JP2018049900A - Resistance paste and resistor produced by firing the same - Google Patents

Resistance paste and resistor produced by firing the same Download PDF

Info

Publication number
JP2018049900A
JP2018049900A JP2016183801A JP2016183801A JP2018049900A JP 2018049900 A JP2018049900 A JP 2018049900A JP 2016183801 A JP2016183801 A JP 2016183801A JP 2016183801 A JP2016183801 A JP 2016183801A JP 2018049900 A JP2018049900 A JP 2018049900A
Authority
JP
Japan
Prior art keywords
lead
resistance paste
resistor
paste
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016183801A
Other languages
Japanese (ja)
Inventor
富士雄 幕田
Fujio Makuta
富士雄 幕田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2016183801A priority Critical patent/JP2018049900A/en
Publication of JP2018049900A publication Critical patent/JP2018049900A/en
Pending legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)
  • Apparatuses And Processes For Manufacturing Resistors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide: a lead-free thick film resistor having a good electric property with small current noise while having a high resistance value; and a lead-free resistance paste which acts as a material thereof.SOLUTION: A resistance paste substantially comprises: thermally conductive particles made of a ruthenium dioxide; a lead-free glass frit; an organic vehicle; and an additive agent. The resistance paste includes, as the additive agent, an organic titanium compound of 0.1-4.0 mass% in terms of a titanium oxide. The organic titanium compound is suitably di-n-butoxy bis(triethanolaminato) titanium.SELECTED DRAWING: None

Description

本発明は、厚膜チップ抵抗器やハイブリッドICなどの抵抗体の材料として使用される抵抗ペースト、特に鉛を含有しない抵抗ペースト及びこれを焼成して作製される抵抗体に関するものである。   The present invention relates to a resistor paste used as a material for resistors such as thick film chip resistors and hybrid ICs, and more particularly to a resistor paste containing no lead and a resistor produced by firing the paste.

従来、電子部品の抵抗体被膜を形成する方法としては、膜形成材料を含む抵抗ペーストを用いて成膜する厚膜方式と膜形成材料をスパッタリング等することで成膜する薄膜方式が一般的に知られている。それらのうち、厚膜方式は抵抗ペーストをセラミック基板上に印刷した後、焼成することで抵抗体を形成するものであり、この方法は成膜に必要な設備が安価で生産性も高いことから、チップ抵抗器やハイブリッドICなどの電子部品が有する抵抗体の製造に広範に利用されている。   Conventionally, as a method for forming a resistor film of an electronic component, a thick film method in which a film is formed using a resistance paste containing a film forming material and a thin film method in which a film forming material is formed by sputtering or the like are generally used. Are known. Among them, the thick film method is to form a resistor by printing a resistor paste on a ceramic substrate and then firing it. This method is inexpensive and has high productivity required for film formation. It is widely used for manufacturing resistors included in electronic components such as chip resistors and hybrid ICs.

上記の厚膜方式に用いる抵抗ペーストは、導電性粒子及びガラスフリット、並びにそれらを印刷に適したペースト状にするための有機ビヒクルから実質的に構成される。導電性粒子としては、二酸化ルテニウム(RuO)やパイロクロア型ルテニウム系酸化物(PbRu7−X、BiRu)が一般に使われている。このように導電性粒子としてRu系酸化物を用いるのは、主に導電性粒子の濃度に対して抵抗値がなだらかに変化するためである。 The resistive paste used in the thick film system is substantially composed of conductive particles and glass frit, and an organic vehicle for making them suitable for printing. As the conductive particles, ruthenium dioxide (RuO 2 ) or pyrochlore-type ruthenium-based oxides (Pb 2 Ru 2 O 7-X , Bi 2 Ru 2 O 7 ) are generally used. The reason why the Ru-based oxide is used as the conductive particles is mainly because the resistance value changes gently with respect to the concentration of the conductive particles.

また、ガラスフリットとしては、ホウケイ酸鉛ガラス(PbO−SiO−B)やアルミノホウケイ酸鉛ガラス(PbO−SiO−B−Al)など、鉛を多量に含むホウケイ酸鉛系ガラスが使われている。このようにガラスフリットにホウケイ酸鉛系ガラスを用いるのは、Ru系酸化物との濡れ性が良く、熱膨張係数が基板のそれに近く、焼成時の粘性などが適しているからである。 In addition, as a glass frit, a large amount of lead such as lead borosilicate glass (PbO—SiO 2 —B 2 O 3 ) and lead aluminoborosilicate glass (PbO—SiO 2 —B 2 O 3 —Al 2 O 3 ) is used. Including lead borosilicate glass. The reason why the lead borosilicate glass is used for the glass frit in this way is that it has good wettability with the Ru-based oxide, has a thermal expansion coefficient close to that of the substrate, and has a suitable viscosity during firing.

上記の抵抗ペーストでは、成膜後の抵抗体の特性を改善するため、各種添加剤を含有させることが昔から行われている。例えば特許文献1には、抵抗温度係数(TCR)を調整するため、Nb、TiO等のTCR調整剤が含有された抵抗被膜形成用組成物が開示されている。 In the above-described resistance paste, various additives have been included for a long time in order to improve the characteristics of the resistor after film formation. For example, Patent Document 1 discloses a composition for forming a resistive film containing a TCR adjusting agent such as Nb 2 O 5 or TiO 2 in order to adjust the temperature coefficient of resistance (TCR).

特開平04−291901号公報Japanese Patent Laid-Open No. 04-291901

近年、環境保護に配慮して電子部品では鉛フリー化が進められており、抵抗ペーストにおいても鉛フリー化が求められている。また、上記した抵抗ペーストを材料にして作製される電子部品等はますます小型化、高性能化する傾向にあり、これに伴い抵抗ペーストには抵抗値を高くしても電流ノイズの小さい抵抗体を作製できるものが求められている。   In recent years, lead-free electronic components have been promoted in consideration of environmental protection, and lead-free solder pastes are also required. In addition, electronic components made from the above-mentioned resistance paste are becoming smaller and higher performance, and as a result, resistance pastes have low current noise even if the resistance value is increased. There is a demand for a material that can be used.

本発明は上記の状況に鑑みてなされたものであり、高い抵抗値を有しながら電流ノイズを小さく抑えることが可能な電気的特性に優れた鉛フリーの厚膜抵抗体を形成することができる鉛フリーの抵抗ペーストを提供することを目的とする。   The present invention has been made in view of the above situation, and can form a lead-free thick film resistor excellent in electrical characteristics capable of suppressing current noise while having a high resistance value. An object is to provide a lead-free resistance paste.

本発明者は、上記目的を達成可能な鉛フリーの抵抗ペーストについて検討を重ねた結果、抵抗ペーストに特定の添加剤を含有させることによって、導電性粒子にルテニウムを含む鉛フリーの酸化物を用いると共に、ガラスフリットにも鉛フリーのものを用いる場合であっても良好な電気的特性を有する抵抗体を作製できることを見出し、本発明を完成するに至った。   As a result of repeated studies on a lead-free resistance paste capable of achieving the above object, the present inventor uses a lead-free oxide containing ruthenium in conductive particles by including a specific additive in the resistance paste. At the same time, it has been found that a resistor having good electrical characteristics can be produced even when a lead-free glass frit is used, and the present invention has been completed.

即ち、本発明が提供する抵抗ペーストは、二酸化ルテニウムからなる導電性粒子と、鉛を含まないガラスフリットと、有機ビヒクルと、添加剤とで実質的に構成される抵抗ペーストであって、前記添加剤として酸化チタン換算量で0.1〜4.0質量%の有機チタン化合物を含んでいることを特徴としている。   That is, the resistance paste provided by the present invention is a resistance paste substantially composed of conductive particles made of ruthenium dioxide, glass frit containing no lead, an organic vehicle, and an additive. It is characterized by containing 0.1 to 4.0% by mass of an organic titanium compound in terms of titanium oxide as an agent.

本発明によれば、鉛による環境汚染を引き起こすことなく、高い抵抗値を有しながら電流ノイズを小さく抑えることが可能な電気的特性に優れた厚膜抵抗体を作製できる抵抗ペーストを提供することができる。   According to the present invention, there is provided a resistance paste capable of producing a thick film resistor excellent in electrical characteristics capable of suppressing current noise to a low level while having a high resistance value without causing environmental pollution due to lead. Can do.

以下、本発明の抵抗ペーストの実施形態について説明する。この本発明の実施形態の抵抗ペーストに用いる二酸化ルテニウムの形態については特に制限はなく、一般的な製法で得られる酸化物を使用することができる。ただし、焼成により形成される厚膜抵抗体の抵抗値のばらつきや電流ノイズをできるだけ抑えるため、当該厚膜抵抗体中の導電パスを微細にするのが望ましく、そのためには酸化物の粒子のBET径による平均粒径は1.0μm以下であるのが望ましい。   Hereinafter, embodiments of the resistance paste of the present invention will be described. There is no restriction | limiting in particular about the form of ruthenium dioxide used for the resistance paste of this embodiment of this invention, The oxide obtained by a general manufacturing method can be used. However, in order to suppress the variation in resistance value and current noise of the thick film resistor formed by firing as much as possible, it is desirable to make the conductive path in the thick film resistor finer. The average particle diameter by diameter is preferably 1.0 μm or less.

上記抵抗ペーストを構成するガラスフリットは、鉛を含まないものであれば特にその組成に制限はない。例えば、ホウケイ酸ガラス、アルミノホウケイ酸ガラス、ホウケイ酸アルカリ土類ガラス、ホウケイ酸アルカリガラス、ホウケイ酸亜鉛ガラス、ホウケイ酸ビスマスガラスなどを用いることができる。前述したように、厚膜抵抗体中の導電パスを微細にして該厚膜抵抗体の抵抗値のばらつきや電流ノイズをできるだけ抑えるため、ガラスフリットのレーザー回折式粒度分布測定によるD50(メジアン径)は5μm以下であることが好ましい。   If the glass frit which comprises the said resistance paste does not contain lead, there will be no restriction | limiting in particular in the composition. For example, borosilicate glass, aluminoborosilicate glass, borosilicate alkaline earth glass, borosilicate alkali glass, borosilicate zinc glass, borosilicate bismuth glass, or the like can be used. As described above, D50 (median diameter) measured by laser diffraction particle size distribution measurement of glass frit to minimize the conductive path in the thick film resistor and suppress variations in resistance value and current noise of the thick film resistor as much as possible. Is preferably 5 μm or less.

上記抵抗ペーストを構成する有機ビヒクルは、抵抗ペーストに通常使用されているものであってよく、例えば、エチルセルロース、ブチラール、アクリルなどの樹脂をターピネオール、ブチルカルビトールアセテートなどの溶剤に溶解したものが好適に用いられる。   The organic vehicle constituting the resistance paste may be one normally used for the resistance paste, for example, a resin obtained by dissolving a resin such as ethyl cellulose, butyral, or acrylic in a solvent such as terpineol or butyl carbitol acetate. Used for.

上記抵抗ペーストは、更に添加剤として有機チタン化合物を酸化チタン換算量で0.1質量%以上4.0質量%以下含有している。添加剤としての有機チタン化合物の種類については特に制限はなく、例えばジ-n-ブトキシ・ビス(トリエタノールアミナト)チタン、(2−n−ブトキシカルボニルベンゾイルオキシ)トリブトキシチタン等を用いることができる。一般的に酸化チタンは、焼成により形成される抵抗体の抵抗値を上昇させて電流ノイズを小さくする働きを有しているものの、酸化チタン粉の状態で添加しただけではその働きが不十分になりやすい。これに対して、上記の通り有機チタン化合物を添加することにより抵抗値を良好に上昇させることが可能になる。添加剤の含有量を抵抗ペーストに対して酸化チタン換算量で0.1質量%以上4.0質量%以下とするのは、0.1質量%未満では電流ノイズを小さくする効果が十分得られないからである。逆に、4.0質量%を超えると抵抗値が高くなり過ぎて、電流ノイズを小さくする効果が十分得られなくなるおそれがある。   The resistance paste further contains an organic titanium compound as an additive in an amount of 0.1% by mass to 4.0% by mass in terms of titanium oxide. The type of the organic titanium compound as the additive is not particularly limited. For example, di-n-butoxy bis (triethanolaminato) titanium, (2-n-butoxycarbonylbenzoyloxy) tributoxytitanium, or the like may be used. it can. In general, titanium oxide has the function of increasing the resistance value of the resistor formed by firing to reduce current noise, but its function is insufficient only by adding it in the form of titanium oxide powder. Prone. On the other hand, the resistance value can be increased satisfactorily by adding the organic titanium compound as described above. The content of the additive is 0.1% by mass or more and 4.0% by mass or less in terms of titanium oxide with respect to the resistance paste. If the content is less than 0.1% by mass, the effect of reducing current noise is sufficiently obtained. Because there is no. Conversely, if it exceeds 4.0 mass%, the resistance value becomes too high, and there is a possibility that the effect of reducing the current noise cannot be obtained sufficiently.

上記した本発明の実施形態の抵抗ペーストの製造法は特に制約がなく、ロールミルなどの市販の混練装置に、上記した抵抗ペーストの構成成分の所定量を秤量して装入し、混練することで作製することができる。その際、導電性粒子とガラスフリットの混合割合は、質量基準による導電性粒子/ガラスフリットの比で5/95〜50/50程度であるのが好ましい。また、抵抗体の作製法も特に制約がなく、上記した本発明の実施形態の抵抗ペーストを材料として用いて従来と同様の方法で形成することができる。例えば、上記した抵抗ペーストをアルミナ基板などの通常の基板上にスクリーン印刷法などにより塗布し、乾燥した後、ベルト炉などを用いて800〜900℃程度のピーク温度で焼成することによって、鉛フリーの抵抗体を形成することができる。   The method for producing the resistance paste of the above-described embodiment of the present invention is not particularly limited, and a predetermined amount of the components of the resistance paste described above is weighed into a commercially available kneading apparatus such as a roll mill, and kneaded. Can be produced. At that time, the mixing ratio of the conductive particles and the glass frit is preferably about 5/95 to 50/50 in terms of the ratio of the conductive particles / glass frit on a mass basis. Further, the method for manufacturing the resistor is not particularly limited, and the resistor can be formed by the same method as the conventional one using the resistor paste of the embodiment of the present invention as a material. For example, the above-described resistance paste is applied to a normal substrate such as an alumina substrate by screen printing or the like, dried, and then fired at a peak temperature of about 800 to 900 ° C. using a belt furnace or the like, thereby lead-free. Can be formed.

尚、本発明の実施形態の抵抗ペーストは、上記した必須成分の他に、厚膜抵抗体の電気的特性を調整するために従来から通常使用されている例えば分散剤、可塑剤などの種々の添加剤を必要に応じて添加してもよい。   In addition to the essential components described above, the resistor paste according to the embodiment of the present invention is conventionally used in various ways such as dispersants and plasticizers that are conventionally used to adjust the electrical characteristics of thick film resistors. You may add an additive as needed.

導電性粒子、ガラスフリット、有機ビヒクル、及び添加剤を様々な配合割合で混合して複数の抵抗ペースト試料を調製し、それらを各々焼成することで厚膜抵抗体を形成し、その電気的特性について評価した。具体的には、導電性粒子には水酸化ルテニウムを焙焼することによって作製したBET径40nmのRuO粉末を用意した。ガラスフリットには一般的な方法で混合、溶融、急冷、粉砕することによって作製した10質量%SrO−43質量%SiO−16質量%B−4質量%Al−20質量%ZnO−7質量%NaOの組成を有するレーザー回折式粒度分布測定によるD50が1.9μmのガラスフリットを用意した。 Conductive particles, glass frit, organic vehicle, and additives are mixed at various blending ratios to prepare multiple resistor paste samples, which are then fired to form thick film resistors and their electrical properties Was evaluated. Specifically, RuO 2 powder having a BET diameter of 40 nm prepared by roasting ruthenium hydroxide was prepared as the conductive particles. For glass frit, 10 mass% SrO-43 mass% SiO 2 -16 mass% B 2 O 3 -4 mass% Al 2 O 3 -20 mass produced by mixing, melting, quenching, and pulverizing by a general method. A glass frit having a composition of% ZnO-7 mass% Na 2 O and having a D50 of 1.9 μm as measured by laser diffraction particle size distribution was prepared.

添加剤にはジ-n-ブトキシ・ビス(トリエタノールアミナト)チタン(有機チタンA)、(2−n−ブトキシカルボニルベンゾイルオキシ)トリブトキシチタン(有機チタンB)、及びTiOを用意し、有機ビヒクルにはエチルセルロースとターピネオールを主成分とするものを用意した。これらRuO粉末、ガラスフリット、添加剤、及び有機ビヒクルを様々な配合割合となるように秤量し、三本ロールミルで混練した。これにより試料1〜9の抵抗ペーストを作製した。 Di-n-butoxy bis (triethanolaminato) titanium (organic titanium A), (2-n-butoxycarbonylbenzoyloxy) tributoxytitanium (organic titanium B), and TiO 2 are prepared as additives. The organic vehicle was prepared based on ethyl cellulose and terpineol. These RuO 2 powder, glass frit, additive, and organic vehicle were weighed so as to have various blending ratios and kneaded by a three-roll mill. This produced the resistance paste of samples 1-9.

次に、各試料の抵抗ペーストに対して、AgPdペーストを用いて電極間距離1mmの2つの電極が形成されたアルミナ基板を用意し、該アルミナ基板上において上記両電極を接続するように抵抗ペーストを幅1mmにスクリ−ン印刷し、150℃で10分間乾燥した後、ベルト炉にてピーク温度850℃で9分間焼成した。このようにして作製した厚膜抵抗体の電気的特性(抵抗値、電流ノイズ)を測定した。この電気的特性の測定結果を、使用した抵抗ペーストの組成と共に下記表1に示す。尚、抵抗値はKEITHLEY社製のModel2001Multimeterを用いて4端子法にて測定し、電流ノイズはQuan−Tech社製のノイズメーターModel315Cを用いて1/10W印加で測定した。   Next, an alumina substrate on which two electrodes having an interelectrode distance of 1 mm are formed using AgPd paste is prepared for the resistance paste of each sample, and the two electrodes are connected on the alumina substrate. Was screen printed to a width of 1 mm, dried at 150 ° C. for 10 minutes, and then fired in a belt furnace at a peak temperature of 850 ° C. for 9 minutes. The electrical characteristics (resistance value, current noise) of the thick film resistor thus fabricated were measured. The measurement results of the electrical characteristics are shown in Table 1 below together with the composition of the resistance paste used. The resistance value was measured by a four-terminal method using a Model 2001 Multimeter manufactured by KEITHLEY, and the current noise was measured by applying 1/10 W using a noise meter Model 315C manufactured by Quan-Tech.

Figure 2018049900
Figure 2018049900

上記表1においてほぼ同程度の抵抗値を有する試料1と試料5、試料2及び4と試料6〜8、及び試料3と試料9をそれぞれ比較することで分かるように、安価なRuOからなる導電性粒子と鉛フリーのガラスフリットとを用いて厚膜抵抗体を形成した場合においても、有機チタンからなる添加剤としてジ-n-ブトキシ・ビス(トリエタノールアミナト)チタン又は(2−n−ブトキシカルボニルベンゾイルオキシ)トリブトキシチタンを本発明が規定する範囲内で添加することによって、これら有機チタンを加えないか又は従来から用いられているTiOを添加剤として含有させる場合に比べて電流ノイズを小さくできることが分かる。


In Table 1 above, as can be seen by comparing Sample 1 and Sample 5, Samples 2 and 4, Samples 6-8, and Sample 3 and Sample 9 having substantially the same resistance value, each is made of inexpensive RuO 2. Even when a thick film resistor is formed using conductive particles and lead-free glass frit, di-n-butoxy bis (triethanolaminato) titanium or (2-n -Butoxycarbonylbenzoyloxy) tributoxytitanium is added within the range specified by the present invention, so that the organic current is not added or the TiO 2 used conventionally is added as an additive. It can be seen that noise can be reduced.


Claims (5)

二酸化ルテニウムからなる導電性粒子と、鉛を含まないガラスフリットと、有機ビヒクルと、添加剤とで実質的に構成される抵抗ペーストであって、前記添加剤として酸化チタン換算量で0.1〜4.0質量%の有機チタン化合物を含んでいることを特徴とする抵抗ペースト。   A resistance paste substantially composed of conductive particles made of ruthenium dioxide, glass frit containing no lead, an organic vehicle, and an additive, wherein the additive is 0.1 to 0.1 in terms of titanium oxide. A resistance paste comprising 4.0% by mass of an organic titanium compound. 前記有機チタン化合物がジ-n-ブトキシ・ビス(トリエタノールアミナト)チタンであることを特徴とする、請求項1に記載の抵抗ペースト。   The resistance paste according to claim 1, wherein the organic titanium compound is di-n-butoxy bis (triethanolaminato) titanium. 請求項1又は2に記載の抵抗ペーストを焼成することで形成されることを特徴とする鉛フリーの抵抗体。   It forms by baking the resistance paste of Claim 1 or 2, The lead-free resistor characterized by the above-mentioned. 請求項3に記載の抵抗体を有することを特徴とする電子部品。   An electronic component comprising the resistor according to claim 3. 請求項1又は2に記載の抵抗ペーストを焼成することで抵抗体を作製することを特徴とする鉛フリーの抵抗体の製造方法。


A method for producing a lead-free resistor, wherein the resistor is produced by firing the resistor paste according to claim 1.


JP2016183801A 2016-09-21 2016-09-21 Resistance paste and resistor produced by firing the same Pending JP2018049900A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016183801A JP2018049900A (en) 2016-09-21 2016-09-21 Resistance paste and resistor produced by firing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016183801A JP2018049900A (en) 2016-09-21 2016-09-21 Resistance paste and resistor produced by firing the same

Publications (1)

Publication Number Publication Date
JP2018049900A true JP2018049900A (en) 2018-03-29

Family

ID=61767738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016183801A Pending JP2018049900A (en) 2016-09-21 2016-09-21 Resistance paste and resistor produced by firing the same

Country Status (1)

Country Link
JP (1) JP2018049900A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109637695A (en) * 2018-12-12 2019-04-16 西安宏星电子浆料科技有限责任公司 A kind of high-performance thick-film resistor paste composition
CN113851249A (en) * 2021-11-29 2021-12-28 西安宏星电子浆料科技股份有限公司 Low-current noise type resistance paste and preparation method and application thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109637695A (en) * 2018-12-12 2019-04-16 西安宏星电子浆料科技有限责任公司 A kind of high-performance thick-film resistor paste composition
CN113851249A (en) * 2021-11-29 2021-12-28 西安宏星电子浆料科技股份有限公司 Low-current noise type resistance paste and preparation method and application thereof

Similar Documents

Publication Publication Date Title
JP6708093B2 (en) Resistor paste and resistor produced by firing the paste
KR100791877B1 (en) Resistance paste and resistor
KR102420736B1 (en) Composition for resistor, resistor paste containing same, and thick film resistor using same
JP2018092730A (en) Composition for resistor and resistor paste containing the same furthermore thick film resistor therewith
JP2019040782A (en) Thick film resistor composition and thick film resistor paste containing the same
KR20230004485A (en) Thick Film Resistor Pastes, Thick Film Resistors, and Electronic Components
JP2018049900A (en) Resistance paste and resistor produced by firing the same
JP6932905B2 (en) Resistor paste and resistors made by firing it
JP2007227114A (en) Resistor paste and thick membrane resistor using it
JP2018014211A (en) Resistance paste and resistive element prepared from the resistance paste
JP7139691B2 (en) Composition for thick film resistor, thick film resistor paste and thick film resistor
JP2009026903A (en) Thick film resistor composition, resistance paste, and thick film resistor
JP2020061467A5 (en)
JP7390103B2 (en) Resistor compositions, resistance pastes, thick film resistors
WO2021221175A1 (en) Thick film resistor paste, thick film resistor, and electronic component
JP6804044B2 (en) A composition for a resistor, a resistor paste containing the same, and a thick film resistor using the same.
JP7116362B2 (en) Resistor composition, resistor paste, and resistor
JP2023135971A (en) Thick film resistor paste, thick film resistor, and electronic component
KR20230004484A (en) Thick Film Resistor Pastes, Thick Film Resistors, and Electronic Components
KR20230004486A (en) Thick Film Resistor Pastes, Thick Film Resistors, and Electronic Components
JP2018101531A (en) Resistance composition and resistance paste mainly composed of the same
JP2020061466A5 (en)
JP2018198259A (en) Composition for negative characteristic resistor, resistance paste for negative characteristic resistor, and negative characteristic thermistor
JP2008192784A (en) Resistive paste for forming thermistor
JP2006236621A (en) Thick film resistor paste and manufacturing method of the same