融点半田の使用に際して下記のような不都合が生じている。すなわち、従来、導電性ペーストの設計・開発は、半田付け温度が230〜240℃程度の鉛−錫系半田を用いることを前提としておこなわれているため、高融点半田を使用すると、導電性ペースト中に導電性粉末として含有された金属が、溶融した半田中に拡散・溶解してしまい、所謂「半田食われ」という現象を引き起こす可能性が高くなってしまう。   However, the use of a high melting point solder such as the tin-silver-copper solder has the following disadvantages. That is, conventionally, the design and development of a conductive paste has been performed on the premise that a soldering temperature of about 230 to 240 ° C. is used. Therefore, when a high melting point solder is used, the conductive paste The metal contained therein as conductive powder diffuses and dissolves in the molten solder, which increases the possibility of causing a so-called “solder erosion” phenomenon.

そこで、例えば特許文献2においては、SiO2−B23−Al23−CaO−Li2O系ガラス粉末及びアルミナ粉末を用いることにより、焼成後の導体膜の耐半田溶解性を向上させて半田食われを抑制する導電性ペーストが提案されている。 Therefore, in Patent Document 2, for example, by using SiO 2 —B 2 O 3 —Al 2 O 3 —CaO—Li 2 O-based glass powder and alumina powder, the soldering resistance of the conductor film after firing is improved. A conductive paste that suppresses solder erosion has been proposed.

特開昭50−161692号公報JP-A-50-161692 特開2006−228572号公報JP 2006-228572 A

しかしながら、さらに厳しい条件が要求される用途では、導体膜の耐半田溶解性をさらに向上させなければならないという課題があった。   However, there has been a problem that the solder film resistance of the conductor film must be further improved in applications that require more severe conditions.

本発明の目的は、特に半田付けされる導体膜や電極の形成に用いたときに耐半田溶解性を向上させ得る導電性ペーストを提供することである。   An object of the present invention is to provide a conductive paste that can improve the resistance to solder dissolution, particularly when used for forming a conductor film or an electrode to be soldered.

(A)導電性粉末と、
(B)酸化物換算で下記の組成からなる成分を合計で85重量%以上含有し、かつ、実質的に鉛を含まないガラスフリットと、
(C)有機ビヒクルと、
を含む。
ガラスフリット中の割合として、SiO2…16〜47重量%、Al23…33〜52重量%、MgO…3〜15重量%、B23…15〜45重量%
(A) conductive powder;
(B) a glass frit containing a total of 85% by weight or more of components having the following composition in terms of oxide, and substantially free of lead;
(C) an organic vehicle;
including.
As a proportion in the glass frit, SiO 2 ... 16 to 47% by weight, Al 2 O 3 ... 33 to 52% by weight, MgO ... 3 to 15% by weight, B 2 O 3 ... 15 to 45% by weight

本発明において、好ましくは、
上記(A)導電性粉末は、
銀を主成分とする銀系金属粉末である。
In the present invention, preferably,
The (A) conductive powder is
It is a silver-based metal powder mainly composed of silver.

本発明において、好ましくは、
さらに、(D)酸化ジルコニウム、酸化チタン、酸化亜鉛からなる群より選ばれる少な くとも1種の金属酸化物を含む。
In the present invention, preferably,
Further, (D) contains at least one metal oxide selected from the group consisting of zirconium oxide, titanium oxide, and zinc oxide.

請求項1に記載の発明によれば、耐半田溶解性に優れた導体膜や電極を得ることができる。   According to the first aspect of the present invention, it is possible to obtain a conductor film or an electrode excellent in solder resistance.

請求項2に記載の発明によれば、導電性成分として半田食われが生じやすい銀を主成分とするため、より一層本発明による耐半田溶解性の作用効果を享受することができる。   According to the second aspect of the present invention, since the main component is silver that is easily eroded by solder as the conductive component, the effect of solder dissolution resistance according to the present invention can be further enjoyed.

請求項3に記載の発明によれば、酸化ジルコニウム、酸化チタン、酸化亜鉛からなる群より選ばれる少なくとも1種の作用により、導体膜の耐半田溶解性を一段と向上させることができる。   According to the invention described in claim 3, the resistance to solder dissolution of the conductor film can be further improved by at least one action selected from the group consisting of zirconium oxide, titanium oxide and zinc oxide.

本発明に係る導電性ペーストは、(A)導電性粉末、(B)ガラスフリット及び(C)有機ビヒクルを必須成分として含むものである。   The conductive paste according to the present invention contains (A) conductive powder, (B) glass frit, and (C) an organic vehicle as essential components.

以下、(A)導電性粉末、(B)ガラスフリット、(C)有機ビヒクルについてそれぞれ詳細に説明する。   Hereinafter, (A) conductive powder, (B) glass frit, and (C) organic vehicle will be described in detail.

(A)導電性粉末
本発明においては、導電性粉末は特に限定されないが、例えば、銀、パラジウム、白金、金等の貴金属粉末、銅、ニッケル、コバルト、鉄等の卑金属粉末、又はこれら金属を含む合金粉末や、表面が他の導電性材料で被覆された複合粉末等を用いることができる。
(A) Conductive powder In the present invention, the conductive powder is not particularly limited. For example, noble metal powders such as silver, palladium, platinum, and gold, base metal powders such as copper, nickel, cobalt, and iron, or these metals are used. It is possible to use an alloy powder containing, a composite powder whose surface is coated with another conductive material, or the like.

本発明においては、導電性粉末として、半田食われの生じやすい銀を主成分とする粉末を用いた場合でも、耐半田溶解性が極めて優れている。特に、導電性粉末中に占める銀の配合比率が70重量%以上の銀系導電性粉末を用いた場合でも、銀の半田食われを効果的に抑制することができる。また、銀の含有量が例えば1〜30重量部と少量であっても、表面に銀が露出した銀被覆銅粉末などに対しては、耐半田溶解性を顕著に改善できる。   In the present invention, even when a powder mainly composed of silver, which is easily eroded by solder, is used as the conductive powder, the resistance to solder dissolution is extremely excellent. In particular, even when a silver-based conductive powder having a silver blending ratio of 70% by weight or more in the conductive powder is used, it is possible to effectively suppress solder erosion of silver. Further, even if the silver content is as small as 1 to 30 parts by weight, for example, the silver-coated copper powder with silver exposed on the surface can remarkably improve the solder resistance.

銀を主成分とする粉末から構成された銀系導電性粉末において、耐半田溶解性、導電性、銀マイグレーション防止の点から、銀以外の他の成分として、パラジウム、白金、金、銅、ニッケル等の成分を配合することができるが、導電率やコスト面からは、他の成分の配合量を0.1〜30重量%とすることが好ましい。特に、他の成分としてパラジウムが配合されることが好ましく、銀系導電性粉末として、銀及び他の成分の混合粉末又は合金粉末、複合粉末、若しくはこれらの混合粉末を用いることができる。なお、本明細書において、0.1〜30重量%とは、0.1重量%以上、30重量%以下を意味する。以下、同様の意味で記号「〜」を使用する。   In silver-based conductive powders composed of silver-based powders, palladium, platinum, gold, copper, and nickel are included as components other than silver in terms of solder resistance, conductivity, and silver migration prevention. However, from the viewpoint of electrical conductivity and cost, the amount of other components is preferably 0.1 to 30% by weight. In particular, palladium is preferably blended as the other component, and as the silver-based conductive powder, a mixed powder of silver and other components, an alloy powder, a composite powder, or a mixed powder thereof can be used. In addition, in this specification, 0.1-30 weight% means 0.1 weight% or more and 30 weight% or less. Hereinafter, the symbol “˜” is used in the same meaning.

導電性粉末としては平均粒径が0.1〜10μmのものを使用することができ、平均粒径の異なる2種類以上の導電性粉末を混合することも可能である。導電性粉末の形状は特に制限されず、球状粉及びフレーク状粉などを適宜使用することができ、形状の異なる2種類以上の導電粉末を混合することも可能である。   As the conductive powder, those having an average particle diameter of 0.1 to 10 μm can be used, and two or more kinds of conductive powders having different average particle diameters can be mixed. The shape of the conductive powder is not particularly limited, and spherical powder and flaky powder can be used as appropriate, and two or more kinds of conductive powders having different shapes can be mixed.

(B)ガラスフリット
本発明に係るガラスフリットは、SiO2とAl23とMgOとB23とを主成分として含有するアルミノホウケイ酸系ガラスフリットであって、緻密な金属−ガラス焼成膜構造を作るべく組成選択されたものである。具体的にガラスフリットは、酸化物換算で下記の組成からなる成分を合計で85重量%以上含有し、かつ、実質的に鉛を含まないものである。
(B) Glass frit The glass frit according to the present invention is an aluminoborosilicate glass frit containing SiO 2 , Al 2 O 3 , MgO, and B 2 O 3 as main components, and is dense metal-glass fired. The composition was selected to produce a film structure. Specifically, the glass frit contains a total of 85% by weight or more of components having the following composition in terms of oxide, and substantially does not contain lead.

SiO2…16〜47重量%、Al23…33〜52重量%、MgO…3〜15重量%、B23…15〜45重量%。
なお、「SiO2、Al23、MgO、B23」の各成分の含有量は、ガラスフリット中に占める割合である。
SiO 2 ... 16 to 47 wt%, Al 2 O 3 ... 33~52 wt%, MgO ... 3 to 15 wt%, B 2 O 3 ... 15~45 wt%.
In addition, the content of each component of “SiO 2 , Al 2 O 3 , MgO, B 2 O 3 ” is a ratio in the glass frit.

また、各成分は、上記の酸化物換算の量がガラスフリット中に含有されていればよく、ガラスフリット中に上記酸化物として存在していることを意味するものではない。一例として、SiO2はSiOとして含まれていてもよい。 Each component may be contained in the glass frit in an amount equivalent to the above oxide, and does not mean that the component is present as the oxide in the glass frit. As an example, SiO 2 may be included as SiO.

ガラスフリットとして、平均粒径1.0〜5.0μm程度のものを使用するのが好ましい。ガラスフリットは、導電性粉末100重量部に対して1〜15重量部配合することが好ましい。ガラスフリットが1重量部未満であると、耐半田溶解性及び基板との密着性が低下する傾向がある。また、ガラスフリットが15重量部を超えると、導体膜として導電性が低下しすぎる傾向がある。さらに好ましいガラスフリットの配合量は、2〜10重量部である。   It is preferable to use a glass frit having an average particle size of about 1.0 to 5.0 μm. The glass frit is preferably blended in an amount of 1 to 15 parts by weight with respect to 100 parts by weight of the conductive powder. If the glass frit is less than 1 part by weight, the solder dissolution resistance and the adhesion to the substrate tend to decrease. On the other hand, if the glass frit exceeds 15 parts by weight, the conductivity of the conductor film tends to be too low. A more preferred glass frit content is 2 to 10 parts by weight.

下記に、ガラスフリットの組成の限定理由について成分ごとにそれぞれ説明する。   The reasons for limiting the composition of the glass frit will be described below for each component.

SiO2に関しては含有量が16〜47重量%の範囲内である。SiO2は、含有量が16重量%を下回ると、緻密な焼成膜が形成されず、耐半田溶解性も低下する。また、SiO2の含有量が16〜47重量%の範囲外であるものは、ガラス化が困難となるので望ましくない。ガラス化容易性の観点から、SiO2の含有量が20〜40重量%、特に20〜33重量%の範囲内であることが、さらに好ましい。 The content of SiO 2 is in the range of 16 to 47% by weight. When the content of SiO 2 is less than 16% by weight, a dense fired film is not formed, and the solder dissolution resistance is also lowered. In addition, it is not desirable that the SiO 2 content is outside the range of 16 to 47% by weight because vitrification becomes difficult. From the viewpoint of easiness of vitrification, it is more preferable that the content of SiO 2 is 20 to 40% by weight, particularly 20 to 33% by weight.

Al23に関しては含有量が33〜52重量%の範囲内である。Al23の含有量は、33重量%を下回ると耐半田溶解性が低下し、52重量%を上回るとガラス製造時に高融になりすぎてガラス化が困難となる。ガラス化容易性の観点から、Al23の含有量は48重量%以下であることが、さらに好ましい。また、Al23の含有量が多いと耐薬品性などの特性が向上する傾向があることから、Al23の含有量は35重量%以上であることが、特に好ましい。 The content of Al 2 O 3 is in the range of 33 to 52% by weight. If the content of Al 2 O 3 is less than 33% by weight, the resistance to solder dissolution is lowered, and if it exceeds 52% by weight, it becomes too melted during glass production and vitrification becomes difficult. From the viewpoint of easy vitrification, the content of Al 2 O 3 is more preferably 48% by weight or less. Further, since there is a tendency to improve the properties such as chemical resistance and the content of Al 2 O 3 is large, the content of Al 2 O 3 is to be at least 35% by weight, particularly preferred.

MgOは、ガラス化範囲を広げる効果を有するものであり、その含有量は、3〜15重量%の範囲内である。MgOの含有量が3重量%を下回るとガラス化が困難となり、15重量%を上回っても、ガラス化範囲がそれ以上拡大されず、耐半田溶解性も低下する。特に優れた耐半田溶解性を得るためには、MgOの含有量を10重量%以下にすることが好ましい。   MgO has an effect of extending the vitrification range, and its content is in the range of 3 to 15% by weight. If the MgO content is less than 3% by weight, vitrification becomes difficult. Even if the MgO content exceeds 15% by weight, the vitrification range is not further expanded, and the solder dissolution resistance also decreases. In order to obtain particularly excellent solder dissolution resistance, the MgO content is preferably 10% by weight or less.

23はガラスフリット中で融剤として作用するものであり、その含有量は15〜45重量%の範囲内である。B23は含有量が15重量%を下回ると融剤としての効果が小さく、45重量%を上回ると耐半田溶解性が低下する。また、B23は含有量が増大すると耐薬品性などを低下させる傾向があるため、含有量が40重量%以下であることが特に好ましい。 B 2 O 3 acts as a flux in the glass frit, and its content is in the range of 15 to 45% by weight. When the content of B 2 O 3 is less than 15% by weight, the effect as a flux is small, and when the content is more than 45% by weight, resistance to solder dissolution is lowered. Further, since B 2 O 3 is that tend to reduce the chemical resistance when the content is increased, it is particularly preferable that the content is 40 wt% or less.

さらに、ガラスフリットには、必要に応じてSiO2、Al23、MgO、B23以外の他の成分を含有させることができる。 Further, the glass frit can contain other components other than SiO 2 , Al 2 O 3 , MgO, and B 2 O 3 as necessary.

この場合、他の成分の総量は、酸化物換算で0〜15重量%の範囲内であることが好ましい。他の成分の含有量が15重量%を超えると、本発明のアルミノホウケイ酸系ガラスが有する優れた耐半田溶解性を変化させてしまい、耐半田溶解性が低下してしまうおそれがあるため好ましくない。   In this case, the total amount of the other components is preferably in the range of 0 to 15% by weight in terms of oxide. If the content of the other components exceeds 15% by weight, the excellent solder solubility of the aluminoborosilicate glass of the present invention is changed, which may reduce the solder solubility resistance. Absent.

他の成分として、耐半田溶解性や耐薬品性を低下させない範囲で他の金属酸化物やハロゲンなどを含有させることができる。例えば、金属酸化物として、BaO、CaO、SrO、Li2Oなどのアルカリ金属やアルカリ土類金属の酸化物を含有させると、MgOと同様にガラス化範囲を広げる他、軟化温度を調整する効果を有する。また、他の成分として、TiO2、ZrO2を配合することにより、基板との密着性や導体膜の緻密性を向上させ、耐半田溶解性を向上させる効果を有する。本発明に係るガラスフリットには、さらに、他の成分として、Cu2O、MoO3、La23等の各種酸化物が含有されてもよいが、前述したように環境に対する観点から、実質的に鉛成分は含まれず、さらにはビスマス成分も含まれないことが望ましい。 As other components, other metal oxides, halogens, and the like can be contained as long as solder resistance and chemical resistance are not lowered. For example, when an oxide of an alkali metal or alkaline earth metal such as BaO, CaO, SrO, or Li 2 O is included as a metal oxide, the effect of adjusting the softening temperature in addition to expanding the vitrification range similarly to MgO. Have Further, by blending TiO 2 and ZrO 2 as other components, it has the effect of improving the adhesion to the substrate and the denseness of the conductor film and improving the resistance to solder dissolution. The glass frit according to the present invention may further contain various oxides such as Cu 2 O, MoO 3 and La 2 O 3 as other components. In particular, it is desirable that no lead component is contained, and furthermore, no bismuth component is contained.

ガラスフリットは、ガラスフリットを構成する各成分の原料化合物を混合し、その混合物を溶融、急冷、粉砕することで所望のガラスフリットを製造することができる。この通常の製造方法の他に、ゾルゲル法、噴霧熱分解法、アトマイズ法等の種々の方法で所望のガラスフリットを製造することもできる。   The glass frit can produce a desired glass frit by mixing raw material compounds of each component constituting the glass frit, and melting, quenching, and pulverizing the mixture. In addition to this normal production method, a desired glass frit can be produced by various methods such as a sol-gel method, a spray pyrolysis method, and an atomization method.

(C)有機ビヒクル
有機ビヒクルとしては有機バインダや溶剤等を用いることができる。有機バインダとしては、セルロース類、ブチラール樹脂、アクリル樹脂、フェノール樹脂、アルキッド樹脂、ロジンエステル等を用いることができる。他方、溶剤としては、アルコール系、ケトン系、エーテル系、エステル系、炭化水素系等の有機溶剤や水、これらの混合溶剤を用いることができる。
(C) Organic vehicle An organic binder, a solvent, etc. can be used as an organic vehicle. As the organic binder, celluloses, butyral resin, acrylic resin, phenol resin, alkyd resin, rosin ester, and the like can be used. On the other hand, as the solvent, organic solvents such as alcohols, ketones, ethers, esters, and hydrocarbons, water, and mixed solvents thereof can be used.

有機ビヒクルの配合量は特に限定されるものではなく、無機成分をペースト中に保持し得る適切な量で用途や塗布方法に応じて適宜調整される。   The blending amount of the organic vehicle is not particularly limited, and is appropriately adjusted according to the use and application method with an appropriate amount capable of retaining the inorganic component in the paste.

さらに、本発明の導電性ペーストは、基板との密着性や導体膜の緻密性を向上させたり、耐半田溶解性を向上させるために、任意の成分として(D)金属酸化物を含有しても良い。金属酸化物は、1種類のみ配合されても、2種類以上組み合わせて配合することもできる。   Furthermore, the conductive paste of the present invention contains (D) a metal oxide as an optional component in order to improve the adhesion to the substrate and the denseness of the conductor film, or to improve the solder resistance. Also good. Even if only one type of metal oxide is blended, two or more types can be blended in combination.

金属酸化物としては、酸化ビスマス、酸化ジルコニウム、酸化銅、ジルコン、アルミナ、シリカ、酸化チタン、酸化マンガン、酸化ランタン等、従来から導電性ペーストに配合される種々の金属酸化物が挙げられるが、特に、酸化ジルコニウム(ZrO2)、酸化チタン(TiO2、TiO)、酸化亜鉛(ZnO)、等を用いるのが好ましい。金属酸化物としては、平均粒径5.0μm以下の粉末を用いるのが好ましい。また金属酸化物は、有機金属化合物などのように金属酸化物の前駆体として配合されていても良い。 Examples of the metal oxide include bismuth oxide, zirconium oxide, copper oxide, zircon, alumina, silica, titanium oxide, manganese oxide, lanthanum oxide, and various metal oxides that are conventionally blended into conductive pastes. In particular, it is preferable to use zirconium oxide (ZrO 2 ), titanium oxide (TiO 2 , TiO), zinc oxide (ZnO), or the like. As the metal oxide, it is preferable to use a powder having an average particle size of 5.0 μm or less. The metal oxide may be blended as a metal oxide precursor such as an organometallic compound.

その他、本発明の導電性ペーストには、印刷特性などを調整するために、通常添加されるような可塑剤、高級脂肪酸や脂肪酸エステル系等の分散剤、界面活性剤、さらには樹脂ビーズなどの固形樹脂など、(A)〜(D)以外の添加剤を適宜配合することができる。   In addition, the conductive paste of the present invention includes plasticizers that are usually added to adjust printing characteristics, dispersants such as higher fatty acids and fatty acid esters, surfactants, and resin beads. Additives other than (A) to (D) such as a solid resin can be appropriately blended.

本発明の導電性ペーストは、例えば次のように製造される。
(A)導電性粉末と、(B)ガラスフリットと、必要に応じて(D)金属酸化物及び他の添加剤とを、適切な配合比率で調合・混合し、(C)有機ビヒクル中に均一に分散させてペースト状とする。
The electrically conductive paste of this invention is manufactured as follows, for example.
(A) Conductive powder, (B) Glass frit, and (D) Metal oxide and other additives as necessary are mixed and mixed at an appropriate blending ratio, and (C) in an organic vehicle. Disperse uniformly to form a paste.

(A)導電性粉末、(B)ガラスフリット、及び必要に応じて配合される金属酸化物の比率は特に限定されず、目的・用途に応じて通常使用される範囲内で適宜調整される。好ましくは、(A)導電性粉末100重量部に対し、(B)ガラスフリットを1〜15重量部、(D)金属酸化物を合計量で0〜10重量部程度配合する。   The ratio of (A) conductive powder, (B) glass frit, and metal oxide blended as necessary is not particularly limited, and can be appropriately adjusted within a range that is usually used according to the purpose and application. Preferably, (A) 1 to 15 parts by weight of glass frit and (D) metal oxide are added in a total amount of about 0 to 10 parts by weight with respect to 100 parts by weight of (A) conductive powder.

本発明の導電性ペーストは、基板や電子部品に形成される導体や電極形成に使用されるが、ここでは一例として、基板上に電極を形成する場合について説明する。   The conductive paste of the present invention is used for forming a conductor or an electrode formed on a substrate or an electronic component. Here, a case where an electrode is formed on a substrate will be described as an example.

導電性ペーストは、スクリーン印刷やディッピング、刷毛塗り等の適宜な方法によって基板上に所望のパターンで塗布され、その後、700〜950℃程度の高温で焼成される。焼成工程において、本発明の導電性ペーストに含まれるガラスフリットは昇温過程で軟化して流動し、膜全体に拡散して導電性粉末の表面を濡らして焼結を促進する。これにより、焼成後に形成される導体膜は、緻密な金属焼成膜構造を形成する。さらに、ガラスフリットは、温度上昇による粘度降下に伴って少なくともその一部が基板との界面に移行し、導体膜と基板を強固に接着させる。   The conductive paste is applied in a desired pattern on the substrate by an appropriate method such as screen printing, dipping, or brush coating, and then baked at a high temperature of about 700 to 950 ° C. In the firing step, the glass frit contained in the conductive paste of the present invention softens and flows in the temperature rising process, diffuses throughout the film, wets the surface of the conductive powder, and promotes sintering. Thereby, the conductor film formed after firing forms a dense metal fired film structure. Furthermore, at least a part of the glass frit moves to the interface with the substrate as the viscosity decreases due to the temperature rise, and the conductor film and the substrate are firmly bonded.

また、焼成工程において、ガラスが流動化し、導電性粉末が焼結を開始する時点で膜中にビヒクルなどの有機物が残留していると、その後、高温で分解して発生するガスが膜中に閉じ込められてブリスタ(気泡)を生じる一因となり、外観不良となるばかりか、焼成後の導体膜の緻密性を損なうことになる。本発明に係るガラスフリットは、その焼成時の流動性などから、ブリスタを効果的に抑制することができる。   In addition, if organic substances such as a vehicle remain in the film at the time when the glass is fluidized and the conductive powder starts to sinter in the firing process, gas generated by decomposition at a high temperature is then generated in the film. It becomes a cause of generating blisters (bubbles) by being confined, resulting in poor appearance as well as the denseness of the conductor film after firing. The glass frit according to the present invention can effectively suppress blisters from the fluidity during firing.

本発明の導電性ペーストによれば、特に、焼結した金属粒子間の界面に残存するガラスの存在により、金属の焼成膜が強固に保持され、緻密な金属焼成膜構造を形成するため、半田食われがなく、かつ、接着強度の大きい導体膜が得られ、仮に焼成膜の表面の一部が半田食われを起こしても、下部まで溶解が進行しにくく、そのため耐半田溶解性が格段に向上するものと推測される。   According to the conductive paste of the present invention, in particular, the presence of the glass remaining at the interface between the sintered metal particles firmly holds the metal fired film and forms a dense metal fired film structure. A conductive film that is not eroded and has high adhesive strength can be obtained, and even if a part of the surface of the fired film is eroded by solder, it is difficult for dissolution to proceed to the lower part, so the solder dissolution resistance is remarkably improved. Presumed to improve.

なお、本発明の導電性ペーストによって得られた導体膜をSEM観察すると、その導体膜中に、ガラスフリットに由来していると推測される微細な結晶が網目状に析出し、極めて緻密な膜構造を形成している例が幾つか確認された。この結晶が析出している導体膜においては、導電性粉末が特に強固に保持され、その結果、耐半田溶解性の著しい改善が得られたと推測しているが、例えSEM観察では結晶の存在を明確に確認できない導体膜であっても、従来のものと比較するとはるかに良好な耐半田溶解性が得られていることから、本発明に係るガラス組成を完成するに至った。   When the conductive film obtained by the conductive paste of the present invention is observed by SEM, fine crystals presumed to be derived from the glass frit are precipitated in the conductive film in a network shape, and the film is extremely dense. Several examples of forming structures have been identified. In the conductor film on which the crystals are deposited, it is speculated that the conductive powder is particularly firmly held, and as a result, a remarkable improvement in the resistance to solder dissolution is obtained. Even a conductor film that cannot be clearly confirmed has a much better solder-melting resistance compared to the conventional film, and thus the glass composition according to the present invention has been completed.

また、上記の膜構造は、酸化ジルコニウム、酸化亜鉛、酸化チタンを添加すると、さらに形成され易くなり、導体膜の緻密性が一層強化され、より確実に半田食われを防止することができる。   Further, the above-described film structure is more easily formed when zirconium oxide, zinc oxide, or titanium oxide is added, and the denseness of the conductor film is further strengthened and solder erosion can be more reliably prevented.

更に、本発明に係る導電性ペーストでは、耐半田溶解性の他にも、耐酸性及び基板との接着強度等の特性に優れており、例えば、アルミナ、チタン酸バリウム等のセラミック基板、ガラス基板、ガラスセラミック基板等の絶縁性基板や、表面に絶縁層を形成したステンレス等の金属基板等の各種基板のいずれに対しても、接着強度が高く、優れた厚膜導体を形成することができる。   Furthermore, the conductive paste according to the present invention is excellent in properties such as acid resistance and adhesive strength with a substrate in addition to solder dissolution resistance. For example, ceramic substrates such as alumina and barium titanate, glass substrates, etc. Adhesive strength is high and an excellent thick film conductor can be formed on any of various substrates such as an insulating substrate such as a glass ceramic substrate and a metal substrate such as stainless steel having an insulating layer formed on the surface thereof. .

なお、本発明に係る導電性ペーストは、各種基板に対して厚膜導体回路や電極等を形成するのに適しているが、特にチップ抵抗、積層チップコンデンサ、積層チップインダクタ等のセラミックチップ部品やその他の電子部品の電極形成、セラミック多層基板の表面導体層の形成等に好ましく使用することができる。特に、本発明に係る導電性ペーストを焼成して得られる導体膜は、耐半田溶解性に優れることから、例えば半田付けや半田コートがなされる電子部品の端子電極や当該電子部品を接続する基板上の電極に好適である。また、本発明から得られる導体膜は、必ずしも半田付けされる必要はなく、例えば、基板の裏面や異なる位置に形成された電極に対して半田を付着させるために基板ごと半田浴に浸漬されるような基板上の導体パターンにも好適に使用することができる。特に、本発明から得られる導体膜は、チップ抵抗器の1次電極として好適に用いられる。さらに、本発明から得られる導体膜は、耐酸性にも優れることが確認されているため、例えばめっき処理が施される電極にも好適に使用することができる。   The conductive paste according to the present invention is suitable for forming thick film conductor circuits, electrodes and the like on various substrates, and in particular, ceramic chip components such as chip resistors, multilayer chip capacitors, multilayer chip inductors and the like. It can be preferably used for forming electrodes of other electronic components, forming a surface conductor layer of a ceramic multilayer substrate, and the like. In particular, since the conductive film obtained by firing the conductive paste according to the present invention is excellent in resistance to solder dissolution, for example, terminal electrodes of electronic parts to be soldered or solder coated, and substrates to which the electronic parts are connected Suitable for the upper electrode. In addition, the conductor film obtained from the present invention does not necessarily have to be soldered. For example, the entire substrate is immersed in a solder bath in order to adhere solder to the back surface of the substrate or electrodes formed at different positions. Such a conductor pattern on a substrate can also be suitably used. In particular, the conductor film obtained from the present invention is suitably used as a primary electrode of a chip resistor. Furthermore, since it has been confirmed that the conductor film obtained from the present invention is also excellent in acid resistance, it can be suitably used, for example, for an electrode subjected to plating treatment.

本実施例では、導電性ペーストの組成が互いに異なる複数種の試料を作製し、各試料の性質・特性等を評価した。   In this example, a plurality of types of samples having different conductive paste compositions were prepared, and the properties and characteristics of each sample were evaluated.

(1)試料の作製
(1.1)ガラスフリットの作製
ガラス原料を下記表1に示すガラス組成となるように混合し、各混合物を1600℃で1〜1.5時間溶融させ、溶融させた各混合物をグラファイト上に流出させて急冷した。急冷後に得られたガラス質物質を、アルミナボールを用いたボールミルで48時間粉砕して、平均粒径約2.5μmのガラスフリットA〜を作製した。平均粒径は、レーザ式粒度分布測定装置を用いて測定した粒度分布の重量基準の積算分率50%値(D50)である。なお、ガラスフリットBについては、1600℃において溶融せず、ガラスフリットBの作製ができなかった。下記の表では、本発明の範囲外のガラスフリットに対し、*を付加して示している。
(1) Preparation of sample (1.1) Preparation of glass frit Glass raw materials were mixed so as to have a glass composition shown in Table 1 below, and each mixture was melted at 1600 ° C. for 1 to 1.5 hours to be melted. Each mixture was quenched by flowing it over graphite. The vitreous material obtained after the rapid cooling was pulverized for 48 hours with a ball mill using alumina balls to prepare glass frits A to O having an average particle diameter of about 2.5 μm. The average particle size is a 50% integrated value (D 50 ) based on the weight of the particle size distribution measured using a laser particle size distribution measuring device. The glass frit B was not melted at 1600 ° C., and the glass frit B could not be produced. In the table below, * is added to the glass frit outside the scope of the present invention.

Figure 0005488282
Figure 0005488282

(1.2)試料1の作製
平均粒径が0.4μmと2.5μmの球状の銀粉末を重量比1:1で混合した混合銀粉末、ガラスフリットFを4重量部、並びにエチルセルロース6重量%、エポキシ樹脂4重量%及びブチルカルビトール90重量%からなる有機ビヒクル35重量部を混合し、3本ロールミルを用いて混練し、更にブチルカルビトールを希釈剤として添加し、10rpmにおける粘度が300〜600Pa・sになるように粘度調整を行って、導電性ペーストを製造した。
(1.2) Preparation of Sample 1 Mixed silver powder obtained by mixing spherical silver powders having an average particle diameter of 0.4 μm and 2.5 μm at a weight ratio of 1: 1, 4 parts by weight of glass frit F, and 6 parts by weight of ethyl cellulose %, An epoxy resin 4% by weight and an organic vehicle 35% by weight butyl carbitol 35 parts by weight, kneaded using a three roll mill, butyl carbitol is added as a diluent, viscosity at 10 rpm is 300 The conductive paste was manufactured by adjusting the viscosity so as to be ˜600 Pa · s.

その後、250メッシュのスクリーンを用いてアルミナ基板上に上記導電性ペーストをスクリーン印刷し、そのアルミナ基板をピーク温度850℃で10分間保持して焼成し、所定パターンの導体膜が形成されたアルミナ基板(試験片)を得た。そしてその試験片を「試料1」とした。   Thereafter, the conductive paste is screen-printed on an alumina substrate using a 250-mesh screen, and the alumina substrate is baked by holding it at a peak temperature of 850 ° C. for 10 minutes to form a conductor film having a predetermined pattern. (Test specimen) was obtained. The test piece was designated as “Sample 1”.

(1.3)試料2〜15、比較試料1〜6の作製
金属粉末、ガラスフリットA及びC〜O、各種金属酸化物を表2及び3に示す比率で混合し、(1.2)と同様にして導電性ペーストを製造した。但し、試料5、12は、銀粉末に代えて、銀粉末とニッケル粉末、又は銀粉末とパラジウム粉末をそれぞれ表に示す比率で用いたものである。ビヒクルおよび希釈剤は試料1と同じものを用い、10rpmにおける粘度が300〜600Pa・sになるよう粘度調整を行った。
(1.3) Preparation of Samples 2 to 15 and Comparative Samples 1 to 6 Metal powder, glass frits A and C to O, and various metal oxides were mixed in the ratios shown in Tables 2 and 3, and (1.2) A conductive paste was produced in the same manner. However, Samples 5 and 12 are silver powder and nickel powder, or silver powder and palladium powder, respectively, in the ratios shown in the table, instead of silver powder. The same vehicle and diluent were used as in Sample 1, and the viscosity was adjusted so that the viscosity at 10 rpm was 300 to 600 Pa · s.

Figure 0005488282
Figure 0005488282

Figure 0005488282
Figure 0005488282

得られたそれぞれの導電性ペーストにつき、上記(1.2)の項目と同様の処理を施して複数種の試験片を作製し、それら各試験片を「試料2〜15」、「比較試料1〜6」とした。   About each obtained conductive paste, the process similar to the item of said (1.2) is performed, and several types of test pieces are produced, and each of these test pieces is "sample 2-15", "comparative sample 1". ~ 6 ".

(2)各試料の性質・特性等の評価
各試料1〜15、比較試料1〜6に対し、面積抵抗値、耐半田溶解性を測定・評価した。各測定・評価項目の詳細を下記に示し、各試料1〜15、比較試料1〜6の測定・評価結果を試料ごとに上記表2、表3に示した。
(2) Evaluation of properties, characteristics, etc. of each sample For each sample 1-15 and comparative samples 1-6, the sheet resistance value and solder dissolution resistance were measured and evaluated. The details of each measurement / evaluation item are shown below, and the measurement / evaluation results of Samples 1 to 15 and Comparative Samples 1 to 6 are shown in Tables 2 and 3 for each sample.

(2.1)ブリスタの評価
各試料を目視で観察し、ブリスタが確認できない場合に「○」、ブリスタが確認できた場合に「×」と評価した。
(2.1) Evaluation of blister Each sample was visually observed and evaluated as “◯” when the blister could not be confirmed, and “x” when the blister could be confirmed.

(2.2)面積抵抗値の測定(導電性の評価)
各試料において、0.6mm×62.5mmパターンの両端間の抵抗値をデジタルマルチメータ(KEEITHLEY社製、Model2002、測定レンジ:0〜20Ω)で測定し、導体膜の膜厚を10μmに補正したときの値を面積抵抗値とした。
(2.2) Measurement of sheet resistance (Evaluation of conductivity)
In each sample, the resistance value between both ends of the 0.6 mm × 62.5 mm pattern was measured with a digital multimeter (manufactured by KEITHLEY, Model 2002, measurement range: 0 to 20Ω), and the film thickness of the conductor film was corrected to 10 μm. The value at that time was defined as a sheet resistance value.

(2.3)耐半田溶解性の評価
各試料をフラックスに浸漬し、その後各試料を260℃のSn/3Ag/0.5Cu半田浴中に10秒間浸漬し、試料を取り出した。この半田浴への浸漬を合計3回繰り返して行った。当該半田浴から取り出した後の各試料における導体膜の抵抗値を測定し、その測定結果から各試料の耐半田溶解性を評価した。具体的には、抵抗値が測定できた場合に「○」と評価し、抵抗値が測定レンジの上限を超えた場合に「×」と評価した。
(2.3) Evaluation of Solder Dissolution Resistance Each sample was immersed in a flux, and then each sample was immersed in a Sn / 3Ag / 0.5Cu solder bath at 260 ° C. for 10 seconds, and the sample was taken out. This immersion in the solder bath was repeated 3 times in total. The resistance value of the conductor film in each sample after taking out from the solder bath was measured, and the solder dissolution resistance of each sample was evaluated from the measurement result. Specifically, “○” was evaluated when the resistance value could be measured, and “X” was evaluated when the resistance value exceeded the upper limit of the measurement range.

本発明の範囲内のガラスフリットF〜I、L〜Oが配合された試料1〜15では、いずれも耐半田溶解性が良好であったが、本発明の範囲外となるガラスフリットA、C〜Dが配合された比較試料1〜3では耐半田溶解性が「×」となった。   Samples 1 to 15 containing glass frits F to I and L to O within the scope of the present invention all had good solder dissolution resistance, but glass frits A and C that were outside the scope of the present invention. In Comparative Samples 1 to 3 in which ~ D was blended, the solder dissolution resistance was “x”.

また、ガラスフリットE、J及びKが配合された比較試料4〜6では、耐半田溶解性が良好であったが、導体膜表面にブリスタが観察された。   In Comparative Samples 4 to 6 in which glass frit E, J, and K were blended, solder resistance was good, but blisters were observed on the conductor film surface.

また、試料6〜試料15のように、導電性ペーストに金属酸化物を配合した場合であっても、耐半田溶解性が良好であった。さらに試料5及び12の結果から、導電性粉末としてAg以外の金属粉を配合した場合であっても、本発明の効果を十分に得られることがわかる。   Moreover, even if it was a case where a metal oxide was mix | blended with the electrically conductive paste like the samples 6-15, the solder-solubility resistance was favorable. Furthermore, it can be seen from the results of Samples 5 and 12 that the effects of the present invention can be sufficiently obtained even when a metal powder other than Ag is blended as the conductive powder.

試料4、5、8〜11、13〜15のように、ガラスフリットに他の成分(BaOやLi2O、TiO2、ZrO2)を配合した場合であっても、耐半田溶解性が良好であった。 Good resistance to solder dissolution even when other components (BaO, Li 2 O, TiO 2 , ZrO 2 ) are blended into the glass frit as in Samples 4, 5, 8-11 and 13-15 Met.

さらに、ガラスフリットOを用いた試料4、試料13〜15について、(2.3)と同様にして、抵抗値が測定レンジを超えるまで試料の半田浴への浸漬及び抵抗値の測定を繰り返し行い、評価結果が「○」だった合計回数を耐半田回数として表4に示した。   Further, for sample 4 and samples 13 to 15 using glass frit O, the immersion of the sample in the solder bath and the measurement of the resistance value are repeated until the resistance value exceeds the measurement range in the same manner as in (2.3). The total number of times that the evaluation result was “◯” is shown in Table 4 as the number of times of solder resistance.

Figure 0005488282
Figure 0005488282

Claims (3)

(A)導電性粉末と、
(B)酸化物換算で下記の組成からなる成分を合計で85重量%以上含有し、かつ、実質的に鉛を含まないガラスフリットと、
(C)有機ビヒクルと、
を含むことを特徴とする導電性ペースト。
ガラスフリット中の割合として、SiO2…16〜47重量%、Al23…33〜52重量%、MgO…3〜15重量%、B23…15〜45重量%
(A) conductive powder;
(B) a glass frit containing a total of 85% by weight or more of components having the following composition in terms of oxide, and substantially free of lead;
(C) an organic vehicle;
A conductive paste comprising:
As a proportion in the glass frit, SiO 2 ... 16 to 47% by weight, Al 2 O 3 ... 33 to 52% by weight, MgO ... 3 to 15% by weight, B 2 O 3 ... 15 to 45% by weight
請求項1に記載の導電性ペーストにおいて、
上記(A)導電性粉末は、
銀を主成分とする銀系金属粉末である
ことを特徴とする導電性ペースト。
The conductive paste according to claim 1,
The (A) conductive powder is
A conductive paste characterized by being a silver-based metal powder mainly composed of silver.
請求項2に記載の導電性ペーストにおいて、
さらに、(D)酸化ジルコニウム、酸化チタン、酸化亜鉛からなる群より選ばれる少なくとも1種の金属酸化物を含むことを特徴とする導電性ペースト。
The conductive paste according to claim 2,
And (D) a conductive paste comprising at least one metal oxide selected from the group consisting of zirconium oxide, titanium oxide, and zinc oxide.
JP2010158793A 2010-07-13 2010-07-13 Conductive paste Active JP5488282B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2010158793A JP5488282B2 (en) 2010-07-13 2010-07-13 Conductive paste
KR1020110063540A KR101786722B1 (en) 2010-07-13 2011-06-29 Conductive paste
MYPI2011003255A MY161100A (en) 2010-07-13 2011-07-11 Conductive paste
TW100124530A TWI483269B (en) 2010-07-13 2011-07-12 Conductive paste
CN201110195191.8A CN102332320B (en) 2010-07-13 2011-07-13 Electroconductive paste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010158793A JP5488282B2 (en) 2010-07-13 2010-07-13 Conductive paste

Publications (2)

Publication Number Publication Date
JP2012022841A JP2012022841A (en) 2012-02-02
JP5488282B2 true JP5488282B2 (en) 2014-05-14

Family

ID=45484059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010158793A Active JP5488282B2 (en) 2010-07-13 2010-07-13 Conductive paste

Country Status (5)

Country Link
JP (1) JP5488282B2 (en)
KR (1) KR101786722B1 (en)
CN (1) CN102332320B (en)
MY (1) MY161100A (en)
TW (1) TWI483269B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190038592A (en) 2016-08-03 2019-04-08 쇼에이 가가쿠 가부시키가이샤 Conductive paste

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI490184B (en) * 2012-12-11 2015-07-01 Advanced Electronic Materials Inc Lead-free nano-scale conductive paste material
JP6201190B2 (en) * 2014-04-25 2017-09-27 住友金属鉱山株式会社 Thick film conductor forming composition and thick film conductor obtained using the same
EP3247180A4 (en) 2015-01-13 2018-08-29 NGK Spark Plug Co., Ltd. Ceramic substrate
GB201600573D0 (en) * 2016-01-12 2016-02-24 Johnson Matthey Plc Conductive paste, article and process
KR101860745B1 (en) * 2016-04-18 2018-05-24 (주)창성 Pressure-resistant electrode paste for chip component using thermo-plastic resin and manufacturing method therewith
KR102370946B1 (en) * 2017-02-10 2022-03-08 현대자동차주식회사 Electrode paste for fuel sender and manufacturing method thereof
WO2019073637A1 (en) * 2017-10-13 2019-04-18 株式会社村田製作所 Conductive paste, glass article, and method for manufacturing glass article
CN112992402B (en) * 2021-04-16 2021-10-08 西安宏星电子浆料科技股份有限公司 Silver and two-dimensional MXene mixed system conductor slurry for chip resistor and preparation method thereof
CN116354604A (en) * 2023-05-31 2023-06-30 江苏精瓷智能传感技术研究院有限公司 Preparation method of glass ceramic sealing material for platinum resistance film temperature sensing

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3419474B2 (en) * 1992-06-25 2003-06-23 旭テクノグラス株式会社 Conductive composition and multilayer circuit board
JP2002008441A (en) 2000-06-19 2002-01-11 Toyobo Co Ltd Conductive paste
WO2005041213A1 (en) 2003-10-27 2005-05-06 Toyo Boseki Kabushiki Kaisha Conductive paste
JP4432604B2 (en) * 2004-04-30 2010-03-17 昭栄化学工業株式会社 Conductive paste
JP4466402B2 (en) * 2005-02-17 2010-05-26 住友金属鉱山株式会社 Thick film conductor composition
US7611645B2 (en) * 2005-04-25 2009-11-03 E. I. Du Pont De Nemours And Company Thick film conductor compositions and the use thereof in LTCC circuits and devices
CN1329926C (en) * 2005-05-13 2007-08-01 范琳 Electrode thick liquid without lead and silver and mfg. method thereof
JP4456612B2 (en) * 2007-03-15 2010-04-28 三ツ星ベルト株式会社 Copper conductor paste, conductor circuit board and electronic components
JP2008243946A (en) 2007-03-26 2008-10-09 Dainippon Printing Co Ltd Conductive substrate and its manufacturing method
JP2009062523A (en) 2007-08-10 2009-03-26 Think Laboratory Co Ltd Electroconductive ink composition
KR20100080612A (en) * 2007-10-18 2010-07-09 이 아이 듀폰 디 네모아 앤드 캄파니 Lead-free conductive compositions and processes for use in the manufacture of semiconductor devices: mg-containing additive
JP5446097B2 (en) 2008-02-01 2014-03-19 大日本印刷株式会社 Conductive substrate and method for manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190038592A (en) 2016-08-03 2019-04-08 쇼에이 가가쿠 가부시키가이샤 Conductive paste
US11183315B2 (en) 2016-08-03 2021-11-23 Shoei Chemical Inc. Conductive paste

Also Published As

Publication number Publication date
KR20120006931A (en) 2012-01-19
KR101786722B1 (en) 2017-10-18
CN102332320B (en) 2016-03-02
TW201207867A (en) 2012-02-16
JP2012022841A (en) 2012-02-02
TWI483269B (en) 2015-05-01
MY161100A (en) 2017-04-14
CN102332320A (en) 2012-01-25

Similar Documents

Publication Publication Date Title
JP5488282B2 (en) Conductive paste
JP3209089B2 (en) Conductive paste
JP4291857B2 (en) Copper conductor paste, conductor circuit board and electronic components
KR102488165B1 (en) Conductive composition, method for producing a conductor, and method for forming wiring of electronic parts
JP6954285B2 (en) Conductive paste
KR102488162B1 (en) Manufacturing method of conductive composition and terminal electrode
JP5426241B2 (en) Chip resistor front and back electrodes
JP4456612B2 (en) Copper conductor paste, conductor circuit board and electronic components
JP4432604B2 (en) Conductive paste
JP4423832B2 (en) Glass composition and thick film paste using the same
JP5556518B2 (en) Conductive paste
JPH0817671A (en) Conductive paste
JP4495740B2 (en) Copper conductor paste, conductor circuit board and electronic components
JP2017199544A (en) Conductive composition, and method for manufacturing terminal electrode
JP2006066475A (en) Composition for forming thick film resistor, process for forming thick film resistor, and thick film resistor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140210

R150 Certificate of patent or registration of utility model

Ref document number: 5488282

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250