JP2019102241A - Thick film conductive paste, and corner chip resistor manufactured by using the same - Google Patents

Thick film conductive paste, and corner chip resistor manufactured by using the same Download PDF

Info

Publication number
JP2019102241A
JP2019102241A JP2017231122A JP2017231122A JP2019102241A JP 2019102241 A JP2019102241 A JP 2019102241A JP 2017231122 A JP2017231122 A JP 2017231122A JP 2017231122 A JP2017231122 A JP 2017231122A JP 2019102241 A JP2019102241 A JP 2019102241A
Authority
JP
Japan
Prior art keywords
powder
thick film
conductive paste
film conductive
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017231122A
Other languages
Japanese (ja)
Inventor
太田 陽介
Yosuke Ota
陽介 太田
丈夫 川上
Takeo Kawakami
丈夫 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2017231122A priority Critical patent/JP2019102241A/en
Publication of JP2019102241A publication Critical patent/JP2019102241A/en
Pending legal-status Critical Current

Links

Landscapes

  • Details Of Resistors (AREA)
  • Non-Adjustable Resistors (AREA)
  • Conductive Materials (AREA)

Abstract

To provide a thick film conducive paste hardly generating void in a sintered film.SOLUTION: There is provided a thick film conductive paste mainly containing three kinds of copper powders with a large diameter powder, a middle diameter powder, and a small diameter powder, the three kinds of copper powders are contained at 60 to 95 mass% at a mixed state in the thick film conductive paste, and blended with a percentage of the large diameter powder of 81 to 91 mass%, the middle diameter powder of 4.5 to 14 mass%, and the small diameter powder of 4.5 to 5.5 mass% based on total 100 mass% of the three kinds of copper powder, and preferably ratios of average particle diameter of the three kinds of copper powder is 0.4 to 0.5 for the middle diameter powder and 0.1 to 0.2 for the small diameter powder based on 1 for the large diameter powder.SELECTED DRAWING: None

Description

本発明は、低抵抗の角型チップ抵抗器の抵抗体の両端部に形成される銅製の上面電極の材料となる厚膜導電ペースト及びこれを用いて作製された角型チップ抵抗器に関する。   The present invention relates to a thick film conductive paste as a material of a copper top electrode formed on both ends of a low resistance rectangular chip resistor, and a rectangular chip resistor manufactured using the same.

近年、電子機器の高機能化や小型化に伴い電子部品の高密度実装が求められており、略直方体形状を有する低抵抗の角型チップ厚膜抵抗器(以降、角型チップ抵抗器又は単にチップ抵抗器とも称する)においては、電子機器内部の電流検知や電圧制御の用途が増加している。チップ抵抗器は、1対の上面電極と、これら1対の上面電極を部分的に覆うようにして設けられた抵抗体とが絶縁基板上に形成された構造を有しており、電流検知の用途では電力損失を抑えるため抵抗値の低い材料を使用するのが望ましい。そのため、従来はチップ抵抗器の電極形成には、銀粉に有機ビヒクルを添加して耐酸化性に優れた銀ペーストの形態にした材料が用いられてきた。   In recent years, high-density mounting of electronic components has been required with the advancement of functionality and miniaturization of electronic devices, and a low resistance square chip thick film resistor having a substantially rectangular parallelepiped shape (hereinafter, square chip resistor or simply In chip resistors, applications of current detection and voltage control in electronic devices are increasing. The chip resistor has a structure in which a pair of upper surface electrodes and a resistor provided so as to partially cover the pair of upper surface electrodes are formed on an insulating substrate. In applications it is desirable to use low resistance materials to reduce power losses. Therefore, conventionally, a material in the form of a silver paste excellent in oxidation resistance has been used to form an electrode of a chip resistor by adding an organic vehicle to silver powder.

しかし、銀粉は高価なうえ、酸化されやすいという問題を抱えている。また、チップ抵抗器を製造する際の焼成工程において抵抗体に銀が拡散し、抵抗体の抵抗値や抵抗温度係数が容易に変化することがあった。そこで、銀粉よりも安価で電気抵抗値が銀に比較的近い金属材料として銅粉やニッケル粉が注目されており、特に磁性の観点から銅粉が注目されている。   However, silver powder is expensive and has the problem of being easily oxidized. In addition, silver may be diffused into the resistor in the firing process when manufacturing the chip resistor, and the resistance value and the temperature coefficient of resistance of the resistor may be easily changed. Therefore, copper powder and nickel powder are attracting attention as metal materials which are less expensive than silver powder and whose electrical resistance value is relatively close to that of silver, and copper powder in particular is attracting attention from the viewpoint of magnetism.

例えば特許文献1には、絶縁基板との密着を付与するガラスフリットを含有する銅粉の導電ペーストを該絶縁基板の表面に印刷して焼成することで第1層を形成する工程と、該第1層の上にガラスフリットを含有しない銅粉の導電ペーストを印刷して焼成することで第2層を形成する工程とからなる比抵抗の低い多層構造の銅電極を形成する方法が開示されている。しかしながら、このようにして作製した多層構造の銅電極では、ガラスを含有しない銅粉の導電ペーストから形成した第2層の銅粒子間には溶融したガラスフリットが充填されないので、該銅粒子間の空隙がそのまま残ってしまうことが問題となっていた。また、導電ペーストにガラスフリットが含まれていると、抵抗値を下げるのが困難になるという問題があった。   For example, in Patent Document 1, a step of forming a first layer by printing and baking a conductive paste of copper powder containing a glass frit for giving adhesion to an insulating substrate on the surface of the insulating substrate, and Disclosed is a method for forming a copper electrode having a multilayer structure with low specific resistance, comprising the steps of: printing and firing a conductive paste of copper powder containing no glass frit on one layer; and forming a second layer There is. However, in the copper electrode of the multilayer structure produced in this manner, the molten glass frit is not filled between the copper particles of the second layer formed from the conductive paste of the copper powder not containing glass, so that the copper particles are not filled. It has been a problem that the air gap remains as it is. In addition, when the conductive paste contains glass frit, there is a problem that it is difficult to reduce the resistance value.

一方、特許文献2にはガラスフリットを含有しない導電ペーストが開示されており、具体的には平均粒子径が0.2〜30μmの範囲にある金属粒子と、平均粒子径が1〜200nmの範囲にある金属ナノ粒子とを組み合わせることでボイドが存在しない焼成膜を形成する技術が開示されている。   On the other hand, Patent Document 2 discloses a conductive paste containing no glass frit, specifically, metal particles having an average particle diameter in the range of 0.2 to 30 μm and an average particle diameter in the range of 1 to 200 nm. A technique for forming a fired film free of voids by combining the metal nanoparticles of

特開2016−18814号公報JP, 2016-18814, A 特開2013−247060号公報JP, 2013-247060, A

しかしながら特許文献2の技術では、900℃付近で高温焼成を行う際、金属ナノ粒子の焼成速度が金属粒子と比較して速いため、焼結膜内にボイドが多数発生するという問題を生ずることがあった。また、特許文献2に記載の大小2種類の金属粒子では金属粒子間の空隙を埋める金属ナノ粒子が小さすぎるため、それぞれの粒子が偏在してしまう問題を生ずることがあった。本発明は上記の事情に鑑みてなされたものであり、900〜1000℃の焼成温度で焼成する場合においても焼結膜内にボイドが発生しにくい厚膜導電ペーストを提供することを目的とする。   However, in the technique of Patent Document 2, when firing at a high temperature around 900 ° C., the firing rate of metal nanoparticles is faster than that of metal particles, which may cause a problem that many voids are generated in the sintered film. The Further, in the case of two large and small types of metal particles described in Patent Document 2, the metal nanoparticles filling the voids between the metal particles are too small, which may cause uneven distribution of the respective particles. The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a thick film conductive paste in which voids are not easily generated in a sintered film even when firing is performed at a firing temperature of 900 to 1000 ° C.

本発明者らは、上記目的を達成するために鋭意研究を重ねた結果、平均粒径が異なる3種類の銅粉末を用いることで、それらによって形成される銅粒子間の隙間を著しく減らすことができ、よって溶融ガラスを用いることなく焼結後の焼結膜内のボイドの発生を抑え得ることを見出し、本発明を完成するに至った。   As a result of repeated studies to achieve the above object, the inventors of the present invention can significantly reduce the gaps between copper particles formed by using three kinds of copper powders having different average particle sizes. As a result, it has been found that generation of voids in a sintered film after sintering can be suppressed without using molten glass, and the present invention has been completed.

すなわち本発明に係る厚膜導電ペーストは、大径粉、中径粉及び小径粉からなる3種類の銅粉末と有機ビヒクルとを主成分とする厚膜導電ペーストであって、前記3種類の銅粉末は、混合状態で前記厚膜導電ペーストに60〜95質量%含まれており、且つ前記3種類の銅粉末の合計100質量%に対して、大径粉81〜91質量%、中径粉4.5〜14質量%、及び小径粉4.5〜5.5質量%の比率で配合されていることを特徴としている。   That is, the thick film conductive paste according to the present invention is a thick film conductive paste mainly composed of three kinds of copper powder consisting of large diameter powder, medium diameter powder and small diameter powder and an organic vehicle, and the above three types of copper The powder is contained in an amount of 60 to 95% by mass in the thick film conductive paste in a mixed state, and 81 to 91% by mass of large diameter powder and medium diameter powder with respect to a total of 100% by mass of the three types of copper powder. It is characterized by being mix | blended in the ratio of 4.5-14 mass% and small diameter powder 4.5-5.5 mass%.

本発明によれば、ボイドの少ない緻密性の高い焼結膜を得ることが可能になる。   According to the present invention, it is possible to obtain a highly dense sintered film with few voids.

本発明の実施形態の厚膜導電ペーストを用いて作製される角型チップ抵抗器の製造工程を示す斜視図である。It is a perspective view which shows the manufacturing process of the square-shaped chip resistor produced using the thick film electrically conductive paste of embodiment of this invention. 本発明の実施例の厚膜導電ペーストを用いて作製した焼結膜表面のSEM画像である。It is a SEM image of the sintered film surface produced using the thick film electrically conductive paste of the Example of this invention. 本発明の比較例の厚膜導電ペーストを用いて作製した焼結膜表面のSEM画像である。It is a SEM image of the sintered film surface produced using the thick film electrically conductive paste of the comparative example of this invention.

以下、本発明に係る厚膜導電ペーストの実施形態について詳細に説明する。この本発明の実施形態の厚膜導電ペーストは、銅粉末と有機ビヒクルとを主成分としており、必要に応じて酸化防止剤や界面活性剤などの添加材と、ターピネオールなどの粘度調整用の有機溶剤とを更に含んでいる。有機ビヒクルはバインダ樹脂と有機溶剤とからなり、この有機ビヒクルを構成する有機溶剤は上記粘度調整用の有機溶剤と同じでもかまわない。本発明の実施形態の厚膜導電ペーストは、銅粉末を60〜95重量%含有しており、有機ビヒクルを0.9〜15重量%含有している。   Hereinafter, an embodiment of a thick film conductive paste according to the present invention will be described in detail. The thick film conductive paste according to the embodiment of the present invention contains copper powder and an organic vehicle as main components, and, if necessary, an additive such as an antioxidant and a surfactant, and an organic substance for viscosity adjustment such as terpineol. It further contains a solvent. The organic vehicle comprises a binder resin and an organic solvent, and the organic solvent constituting the organic vehicle may be the same as the organic solvent for viscosity adjustment. The thick film conductive paste according to the embodiment of the present invention contains 60 to 95% by weight of copper powder and 0.9 to 15% by weight of an organic vehicle.

本発明の実施形態の厚膜導電ペーストは、上記銅粉末が平均粒径の異なる3種類の銅粉末、すなわち大径粉、中径粉、及び小径粉からなり、これら3種類の銅粉末が混合状態で含まれている。これら3種類の銅粉末の平均粒径の比率は、好適には大径粉1に対して中径粉が0.4〜0.5、小径粉が0.1〜0.2である。この場合、大径粉の平均粒径は2.0〜5.0μmが好ましく、2.5〜3.5μmがより好ましい。これにより、900〜1000℃の高温で焼成する際の焼結速度を良好に調整することが可能になる。ここで平均粒径とは、レーザー回折散乱法で測定して得た粒度分布における体積積算の中位径D50のことである。   In the thick film conductive paste according to the embodiment of the present invention, the copper powder is composed of three kinds of copper powders different in average particle diameter, that is, large diameter powder, medium diameter powder and small diameter powder, and these three types of copper powder are mixed Included in the state. The ratio of the average particle diameter of these three types of copper powders is preferably 0.4 to 0.5 for the medium-sized powder and 0.1 to 0.2 for the small-sized powder with respect to the large-sized powder 1. In this case, the average particle diameter of the large-diameter powder is preferably 2.0 to 5.0 μm, and more preferably 2.5 to 3.5 μm. This makes it possible to adjust the sintering speed at the time of firing at a high temperature of 900 to 1000 ° C. well. Here, the average particle diameter is the median diameter D50 of volume integration in the particle size distribution obtained by measurement by the laser diffraction scattering method.

この中径粉の平均粒径の比率が0.4未満であったり0.5を超えたりすると、大径粉や小粒径の粒径との差異が小さくなるので、3種類の銅粉末の粒径のバランスが悪くなり、粒子間に多くの隙間が生じる。一方、この小径粉の平均粒径の比率が0.1未満では小径粉を添加した効果がほとんど得られなくなり、逆に0.2を超えると大径粉や中径粉の粒子間の隙間を埋めるのが困難になる。   If the ratio of the average particle size of the medium-sized powder is less than 0.4 or exceeds 0.5, the difference between the particle size of the large-sized powder and the small-sized particle size becomes small. The balance of the particle size is bad and many gaps are generated between the particles. On the other hand, when the ratio of the average particle diameter of the small diameter powder is less than 0.1, the effect of adding the small diameter powder is hardly obtained, and conversely, when it exceeds 0.2, the gaps between the particles of the large diameter powder and the medium diameter powder It will be difficult to fill.

上記の3種類の銅粉末は、各々の粒度分布がシャープであるのが好ましく、これにより、より緻密な焼結膜を形成することができる。このような粒度分布がシャープな銅粉末は、アトマイズ法や湿式合成法で作製した粉末を分級することで得ることができる。ここでアトマイズ法とは、例えば窒素ガスなどの気層中又はシリコンオイルなどの液相中に溶融状態の金属をノズルから放出して分散させて粉末状の金属を得る方法であり、粉末形成時に粒子表面に被膜が形成されるなどの理由により比較的反応性の低い安定した粉末を得ることができる。一方、湿式合成法は、例えば金属イオンを含んだ水溶液にヒドラジン等の還元剤を加えて金属を析出させて回収する方法であり、一般に上記のアトマイズ法よりも粒子表面が活性な反応性の高い粉末を得ることができる。本発明の実施形態の厚膜導電ペーストでは、少なくとも大径粉及び中粒径はアトマイズ法で生成するのが好ましい。   The above three types of copper powder preferably have a sharp particle size distribution, whereby a denser sintered film can be formed. Such copper powder having a sharp particle size distribution can be obtained by classifying the powder produced by the atomization method or the wet synthesis method. Here, the atomizing method is a method of releasing metal in a molten state from a nozzle and dispersing it in a gas phase such as nitrogen gas or in a liquid phase such as silicon oil to obtain a powder metal, and at the time of powder formation A stable powder with relatively low reactivity can be obtained, for example, because a film is formed on the particle surface. On the other hand, the wet synthesis method is a method in which a reducing agent such as hydrazine is added to an aqueous solution containing, for example, metal ions to precipitate metal for recovery, and in general, the particle surface is more reactive than the above atomization method. Powder can be obtained. In the thick film conductive paste according to the embodiment of the present invention, at least the large diameter powder and the medium particle diameter are preferably generated by the atomizing method.

本発明の実施形態の厚膜導電ペーストに含まれる上記3種類の銅粉末は、これら3種類の銅粉末の合計100質量%に対して、大径粉81〜91質量%、中径粉4.5〜14質量%、及び小径粉4.5〜5.5質量%の比率で配合されている。これにより焼結後にボイドの少ない緻密な焼結膜を形成することができる。上記の大径粉の含有量が81質量%未満では焼結後の焼結膜の抵抗値が高くなるおそれがあり、逆に91質量%を超えると中径粉や小径粉を添加した効果が得られにくくなる。上記の中径粉の含有量が4.5質量%未満では、大径粉の粒子間の隙間を十分に埋めることができなくなり、逆に14質量%を超えるとかえって粒子間の隙間が増えるおそれがある。上記小径粉の含有量が4.5質量%未満では小径粉を添加した効果が得られにくくなり、逆に5.5質量%を超えるとかえって粒子間の隙間が増えるおそれがある。   The above three types of copper powder contained in the thick film conductive paste of the embodiment of the present invention have 81 to 91 mass% of large diameter powder and medium diameter powder with respect to a total of 100 mass% of these three types of copper powder. It is mix | blended in the ratio of 5-14 mass% and small diameter powder 4.5-5.5 mass%. Thereby, it is possible to form a dense sintered film with few voids after sintering. If the content of the above large diameter powder is less than 81% by mass, the resistance value of the sintered film after sintering may become high, and conversely, if it exceeds 91% by mass, the effect of adding medium diameter powder and small diameter powder is obtained. It becomes difficult to be If the content of the above medium-sized powder is less than 4.5% by mass, the gaps between the particles of the large-sized powder can not be sufficiently filled, and conversely, if it exceeds 14% by mass, the gaps between the particles may increase There is. If the content of the small diameter powder is less than 4.5% by mass, it is difficult to obtain the effect of adding the small diameter powder, and conversely, if it exceeds 5.5% by mass, the gaps between the particles may be increased.

本発明の実施形態の厚膜導電ペーストに含まれる有機ビヒクルを構成するバインダ樹脂には特に限定はなく、従来の厚膜導電ペーストに使用されるものと同様のエチルセルロース、メタクリレートなどを用いることができる。有機ビヒクルに含まれるバインダ樹脂の含有量は、厚膜導電ペーストに対して2質量%以下とするのが好ましい。また、上記有機ビヒクルを構成する有機溶剤も特に限定はなく、ターピネオール、ブチルカルビトールなどの従来の厚膜導電ペーストに使用されるものと同様のものを一般的な配合量で使用することができる。有機ビヒクルに含まれる有機溶剤の含有量は特に規定が無く、後述するスクリーン印刷の際に好適なペーストの粘度となるように、適宜バインダ樹脂との配合比率を調整すれば良い。また、添加材には前述した酸化防止剤等のほか、導電粉末の分散性向上や保管中の分離沈降防止などの効果を有する分散剤を必要に応じて使用することができる。尚、有機溶剤はペーストの粘度調整用として最後に単独で添加することもできる。   The binder resin constituting the organic vehicle contained in the thick film conductive paste of the embodiment of the present invention is not particularly limited, and ethyl cellulose, methacrylate and the like similar to those used in conventional thick film conductive paste can be used. . The content of the binder resin contained in the organic vehicle is preferably 2% by mass or less with respect to the thick film conductive paste. Further, the organic solvent constituting the above organic vehicle is also not particularly limited, and one similar to those used for conventional thick film conductive pastes such as terpineol and butyl carbitol can be used in a general compounding amount . The content of the organic solvent contained in the organic vehicle is not particularly limited, and the blending ratio with the binder resin may be appropriately adjusted so as to obtain a viscosity of a paste suitable for screen printing described later. Further, as the additive, in addition to the above-mentioned antioxidant and the like, a dispersant having an effect of improving the dispersibility of the conductive powder and preventing separation and sedimentation during storage can be used as needed. The organic solvent can also be added alone at the end to adjust the viscosity of the paste.

次に、図1を参照しながら上記にて説明した本発明の実施形態の厚膜導電ペーストを用いて角型チップ抵抗器を製造する方法について説明する。尚、一般的にチップ抵抗器の製造では、1枚の基板上に複数個のチップ抵抗体を同時に作り込んでいき、これを切り分けてから個別の仕上げ工程でチップ抵抗器へと製品化することが行われるが、以下の説明では簡単のため1個のチップ抵抗器にのみ着目してチップ抵抗器の製造方法を説明する。   Next, a method of manufacturing a square chip resistor using the thick film conductive paste of the embodiment of the present invention described above with reference to FIG. 1 will be described. In general, in the manufacture of chip resistors, a plurality of chip resistors should be simultaneously formed on a single substrate, cut into pieces, and manufactured into chip resistors in individual finishing steps. However, in the following description, a method of manufacturing a chip resistor will be described focusing on only one chip resistor for the sake of simplicity.

先ず、アルミナ等の絶縁材料からなる板状基材1の上面に本発明の実施形態の厚膜導電ペーストをスクリーン印刷法などで印刷した後、これを乾燥及び焼成して図1(a)に示すような1対の上面電極2を形成する。次に上記1対の上面電極2の各々の上面に少なくとも部分的に重なるように抵抗ペーストをスクリーン印刷法などで印刷した後、これを乾燥及び焼成して上記1対の上面電極2同士を互いに接続する抵抗体3を形成する。上記の抵抗ペースト材料は、一般的な厚膜抵抗器等に用いられているものを用いることができるが、ルテニウム系酸化物粉及びガラス粉に、エチルセルロ−スなどの有機樹脂とターピネオールなどの溶剤とを加え、これらを混練してペーストにしたものを用いることが望ましい。   First, the thick film conductive paste of the embodiment of the present invention is printed by the screen printing method or the like on the upper surface of a plate-like substrate 1 made of an insulating material such as alumina, and then dried and fired to form FIG. A pair of top electrodes 2 as shown is formed. Next, a resistive paste is printed by screen printing or the like so as to at least partially overlap the upper surface of each of the pair of upper surface electrodes 2, then this is dried and fired to pair the upper surface electrodes 2 with each other. The resistor 3 to be connected is formed. As the above-mentioned resistance paste material, although those used for general thick film resistors etc. can be used, organic resins such as ethyl cellulose and solvents such as terpineol can be used for ruthenium oxide powder and glass powder. It is desirable to use a paste obtained by kneading the above into a paste.

次に、上記にて形成した抵抗体3の上にプリコート層4を形成した後、抵抗体3の抵抗値の調整のためプリコート層4の上から抵抗体3に対してレーザー光を照射してトリミングを行う。これにより図1(b)に示すような抵抗体3とプリコート層4とが同時に切り込まれた切込部5が形成される。次に、図1(c)に示すように、プリコート層4の表面上にオーバーコート層6を形成する。   Next, after the precoat layer 4 is formed on the resistor 3 formed in the above, laser light is applied to the resistor 3 from above the precoat layer 4 to adjust the resistance value of the resistor 3. Do trimming. As a result, as shown in FIG. 1 (b), a cut portion 5 in which the resistor 3 and the precoat layer 4 are cut at the same time is formed. Next, as shown in FIG. 1C, the overcoat layer 6 is formed on the surface of the precoat layer 4.

尚、実際のチップ抵抗器の製造工程においては、切り分ける前の板状基板の上面に、上記の1対の上面電極2及び抵抗体3がマトリックス状に複数組形成されることになる。また、各チップ抵抗器には、一般的に板状基板1の裏面側にも1対の裏面電極が形成される。切り分けられた後の各チップ抵抗器には、これら1対の上面電極2と1対の裏面電極がほぼ端から端まで形成されている側の両端面に、スパッタリング又は導電性樹脂ペーストの硬化により1対の端面電極を形成する。更に、この1対の端面電極の上に、一般的な湿式めっき法によりめっき膜を形成する。これにより、角型チップ抵抗器を作製することができる。   In the actual chip resistor manufacturing process, a plurality of pairs of the upper electrode 2 and the resistor 3 are formed in a matrix on the upper surface of the plate-like substrate before cutting. In each chip resistor, generally, a pair of back surface electrodes is also formed on the back surface side of the plate-like substrate 1. In each chip resistor after being cut off, sputtering or curing of the conductive resin paste is performed on both end faces on the side where the pair of top electrodes 2 and the pair of back electrodes are formed almost from end to end. A pair of end face electrodes are formed. Further, a plating film is formed on the pair of end face electrodes by a general wet plating method. Thereby, a square chip resistor can be manufactured.

(試験1)
平均粒径が0.3μm、1.2μm、及び2.5μmの3種類の銅粉末を用意し、これらの銅粉末を様々な配合割合となるように量り取って、有機ビヒクルと共に3本ロールミル(ビューラー株式会社製、SDY−300)を用いて混合した。上記有機ビヒクルには、バインダ樹脂としてのエチルセルロースを10質量%含有し、残部が有機溶剤としてのターピネオール溶液となる様に予め調製したものを用いた。このようにして実施例1〜6及び比較例1〜7の厚膜導電ペーストの試料を作製した。次に、各試料の厚膜導電ペーストをアルミナ基板上にスクリーン印刷機を用いて矩形のパターンとなるように印刷し、ボックス乾燥器を用いて120℃で10分間乾燥させて乾燥膜を形成した。得られた乾燥膜を酸素濃度30体積ppmの窒素雰囲気中で最高温度950℃のベルト炉で焼成した。
(Test 1)
Prepare three types of copper powder with an average particle size of 0.3 μm, 1.2 μm, and 2.5 μm, measure these copper powders in various proportions, and use a 3-roll mill (with an organic vehicle) It mixed using Buhler Co., Ltd. make, SDY-300). The organic vehicle used contained 10% by mass of ethylcellulose as a binder resin, and was prepared in advance so that the remainder was a terpineol solution as an organic solvent. Thus, samples of the thick film conductive pastes of Examples 1 to 6 and Comparative Examples 1 to 7 were produced. Next, a thick film conductive paste of each sample was printed on an alumina substrate so as to form a rectangular pattern using a screen printer, and dried at 120 ° C. for 10 minutes using a box dryer to form a dried film. . The obtained dried film was fired in a belt furnace at a maximum temperature of 950 ° C. in a nitrogen atmosphere with an oxygen concentration of 30 volume ppm.

得られた焼成膜の表面を走査型電子顕微鏡SEMを用いて500倍で撮影し、そのSEM画像内の任意に選択した縦横100μm内に存在するボイドの数をカウントした。その結果を各試料の厚膜導電ペーストを構成する構成要素及びそれらの厚膜導電ペースト100質量%に対する含有率と共に下記表1に示す。銅粉末と有機ビヒクルの含有量の合計が100質量%に満たない場合の残部は有機溶剤からなる。また、本実施例の代表として実施例2のSEM画像と、比較例の代表として比較例4のSEM画像とをそれぞれ図2、3に示す。   The surface of the obtained fired film was photographed at 500 × using a scanning electron microscope SEM, and the number of voids present in arbitrarily selected 100 μm in the vertical and horizontal directions in the SEM image was counted. The results are shown in the following Table 1 together with the components constituting the thick film conductive paste of each sample and the content thereof with respect to 100% by mass of the thick film conductive paste. When the total content of the copper powder and the organic vehicle is less than 100% by mass, the balance consists of the organic solvent. Moreover, the SEM image of Example 2 as a representative of a present Example, and the SEM image of the comparative example 4 as a representative of a comparative example are respectively shown to FIG.

上記表1の結果から、比較例1〜6の厚膜導電ペーストを材料に用いて形成した焼結膜は、本発明の要件を満たす実施例1〜6の厚膜導電ペーストを材料に用いて形成した焼結膜よりもボイドが多く生成していることが分かる。その理由は、比較例1〜6の厚膜導電ペーストは、各粒子径の銅粉のいずれかの含有量が、本発明の範囲から外れて配合されているので3種類の銅粉末の配合割合のバランスが悪く、粒子間の隙間が多く存在したことによりボイドが多量に発生したものと考えられる。また、比較例7の厚膜導電ペーストは中径粉のない2種類の銅粉による厚膜導電ペーストであるので、ほぼ大径粉と小径粉だけで焼結膜が構成されることになるので、焼成時に大径粉よりも小径粉が速く焼成してしまい、これにより生じた隙間が起点となってボイドが生成したと考えられる。   From the results of Table 1 above, the sintered films formed using the thick film conductive pastes of Comparative Examples 1 to 6 as the material are formed using the thick film conductive pastes of Examples 1 to 6 that satisfy the requirements of the present invention as the material It can be seen that more voids are generated than the sintered film. The reason is that in the thick film conductive pastes of Comparative Examples 1 to 6, since the content of any one of the copper powders of each particle diameter is out of the range of the present invention, the mixing ratio of the three types of copper powder It is considered that a large amount of voids are generated due to the presence of many gaps between the particles. In addition, since the thick film conductive paste of Comparative Example 7 is a thick film conductive paste of two types of copper powder without medium-sized powder, a sintered film is composed of only large-sized powder and small-sized powder, It is considered that the small-diameter powder is sintered faster than the large-diameter powder at the time of sintering, and the void generated thereby becomes a starting point.

これに対して本発明の要件を満たす実施例1〜6の厚膜導電ペーストでは、平均粒径の異なる3種類の銅粉末がバランスよく配合されているので、隣接する焼結界面などにわずかにボイドの生成が見られるものの、上記の比較例1〜7の厚膜導電ペーストに比べてボイドの少ないより緻密な焼成膜が形成されていることが分かる。   On the other hand, in the thick film conductive pastes of Examples 1 to 6 satisfying the requirements of the present invention, since three types of copper powders different in average particle diameter are blended in a well-balanced manner, Although generation of voids is observed, it can be seen that a more dense fired film with less voids is formed as compared to the thick film conductive pastes of Comparative Examples 1 to 7 described above.

(試験2)
厚膜導電ペースト内の銅粉の合計含有量を変更した以外は、試験1の実施例2と同じ各銅粉の配合量の材料を用いて、試験1と同様にして実施例7、8及び比較例8、9の厚膜導電ペーストの試料を作製し、試験1と同様の条件で焼成した。得られた焼成膜の表面を、試験1と同様に走査型電子顕微鏡SEMを用いて観察し、ボイドの数をカウントした。その結果を各試料の厚膜導電ペーストを構成する構成要素及びそれらの厚膜導電ペースト100質量%に対する含有率と共に下記表2に示す。
(Test 2)
Examples 7 and 8 and Examples 7 and 8 in the same manner as in Test 1 except that the total content of copper powder in the thick film conductive paste was changed, but using the same compounding amount of each copper powder as Example 2 in Test 1 Samples of the thick film conductive pastes of Comparative Examples 8 and 9 were prepared and fired under the same conditions as in Test 1. The surface of the obtained fired film was observed using a scanning electron microscope SEM in the same manner as in Test 1, and the number of voids was counted. The results are shown in the following Table 2 together with the components constituting the thick film conductive paste of each sample and the content thereof with respect to 100% by mass of the thick film conductive paste.

上記表2の結果から、比較例8の厚膜導電ペーストを材料に用いて形成した焼結膜は、本発明の要件を満たす実施例の厚膜導電ペーストを材料に用いて形成した焼結膜よりもボイドが多く生成していることが分かる。その理由は、比較例8の厚膜導電ペーストは、銅粉の合計含有量が少ないため、相対的に溶剤の量が増え、乾燥や焼成の際に溶剤やバインダ樹脂が除去される際に十分な余裕が無くボイドとなってしまったものと考えられる。また、比較例9の厚膜導電ペーストは銅粉末の量が多すぎることで有機溶剤の含有量が少なくなりすぎ、ペーストの流動性が十分に得られず、スムーズに印刷することができなくなった結果、ボイドの個数を適切に計測することができなかったため、評価結果を「−」とした。本発明の要件を満たす実施例7、8の厚膜導電ペーストは、上記試験1の実施例1〜6と同様に緻密な焼成膜が形成されていることが分かる。   From the results in Table 2 above, the sintered film formed using the thick film conductive paste of Comparative Example 8 as the material is more than the sintered film formed using the thick film conductive paste of the example satisfying the requirements of the present invention as the material. It can be seen that many voids are generated. The reason is that the thick film conductive paste of Comparative Example 8 has a relatively low total content of copper powder, so the amount of solvent is relatively increased, and the solvent and binder resin are sufficiently removed during drying and baking. It is thought that there is no room for it and it has become a void. Further, in the thick film conductive paste of Comparative Example 9, the content of the organic solvent was too small because the amount of the copper powder was too large, and the flowability of the paste was not sufficiently obtained, and it was not possible to print smoothly. As a result, the number of voids could not be properly measured, so the evaluation result was “−”. It can be seen that, in the thick film conductive pastes of Examples 7 and 8 satisfying the requirements of the present invention, a dense fired film is formed as in Examples 1 to 6 of Test 1 above.

(試験3)
厚膜導電ペースト内の有機ビヒクルの含有量を減らした以外は、試験1の実施例2と同じ各銅粉の配合量の材料を用いて、試験1と同様にして実施例9、10の厚膜導電ペーストの試料を作製し、試験1と同様の条件で焼成した。また、実施例11、12では、有機ビヒクルの含有量を多くすると共に銅粉末の合計含有量を減らして80質量%とした以外は実施例2と同じ各銅粉の配合量の材料を用いて、試験1と同様に厚膜導電ペーストの試料を作製し、試験1と同様の条件で焼成した。得られた焼成膜の表面を、試験1と同様に走査型電子顕微鏡SEMを用いて観察し、ボイドの数をカウントした。その結果を各試料の厚膜導電ペーストを構成する構成要素及びそれらの厚膜導電ペースト100質量%に対する含有率と共に下記表3に示す。
(Test 3)
The thickness of Examples 9 and 10 was the same as in Test 1 except that the content of each of the copper powders was the same as in Example 2 in Test 1 except that the content of the organic vehicle in the thick film conductive paste was reduced. A sample of film conductive paste was prepared and fired under the same conditions as in Test 1. Moreover, in Examples 11 and 12, the material of the same blending amount of each copper powder as in Example 2 is used except that the content of the organic vehicle is increased and the total content of the copper powder is reduced to 80% by mass. A sample of a thick film conductive paste was prepared in the same manner as in Test 1, and fired under the same conditions as in Test 1. The surface of the obtained fired film was observed using a scanning electron microscope SEM in the same manner as in Test 1, and the number of voids was counted. The results are shown in the following Table 3 together with the components constituting the thick film conductive paste of each sample and the content thereof with respect to 100% by mass of the thick film conductive paste.

上記表3の結果から、好ましい有機ビヒクルの含有量の要件から外れる実施例9及び12の厚膜導電ペーストを材料に用いて形成した焼結膜は、好ましい有機ビヒクルの含有量の要件を満たす実施例10及び11の厚膜導電ペーストを材料に用いて形成した焼結膜よりもボイドが若干増えていることが分かる。実施例9の厚膜導電ペーストは、ボイドの発生量は大きく増えてはいないものの、基板との密着性が劣る場合がある。実施例12の厚膜導電ペーストの様に、有機ビヒクルが多すぎると有機ビヒクルの除去のタイミングによりボイドが増える場合がある。一方、実施例10、11の厚膜導電ペーストは、上記試験1の実施例1〜6と同様に緻密な焼成膜が形成されていることが分かる。   From the results of Table 3 above, a sintered film formed using the thick film conductive pastes of Examples 9 and 12 out of the requirements of the content of the preferred organic vehicle is an example satisfying the requirements of the content of the preferred organic vehicle It can be seen that the number of voids is slightly larger than that of the sintered film formed using the thick film conductive pastes of 10 and 11 as materials. Although the thick film conductive paste of Example 9 does not increase the generation amount of voids significantly, the adhesion with the substrate may be poor. As in the thick film conductive paste of Example 12, when the amount of the organic vehicle is too large, voids may increase depending on the timing of the removal of the organic vehicle. On the other hand, in the thick film conductive pastes of Examples 10 and 11, it is understood that a dense fired film is formed as in Examples 1 to 6 of Test 1 above.

(試験4)
厚膜導電ペーストに用いる大粒径の銅粉に対する各粒径の比を変更し、中粒径として0.8μm、1.0μm、1.25μm、1.3μmの銅粉を用い、小粒径として0.2μm、0.25μm、0.5μm、0.6μmの銅粉を用いた以外は、試験1の実施例2と同じ条件で実施例13〜20の厚膜導電ペーストの試料を作製し、試験1と同様の条件で焼成した。得られた焼成膜の表面を、試験1と同様に走査型電子顕微鏡SEMを用いて観察し、ボイドの数をカウントした。その結果を各試料の厚膜導電ペーストを構成する構成要素及びそれらの厚膜導電ペースト100質量%に対する含有率と共に下記表4に示す。
(Test 4)
The ratio of each particle size to the large particle size copper powder used for the thick film conductive paste is changed, and the medium particle size is 0.8 μm, 1.0 μm, 1.25 μm, 1.3 μm copper powder, and the small particle size is used. Samples of thick film conductive pastes of Examples 13 to 20 were prepared under the same conditions as Example 2 of Test 1 except that 0.2 μm, 0.25 μm, 0.5 μm, and 0.6 μm copper powder were used as And the same conditions as in Test 1. The surface of the obtained fired film was observed using a scanning electron microscope SEM in the same manner as in Test 1, and the number of voids was counted. The results are shown in the following Table 4 together with the components constituting the thick film conductive paste of each sample and the content thereof with respect to 100% by mass of the thick film conductive paste.

上記表4の結果から、好ましい銅粉径比率の要件から外れる実施例13、16、17、20の厚膜導電ペーストを材料に用いて形成した焼結膜は、好ましい銅粉径比率の要件を満たす実施例14、15、18、19の厚膜導電ペーストを材料に用いて形成した焼結膜よりもボイドが若干増えていることが分かる。これは、実施例13、16、17、20では好ましい銅粉サイズのバランスが崩れてしまうため、十分に銅粉間隔を狭めることができずにボイドが増えたと考えられる。一方、実施例14、15、18、19の厚膜導電ペーストは、上記試験1の実施例1〜6と同様に緻密な焼成膜が形成されていることが分かる。   From the results of Table 4 above, the sintered films formed using the thick film conductive pastes of Examples 13, 16, 17 and 20 which deviate from the requirements of the preferred copper powder diameter ratio, satisfy the requirements of the preferred copper powder diameter ratio It can be seen that the number of voids is slightly larger than that of the sintered film formed using the thick film conductive paste of Examples 14, 15, 18, and 19 as a material. The reason for this is that the balance of the preferred copper powder size is broken in Examples 13, 16, 17, and 20, and therefore, it is considered that the void is increased because the copper powder interval can not be sufficiently narrowed. On the other hand, it can be seen that, in the thick film conductive pastes of Examples 14, 15, 18, and 19, similar to Examples 1 to 6 of Test 1, a dense fired film is formed.

(試験5)
厚膜導電ペーストに用いる基本となる大粒径の銅粉の粒径を変更し、それに伴い中粒径や小粒径の粒径も変更し、大粒径として5.0μm、3.5μm、2.0μmの銅粉を用い、中粒径として2.5μm、1.6μm、0.9μmの銅粉を用い、小粒径として0.5μm、0.4μm、0.3μmの銅粉を用い、各銅粉の含有量も変更させた以外は、試験1と同じ条件で実施例21〜25の厚膜導電ペーストの試料を作製し、試験1と同様の条件で焼成した。得られた焼成膜の表面を、試験1と同様に走査型電子顕微鏡SEMを用いて観察し、ボイドの数をカウントした。その結果を各試料の厚膜導電ペーストを構成する構成要素及びそれらの厚膜導電ペースト100質量%に対する含有率と共に下記表5に示す。
(Test 5)
The particle size of the large particle size copper powder which is the basis of the thick film conductive paste is changed, and the medium particle size and the particle size of the small particle size are also changed accordingly, and the large particle size is 5.0 μm, 3.5 μm, Using 2.0 μm copper powder, using 2.5 μm, 1.6 μm, 0.9 μm copper powder as medium particle size, using 0.5 μm, 0.4 μm, 0.3 μm copper powder as small particle size The samples of the thick film conductive pastes of Examples 21 to 25 were prepared under the same conditions as in Test 1 except that the content of each copper powder was also changed, and was fired under the same conditions as in Test 1. The surface of the obtained fired film was observed using a scanning electron microscope SEM in the same manner as in Test 1, and the number of voids was counted. The results are shown in the following Table 5 together with the components constituting the thick film conductive paste of each sample and the content thereof with respect to 100% by mass of the thick film conductive paste.

上記表5の結果から、銅粉の径を変更しても、本発明の好ましい銅粉径比率を維持することにより上記試験1の実施例1〜6と同様に緻密な焼成膜が形成されていることが分かる。   From the results in Table 5 above, even if the diameter of the copper powder is changed, a dense fired film is formed in the same manner as in Examples 1 to 6 of Test 1 above by maintaining the preferable copper powder diameter ratio of the present invention I understand that

1 板状基板
2 1対の上面電極
3 抵抗体
4 プリコート層
5 切込部
6 オーバーコート層
Reference Signs List 1 plate-like substrate 2 pair of top electrodes 3 resistor 4 precoat layer 5 cut portion 6 overcoat layer

Claims (4)

大径粉、中径粉及び小径粉からなる3種類の銅粉末と有機ビヒクルとを主成分とする厚膜導電ペーストであって、前記3種類の銅粉末は、混合状態で前記厚膜導電ペーストに60〜95質量%含まれており、且つ前記3種類の銅粉末の合計100質量%に対して、大径粉81〜91質量%、中径粉4.5〜14質量%、及び小径粉4.5〜5.5質量%の比率で配合されていることを特徴とする厚膜導電ペースト。   A thick film conductive paste mainly composed of three kinds of copper powder consisting of large diameter powder, medium diameter powder and small diameter powder and an organic vehicle, wherein the three types of copper powder are mixed in a mixed state with the thick film conductive paste 60 to 95% by mass, and 81 to 91% by mass of large diameter powder, 4.5 to 14% by mass of medium diameter powder, and small diameter powder with respect to a total of 100% by mass of the three types of copper powder A thick film conductive paste characterized in that it is blended in a ratio of 4.5 to 5.5% by mass. 前記有機ビヒクルはバインダ樹脂と有機溶剤とを含有し、前記有機ビヒクルは前記厚膜導電ペースト100質量%に対して0.9〜15質量%含まれていることを特徴とする、請求項1に記載の厚膜導電ペースト。   The organic vehicle contains a binder resin and an organic solvent, and the organic vehicle is contained in an amount of 0.9 to 15% by mass with respect to 100% by mass of the thick film conductive paste. Thick film conductive paste as described. 前記3種類の銅粉末の平均粒径の比率は、大径粉1に対して中径粉が0.4〜0.5、小径粉が0.1〜0.2であることを特徴とする、請求項1又は2に記載の厚膜導電ペースト。   The ratio of the average particle diameter of the three types of copper powder is characterized in that the medium diameter powder is 0.4 to 0.5 and the small diameter powder is 0.1 to 0.2 with respect to the large diameter powder 1. The thick film conductive paste according to claim 1 or 2. 請求項1〜3のいずれか1項に記載の厚膜導電ペーストから形成された上面電極を有する角型チップ抵抗器。   A square chip resistor having an upper surface electrode formed of the thick film conductive paste according to any one of claims 1 to 3.
JP2017231122A 2017-11-30 2017-11-30 Thick film conductive paste, and corner chip resistor manufactured by using the same Pending JP2019102241A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017231122A JP2019102241A (en) 2017-11-30 2017-11-30 Thick film conductive paste, and corner chip resistor manufactured by using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017231122A JP2019102241A (en) 2017-11-30 2017-11-30 Thick film conductive paste, and corner chip resistor manufactured by using the same

Publications (1)

Publication Number Publication Date
JP2019102241A true JP2019102241A (en) 2019-06-24

Family

ID=66977056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017231122A Pending JP2019102241A (en) 2017-11-30 2017-11-30 Thick film conductive paste, and corner chip resistor manufactured by using the same

Country Status (1)

Country Link
JP (1) JP2019102241A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115831435A (en) * 2022-11-28 2023-03-21 苏州三环科技有限公司 Slurry for resistor and preparation method and application thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115831435A (en) * 2022-11-28 2023-03-21 苏州三环科技有限公司 Slurry for resistor and preparation method and application thereof
CN115831435B (en) * 2022-11-28 2023-09-01 苏州三环科技有限公司 Slurry for resistor and preparation method and application thereof

Similar Documents

Publication Publication Date Title
JP6158461B1 (en) Silver powder and silver paste and use thereof
TWI754669B (en) Silver paste and electronic components
JP2007018884A (en) Conductive paste
JP6708093B2 (en) Resistor paste and resistor produced by firing the paste
JP6968524B2 (en) Manufacturing method of thick film conductive paste and ceramic multilayer laminated electronic components
JP2019102241A (en) Thick film conductive paste, and corner chip resistor manufactured by using the same
JP2004228094A (en) Terminal electrode composition material for multi-layer ceramic capacitor
WO2016186185A1 (en) Cu paste composition for forming thick film conductor, and thick film conductor
JP6151017B2 (en) Nickel ultrafine powder, conductive paste, and method for producing nickel ultrafine powder
JP2002110444A (en) Conductive paste and laminated ceramic electronic part
JP7159549B2 (en) Method for making conductive paste
CN113242774B (en) Silver paste
JP2018049900A (en) Resistance paste and resistor produced by firing the same
JP2009187695A (en) Conductor paste composition for display
JP2005174698A (en) Conductive paste and its utilization
CN113226595B (en) Silver paste
JP6949302B2 (en) Conductive paste and multilayer substrate formed using it
WO2020137331A1 (en) Silver paste
JP2021009843A (en) Silver paste and electronic element
JP2019102240A (en) Conductive paste, and multilayer substrate formed using the same
JP2004273254A (en) Conductive paste for low-temperature calcination, and its manufacturing method
JP2024085301A (en) Method for producing coating composition
CN115516578A (en) Thick film resistor paste, thick film resistor, and electronic component
TW202147353A (en) Thick film resistor paste, thick film resistor, and electronic component