JP2009187695A - Conductor paste composition for display - Google Patents

Conductor paste composition for display Download PDF

Info

Publication number
JP2009187695A
JP2009187695A JP2008023712A JP2008023712A JP2009187695A JP 2009187695 A JP2009187695 A JP 2009187695A JP 2008023712 A JP2008023712 A JP 2008023712A JP 2008023712 A JP2008023712 A JP 2008023712A JP 2009187695 A JP2009187695 A JP 2009187695A
Authority
JP
Japan
Prior art keywords
powder
acid
sintering
conductor paste
paste composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008023712A
Other languages
Japanese (ja)
Inventor
Masahiro Hatano
正弘 波多野
Kenichiro Takaoka
憲一郎 高岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
Dai Nippon Printing Co Ltd
Original Assignee
Tanaka Kikinzoku Kogyo KK
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo KK, Dai Nippon Printing Co Ltd filed Critical Tanaka Kikinzoku Kogyo KK
Priority to JP2008023712A priority Critical patent/JP2009187695A/en
Publication of JP2009187695A publication Critical patent/JP2009187695A/en
Pending legal-status Critical Current

Links

Landscapes

  • Gas-Filled Discharge Tubes (AREA)
  • Conductive Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a conductor paste capable of forming a thin Ag film having a baked film thickness of 1-2 μm, small in voids, and capable of securing a low resistance value. <P>SOLUTION: An Ag conductor paste composition is prepared by dispersing Ag powder as a conductive constituent and glass powder as an adhesion constituent in an organic vehicle. The Ag conductor paste composition for a display contains a sintering accelerator formed of at least one out of a Bi organic metal compound and a Si organic metal compound, has 0.1-0.5 μm of the average particle diameter of the Ag powder, contains 25-40 wt.% of the Ag powder, and totally includes 0.2-10 wt.% of a sintering accelerator based on 100 wt.% of the Ag powder in terms of metal. It is preferable that the conductor paste further contains a sintering inhibitor comprising one or more organic metal compounds of which the metal constituents are Zn, Zr, Mn, Ni, Rh and Ru. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、ガラス基板やアルミナ基板上に形成する厚膜導体ペーストに関し、詳しくは、ディスプレイ用の導体電極、保護層、誘電体層を含む回路基板における導体電極形成用ペーストに関するものである。   The present invention relates to a thick film conductor paste formed on a glass substrate or an alumina substrate, and more particularly to a conductor electrode forming paste on a circuit board including a conductor electrode for display, a protective layer, and a dielectric layer.

回路基板の導体電極、プラズマディスプレイの配線電極等は、AuやAgを主成分とする厚膜導体ペーストを塗布、焼成することによって形成される。厚膜導体ペーストは、導電成分であるAg粉末、Au粉末と、基板材質や焼成温度、目標とする密着特性に応じたガラスフリットとを有機ビヒクルに分散してなり、更に、必要に応じて添加剤を添加して膜質の調整を行う。   Circuit board conductor electrodes, plasma display wiring electrodes, and the like are formed by applying and firing a thick film conductor paste mainly composed of Au or Ag. Thick film conductor paste is composed of Ag powder, Au powder, which are conductive components, and glass frit according to the substrate material, firing temperature, and target adhesion characteristics, dispersed in an organic vehicle, and added as necessary. Add the agent to adjust the film quality.

厚膜導体ペースト焼成後の出現膜厚は、ペースト中の導電成分の割合(メタル含有率)によって概ね決まるが、ペースト100重量部に対して導電粒子50重量部以下(50%以下)とすると焼成膜の緻密性が悪化しやすくなる。このことから、従来から、導体厚膜ペーストはペースト100重量部に対して導電粒子60〜90重量部程度で構成されるのが一般的となっている。   The film thickness that appears after firing the thick-film conductor paste is generally determined by the proportion of the conductive component in the paste (metal content), but firing when the conductive particles are 50 parts by weight or less (50% or less) with respect to 100 parts by weight of the paste. The denseness of the film tends to deteriorate. Therefore, conventionally, the conductor thick film paste is generally composed of about 60 to 90 parts by weight of conductive particles with respect to 100 parts by weight of the paste.

近年、フラットディスプレイ用パネルは厚みを薄くするニーズが高く、少しでも厚みを薄くするよう改善が進められている。他方、その駆動電極に関しては、膜厚を薄くすると配線抵抗が高くなることから、低抵抗とするために膜厚を厚くするという手段がとられている。しかし、このように電極の厚みを厚くすると、電極のある部分と無い部分との段差が大きくなり、電極上部に積層される膜の平坦性に悪影響を及ぼすことが問題となっていた。かかる問題の他、電極膜厚を薄くすることができれば、電極材料の削減につながりパネルコストの低減効果も期待できる。従って、厚みを薄くしても低抵抗を実現できる電極部材・材料への要求が非常に高くなっている。   In recent years, there is a high need for reducing the thickness of flat display panels, and improvements have been made to reduce the thickness as much as possible. On the other hand, with respect to the drive electrode, if the film thickness is reduced, the wiring resistance increases. Therefore, a means for increasing the film thickness is taken in order to reduce the resistance. However, when the thickness of the electrode is increased in this way, the level difference between the portion where the electrode is present and the portion where the electrode is not present becomes large, which adversely affects the flatness of the film laminated on the electrode. In addition to this problem, if the electrode film thickness can be reduced, the electrode material can be reduced, and an effect of reducing the panel cost can be expected. Therefore, there is a very high demand for electrode members and materials that can realize low resistance even when the thickness is reduced.

厚膜導体電極の薄膜化を実現させる手法としては、ペースト中のメタル含有率を減少させることが挙げられる。例えば、Agペーストの場合、Ag含有率40wt%では1〜2μm程度の薄い膜厚が実現できる。しかしながら、メタル含有率を単純に減少させた場合、ペースト中のAg粒子の密度が下がるため、粒子同士の焼結が妨げられてボイドが増大し緻密性が悪化する。そして、焼成膜の空隙が多くなることによって、導電経路が複雑になり、抵抗値も上昇することとなる。ディスプレイ電極の場合、抵抗値が増大すると、電圧降下の影響で輝度が低下するなど、特性に大きな影響を及ぼす。   As a technique for realizing the thin film conductor electrode, the metal content in the paste can be reduced. For example, in the case of an Ag paste, a thin film thickness of about 1 to 2 μm can be realized at an Ag content of 40 wt%. However, when the metal content is simply reduced, the density of Ag particles in the paste is lowered, so that the sintering of the particles is hindered, voids increase, and the denseness deteriorates. Then, as the voids in the fired film increase, the conductive path becomes complicated and the resistance value also increases. In the case of a display electrode, when the resistance value increases, the luminance is greatly affected by a voltage drop, which greatly affects the characteristics.

厚膜導体電極の薄膜化の他の手法としては、Ag粒子を数十nmサイズに微粒化することも考えられる。この場合、Ag含有率を40wt%程度まで低下させたとしても、比較的緻密性の良い焼成膜が得られる。しかし、Ag粒子サイズの微細化に伴い、製造コストが増大し、多量生産にも対応できなくなる。また粒子サイズが細かくなる程、粒子同士の凝集が起こりやすく、電極上に突起が多く発生し、電極の平坦性が劣化するという問題が生じる。   As another method for reducing the thickness of the thick-film conductor electrode, it can be considered that the Ag particles are atomized to a size of several tens of nm. In this case, even if the Ag content is reduced to about 40 wt%, a fired film having a relatively high density can be obtained. However, as the Ag particle size becomes finer, the manufacturing cost increases and it becomes impossible to deal with mass production. Further, as the particle size becomes finer, the particles are more likely to be aggregated, more projections are generated on the electrode, and the flatness of the electrode is deteriorated.

更に、緻密性に優れ、且つ薄い膜厚を形成する手法として、メタロオ−ガニックペーストの適用も知られている。メタロオ−ガニックペーストとは、導電粒子やガラスフリットを含まず、AuやAgなどの有機金属化合物を有機溶剤に溶解させたものである。メタロオ−ガニックペーストは、導電成分が粒子状のものより微細であり、その分散性も良好であることから、薄膜化が容易であり、また、緻密性にも優れた電極を製造できる。しかし、このペーストは製造コストがかかる上に、膜厚が0.3〜0.8μm程度と薄くなり過ぎる傾向があり、出現抵抗値が上昇してしまう問題があった。
特開平10−204297号公報
Furthermore, application of a metallo-ganic paste is also known as a technique for forming a thin film with excellent denseness. The metallo-ganic paste is obtained by dissolving an organic metal compound such as Au or Ag in an organic solvent without containing conductive particles or glass frit. The metallo-ganic paste has a finer conductive component than the particulate one and has good dispersibility, so that it can be easily formed into a thin film and can be manufactured with an excellent denseness. However, this paste has a problem that the manufacturing cost is high and the film thickness tends to be too thin, about 0.3 to 0.8 μm, and the appearance resistance value is increased.
Japanese Patent Laid-Open No. 10-204297

本発明は、以上の事情を背景としてなされたものであり、焼成膜厚1〜2μmでボイドが少なく、且つ、一層低い抵抗値が確保できる導体ペーストを提供することを目的とする。   The present invention has been made against the background described above, and an object of the present invention is to provide a conductor paste having a fired film thickness of 1 to 2 μm, less voids, and a lower resistance value.

上記課題を解決する本願発明は、導電成分としてのAg粉末と密着成分としてのガラス粉末とを有機ビヒクルに分散してなるAg導体ペースト組成物において、Bi有機金属化合物及びSi有機金属化合物のうち少なくとも1種以上からなる焼結促進剤を含み、前記Ag粉末は、平均粒子径0.1〜0.5μmのAg粉末であり、前記Ag粉末をペースト組成物に対して25〜40重量%含むと共に、前記焼結促進剤をAg粉末100重量部に対し、金属換算で合計0.2〜10重量部含むことを特徴とするディスプレイ用Ag導体ペースト組成物である。   The present invention that solves the above-mentioned problems is an Ag conductor paste composition in which Ag powder as a conductive component and glass powder as a close-contact component are dispersed in an organic vehicle, wherein at least one of a Bi organometallic compound and a Si organometallic compound Including one or more kinds of sintering accelerators, and the Ag powder is an Ag powder having an average particle size of 0.1 to 0.5 μm, and the Ag powder is contained in an amount of 25 to 40% by weight based on the paste composition. An Ag conductor paste composition for displays, comprising a total of 0.2 to 10 parts by weight of the sintering accelerator in terms of metal with respect to 100 parts by weight of Ag powder.

本発明の要旨とするところは、Ag粉末からなる導電粒子の割合をペースト100重量部に対して25〜40重量部(25〜40重量%)と低くし、Ag粉末の焼結を促進するSiやBiの有機金属化合物をガラス粉末とともに有機ビヒクルに均一に分散させることにある。このようにすることで、SiまたはBi成分の影響によりAgの融点が下がり、400℃以上の焼成温度で隣り合ったAg粒子同士の軟化が促進され、グレ−ンが成長しボイドが少ない緻密な導電経路を形成する。以下、本発明につき詳細に説明する。   The gist of the present invention is that the ratio of the conductive particles made of Ag powder is as low as 25 to 40 parts by weight (25 to 40% by weight) with respect to 100 parts by weight of the paste, thereby promoting the sintering of Ag powder. And Bi are uniformly dispersed in an organic vehicle together with glass powder. By doing so, the melting point of Ag is lowered by the influence of Si or Bi component, the softening of adjacent Ag particles is promoted at a firing temperature of 400 ° C. or higher, the grain grows and the voids are less dense. A conductive path is formed. Hereinafter, the present invention will be described in detail.

Ag粒子の平均粒径を0.5μm以下とするのは、目的である1〜2μm程度の焼成膜厚を得るためである。Ag粒子のサイズが大きくなると、粒子表面はSi、Biの影響で焼結促進されやすいが、粒子中心部はSi、Biと接触していないため、焼結促進効果が得られ難いことから、その粒径を0.5μm以下とするものである。この点、本発明の構成において、粒径の異なるAg粉末を含有するペーストを焼成したときのAg膜の表面形態を図1、2に示す。これらの図のように、Ag粉末の粒径は、膜の焼結性に影響を与える。尚、平均粒径が小さい程、Si、Biによる焼結促進の効果が得られやすく、緻密な焼成膜が形成できるため、平均粒径は0.4μm以下であることが一層好適である。   The reason why the average particle diameter of the Ag particles is 0.5 μm or less is to obtain a target fired film thickness of about 1 to 2 μm. When the size of the Ag particles is increased, the surface of the particles is easily accelerated by the influence of Si and Bi, but since the particle central portion is not in contact with Si and Bi, it is difficult to obtain the effect of promoting the sintering. The particle size is 0.5 μm or less. In this regard, in the configuration of the present invention, the surface form of the Ag film when firing pastes containing Ag powders having different particle sizes is shown in FIGS. As shown in these figures, the particle size of the Ag powder affects the sinterability of the film. The smaller the average particle diameter, the more easily the effect of promoting the sintering by Si and Bi can be obtained, and a dense fired film can be formed. Therefore, the average particle diameter is more preferably 0.4 μm or less.

また、Ag粉末の含有率を25〜40重量%とするのも焼成膜厚を適正範囲にするためであり、40重量%を超えると膜厚が厚くなりすぎるからである。また、25重量%未満であると膜厚が薄くなり過ぎ、更に、緻密性が悪化すると共に出現抵抗値も高くなる。   The reason why the content of Ag powder is 25 to 40% by weight is to make the fired film thickness within an appropriate range, and when it exceeds 40% by weight, the film thickness becomes too thick. On the other hand, if it is less than 25% by weight, the film thickness becomes too thin, and the denseness deteriorates and the appearance resistance value also increases.

本発明では、焼結促進剤としてBi、Siの有機金属化合物を用いる。上記のようなAgの融点を低下させ焼結促進作用を有する金属としては、これらの他、Pb、B、Cu等があるが、Bi及びSiは焼結促進作用に加え、焼成膜の良好な導電性を確保することができるからである。焼結促進剤は、Bi有機金属化合物、Si有機金属化合物のうち少なくとも1種以上が含まれるものであり、Ag粉末100重量部に対し、金属換算(BiとSiの合計量)で合計0.2〜10重量部で含まれる。かかる混合比とすることで、緻密性の良い膜が形成される。   In the present invention, organometallic compounds of Bi and Si are used as the sintering accelerator. In addition to these, there are Pb, B, Cu, and the like as metals having a lower melting point of Ag as described above, and have a sintering promoting action, but Bi and Si have a good fired film in addition to the sintering promoting action. This is because conductivity can be secured. The sintering accelerator contains at least one of a Bi organometallic compound and a Si organometallic compound, and a total of 0.00 in terms of metal (total amount of Bi and Si) with respect to 100 parts by weight of Ag powder. 2 to 10 parts by weight. By setting such a mixing ratio, a highly dense film is formed.

焼結促進剤であるBi有機金属化合物は、オクチル酸、ナフテン酸、エチルヘキサン酸、アビエチン酸、アセチルアセトン、ステアリン酸の有機酸化合物が適用できる。また、Si有機金属化合物についても、同様に、オクチル酸、ナフテン酸、エチルヘキサン酸、アビエチン酸、アセチルアセトン、ステアリン酸の有機酸化合物が適用でき、Siの場合には、シリコンワニスも適用できる。これらの有金属化合物としては、例えば、オクチル酸ビスマス、ナフテン酸ビスマス、オクチル酸シリコン、エチルヘキサン酸ジルコニウムなどが用いられる。   Bi organic metal compounds that are sintering accelerators may be organic acid compounds of octylic acid, naphthenic acid, ethylhexanoic acid, abietic acid, acetylacetone, and stearic acid. Similarly, for Si organometallic compounds, organic acid compounds of octylic acid, naphthenic acid, ethylhexanoic acid, abietic acid, acetylacetone, and stearic acid can be applied. In the case of Si, silicon varnish can also be applied. As these metal compounds, for example, bismuth octylate, bismuth naphthenate, silicon octylate, zirconium ethylhexanoate and the like are used.

本発明においては、更に、焼結抑制を添加しても良い。焼結促進剤のみの添加では、Ag粒子の焼結促進に伴い、パタ−ン端部での引けによるアイランド形状の悪化が生じ、パタ−ン有効面積が損なわれることがある。そのため、焼結抑制剤を添加して、Agの焼結性を調整することが有効な場合があるからである。この焼結抑制剤は、金属成分がZn、Zr、Mn、Ni、Rh、Ruを含むものが好ましい。焼結抑制効果を有する金属としては、Zn、Zr、Mn、Ni、Rh、Ru、Sn、Inがあるが、本発明では、これらの中でもZn、Zr、Mn、Ni、Rh、Ruが好ましい。また、焼成膜の導電性を損なうことなく焼結抑制させるものとしては、Zn、Zrが特に好ましい。   In the present invention, sintering suppression may be further added. When only the sintering accelerator is added, the island shape deteriorates due to the shrinkage at the end of the pattern as the sintering of the Ag particles is promoted, and the effective area of the pattern may be impaired. Therefore, it may be effective to adjust the sintering property of Ag by adding a sintering inhibitor. This sintering inhibitor is preferably one in which the metal component contains Zn, Zr, Mn, Ni, Rh, Ru. Examples of metals having a sintering suppressing effect include Zn, Zr, Mn, Ni, Rh, Ru, Sn, and In. In the present invention, among these, Zn, Zr, Mn, Ni, Rh, and Ru are preferable. In addition, Zn and Zr are particularly preferable for suppressing sintering without impairing the conductivity of the fired film.

焼結抑制剤は、酸化亜鉛、ジルコニア、アルミナ、酸化ルテニウム等の酸化物の形態で含まれていても良いが、有機金属化合物の形態とすることで、Ag粒子と均一に分散されやすく、ロ−ルミルなどによる混練が不要になるため、一層好ましい。有機金属化合物はオクチル酸、ナフテン酸、エチルヘキサン酸、アビエチン酸、アセチルアセトン、ステアリン酸の有機化合物が好ましく、焼結抑制剤は、上記金属の有機金属化合物の少なくとも1種以上からなるものが好ましい。   The sintering inhibitor may be contained in the form of an oxide such as zinc oxide, zirconia, alumina, ruthenium oxide, etc., but by being in the form of an organometallic compound, the sintering inhibitor is easily dispersed uniformly with Ag particles. -It is more preferable because kneading by a rumill or the like is unnecessary. The organometallic compound is preferably an organic compound of octylic acid, naphthenic acid, ethylhexanoic acid, abietic acid, acetylacetone, and stearic acid, and the sintering inhibitor is preferably composed of at least one of the above metal organometallic compounds.

焼結抑制剤の添加量は、金属換算の合計量で、Ag導電成分100重量部に対して0.1〜3重量部が好ましいが、添加量が多過ぎると抵抗値が上昇したり、焼成膜表面に金属酸化物が多く析出するため、基板材質や焼成条件に適した添加量を選定する必要がある。   The addition amount of the sintering inhibitor is a total amount in terms of metal, and is preferably 0.1 to 3 parts by weight with respect to 100 parts by weight of the Ag conductive component. Since a large amount of metal oxide precipitates on the film surface, it is necessary to select an addition amount suitable for the substrate material and firing conditions.

以上のAg粒子、焼結促進剤、焼結抑制剤に対し、密着成分として混合されるガラス成分は、粒度分布平均粒径0.1〜2μm、ガラス軟化点350〜600℃のガラスフリットであり、目的の焼成温度に対し、十分に低い軟化点のガラスフリットを用いるのが好ましい。ガラスの種類としては、ビスマス系ガラス(Bi−SiO、Bi−B)や亜鉛系ガラス(ZnO−Bi−SiO、ZnO−B−Bi)、シリカ系ガラス(SiO−B)等があり、基板材質や焼成温度に応じて選定する。 The glass component mixed as an adhesion component with respect to the above Ag particles, sintering accelerator, and sintering inhibitor is a glass frit having a particle size distribution average particle size of 0.1 to 2 μm and a glass softening point of 350 to 600 ° C. It is preferable to use a glass frit having a sufficiently low softening point with respect to the intended firing temperature. Examples of the glass include bismuth-based glass (Bi 2 O 3 —SiO 2 , Bi 2 O 3 —B 2 O 3 ), zinc-based glass (ZnO—Bi 2 O 3 —SiO 2 , ZnO—B 2 O 3 — Bi 2 O 3 ), silica-based glass (SiO 2 —B 2 O 3 ), and the like are selected according to the substrate material and the firing temperature.

本発明に係る導体ペーストは、焼成膜厚1〜2μm程度の薄い膜を形成することを目的とするため、ガラスフリットの粒度分布平均粒径は1.5μm以下であることが好ましい。ガラスフリットの添加量は、ペースト100重量部に対して0.2〜5重量部の割合で含まれるものが好ましく、ガラス量が少な過ぎると基板との密着性が不足する一方、ガラス量が多過ぎると、緻密性悪化、パタ−ン端部の形状悪化、繰り返し焼成時の膜質変化等の悪影響があり、基板材質や焼成条件に適した添加量を選定する必要がある。   Since the conductive paste according to the present invention aims to form a thin film having a fired film thickness of about 1 to 2 μm, the average particle size distribution of the glass frit is preferably 1.5 μm or less. The amount of glass frit added is preferably 0.2 to 5 parts by weight with respect to 100 parts by weight of the paste. If the amount of glass is too small, adhesion to the substrate is insufficient, while the amount of glass is large. If it is too high, there are adverse effects such as deterioration of the denseness, deterioration of the shape of the pattern end, and film quality change during repeated baking, and it is necessary to select an addition amount suitable for the substrate material and baking conditions.

また、Ag粉末、ガラスフリット等を分散させる有機ビヒクルに含まれる樹脂成分は、Ag導体ペーストに適度の粘性を与えて、塗布性、印刷特性を調整する働きがあり、本発明で種類を限定するものではないが、主にセルロ−ス系、アクリル系の樹脂が用いられる。   Moreover, the resin component contained in the organic vehicle in which Ag powder, glass frit, etc. are dispersed has a function of adjusting the applicability and printing characteristics by imparting an appropriate viscosity to the Ag conductor paste, and the type is limited in the present invention. Although it is not a thing, a cellulose type and acrylic resin are mainly used.

本発明に係るAg導体ペーストは、更に、有機溶剤成分を含んでも良い。有機溶剤成分は、導電成分や樹脂成分との関連で決められるもので、本発明で種類を限定するものではないが、主にアルコ−ル系溶剤、エステル系溶剤、エ−テル系溶剤、炭化水素系溶剤などが用いられる。また、増粘剤、界面活性剤が含まれていても良い。本発明に係る導電ペーストは、以上説明した成分を3本ロ−ルミルなど、公知の方法により混練することにより得られる。   The Ag conductor paste according to the present invention may further contain an organic solvent component. The organic solvent component is determined in relation to the conductive component and the resin component, and is not limited in kind in the present invention. However, the organic solvent component is mainly an alcohol solvent, an ester solvent, an ether solvent, carbonization. A hydrogen-based solvent or the like is used. Moreover, a thickener and surfactant may be contained. The conductive paste according to the present invention can be obtained by kneading the above-described components by a known method such as a three-roll mill.

本発明のAg導体ペーストは、従来の導体ペーストと比較して、一層薄い膜厚の導体膜を形成することができ、且つ、ボイドが少なく、非常に低い抵抗値の導体膜とすることができるものである。本発明は、例えば、ディスプレイ用パネル電極の形成に用いることで、非常に薄い電極を形成することができるため、電極上部に形成される層の段差を小さくし、表面平滑性に優れたものとすることができ、その上層の回路形成等に有利なものとなる。また、低い抵抗値を確保することができるため、電圧降下による電気的ロスも少なく、ディスプレイとして消費電力を抑え、良好な特性が実現可能となる。本発明は、この他、ハイブリットICなどの配線電極としても適しており、薄膜化させることによって、コスト低減の効果も期待できる。   The Ag conductor paste of the present invention can form a conductor film having a thinner film thickness than that of the conventional conductor paste, and can be a conductor film having a very low resistance value with less voids. Is. The present invention, for example, can be used to form display panel electrodes, so that a very thin electrode can be formed. Therefore, the step of the layer formed on the top of the electrode is reduced, and the surface smoothness is excellent. This is advantageous for forming the upper layer circuit. In addition, since a low resistance value can be ensured, electrical loss due to a voltage drop is small, and power consumption can be suppressed as a display, and good characteristics can be realized. In addition, the present invention is also suitable as a wiring electrode for a hybrid IC or the like, and an effect of cost reduction can be expected by reducing the thickness.

以下、本発明における最良の実施形態について説明する。   Hereinafter, the best embodiment of the present invention will be described.

第1実施形態:本実施形態では、Ag粉末、ガラス粉末、焼結促進剤、焼結抑制剤、ビヒクル、有機溶剤、増粘剤、界面活性剤等を3本ロ−ルミルを用いて混練して導体ペーストを作製した。 First Embodiment : In this embodiment, Ag powder, glass powder, sintering accelerator, sintering inhibitor, vehicle, organic solvent, thickener, surfactant and the like are kneaded using a three-roll mill. A conductor paste was prepared.

Ag粒子としては、平均粒径0.3μmの単分散球状のAg粉末(図2)を用意し、Ag含有率が26〜40wt%となるようにした。ガラス成分として、Bi−B系ガラスをAg量に対して0.5〜15wt%添加した。焼結促進剤は、Ag量に対して、Si、Bi有機金属化合物を、金属換算の合計で0.3〜6.5wt%添加した。ここで用いた有機金属化合物は、オクチル酸ビスマス、シリコンオイル、オクチル酸亜鉛、オクチル酸ジルコニウムである。そして、Ag粉末、ガラス粉末、焼結促進剤、焼結抑制剤、有機ビヒクル、有機溶剤、増粘剤、界面活性剤を3本ロ−ルミルを用いて混練して導体ペーストとした。 As the Ag particles, monodispersed spherical Ag powder having an average particle size of 0.3 μm (FIG. 2) was prepared so that the Ag content was 26 to 40 wt%. As glass component, the Bi 2 O 3 -B 2 O 3 based glass was added 0.5 to 15% relative to the amount of Ag. The sintering accelerator added 0.3 to 6.5 wt% of Si and Bi organometallic compounds in terms of metal with respect to the Ag amount. The organometallic compounds used here are bismuth octylate, silicon oil, zinc octylate, and zirconium octylate. Then, Ag powder, glass powder, sintering accelerator, sintering inhibitor, organic vehicle, organic solvent, thickener, and surfactant were kneaded using a three-roll mill to obtain a conductor paste.

次に、作製したAg導体ペーストをスクリ−ン印刷にてガラス基板上に塗布し、120℃乾燥機にて10〜15min乾燥処理後、650℃以上保持(ピ−ク温度690℃)で時間9min、200→600℃の昇温レ−ト66℃/minに設定したコンベア炉にて焼成し、焼成膜厚1.0〜2.0μmとなるようにAg膜を形成した。   Next, the produced Ag conductor paste was applied on a glass substrate by screen printing, dried for 10 to 15 minutes with a 120 ° C. dryer, and then held at 650 ° C. or higher (peak temperature 690 ° C.) for 9 minutes. The Ag film was formed so as to have a fired film thickness of 1.0 to 2.0 μm by firing in a conveyor furnace set at a temperature rising rate of 200 ° C. to 600 ° C. and 66 ° C./min.

そして、ガラス基板上に形成したAg焼成膜に対し、出現膜厚、シ−ト抵抗値を評価し、焼成膜の緻密さを電子顕微鏡にて確認した。以下の表1、2はその結果をまとめたものである。表1は、本発明の範囲内の組成の結果をまとめたものであり、表2は本発明の範囲外の比較例をまとめたものである。各表において、Ag含有率はペースト100重量部に対する割合で表し、ガラス添加率や焼結促進剤、焼結抑制剤の添加率はAg粒子100重量部に対する割合で表した。抵抗値は膜厚換算しておらず、出現膜厚におけるシ−ト抵抗値で示した。   And the appearance film thickness and the sheet resistance value were evaluated with respect to the Ag fired film formed on the glass substrate, and the density of the fired film was confirmed with an electron microscope. Tables 1 and 2 below summarize the results. Table 1 summarizes the results of compositions within the scope of the present invention, and Table 2 summarizes comparative examples outside the scope of the present invention. In each table, the Ag content is expressed as a ratio with respect to 100 parts by weight of the paste, and the addition ratio of the glass addition rate, sintering accelerator, and sintering inhibitor is expressed as a ratio with respect to 100 parts by weight of the Ag particles. The resistance value is not converted into a film thickness, and is indicated by a sheet resistance value at the appearing film thickness.

また、実施例及び比較例の焼成膜のSEM外観を図3〜8に示す。緻密性の判定は、SEM外観でボイドの多いものを「×」、ボイドが少ないものを「○」、ボイドが極めて少ないものを「◎」として表中に示した。   Moreover, the SEM external appearance of the fired film of an Example and a comparative example is shown to FIGS. The determination of the density was shown in the table as “X” for the SEM appearance with many voids, “◯” for those with few voids, and “◎” for those with very few voids.

各実施例で形成したAg焼成膜は、いずれも現膜厚が2.0μm以下と薄く、また、膜厚換算抵抗値が25mΩ/□/1.5μm以下と低く、更に、緻密性も良好であることが判る。特に、実施例1〜5及び実施例8では、膜厚が1.5μm以下と薄く、且つ極めて低い抵抗値を維持しており、緻密性も優れているといえる。   The fired Ag film formed in each example is as thin as the current film thickness of 2.0 μm or less, the film thickness conversion resistance is as low as 25 mΩ / □ / 1.5 μm or less, and the denseness is also good. I know that there is. In particular, in Examples 1 to 5 and Example 8, the film thickness is as thin as 1.5 μm or less, an extremely low resistance value is maintained, and it can be said that the denseness is excellent.

また、実施例6〜14では、焼結促進剤と焼結抑制剤の添加量を更に増量させたものである。添加量が多くなる程、Ag膜表面に酸化物が多く析出し、膜厚も厚くなる傾向であるが、緻密性は良好であり抵抗値も十分に低い。   Moreover, in Examples 6-14, the addition amount of a sintering accelerator and a sintering inhibitor was further increased. As the added amount increases, more oxide is deposited on the Ag film surface and the film thickness tends to be thicker, but the denseness is good and the resistance value is sufficiently low.

詳細に検討すると、実施例1ではSiに加えて焼結防止剤であるZnを添加しており、Siの焼結促進効果により悪化したパタ−ン端部形状を、Znの持つ焼結抑制効果により調整したものである。パタ−ン端部の形状は良好であるといえる(図6(a))。このように、焼結促進剤と焼結抑制剤を併用することにより、均一で緻密なAg膜を得ることができた。   When examined in detail, in Example 1, Zn which is a sintering inhibitor is added in addition to Si, and the pattern end portion shape deteriorated due to the sintering promotion effect of Si has a sintering suppressing effect of Zn. Adjusted. It can be said that the shape of the pattern end is good (FIG. 6A). Thus, a uniform and dense Ag film could be obtained by using a sintering accelerator and a sintering inhibitor in combination.

また、実施例3は、実施例1の緻密性を更に改善する目的で、Si添加量を増量させたものである。実施例3では焼結が更に促進され、緻密性も良くなっているが、パタ−ン端部の引けは悪化した(図6(b))。実施例4は焼結抑制剤を増量させたものであるが、パタ−ン端部の引けは改善されなかった(図6(c))。   In Example 3, the amount of Si added was increased in order to further improve the denseness of Example 1. In Example 3, the sintering was further promoted and the denseness was improved, but the shrinkage at the pattern end was deteriorated (FIG. 6B). In Example 4, the amount of sintering inhibitor was increased, but the shrinkage at the pattern end was not improved (FIG. 6C).

実施例5は、SiとBiとの併用で焼結促進作用を調整し、更にZnによって焼結調整させたものである。Siを増量させた実施例3と比較して、緻密性が更に向上し、パタ−ン端部の形状も良好に保たれている(図6(d))。2種の焼結促進剤を併用することにより、昇温の過程でAgの焼結を促すタイミングがずれるため、単純にSiが多い状態と比較して、過焼結によるAgの流動が起こりにくく、パタ−ン端部の引けが少なくなる。   In Example 5, the sintering promoting action is adjusted by the combined use of Si and Bi, and the sintering is further adjusted by Zn. Compared with Example 3 in which the amount of Si was increased, the denseness was further improved, and the shape of the pattern end was also kept good (FIG. 6 (d)). By using two types of sintering accelerators together, the timing for promoting the sintering of Ag is shifted during the temperature rising process, so that the Ag flow due to oversintering is less likely to occur than in the case of simply having a large amount of Si. The shrinkage of the pattern end is reduced.

尚、本実施例では、焼結促進剤であるSi成分をシリコンオイルの形態で添加したものであるが、オクチル酸シリコンでも同様の効果があることが確認されている。   In this example, the Si component as a sintering accelerator was added in the form of silicon oil, but it has been confirmed that silicon octylate has the same effect.

上記実施例に対し、比較例1は、緻密性は良好であるものの、Ag含有率が高いため出現膜厚が厚く本願目的の対象外のものとなった。比較例2〜4は、Ag含有率を低下させたものであるが、2μm付近の出現膜厚になると、ボイドが多くなり、出現膜厚に対する抵抗値も高くなることがかわかる(図7(b)〜(d))。   In contrast to the above examples, Comparative Example 1 had good denseness, but the appearance thickness was large due to the high Ag content, and it was not the object of the present application. In Comparative Examples 2 to 4, the Ag content is decreased, but it can be seen that when the film thickness appears in the vicinity of 2 μm, voids increase and the resistance value with respect to the film thickness increases (FIG. 7 ( b) to (d)).

比較例3〜6は、Ag含有率を低下させると共に、ガラスの含有率を増加させたときの推移を示すものである。Bi系ガラスではAgの焼結を促進させる効果があり、ガラス増量に伴い焼結が促進される傾向が確認されたが、Agが流動しやすい影響でボイドが増大することが確認された(図7(c)〜(f))。   Comparative Examples 3 to 6 show transitions when the Ag content is decreased and the glass content is increased. Bi-based glass has an effect of promoting the sintering of Ag, and it was confirmed that the sintering was promoted as the amount of glass increased, but it was confirmed that voids increased due to the influence of Ag easily flowing (Fig. 7 (c)-(f)).

また、比較例7は、Ag粒子として粒径:数十nmのAgコロイドを用いたものである。他の比較例と比較すると、緻密性に優れ抵抗値も低いものの、凝集が多く電極の表面平滑性が悪い結果となった。また、このコロイドを適用するものは、粒子サイズが小さくなる程、粒子同士が凝集しやすくなり、製造コストも高くなるため、実用的ではないといえる(図8(g))。   In Comparative Example 7, Ag colloid having a particle size of several tens of nm is used as Ag particles. Compared with other comparative examples, although it was excellent in denseness and low in resistance value, it resulted in a lot of aggregation and poor surface smoothness of the electrode. In addition, it can be said that the one to which this colloid is applied is not practical because the particles are more easily aggregated as the particle size becomes smaller and the manufacturing cost becomes higher (FIG. 8G).

尚、比較例8、9は、焼結抑制剤としてZn成分、Sn成分を添加したものである。表2からわかるように、焼結抑制剤を添加しても緻密性の改善はみられなかった(図8(h)、(i))。   In Comparative Examples 8 and 9, Zn components and Sn components were added as sintering inhibitors. As can be seen from Table 2, even when the sintering inhibitor was added, no improvement in the compactness was observed (FIGS. 8 (h) and (i)).

第2実施形態:本実施形態では、第1実施形態緻密性が最も良好であった実施例5をもとに、Ag含有率を38wt%〜22wt%まで変化させた導体ペーストを作成した。そして、同様の評価試験を行った。表3は、その結果を示す。また、実施例及び比較例の焼成膜のSEM外観を図9、10に示す。 Second Embodiment : In this embodiment, a conductor paste was produced in which the Ag content was changed from 38 wt% to 22 wt% based on Example 5 in which the denseness of the first embodiment was the best. And the same evaluation test was done. Table 3 shows the results. Moreover, the SEM external appearance of the fired film of an Example and a comparative example is shown to FIG.

表3及び図9、10から、Ag含有率26〜38wt%(実施例5、15〜17)の範囲内で、緻密性が良好であり、抵抗値も低く保たれたAg膜が形成できることが確認された。一方、Ag含有率22wt%(比較例10)では、膜厚が薄くなり過ぎてしまうため、緻密性が悪化し、出現抵抗値も高くなっていることがわかる。   From Table 3 and FIGS. 9 and 10, it is possible to form an Ag film in which the denseness is good and the resistance value is kept low within the range of the Ag content of 26 to 38 wt% (Examples 5 and 15 to 17). confirmed. On the other hand, when the Ag content is 22 wt% (Comparative Example 10), the film thickness becomes too thin, so that the denseness deteriorates and the appearance resistance value also increases.

粒径0.6μmのAg粒子を含むペーストの焼成後の膜表面を示す写真。The photograph which shows the film | membrane surface after baking of the paste containing Ag particle | grains with a particle size of 0.6 micrometer. 粒径0.3μmのAg粒子を含むペーストの焼成後の膜表面を示す写真。The photograph which shows the film | membrane surface after baking of the paste containing Ag particle | grains with a particle size of 0.3 micrometer. 実施例1〜6の焼成Ag膜の表面形態を示す写真。The photograph which shows the surface form of the baking Ag film | membrane of Examples 1-6. 実施例7〜10の焼成Ag膜の表面形態を示す写真。The photograph which shows the surface form of the baking Ag film | membrane of Examples 7-10. 実施例11〜14の焼成Ag膜の表面形態を示す写真。The photograph which shows the surface form of the baking Ag film | membrane of Examples 11-14. 実施例1、3〜5の焼成Ag膜のエッジ部分を示す写真。The photograph which shows the edge part of the baking Ag film | membrane of Examples 1, 3-5. 比較例1〜6の焼成Ag膜の表面形態を示す写真。The photograph which shows the surface form of the baking Ag film | membrane of Comparative Examples 1-6. 比較例7〜9の焼成Ag膜の表面形態を示す写真。The photograph which shows the surface form of the baking Ag film | membrane of Comparative Examples 7-9. 実施例5、15〜17、比較例10の焼成Ag膜の表面形態(中央部)を示す写真。The photograph which shows the surface form (center part) of the baking Ag film | membrane of Examples 5, 15-17, and the comparative example 10. FIG. 実施例5、15〜17、比較例10の焼成Ag膜のエッジ部分を示す写真。The photograph which shows the edge part of the baking Ag film | membrane of Examples 5, 15-17, and the comparative example 10. FIG.

Claims (5)

導電成分としてのAg粉末と密着成分としてのガラス粉末とを有機ビヒクルに分散してなるAg導体ペースト組成物において、
Bi有機金属化合物及びSi有機金属化合物のうち少なくとも1種以上からなる焼結促進剤を含み、
前記Ag粉末は、平均粒子径0.1〜0.5μmのAg粉末であり、
前記Ag粉末をペースト組成物に対して25〜40重量%含むと共に、前記焼結促進剤をAg粉末100重量部に対し、金属換算で合計0.2〜10重量部含むことを特徴とするディスプレイ用Ag導体ペースト組成物。
In an Ag conductor paste composition obtained by dispersing an Ag powder as a conductive component and a glass powder as an adhesion component in an organic vehicle,
Including a sintering accelerator composed of at least one of Bi organometallic compound and Si organometallic compound,
The Ag powder is an Ag powder having an average particle size of 0.1 to 0.5 μm,
A display comprising 25 to 40% by weight of the Ag powder with respect to the paste composition, and a total of 0.2 to 10 parts by weight of the sintering accelerator in terms of metal with respect to 100 parts by weight of the Ag powder. Ag conductor paste composition.
焼結促進剤であるBi有機金属化合物が、オクチル酸、ナフテン酸、エチルヘキサン酸、アビエチン酸、アセチルアセトン、ステアリン酸の有機酸化合物である請求項1記載のディスプレイ用Ag導体ペースト組成物。 The Ag conductor paste composition for a display according to claim 1, wherein the Bi organometallic compound which is a sintering accelerator is an organic acid compound of octylic acid, naphthenic acid, ethylhexanoic acid, abietic acid, acetylacetone, and stearic acid. 焼結促進剤であるSi有機金属化合物は、オクチル酸、ナフテン酸、エチルヘキサン酸、アビエチン酸、アセチルアセトン、ステアリン酸の有機酸化合物、又は、シリコンワニスである請求項1又は請求項2記載のディスプレイ用Ag導体ペースト組成物。 3. The display according to claim 1, wherein the Si organometallic compound which is a sintering accelerator is an organic acid compound of octylic acid, naphthenic acid, ethylhexanoic acid, abietic acid, acetylacetone, stearic acid, or silicon varnish. Ag conductor paste composition. 更に、焼結抑制剤を含み、前記焼結抑制剤は、金属成分がZn、Zr、Mn、Ni、Rh、Ruである有機金属化合物の少なくとも1種以上からなるものであり、前記有機金属化合物はオクチル酸、ナフテン酸、エチルヘキサン酸、アビエチン酸、アセチルアセトン、ステアリン酸の有機化合物である請求項1〜請求項3のいずれかに記載のディスプレイ用Ag導体ペースト組成物。 Furthermore, it contains a sintering inhibitor, and the sintering inhibitor is composed of at least one or more organometallic compounds whose metal components are Zn, Zr, Mn, Ni, Rh, and Ru, and the organometallic compound The Ag conductor paste composition for display according to any one of claims 1 to 3, which is an organic compound of octylic acid, naphthenic acid, ethylhexanoic acid, abietic acid, acetylacetone, and stearic acid. 焼結抑制剤を、Ag粉末100重量部に対して0.1〜3重量部含む請求項4に記載のディスプレイ用Ag導体ペースト組成物。
The Ag conductor paste composition for display according to claim 4, comprising 0.1 to 3 parts by weight of a sintering inhibitor with respect to 100 parts by weight of Ag powder.
JP2008023712A 2008-02-04 2008-02-04 Conductor paste composition for display Pending JP2009187695A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008023712A JP2009187695A (en) 2008-02-04 2008-02-04 Conductor paste composition for display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008023712A JP2009187695A (en) 2008-02-04 2008-02-04 Conductor paste composition for display

Publications (1)

Publication Number Publication Date
JP2009187695A true JP2009187695A (en) 2009-08-20

Family

ID=41070742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008023712A Pending JP2009187695A (en) 2008-02-04 2008-02-04 Conductor paste composition for display

Country Status (1)

Country Link
JP (1) JP2009187695A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011076898A (en) * 2009-09-30 2011-04-14 Taiyo Holdings Co Ltd Photosensitive conductive paste and method for manufacturing the same
WO2012043811A1 (en) * 2010-09-30 2012-04-05 京セラ株式会社 Conductive paste for use in photovoltaic cell and method of producing photovoltaic cell element using the same
JP6924913B1 (en) * 2021-03-03 2021-08-25 株式会社ノリタケカンパニーリミテド Silver paste and its use

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011076898A (en) * 2009-09-30 2011-04-14 Taiyo Holdings Co Ltd Photosensitive conductive paste and method for manufacturing the same
WO2012043811A1 (en) * 2010-09-30 2012-04-05 京セラ株式会社 Conductive paste for use in photovoltaic cell and method of producing photovoltaic cell element using the same
JPWO2012043811A1 (en) * 2010-09-30 2014-02-24 京セラ株式会社 Conductive paste for solar cell and method for producing solar cell element using the same
US8815637B2 (en) 2010-09-30 2014-08-26 Kyocera Corporation Conductive paste for photovoltaic cell and method of producing photovoltaic cell element using the same
JP6924913B1 (en) * 2021-03-03 2021-08-25 株式会社ノリタケカンパニーリミテド Silver paste and its use
JP2022134171A (en) * 2021-03-03 2022-09-15 株式会社ノリタケカンパニーリミテド Silver paste, and use of the same

Similar Documents

Publication Publication Date Title
JP5569747B2 (en) Gravure printing conductive paste used for multilayer ceramic capacitor internal electrode
JP4647224B2 (en) Conductive paste for multilayer ceramic electronic component terminal electrode
JP5988124B2 (en) Thick film resistor and manufacturing method thereof
JP2012174797A5 (en)
JP2006196421A (en) Coated conductor powder and conductive paste
JP2011138704A (en) Conductive paste and ceramic capacitor
JP5988123B2 (en) Resistance composition
JP2018092730A (en) Composition for resistor and resistor paste containing the same furthermore thick film resistor therewith
TWI772671B (en) Conductive paste for forming external electrode of multilayer ceramic electronic component
JP2009187695A (en) Conductor paste composition for display
JP4503301B2 (en) Terminal electrode composition for multilayer ceramic capacitor
TWI637403B (en) Electrically conductive paste,method for producing the same,and method for producing solar cell
JP2002110444A (en) Conductive paste and laminated ceramic electronic part
JP2004228094A (en) Terminal electrode composition material for multi-layer ceramic capacitor
JP5630363B2 (en) Conductive paste and method for producing the same
JPH0945130A (en) Conductor paste composite
JP4615987B2 (en) Metal paste and method for producing conductive film using the same
KR20170020094A (en) Lead-free thick film resistor composition, resistor and method thereof
JPWO2015194290A1 (en) Conductive paste and glass article
JP7249307B2 (en) Conductive composition, metallized substrate and manufacturing method thereof
JP7293161B2 (en) Conductive composition, metallized substrate and manufacturing method thereof
JP2019079983A (en) Conductive paste for external electrode formation of laminate chip component and laminate chip component
JP2019102241A (en) Thick film conductive paste, and corner chip resistor manufactured by using the same
JP2011228023A (en) Resinate paste
JP4384428B2 (en) Conductive paste for low-temperature firing and manufacturing method thereof

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100318